1
|
Yang IA, Ferry OR, Clarke MS, Sim EH, Fong KM. Inhaled corticosteroids versus placebo for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2023; 3:CD002991. [PMID: 36971693 PMCID: PMC10042218 DOI: 10.1002/14651858.cd002991.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
BACKGROUND The role of inhaled corticosteroids (ICS) in chronic obstructive pulmonary disease (COPD) has been the subject of much uncertainty. COPD clinical guidelines currently recommend selective use of ICS. ICS are not recommended as monotherapy for people with COPD, and are only given in combination with long-acting bronchodilators due to greater efficacy of combination therapy. Incorporating and critiquing newly published placebo-controlled trials into the monotherapy evidence base may help to resolve ongoing uncertainties and conflicting findings about their role in this population. OBJECTIVES To evaluate the benefits and harms of inhaled corticosteroids, used as monotherapy versus placebo, in people with stable COPD, in terms of objective and subjective outcomes. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was October 2022. SELECTION CRITERIA We included randomised trials comparing any dose of any type of ICS, given as monotherapy, with a placebo control in people with stable COPD. We excluded studies of less than 12 weeks' duration and studies of populations with known bronchial hyper-responsiveness (BHR) or bronchodilator reversibility. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our a priori primary outcomes were 1. exacerbations of COPD and 2. quality of life. Our secondary outcomes were 3. all-cause mortality, 4. lung function (rate of decline of forced expiratory volume in one second (FEV1)), 5. rescue bronchodilator use, 6. exercise capacity, 7. pneumonia and 8. adverse events including pneumonia. ]. We used GRADE to assess certainty of evidence. MAIN RESULTS Thirty-six primary studies with 23,139 participants met the inclusion criteria. Mean age ranged from 52 to 67 years, and females were 0% to 46% of participants. Studies recruited across the severities of COPD. Seventeen studies were of duration longer than three months and up to six months and 19 studies were of duration longer than six months. We judged the overall risk of bias as low. Long-term (more than six months) use of ICS as monotherapy reduced the mean rate of exacerbations in those studies where pooling of data was possible (generic inverse variance analysis: rate ratio 0.88 exacerbations per participant per year, 95% confidence interval (CI) 0.82 to 0.94; I2 = 48%, 5 studies, 10,097 participants; moderate-certainty evidence; pooled means analysis: mean difference (MD) -0.05 exacerbations per participant per year, 95% CI -0.07 to -0.02; I2 = 78%, 5 studies, 10,316 participants; moderate-certainty evidence). ICS slowed the rate of decline in quality of life, as measured by the St George's Respiratory Questionnaire (MD -1.22 units/year, 95% CI -1.83 to -0.60; I2 = 0%; 5 studies, 2507 participants; moderate-certainty evidence; minimal clinically importance difference 4 points). There was no evidence of a difference in all-cause mortality in people with COPD (odds ratio (OR) 0.94, 95% CI 0.84 to 1.07; I2 = 0%; 10 studies, 16,636 participants; moderate-certainty evidence). Long-term use of ICS reduced the rate of decline in FEV1 in people with COPD (generic inverse variance analysis: MD 6.31 mL/year benefit, 95% CI 1.76 to 10.85; I2 = 0%; 6 studies, 9829 participants; moderate-certainty evidence; pooled means analysis: 7.28 mL/year, 95% CI 3.21 to 11.35; I2 = 0%; 6 studies, 12,502 participants; moderate-certainty evidence). ADVERSE EVENTS in the long-term studies, the rate of pneumonia was increased in the ICS group, compared to placebo, in studies that reported pneumonia as an adverse event (OR 1.38, 95% CI 1.02 to 1.88; I2 = 55%; 9 studies, 14,831 participants; low-certainty evidence). There was an increased risk of oropharyngeal candidiasis (OR 2.66, 95% CI 1.91 to 3.68; 5547 participants) and hoarseness (OR 1.98, 95% CI 1.44 to 2.74; 3523 participants). The long-term studies that measured bone effects generally showed no major effect on fractures or bone mineral density over three years. We downgraded the certainty of evidence to moderate for imprecision and low for imprecision and inconsistency. AUTHORS' CONCLUSIONS This systematic review updates the evidence base for ICS monotherapy with newly published trials to aid the ongoing assessment of their role for people with COPD. Use of ICS alone for COPD likely results in a reduction of exacerbation rates of clinical relevance, probably results in a reduction in the rate of decline of FEV1 of uncertain clinical relevance and likely results in a small improvement in health-related quality of life not meeting the threshold for a minimally clinically important difference. These potential benefits should be weighed up against adverse events (likely to increase local oropharyngeal adverse effects and may increase the risk of pneumonia) and probably no reduction in mortality. Though not recommended as monotherapy, the probable benefits of ICS highlighted in this review support their continued consideration in combination with long-acting bronchodilators. Future research and evidence syntheses should be focused in that area.
Collapse
Affiliation(s)
- Ian A Yang
- Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Olivia R Ferry
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Melissa S Clarke
- Redcliffe Hospital, Redcliffe, Australia
- North Lakes Health Precinct, North Lakes, Australia
- Caboolture Community and Oral Health, Caboolture, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Kwun M Fong
- Department of Thoracic Medicine, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Mornex JF, Balduyck M, Bouchecareilh M, Cuvelier A, Epaud R, Kerjouan M, Le Rouzic O, Pison C, Plantier L, Pujazon MC, Reynaud-Gaubert M, Toutain A, Trumbic B, Willemin MC, Zysman M, Brun O, Campana M, Chabot F, Chamouard V, Dechomet M, Fauve J, Girerd B, Gnakamene C, Lefrançois S, Lombard JN, Maitre B, Maynié-François C, Moerman A, Payancé A, Reix P, Revel D, Revel MP, Schuers M, Terrioux P, Theron D, Willersinn F, Cottin V, Mal H. [French clinical practice guidelines for the diagnosis and management of lung disease with alpha 1-antitrypsin deficiency]. Rev Mal Respir 2022; 39:633-656. [PMID: 35906149 DOI: 10.1016/j.rmr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France.
| | - M Balduyck
- CHU de Lille, centre de biologie pathologie, laboratoire de biochimie et biologie moléculaire HMNO, faculté de pharmacie, EA 7364 RADEME, université de Lille, service de biochimie et biologie moléculaire, Lille, France
| | - M Bouchecareilh
- Université de Bordeaux, CNRS, Inserm U1053 BaRITon, Bordeaux, France
| | - A Cuvelier
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, Rouen, France; Groupe de recherche sur le handicap ventilatoire et neurologique (GRHVN), université Normandie Rouen, Rouen, France
| | - R Epaud
- Centre de références des maladies respiratoires rares, site de Créteil, Créteil, France
| | - M Kerjouan
- Service de pneumologie, CHU Pontchaillou, Rennes, France
| | - O Le Rouzic
- CHU Lille, service de pneumologie et immuno-allergologie, Lille, France; Université de Lille, CNRS, Inserm, institut Pasteur de Lille, U1019, UMR 9017, CIIL, OpInfIELD team, Lille, France
| | - C Pison
- Service de pneumologie physiologie, pôle thorax et vaisseaux, CHU de Grenoble, Grenoble, France; Université Grenoble Alpes, Saint-Martin-d'Hères, France
| | - L Plantier
- Service de pneumologie et explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France; Université de Tours, CEPR, Inserm UMR1100, Tours, France
| | - M-C Pujazon
- Service de pneumologie et allergologie, pôle clinique des voies respiratoires, hôpital Larrey, Toulouse, France
| | - M Reynaud-Gaubert
- Service de pneumologie, centre de compétence pour les maladies pulmonaires rares, AP-HM, CHU Nord, Marseille, France; Aix-Marseille université, IHU-Méditerranée infection, Marseille, France
| | - A Toutain
- Service de génétique, CHU de Tours, Tours, France; UMR 1253, iBrain, université de Tours, Inserm, Tours, France
| | | | - M-C Willemin
- Service de pneumologie et oncologie thoracique, CHU d'Angers, hôpital Larrey, Angers, France
| | - M Zysman
- Service de pneumologie, CHU Haut-Lévèque, Bordeaux, France; Université de Bordeaux, centre de recherche cardiothoracique, Inserm U1045, CIC 1401, Pessac, France
| | - O Brun
- Centre de pneumologie et d'allergologie respiratoire, Perpignan, France
| | - M Campana
- Service de pneumologie, CHR d'Orléans, Orléans, France
| | - F Chabot
- Département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France; Inserm U1116, université de Lorraine, Vandœuvre-lès-Nancy, France
| | - V Chamouard
- Service pharmaceutique, hôpital cardiologique, GHE, HCL, Bron, France
| | - M Dechomet
- Service d'immunologie biologique, centre de biologie sud, centre hospitalier Lyon Sud, HCL, Pierre-Bénite, France
| | - J Fauve
- Cabinet médical, Bollène, France
| | - B Girerd
- Université Paris-Saclay, faculté de médecine, Le Kremlin-Bicêtre, France; AP-HP, centre de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs respiratoires, hôpital Bicêtre, Le Kremlin-Bicêtre, France; Inserm UMR_S 999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - C Gnakamene
- Service de pneumologie, CH de Montélimar, GH Portes de Provence, Montélimar, France
| | | | | | - B Maitre
- Service de pneumologie, centre hospitalier intercommunal, Créteil, France; Inserm U952, UFR de santé, université Paris-Est Créteil, Créteil, France
| | - C Maynié-François
- Université de Lyon, collège universitaire de médecine générale, Lyon, France; Université Claude-Bernard Lyon 1, laboratoire de biométrie et biologie évolutive, UMR5558, Villeurbanne, France
| | - A Moerman
- CHRU de Lille, hôpital Jeanne-de-Flandre, Lille, France; Cabinet de médecine générale, Lille, France
| | - A Payancé
- Service d'hépatologie, CHU Beaujon, AP-HP, Clichy, France; Filière de santé maladies rares du foie de l'adulte et de l'enfant (FilFoie), CHU Saint-Antoine, Paris, France
| | - P Reix
- Service de pneumologie pédiatrique, allergologie, mucoviscidose, hôpital Femme-Mère-Enfant, HCL, Bron, France; UMR 5558 CNRS équipe EMET, université Claude-Bernard Lyon 1, Villeurbanne, France
| | - D Revel
- Université Claude-Bernard Lyon 1, Lyon, France; Hospices civils de Lyon, Lyon, France
| | - M-P Revel
- Université Paris Descartes, Paris, France; Service de radiologie, hôpital Cochin, AP-HP, Paris, France
| | - M Schuers
- Université de Rouen Normandie, département de médecine générale, Rouen, France; Sorbonne université, LIMICS U1142, Paris, France
| | | | - D Theron
- Asten santé, Isneauville, France
| | | | - V Cottin
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France
| | - H Mal
- Service de pneumologie B, hôpital Bichat-Claude-Bernard, AP-HP, Paris, France; Inserm U1152, université Paris Diderot, site Xavier Bichat, Paris, France
| |
Collapse
|
3
|
Mornex JF. [Alpha 1-antitrypsin deficiency]. Rev Mal Respir 2022; 39:698-707. [PMID: 35715315 DOI: 10.1016/j.rmr.2022.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pulmonary emphysema and liver disease are the clinical expressions of alpha 1-antitrypsin deficiency, an autosomal recessive genetic disease. STATE OF THE ART Alpha 1-antitrypsin deficiency is usually associated with the homozygous Z variant of the SERPINA1 gene. Its clinical expression always consists in a substantial reduction of alpha 1-antitrypsin serum concentration and its variants are analyzed by isoelectric focalization or molecular techniques. Assessed by CO transfer alteration and CT scan, risk of pulmonary emphysema is increased by tobacco consumption. Assessed by transient elastography and liver ultrasound, risk of liver disease is increased by alcohol consumption or obesity. Treatment of COPD-associated alpha 1-antitrypsin deficiency does not differ from that of other forms of COPD. In patients presenting with severe deficiency, augmentation therapy with plasma-derived alpha 1-antitrypsin reduces the progression of emphysema, as shown in terms of CT-based lung density metrics. Patients with alpha 1-antitrypsin deficiency with a ZZ genotype should refrain from alcohol or tobacco consumption, and watch their weight; so should their close relatives. PERSPECTIVES Modulation of alpha 1-antitrypsin liver production offers an interesting new therapeutic perspective. CONCLUSION Homozygous (Z) variants of the SERPINA1 gene confer an increased risk of pulmonary emphysema and liver disease, particularly among smokers, drinkers and obese persons.
Collapse
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, Lyon, France; Centre de référence des maladies respiratoires rares, Orphalung, RESPIFIL, 69500 Bron, Bron, France; Service de pneumologie, hôpital Louis-Pradel, hospices civils de Lyon, 69500 Bron, France.
| |
Collapse
|
4
|
Barjaktarevic I, Campos M. Management of lung disease in alpha-1 antitrypsin deficiency: what we do and what we do not know. Ther Adv Chronic Dis 2021; 12_suppl:20406223211010172. [PMID: 34408831 PMCID: PMC8367208 DOI: 10.1177/20406223211010172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Management of lung disease in patients with alpha-1 antitrypsin deficiency (AATD) includes both non-pharmacological and pharmacological approaches. Lifestyle changes with avoidance of environmental pollutants, including tobacco smoke, improving exercise levels and nutritional status, all encompassed under a disease management program, are crucial pillars of AATD management. Non-pharmacological therapies follow conventional treatment guidelines for chronic obstructive pulmonary disease. Specific pharmacological treatment consists of administering exogenous alpha-1 antitrypsin (AAT) protein intravenously (augmentation therapy). This intervention raises AAT levels in serum and lung epithelial lining fluid, increases anti-elastase capacity, and decreases several inflammatory mediators in the lung. Radiologically, augmentation therapy reduces lung density loss over time, thus delaying disease progression. The effect of augmentation therapy on other lung-related outcomes, such as exacerbation frequency/length, quality of life, lung function decline, and mortality, are less clear and questions regarding dose optimization or route of administration are still debatable. This review discusses the rationale and available evidence for these interventions in AATD.
Collapse
Affiliation(s)
- Igor Barjaktarevic
- Division of Pulmonary and Critical Care
Medicine, David Geffen School of Medicine at University of California Los
Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Michael Campos
- Division of Pulmonary, Allergy, Critical Care
and Sleep Medicine, University of Miami School of Medicine, Miami, FL,
USA
| |
Collapse
|
5
|
Horváth I, Canotilho M, Chlumský J, Chorostowska-Wynimko J, Corda L, Derom E, Ficker JH, Kneussl M, Miravitlles M, Sucena M, Thabut G, Turner AM, van ’t Wout E, McElvaney NG. Diagnosis and management of α 1-antitrypsin deficiency in Europe: an expert survey. ERJ Open Res 2019; 5:00171-2018. [PMID: 30863774 PMCID: PMC6409083 DOI: 10.1183/23120541.00171-2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Despite recent improvements, α1-antitrypsin deficiency (AATD) remains a rarely diagnosed and treated condition. To assess the variability of AATD diagnosis/treatment in Europe, and to evaluate clinicians' views on methods to optimise management, specialist AATD clinicians were invited to complete a web-based survey. Surveys were completed by 15 physicians from 14 centres in 13 European countries. All respondents perceived the AATD diagnosis rate to be low in their country; 77% of physicians believed that ∼15% of cases were diagnosed. Low awareness was perceived as the greatest barrier to diagnosis. Spirometry was considered more practical than quantitative computed tomography (QCT) for monitoring AATD patients in clinical practice; QCT was considered more useful in trials. AAT therapy provision was reported to be highly variable: France and Germany were reported to treat the highest proportion (∼60%) of diagnosed patients, in contrast to the UK and Hungary, where virtually no patients receive AAT therapy. Most clinicians supported self-administration and extended dosing intervals to improve convenience of AAT therapy. This survey indicates that AATD diagnosis and management are highly heterogeneous in Europe; European cooperation is essential to generate data to support access to AAT therapy. Improving convenience of AAT therapy is an ongoing objective.
Collapse
Affiliation(s)
- Ildikó Horváth
- Dept of Pulmonology, National Koranyi Institute for Pulmonology in Budapest, Budapest, Hungary
| | - Maria Canotilho
- Dept of Pneumology, Hospital of Santo Andre – Centro Hospitalar de Leiria, Leiria, Portugal
| | - Jan Chlumský
- Dept of Pneumology, Thomayer Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Joanna Chorostowska-Wynimko
- Dept of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Luciano Corda
- Dept of Internal Medicine, Respiratory Disease Unit, Spedali Civili, Brescia, Italy
| | - Eric Derom
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Joachim H. Ficker
- 3rd Medical Dept, Nuremberg General Hospital/Paracelsus Medical University, Nuremberg, Germany
| | - Meinhard Kneussl
- Dept of Internal Medicine II and Pneumology at Wilhelminenspital Wien, Vienna, Austria
| | - Marc Miravitlles
- Pulmonology Dept, University Hospital Vall d'Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Maria Sucena
- Pulmonology Dept, Centro Hospitalar de São João, Porto, Portugal
| | - Gabriel Thabut
- Dept of Pneumology and Lung Transplantation, Bichat Hospital, Paris, France
| | - Alice M. Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Emily van ’t Wout
- Leiden University Medical Centre, Dept of Pulmonology, Leiden, Netherlands
| | - N. Gerard McElvaney
- Dept of Respiratory Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
6
|
Soriano JB. An Epidemiological Overview of Chronic Obstructive Pulmonary Disease: What Can Real-Life Data Tell Us about Disease Management? COPD 2018; 14:S3-S7. [PMID: 28306356 DOI: 10.1080/15412555.2017.1286165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common condition, associated with increasing age and smoking exposure. COPD is a leading cause of morbidity, mortality and health care expenditure worldwide; yet, only 10-15% of all cases are identified medically. Alpha-1-antitrypsin deficiency (AATD) is responsible for about 1% of COPD cases but is also largely under-recognised, leading to diagnostic delay and missed treatment opportunities in patients who remain undetected. New evidence has recently highlighted the extent of overlap between COPD and bronchiectasis and the implications of comorbidity on clinical course and mortality. COPD with comorbid bronchiectasis deserves to be given research priority. This article overviews the epidemiology of COPD and examines the implications of overlap between COPD and AATD and between COPD and bronchiectasis.
Collapse
Affiliation(s)
- Joan B Soriano
- a Instituto de Investigación Hospital Universitario de la Princesa (IISP), Universidad Autónoma de Madrid , Madrid , Spain
| |
Collapse
|
7
|
Campos MA, Runken MC, Davis AM, Johnson MP, Stone GA, Buikema AR. Impact of a Health Management Program on Healthcare Outcomes among Patients on Augmentation Therapy for Alpha 1-Antitrypsin Deficiency: An Insurance Claims Analysis. Adv Ther 2018; 35:467-481. [PMID: 29616482 PMCID: PMC5910458 DOI: 10.1007/s12325-018-0690-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Indexed: 01/12/2023]
Abstract
Introduction Alpha 1-antitrypsin deficiency (AATD) is a genetic disorder which reduces serum alpha 1-antitrypsin (AAT or alpha1-proteinase inhibitor, A1PI) and increases the risk of chronic obstructive pulmonary disease (COPD). Management strategies include intravenous A1PI augmentation, and, in some cases, a health management program (Prolastin Direct®; PD). Objectives This study compared clinical and economic outcomes between patients with and without PD program participation. Methods This retrospective study included commercial and Medicare Advantage health insurance plan members with ≥ 1 claim with diagnosis codes for COPD and ≥ 1 medical or pharmacy claim including A1PI (on index date). Outcomes were compared between patients receiving only Prolastin® or Prolastin®-C (PD cohort) and patients who received a different brand without PD (Comparator cohort). Demographic and clinical characteristics were captured during 6 months pre-index. Post-index exacerbation episodes and healthcare utilization and costs were compared between cohorts. Results The study sample comprised 445 patients (n = 213 in PD cohort; n = 232 in Comparator cohort), with a mean age 55.5 years, 50.8% male, and 78.9% commercially insured. The average follow-up was 822 days (2.25 years), and the average time on A1PI was 747 days (2.04 years). Few differences were observed in demographic or clinical characteristics. Adjusting for differences in patient characteristics, the rate of severe exacerbation episodes was reduced by 36.1% in the PD cohort. Adjusted total annual all-cause costs were 11.4% lower, and adjusted mean respiratory-related costs were 10.6% lower in the PD cohort than the Comparator cohort. Annual savings in all-cause total costs in the PD cohort relative to the Comparator cohort was US$25,529 per patient, largely due to significantly fewer and shorter hospitalizations. Conclusions These results suggest that comprehensive health management services may improve both clinical and economic outcomes among patients with COPD and AATD who receive augmentation therapy. Funding Grifols Shared Services of North America, Inc. Electronic supplementary material The online version of this article (10.1007/s12325-018-0690-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael A Campos
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Miami Health System, 1600 NW 10th Ave # 7043A, Miami, FL, 33136, USA
| | - Michael C Runken
- Global HEOR, Grifols Shared Services of North America, Inc., 79 T.W. Alexander Dr., 4101 Research Commons, Research Triangle Park, NC, 27709, USA
| | - Angela M Davis
- Pulmonary Global Scientific and Medical Affairs, Grifols Shared Services of North America, Inc., 79 T.W. Alexander Drive, Bldg 4101, Research Triangle Park, NC, 27709, USA
| | - Michael P Johnson
- Optum Life Sciences, HEOR, 11000 Optum Circle, Eden Prairie, MN, 55344, USA
| | - Glenda A Stone
- Global HEOR, Medical Affairs, Grifols Shared Services of North America, Inc., 79 T.W. Alexander Dr., 4101 Research Commons, Research Triangle Park, NC, 27709, USA
| | - Ami R Buikema
- Optum Life Sciences, HEOR, 11000 Optum Circle, Eden Prairie, MN, 55344, USA.
| |
Collapse
|
8
|
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a recognized genetic cause of rapidly progressive loss of lung function conventionally assessed by the decline in FEV1. However, there is less information concerning other physiological measures and the impact on quality of life. Data derived predominantly from the UK national registry show that AATD presents with various physiological phenotypes with differing clinical impact and progression. In general, the decline in quality of life is surprisingly slow despite rapid loss of lung function, which may reflect the benefits of centralized services for patients with AATD. Use of the new GOLD classification identifies patient characteristics that relate to mortality and disparate symptomatology despite similar spirometric impairment.
Collapse
|
9
|
|
10
|
Stockley RA, Miravitlles M, Vogelmeier C. Augmentation therapy for alpha-1 antitrypsin deficiency: towards a personalised approach. Orphanet J Rare Dis 2013; 8:149. [PMID: 24063809 PMCID: PMC3852071 DOI: 10.1186/1750-1172-8-149] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/13/2013] [Indexed: 11/28/2022] Open
Abstract
Background Intravenous augmentation therapy is the only specific treatment available for emphysema associated with alpha-1 antitrypsin deficiency. Despite large observational studies and limited interventional studies there remains controversy about the efficacy of this treatment due to the impracticality of conducting adequately powered studies to evaluate the rate of decline in lung function, due to the low prevalence and the slow progression of the disease. However, measurement of lung density by computed tomography is a more specific and sensitive marker of the evolution of emphysema and two small placebo-controlled clinical trials have provided evidence supporting a reduction in the rate of decline in lung density with augmentation therapy. The problem Where augmentation therapy has become available there has been little consideration of a structured approach to therapy which is often introduced on the basis of functional impairment at diagnosis. Data from registries have shown a great variability in the evolution of lung disease according to patient acquisition and the presence of recognised risk factors. Avoidance of risk factors may, in many cases, stabilise the disease. Since augmentation therapy itself will at best preserve the presenting level of lung damage yet require intravenous administration for life with associated costs, identification of patients at risk of continued rapid or long term progression is essential to select those for whom this treatment can be most appropriate and hence generally more cost-effective. This represents a major reconsideration of the current practice in order to develop a consistent approach to management world wide. Purpose of this review The current review assesses the evidence for efficacy of augmentation therapy and considers how the combination of age, physiological impairment, exacerbation history and rate of decline in spirometry and other measures of emphysema may be used to improve therapeutic decision making, until a reliable predictive biomarker of the evolution of lung impairment can be identified. In addition, individual pharmacokinetic studies may permit the selection of the best regimen of administration for those who need it. Summary The rarity and variable characteristics of the disease imply the need for an individualised approach to therapy in specialised centres with sufficient experience to apply a systematic approach to monitoring and management.
Collapse
Affiliation(s)
- Robert A Stockley
- Lung Investigation Unit, Queen Elizabeth Hospital Birmingham, Mindelsohn way, Edgbaston, Birmingham B15 2WB, UK.
| | | | | | | |
Collapse
|
11
|
D’Urzo A. Optimizing the management of chronic obstructive pulmonary disease: applying the GOLD strategy. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/cpr.13.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Abstract
Noninvasive physiological measurements are reviewed that have been reported in the literature with the specific aim being to study the small airways in lung disease. This has mostly involved at-the-mouth noninvasive measurement of flow, pressure or inert gas concentration, with the intent of deriving one or more indices that are representative of small airway structure and function. While these measurements have remained relatively low-tech, the effort and sophistication increasingly reside with the interpretation of such indices. When aspiring to derive information at the mouth about structural and mechanical processes occurring several airway generations away in a complex cyclically changing cul-de-sac structure, conceptual or semi-quantitative lung models can be valuable. Two assumptions that are central to small airway structure-function measurement are that of an average airway change at a given peripheral lung generation and of a parallel heterogeneity in airway changes. While these are complementary pieces of information, they can affect certain small airways tests in confounding ways. We critically analyzed the various small airway tests under review, while contending that negative outcomes of these tests are probably a true reflection of the fact that no change occurred in the small airways. Utmost care has been taken to not favor one technique over another, given that most current small airways tests still have room for improvement in terms of rendering their content more specific to the small airways. One way to achieve this could consist of the coupling of signals collected at the mouth to spatial information gathered from imaging in the same patient.
Collapse
Affiliation(s)
- Sylvia Verbanck
- Respiratory Division, University Hospital UZ Brussel, Brussels, Belgium.
| |
Collapse
|
13
|
Yang IA, Clarke MS, Sim EHA, Fong KM. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012; 2012:CD002991. [PMID: 22786484 PMCID: PMC8992433 DOI: 10.1002/14651858.cd002991.pub3] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The role of inhaled corticosteroids (ICS) in chronic obstructive pulmonary disease (COPD) has been the subject of much controversy. Major international guidelines recommend selective use of ICS. Recently published meta-analyses have reported conflicting findings on the effects of inhaled steroid therapy in COPD. OBJECTIVES To determine the efficacy and safety of inhaled corticosteroids in stable patients with COPD, in terms of objective and subjective outcomes. SEARCH METHODS A pre-defined search strategy was used to search the Cochrane Airways Group Specialised Register for relevant literature. Searches are current as of July 2011. SELECTION CRITERIA We included randomised trials comparing any dose of any type of inhaled steroid with a placebo control in patients with COPD. Acute bronchodilator reversibility to short-term beta(2)-agonists and bronchial hyper-responsiveness were not exclusion criteria. The a priori primary outcome was change in lung function. We also analysed data on mortality, exacerbations, quality of life and symptoms, rescue bronchodilator use, exercise capacity, biomarkers and safety. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and extracted data. We contacted study authors for additional information. We collected adverse effects information from the trials. MAIN RESULTS Fifty-five primary studies with 16,154 participants met the inclusion criteria. Long-term use of ICS (more than six months) did not consistently reduce the rate of decline in forced expiratory volume in one second (FEV(1)) in COPD patients (generic inverse variance analysis: mean difference (MD) 5.80 mL/year with ICS over placebo, 95% confidence interval (CI) -0.28 to 11.88, 2333 participants; pooled means analysis: 6.88 mL/year, 95% CI 1.80 to 11.96, 4823 participants), although one major trial demonstrated a statistically significant difference. There was no statistically significant effect on mortality in COPD patients (odds ratio (OR) 0.98, 95% CI 0.83 to 1.16, 8390 participants). Long-term use of ICS reduced the mean rate of exacerbations in those studies where pooling of data was possible (generic inverse variance analysis: MD -0.26 exacerbations per patient per year, 95% CI -0.37 to -0.14, 2586 participants; pooled means analysis: MD -0.19 exacerbations per patient per year, 95% CI -0.30 to -0.08, 2253 participants). ICS slowed the rate of decline in quality of life, as measured by the St George's Respiratory Questionnaire (MD -1.22 units/year, 95% CI -1.83 to -0.60, 2507 participants). Response to ICS was not predicted by oral steroid response, bronchodilator reversibility or bronchial hyper-responsiveness in COPD patients. There was an increased risk of oropharyngeal candidiasis (OR 2.65, 95% CI 2.03 to 3.46, 5586 participants) and hoarseness. In the long-term studies, the rate of pneumonia was increased in the ICS group compared to placebo, in studies that reported pneumonia as an adverse event (OR 1.56, 95% CI 1.30 to 1.86, 6235 participants). The long-term studies that measured bone effects generally showed no major effect on fractures and bone mineral density over three years. AUTHORS' CONCLUSIONS Patients and clinicians should balance the potential benefits of inhaled steroids in COPD (reduced rate of exacerbations, reduced rate of decline in quality of life and possibly reduced rate of decline in FEV(1)) against the potential side effects (oropharyngeal candidiasis and hoarseness, and risk of pneumonia).
Collapse
Affiliation(s)
- Ian A Yang
- Department of ThoracicMedicine, The Prince CharlesHospital, Brisbane, Australia.
| | | | | | | |
Collapse
|
14
|
Abstract
Although much remains to be done, recent advances and the advent of new methodologies are promising and should yield increased understanding of the genetic and epigenetic mechanisms influencing the pathogenesis of COPD, both related and unrelated to severe AAT deficiency. Such understanding should ultimately be translated into novel approaches to prevent, diagnose, and treat COPD.
Collapse
Affiliation(s)
- Marilyn Foreman
- Division of Pulmonary and Critical Care Medicine, Dept. of Medicine, Morehouse School of Medicine
| | - Michael Campos
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept. of Medicine, University of Miami Miller School of Medicine
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Dept. of Pediatrics, Children’s Hospital of Pittsburgh of UPMC
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept. of Medicine, University of Pittsburgh School of Medicine
- Corresponding author: Juan C. Celedón, M.D., Dr.P.H., F.A.C.P., F.C.C.P., Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, Phone: 412.692.8429; Fax: 412.692.7636,
| |
Collapse
|
15
|
Devillier P, Jebrak G, Morel H, Chinet T, Didier A, Roche N. [Treatment of distal airways involvement in COPD]. Rev Mal Respir 2011; 28:1340-56. [PMID: 22152941 DOI: 10.1016/j.rmr.2011.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 08/06/2011] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The current pharmacological treatment of COPD provides only partial beneficial effects on symptoms, exercise tolerance, frequency of exacerbations and quality of life. This could be related to poor targeting of the distal airways by current treatments, yet these airways are particularly involved in airflow obstruction and its consequences such as hyperinflation. BACKGROUND Many treatments used in COPD could have effects on distal airways, including bronchodilators, corticosteroids, mucolytics and antibiotics. However, these possible effects remain poorly understood. VIEWPOINTS New treatments targeting more specifically the mechanisms of inflammation, oxidative stress and tissue remodeling that characterize COPD, could prove useful in its management, but most are still only in the early stages of their development. Advances could also come from improvements in inhalation devices, delivering more of the medication to the distal airways. CONCLUSIONS Improvement in the management of COPD could come from progress in terms of both molecules and their mode of administration.
Collapse
Affiliation(s)
- P Devillier
- UPRES EA 220, pôle des maladies respiratoires, hôpital Foch, 11 rue Guillaume-Lenoir, Suresnes, France
| | | | | | | | | | | |
Collapse
|
16
|
Dickens JA, Lomas DA. Why has it been so difficult to prove the efficacy of alpha-1-antitrypsin replacement therapy? Insights from the study of disease pathogenesis. DRUG DESIGN DEVELOPMENT AND THERAPY 2011; 5:391-405. [PMID: 21966212 PMCID: PMC3180514 DOI: 10.2147/dddt.s14018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Alpha-1-antitrypsin is the most abundant circulating protease inhibitor. It is mainly produced by the liver and secreted into the circulation where it acts to prevent excessive proteolytic damage in the lungs by the enzyme neutrophil elastase. The most common severe deficiency allele is the Z mutation, which causes the protein to self-associate into ordered polymers. These polymers accumulate within hepatocytes to cause liver damage. The resulting lack of circulating α1-antitrypsin predisposes the Z homozygote to proteolytic lung damage and emphysema. Other pathways may also contribute to the development of lung disease. In particular, polymers of Z α1-antitrypsin can form within the lung where they act as a pro-inflammatory stimulus that may exacerbate protease-mediated lung damage. Researchers recognized in the 1980s that plasma α1-antitrypsin levels could be restored by intravenous infusions of purified human protein. Alpha-1-antitrypsin replacement therapy was introduced in 1987 but subsequent clinical trials have produced conflicting results, and to date there remains no widely accepted clinical evidence of the efficacy of α1-antitrypsin replacement therapy. This review addresses our current understanding of disease pathogenesis in α1-antitrypsin deficiency and questions why this treatment in isolation may not be effective. In particular it discusses the possible role of α1-antitrypsin polymers in exacerbating intrapulmonary inflammation and attenuating the efficacy of α1-antitrypsin replacement therapy.
Collapse
Affiliation(s)
- Jennifer A Dickens
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK
| | | |
Collapse
|
17
|
Perez T, Mal H, Aguilaniu B, Brillet PY, Chaouat A, Louis R, Muir JF, Similowski T, Berger P, Burgel PR, Chambellan A, Chanez P, Devillier P, Escamilla R, Marthan R, Wallaert B, Aubier M, Roche N. [COPD and inflammation: statement from a French expert group. Phenotypes related to inflammation]. Rev Mal Respir 2011; 28:192-215. [PMID: 21402234 DOI: 10.1016/j.rmr.2010.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/30/2010] [Indexed: 01/22/2023]
Abstract
INTRODUCTION The objective of the present article is to review available data on possible links between phenotypes and inflammatory profiles in patients with chronic obstructive pulmonary disease (COPD). BACKGROUND Chronic bronchitis is associated with proximal bronchial inflammation and small airway inflammation with remodeling at the site of obstruction. CT scanning enables patients to be phenotyped according to the predominantly bronchial or emphysematous nature of the morphological abnormality. Exacerbations, in a context of persistently elevated baseline inflammation, are associated with increased inflammation and a poor prognosis. Long-term studies have correlated inflammatory markers (and anti-inflammatory drug effects) with dynamic hyperinflation, possibly confirming that inflammation promotes hyperinflation. The inflammatory cell count in the pulmonary arterial walls correlates with the severity of endothelial dysfunction. The risk of developing pulmonary hypertension would seem to increase with low-grade systemic inflammation. The role of low-grade systemic inflammation in COPD co-morbidities, and in nutritional and muscular involvement in particular, remains a matter of debate. Regular physical exercise may help reduce this inflammation. CONCLUSIONS In COPD, many aspects of the clinical phenotype are related to inflammation. Better knowledge of these relationships could help optimize current and future treatments.
Collapse
Affiliation(s)
- T Perez
- Service de pneumologie et immuno-allergologie, hôpital Calmette, CHRU de Lille, boulevard du Professeur-J.-Leclercq, Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|