1
|
Ghazzawi HA, Hussain MA, Raziq KM, Alsendi KK, Alaamer RO, Jaradat M, Alobaidi S, Al Aqili R, Trabelsi K, Jahrami H. Exploring the Relationship between Micronutrients and Athletic Performance: A Comprehensive Scientific Systematic Review of the Literature in Sports Medicine. Sports (Basel) 2023; 11:109. [PMID: 37368559 DOI: 10.3390/sports11060109] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this systematic review is twofold: (i) to examine the effects of micronutrient intake on athletic performance and (ii) to determine the specific micronutrients, such as vitamins, minerals, and antioxidants, that offer the most significant enhancements in terms of athletic performance, with the goal of providing guidance to athletes and coaches in optimizing their nutritional strategies. The study conducted a systematic search of electronic databases (i.e., PubMed, Web of Science, Scopus) using keywords pertaining to micronutrients, athletic performance, and exercise. The search involved particular criteria of studies published in English between 1950 and 2023. The findings suggest that vitamins and minerals are crucial for an athlete's health and physical performance, and no single micronutrient is more important than others. Micronutrients are necessary for optimal metabolic body's functions such as energy production, muscle growth, and recovery, which are all important for sport performance. Meeting the daily intake requirement of micronutrients is essential for athletes, and while a balanced diet that includes healthy lean protein sources, whole grains, fruits, and vegetables is generally sufficient, athletes who are unable to meet their micronutrient needs due to malabsorption or specific deficiencies may benefit from taking multivitamin supplements. However, athletes should only take micronutrient supplements with the consultation of a specialized physician or nutritionist and avoid taking them without confirming a deficiency.
Collapse
Affiliation(s)
- Hadeel Ali Ghazzawi
- Department Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mariam Ali Hussain
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain
| | - Khadija Majdy Raziq
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain
| | - Khawla Khaled Alsendi
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain
| | - Reem Osama Alaamer
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain
| | - Manar Jaradat
- Department Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Sondos Alobaidi
- Department Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Raghad Al Aqili
- Department Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
- Research Laboratory-Education, Motricity, Sport and Health, University of Sfax, Sfax 3000, Tunisia
| | - Haitham Jahrami
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain
- Government Hospitals, Ministry of Health, Manama 323, Bahrain
| |
Collapse
|
2
|
Modulation of Oxidative Stress and Antioxidant Response by Different Polyphenol Supplements in Five-a-Side Football Players. Nutrients 2022; 15:nu15010177. [PMID: 36615834 PMCID: PMC9824383 DOI: 10.3390/nu15010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is associated with playing soccer. The objective of the present report was to study the influence of different polyphenolic antioxidant-rich beverages in five-a-side/futsal players. The study was performed with a no supplemented control group (CG) and two supplemented groups with an almond-based beverage (AB) and the same beverage fortified with Lippia citriodora extract (AB + LE). At day 22, participants played a friendly futsal game. Blood extractions were performed at the beginning of intervention (day 1), before and after match (day 22) to determine oxidative stress markers and antioxidant enzyme activities in plasma, neutrophils and peripheral blood mononuclear cells (PBMCs). Malondialdehyde increased significantly in controls after the match in neutrophils, PBMCs and plasma compared to pre-match. Protein carbonyls also increased after the match in plasma in CG. In addition, malondialdehyde levels in neutrophils were significantly lower in the supplemented groups compared to controls. Post-match samples showed significant increases in neutrophil antioxidant activities in CG. Supplemented groups displayed variable results regarding neutrophil antioxidant activities, with superoxide dismutase activity significantly lower than in controls. Finally, post-match myeloperoxidase activity increased significantly in controls compared to pre-match and supplemented groups. In conclusion, polyphenolic antioxidant and anti-inflammatory supplements could be instrumental for optimal recovery after high intensity futsal games.
Collapse
|
3
|
Xu Y, Liang M, Ugbolue UC, Fekete G, Gu Y. Effect of Physical Exercise Under Different Intensity and Antioxidative Supplementation for Plasma Superoxide Dismutase in Healthy Adults: Systematic Review and Network Meta-Analysis. Front Physiol 2022; 13:707176. [PMID: 35185608 PMCID: PMC8850976 DOI: 10.3389/fphys.2022.707176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 01/14/2022] [Indexed: 01/24/2023] Open
Abstract
Background The dynamic balance between oxidation and anti-oxidation in the body’s internal environment has a significant meaning for human health. Physical exercise and antioxidative supplementation could affect the balance of oxidation and anti-oxidation systems. The evidence on the effects of physical exercise and antioxidative supplementation is mixed. Aims To identify the effects of physical exercise, antioxidative supplementation, and their combination on the dynamic balance between oxidation and anti-oxidation in different subgroups of healthy adults. Methods All studies which reported randomized controlled trials with healthy participants were screened and included from the databases of PubMed, Medline, Embase, and Ovid. All participants were reclassified according to their different daily life activities. All physical exercise interventions were reclassified according to the intensity. The effect size would be calculated in percent or factor units from the mean level change with its associated random-effect variance. Result There were 27 studies included in this review. The agreement between authors by using The Cochrane Collaboration Risk of Bias Assessment Tool reached a kappa-value of 0.72. Maintaining a regular physical exercise routine in an appropriate intensity would be beneficial to the body’s anti-oxidative potential. Anti-oxidative supplementation could have some positive but limited effects on the body’s anti-oxidative status and complex interaction with physical exercise. Conclusion Keeping a regular physical exercise routine and gradually increasing its intensity according to the individual’s daily life activity might be a better choice to maintain and enhancing the body’s antioxidation potential, only using anti-oxidative supplementation is not recommended. More research is needed to explore the best combination protocol. Registration Number CRD42021241995.
Collapse
Affiliation(s)
- Yining Xu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Minjun Liang
- Faculty of Sports Science, Ningbo University, Ningbo, China
- *Correspondence: Minjun Liang,
| | - Ukadike C. Ugbolue
- School of Health & Life Sciences, University of the West of Scotland, South Lanarkshire, United Kingdom
- Ukadike C. Ugbolue,
| | - Gusztáv Fekete
- Savaria Institute of Technology, Eötvös Loránd University, Szombathely, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
- School of Health & Life Sciences, University of the West of Scotland, South Lanarkshire, United Kingdom
| |
Collapse
|
4
|
De la Fuente M, Sánchez C, Vallejo C, Díaz-Del Cerro E, Arnalich F, Hernanz Á. Vitamin C and vitamin C plus E improve the immune function in the elderly. Exp Gerontol 2020; 142:111118. [PMID: 33091525 DOI: 10.1016/j.exger.2020.111118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/13/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
With aging the immune response is impaired. This immunosenescence, in which an alteration of the redox state of the immune cells appears, is involved in the rate of aging. Since leukocyte function is a good marker of health and predictor of longevity, the effects of daily oral administration of the antioxidant vitamin C (500 mg), or both vitamin C (500 mg) and vitamin E (200 mg) on several blood neutrophil (adherence, chemotaxis, phagocytosis, and superoxide anion levels) and lymphocyte (adherence, chemotaxis, proliferation, interleukin-2 secretion and natural killer activity) functions were studied in healthy elderly men and women. These parameters were analysed before supplementation, after 3 months of supplementation, and 6 months after the end of supplementation. The results showed that vitamin C, in elderly participants, improved the immune functions studied which achieved values close to those of young adults. These effects were maintained in several functions after 6 months without supplementation. Similar effects were found in the elderly supplemented with both vitamin C and E. Thus, a short period of vitamin C or vitamin C and E ingestion, with the doses used, improves the immune function in elderly men and women and could contribute to a healthy longevity.
Collapse
Affiliation(s)
- Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, Spain.
| | - Carmen Sánchez
- Department of Genetics, Physiology and Microbiology (Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Carmen Vallejo
- Department of Genetics, Physiology and Microbiology (Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, Spain.
| | | | - Ángel Hernanz
- Biochemistry Department, Hospital La Paz, Madrid, Spain
| |
Collapse
|
5
|
Pastor R, Tur JA. Antioxidant Supplementation and Adaptive Response to Training: A Systematic Review. Curr Pharm Des 2020; 25:1889-1912. [PMID: 31267859 DOI: 10.2174/1381612825666190701164923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Antioxidant supplementation has become a common practice among athletes to theoretically achieve a reduction in oxidative stress, promote recovery and improve performance. OBJECTIVE To assess the effect of antioxidant supplements on exercise. METHODS A systematic literature search was performed up to January 2019 in MEDLINE via EBSCO and Pubmed, and in Web of Sciences based on the following terms: "antioxidants" [Major] AND "exercise" AND "adaptation"; "antioxidant supplement" AND "(exercise or physical activity)" AND "(adaptation or adjustment)" [MesH]. Thirty-six articles were finally included. RESULTS Exhaustive exercise induces an antioxidant response in neutrophils through an increase in antioxidant enzymes, and antioxidant low-level supplementation does not block this adaptive cellular response. Supplementation with antioxidants appears to decrease oxidative damage blocking cell-signaling pathways associated with muscle hypertrophy. However, upregulation of endogenous antioxidant enzymes after resistance training is blocked by exogenous antioxidant supplementation. Supplementation with antioxidants does not affect the performance improvement induced by resistance exercise. The effects of antioxidant supplementation on physical performance and redox status may vary depending on baseline levels. CONCLUSION The antioxidant response to exercise has two components: At the time of stress and adaptation through genetic modulation processes in front of persistent pro-oxidant situation. Acute administration of antioxidants immediately before or during an exercise session can have beneficial effects, such as a delay in the onset of fatigue and a reduction in the recovery period. Chronic administration of antioxidant supplements may impair exercise adaptations, and is only beneficial in subjects with low basal levels of antioxidants.
Collapse
Affiliation(s)
- Rosario Pastor
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.,Faculty of Health Sciences, Catholic University of Avila, 05005 Avila, Spain
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Pons V, Riera J, Capó X, Martorell M, Sureda A, Tur JA, Drobnic F, Pons A. Calorie restriction regime enhances physical performance of trained athletes. J Int Soc Sports Nutr 2018; 15:12. [PMID: 29556158 PMCID: PMC5845356 DOI: 10.1186/s12970-018-0214-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background Caloric restriction induces mitochondrial biogenesis and improves physical fitness in rodents. We aimed to provide evidence of how caloric restriction affects the body composition and physical performance of trained athletes and to evaluate the possible impact of an every-other-day feeding diet on nutritional deficiencies of micronutrients and essential fatty acids. Methods The study was performed with 12 healthy male athletes by carrying out a 33% caloric restriction with respect to their usual diet. Athletes performed a maximal exercise stress test both before and after the caloric restriction period. Blood samples were taken before and after the caloric restriction at basal conditions and 30 min post-exercise. Although energy intake was reduced by about 33%, the contribution of carbohydrates, proteins, and lipids to total energy intake during the caloric restriction was similar to the original diet. Results The caloric restriction reduced the daily specific micronutrient intake to values lower than 90% of recommended dietary allowances. No effects were observed in blood parameters related to iron metabolism and tissue damage, glucose levels, lipid profiles, or erythrocyte fatty acid composition. In addition, oxidative damage markers decreased after the nutritional intervention. The caloric restriction intervention significantly reduced body weight and trunk, arm, and leg weights; it also caused a decrease in fat and lean body mass, the energy expenditure rate when performing a maximal exercise stress test, and the energy cost to run one meter at various exercise intensities. Furthermore, the intervention ameliorated the onset of the anaerobic phase of exercise. Conclusion A caloric restriction improves athletes' performance and energy efficiency, but reduces the daily intake of micronutrients; so, when caloric restriction programs are implemented micronutrient supplementation should be considered. Trial registration The project was registered at ClinicalTrials.gov (NCT02533479).
Collapse
Affiliation(s)
- Victoria Pons
- Sport Nutrition and Physiology Dept, Olympic Training Center, CAR - GIRSANE, Sant Cugat del Vallés, Spain
| | - Joan Riera
- Sport Nutrition and Physiology Dept, Olympic Training Center, CAR - GIRSANE, Sant Cugat del Vallés, Spain
| | - Xavier Capó
- 2Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.,3CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Miquel Martorell
- 2Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.,4Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, 4070386 Concepción, Chile
| | - Antoni Sureda
- 2Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.,3CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Josep A Tur
- 2Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.,3CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Franchek Drobnic
- Sport Nutrition and Physiology Dept, Olympic Training Center, CAR - GIRSANE, Sant Cugat del Vallés, Spain
| | - Antoni Pons
- 2Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.,3CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| |
Collapse
|
7
|
Capó X, Martorell M, Busquets-Cortés C, Sureda A, Riera J, Drobnic F, Tur JA, Pons A. Effects of dietary almond- and olive oil-based docosahexaenoic acid- and vitamin E-enriched beverage supplementation on athletic performance and oxidative stress markers. Food Funct 2018; 7:4920-4934. [PMID: 27841405 DOI: 10.1039/c6fo00758a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional beverages based on almonds and olive oil and enriched with α-tocopherol and docosahexaenoic acid (DHA) could be useful in modulating oxidative stress and enhancing physical performance in sportsmen. The aim of this work was to evaluate the effects of supplementation with functional beverages on physical performance, plasma and erythrocyte fatty acids' and polyphenol handling, oxidative and nitrative damage, and antioxidant and mitochondrial gene expression in young and senior athletes. Athletes performed maximal exercise tests before and after one month of dietary supplementation and blood samples were taken immediately before and one hour after each test. The beverages did not alter performance parameters during maximal exercise. Supplementation increased polyunsaturated and reduced saturated plasma fatty acids while increasing the DHA erythrocyte content; it maintained basal plasma and blood polyphenol levels, but increased the blood cell polyphenol concentration in senior athletes. Supplementation protects against oxidative damage although it enhances nitrative damage in young athletes. The beverages enhance the gene expression of antioxidant enzymes in peripheral blood mononuclear cells after exercise in young athletes.
Collapse
Affiliation(s)
- X Capó
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain and CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - M Martorell
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain and Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, 4070386 Concepción, Chile
| | - C Busquets-Cortés
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain and CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - A Sureda
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain and CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - J Riera
- Sports Physiology Dept. CAR, Sant Cugat del Valles, GIRSANE, Barcelona 08174, Spain
| | - F Drobnic
- Sports Physiology Dept. CAR, Sant Cugat del Valles, GIRSANE, Barcelona 08174, Spain
| | - J A Tur
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain and CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - A Pons
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain and CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
8
|
Carrera-Quintanar L, Funes L, Vicente-Salar N, Blasco-Lafarga C, Pons A, Micol V, Roche E. Effect of polyphenol supplements on redox status of blood cells: a randomized controlled exercise training trial. Eur J Nutr 2014; 54:1081-93. [DOI: 10.1007/s00394-014-0785-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 10/10/2014] [Indexed: 12/20/2022]
|
9
|
Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells. Eur J Nutr 2014; 54:35-49. [PMID: 24643755 DOI: 10.1007/s00394-014-0683-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/06/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE Exercise induces oxidative stress and causes adaptations in antioxidant defenses. The aim of the present study was to determine the effects of a 2-month diet supplementation with docosahexaenoic acid (DHA) on the pro-oxidant and antioxidant status of peripheral blood mononuclear cells (PBMCs) during football training and after acute exercise. METHODS Fifteen male football players, in a randomized double-blind trial, ingested a beverage enriched with DHA or a placebo for 8 weeks. Blood samples were collected in basal conditions before and after the training period and after an acute and intense exercise. RESULTS The training season increased the carbonyl and nitrotyrosine index but decreased the malondialdehyde (MDA) levels. Basal catalase activity decreased in both groups after 8 weeks of training, whereas glutathione peroxidase activity increased mainly in the placebo group. Protein levels of uncoupling proteins (UCP2 and UCP3) and inducible nitric oxide synthase significantly increased after the training period. Acute exercise induced redistribution in the number of circulating cells, increased the MDA levels and nitrotyrosine index, and decreased the levels of nitrate. Acute exercise also increased PBMCs reactive oxygen species (ROS) production after immune stimulation. Diet supplementation with DHA significantly increased the UCP3 levels after training and the superoxide dismutase protein levels after acute exercise, and reduced the production of ROS after acute exercise. CONCLUSION Docosahexaenoic acid increased the antioxidant capabilities while reducing the mitochondrial ROS production in a regular football training period and reduced the oxidative damage markers in response to acute exercise.
Collapse
|
10
|
Krüger K, Agnischock S, Lechtermann A, Tiwari S, Mishra M, Pilat C, Wagner A, Tweddell C, Gramlich I, Mooren FC. Intensive resistance exercise induces lymphocyte apoptosis via cortisol and glucocorticoid receptor-dependent pathways. J Appl Physiol (1985) 2011; 110:1226-32. [PMID: 21393471 DOI: 10.1152/japplphysiol.01295.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intensive endurance exercise is known to induce lymphocyte apoptosis, which might affect immune function. Less is known about the effects of resistance exercise on apoptosis and its underlying mechanisms. In this study, subjects performed an intensive resistance test (IRT) and a moderate resistance test, and lymphocyte apoptosis, apoptosis-related parameters, and underlying mechanisms were investigated. IRT induced a significant increase of lymphocyte apoptosis 3 h after exercise, which was accompanied by a significant decrease of mitochondrial membrane potential, a reduction of Bcl-2, and an upregulation of the CD95 receptor. Blood lactate, IL-6, C-reactive protein, and cortisol increased significantly 3 h after IRT. A significant correlation was observed between the increase of apoptosis and cortisol levels 3 h after IRT. Incubation of freshly isolated lymphocytes in IRT serum indicated an important role of serum correlates for apoptosis induction. Selective incubation of lymphocytes in concentrations of selected serum parameters corresponding to levels found post in IRT serum demonstrated a major role for cortisol in apoptosis induction. This result was confirmed by attenutation of apoptosis after addition of mifepristone before incubation in IRT serum. In summary, resistance exercise induced lymphocyte apoptosis in an intensity-dependent way. Furthermore, cortisol signaling via glucocorticoid receptors might be an important mechanism for lymphocyte apoptosis after resistance exercise.
Collapse
Affiliation(s)
- K Krüger
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University Giessen, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mestre-Alfaro A, Ferrer MD, Sureda A, Tauler P, Martínez E, Bibiloni MM, Micol V, Tur JA, Pons A. Phytoestrogens enhance antioxidant enzymes after swimming exercise and modulate sex hormone plasma levels in female swimmers. Eur J Appl Physiol 2011; 111:2281-94. [DOI: 10.1007/s00421-011-1862-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
|
12
|
Carrera-Quintanar L, Funes L, Viudes E, Tur J, Micol V, Roche E, Pons A. Antioxidant effect of lemon verbena extracts in lymphocytes of university students performing aerobic training program. Scand J Med Sci Sports 2010; 22:454-61. [DOI: 10.1111/j.1600-0838.2010.01244.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils’ oxidative stress in chronic exercise. Eur J Appl Physiol 2010; 111:695-705. [DOI: 10.1007/s00421-010-1684-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2010] [Indexed: 11/27/2022]
|
14
|
Muñoz ME, Galan AI, Palacios E, Diez MA, Muguerza B, Cobaleda C, Calvo JI, Aruoma OI, Sanchez-Garcia I, Jimenez R. Effect of an antioxidant functional food beverage on exercise-induced oxidative stress: a long-term and large-scale clinical intervention study. Toxicology 2009; 278:101-11. [PMID: 19857542 DOI: 10.1016/j.tox.2009.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/12/2009] [Accepted: 10/14/2009] [Indexed: 12/11/2022]
Abstract
The efficacy of long-term intake of a novel functional food supplement Funciona™ containing vitamins and juiced fruits was evaluated in order to assess the net effect of physical activity and antioxidant potentials in healthy older adult population. The long-term (2 years) and large-scale (400 older adult subjects) interventional study was based on both moderate-intensity exercise practice and concurrent supplementation. Sustained exercise-induced oxidative stress as reflected in significantly increased blood thiobarbituric acid-reactive substances (TBARS) (+15%), protein carbonyl groups (PC) (+18%) and oxidized glutathione (GSSG) (+112%) concentrations, and leukocyte 8-OHdG contents (23%). Exercise decreased the reduced/oxidized glutathione (GSH/GSSG) molar ratio (-43%) and plasma vitamin C levels (-22%). Supplementation with Funciona™ was significant in preventing oxidative damage to lipid, protein and DNA, and normalizing blood GSSG, GSH/GSSG and vitamin C levels. Thus daily intake of the antioxidant functional beverage counteracts the exercise-induced oxidative stress in free-living older subjects, and might be necessary to restore impaired antioxidant balance due long-term regular exercise.
Collapse
Affiliation(s)
- Maria E Muñoz
- Department of Physiology & Pharmacology, Campus M. Unamuno, University of Salamanca, E-37007 Salamanca, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Plaza M, Herrero M, Cifuentes A, Ibáñez E. Innovative natural functional ingredients from microalgae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:7159-70. [PMID: 19650628 DOI: 10.1021/jf901070g] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nowadays, a wide variety of compounds such as polyphenols, polyunsaturated fatty acids (PUFA), or phytosterols obtained, for example, from wine, fish byproducts, or plants are employed to prepare new functional foods. However, unexplored natural sources of bioactive ingredients are gaining much attention since they can lead to the discovery of new compounds or bioactivities. Microalgae have been proposed as an interesting, almost unlimited, natural source in the search for novel natural functional ingredients, and several works have shown the possibility to find bioactive compounds in these organisms. Some advantages can be associated with the study of microalgae such as their huge diversity, the possibility of being used as natural reactors at controlled conditions, and their ability to produce active secondary metabolites to defend themselves from adverse or extreme conditions. In this contribution, an exhaustive revision is presented involving the research for innovative functional food ingredients from microalgae. The most interesting results in this promising field are discussed including new species composition and bioactivity and new processing and extraction methods. Moreover, the future research trends are critically commented.
Collapse
Affiliation(s)
- Merichel Plaza
- Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Hoffman-Goetz L, Pervaiz N, Guan J. Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes. Brain Behav Immun 2009; 23:498-506. [PMID: 19486647 DOI: 10.1016/j.bbi.2009.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/20/2009] [Accepted: 01/26/2009] [Indexed: 11/19/2022] Open
Abstract
Acute exercise in mice induces intestinal lymphocyte (IL) apoptosis. Freewheel running reduces apoptosis and forced exercise training increases splenocyte antioxidant levels. The purpose of this study was to examine the effect of freewheel running and acute exercise on mouse IL numbers and concentrations of apoptosis and antioxidant proteins and pro-inflammatory cytokines in IL. Female C57BL/6 mice had access to in-cage running wheels (RW) or cages without wheels (NRW) for 16 weeks and were randomized at the end of training to no exercise control (TC) or to treadmill exercise with sacrifice after 90 min of running (TREAD; 30 min, 22 m min(-1); 30 min, 25 m min(-1); 30 min, 28 m min(-1); 2 degrees slope). IL were analyzed for pro-(caspase 3 and 7) and anti-(Bcl-2) apoptotic proteins, endogenous antioxidants (glutathione peroxidase: GPx; catalase: CAT) and the pro-inflammatory cytokine, TNF-alpha. RW mice had higher cytochrome oxidase (p<0.001) and citrate synthase (p<0.01) activities in plantaris and soleus muscles and higher GPx and CAT expression in IL (p<0.05) (indicative of training) compared with NRW mice. TNF-alpha expression was lower (p<0.05) and IL numbers higher (p<0.05) in RW vs. NRW mice. No training effect was observed for apoptotic protein expression, although TREAD resulted in higher caspase and lower Bcl-2. These results suggest that freewheel running in mice for 16 weeks enhances antioxidant and reduces TNF-alpha expression in IL but does not reduce pro-apoptotic protein expression after acute exercise. Results are discussed in terms of implications for inflammatory bowel diseases where apoptotic proteins and TNF-alpha levels are elevated.
Collapse
Affiliation(s)
- L Hoffman-Goetz
- Department of Health Studies and Gerontology, Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ont., Canada.
| | | | | |
Collapse
|