1
|
Carr JMJR, Hoiland RL, Fernandes IA, Schrage WG, Ainslie PN. Recent insights into mechanisms of hypoxia-induced vasodilatation in the human brain. J Physiol 2024; 602:5601-5618. [PMID: 37655827 DOI: 10.1113/jp284608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
The cerebral vasculature manages oxygen delivery by adjusting arterial blood in-flow in the face of reductions in oxygen availability. Hypoxic cerebral vasodilatation, and the associated hypoxic cerebral blood flow reactivity, involve many vascular, erythrocytic and cerebral tissue mechanisms that mediate elevations in cerebral blood flow via micro- and macrovascular dilatation. This contemporary review focuses on in vivo human work - with reference to seminal preclinical work where necessary - on hypoxic cerebrovascular reactivity, particularly where recent advancements have been made. We provide updates with the following information: in humans, hypoxic cerebral vasodilatation is partially mediated via a - likely non-obligatory - combination of: (1) nitric oxide synthases, (2) deoxygenation-coupled S-nitrosothiols, (3) potassium channel-related vascular smooth muscle hyperpolarization, and (4) prostaglandin mechanisms with some contribution from an interrelationship with reactive oxygen species. And finally, we discuss the fact that, due to the engagement of deoxyhaemoglobin-related mechanisms, reductions in O2 content via haemoglobin per se seem to account for ∼50% of that seen with hypoxic cerebral vasodilatation during hypoxaemia. We further highlight the issue that methodological impediments challenge the complete elucidation of hypoxic cerebral reactivity mechanisms in vivo in healthy humans. Future research is needed to confirm recent advancements and to reconcile human and animal findings. Further investigations are also required to extend these findings to address questions of sex-, heredity-, age-, and disease-related differences. The final step is to then ultimately translate understanding of these mechanisms into actionable, targetable pathways for the prevention and treatment of cerebral vascular dysfunction and cerebral hypoxic brain injury.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for Researching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor A Fernandes
- Department of Health and Kinesiology, Purdue University, Indiana, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
Luchkanych AMS, Morse CJ, Boyes NG, Khan MR, Marshall RA, Morton JS, Tomczak CR, Olver TD. Cerebral sympatholysis: experiments on in vivo cerebrovascular regulation and ex vivo cerebral vasomotor control. Am J Physiol Heart Circ Physiol 2024; 326:H1105-H1116. [PMID: 38391313 DOI: 10.1152/ajpheart.00714.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Whether cerebral sympathetic-mediated vasomotor control can be modulated by local brain activity remains unknown. This study tested the hypothesis that the application or removal of a cognitive task during a cold pressor test (CPT) would attenuate and restore decreases in cerebrovascular conductance (CVC), respectively. Middle cerebral artery blood velocity (transcranial Doppler) and mean arterial pressure (finger photoplethysmography) were examined in healthy adults (n = 16; 8 females and 8 males) who completed a control CPT, followed by a CPT coupled with a cognitive task administered either 1) 30 s after the onset of the CPT and for the duration of the CPT or 2) at the onset of the CPT and terminated 30 s before the end of the CPT (condition order was counterbalanced). The major finding was that the CPT decreased the index of CVC, and such decreases were abolished when a cognitive task was completed concurrently and restored when the cognitive task was removed. As a secondary experiment, vasomotor interactions between sympathetic transduction pathways (α1-adrenergic and Y1-peptidergic) and compounds implicated in cerebral blood flow control [adenosine, and adenosine triphosphate (ATP)] were explored in isolated porcine cerebral arteries (wire myography). The data reveal α1-receptor agonism potentiated vasorelaxation modestly in response to adenosine, and preexposure to ATP attenuated contractile responses to α1-agonism. Overall, the data suggest a cognitive task attenuates decreases in CVC during sympathoexcitation, possibly related to an interaction between purinergic and α1-adrenergic signaling pathways.NEW & NOTEWORTHY The present study demonstrates that the cerebrovascular conductance index decreases during sympathoexcitation and this response can be positively and negatively modulated by the application or withdrawal of a nonexercise cognitive task. Furthermore, isolated vessel experiments reveal that cerebral α1-adrenergic agonism potentiates adenosine-mediated vasorelaxation and ATP attenuates α1-adrenergic-mediated vasocontraction.
Collapse
Affiliation(s)
- Adam M S Luchkanych
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cameron J Morse
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha G Boyes
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - M Rafique Khan
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rory A Marshall
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jude S Morton
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Corey R Tomczak
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - T Dylan Olver
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Kozberg MG, Munting LP, Maresco LH, Auger CA, van den Berg ML, Denis de Senneville B, Hirschler L, Warnking JM, Barbier EL, Farrar CT, Greenberg SM, Bacskai BJ, van Veluw SJ. Loss of spontaneous vasomotion precedes impaired cerebrovascular reactivity and microbleeds in a mouse model of cerebral amyloid angiopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591414. [PMID: 38746419 PMCID: PMC11092483 DOI: 10.1101/2024.04.26.591414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease in which amyloid-β accumulates in vessel walls. CAA is a leading cause of symptomatic lobar intracerebral hemorrhage and an important contributor to age-related cognitive decline. Recent work has suggested that vascular dysfunction may precede symptomatic stages of CAA, and that spontaneous slow oscillations in arteriolar diameter (termed vasomotion), important for amyloid-β clearance, may be impaired in CAA. Methods To systematically study the progression of vascular dysfunction in CAA, we used the APP23 mouse model of amyloidosis, which is known to develop spontaneous cerebral microbleeds mimicking human CAA. Using in vivo 2-photon microscopy, we longitudinally imaged unanesthetized APP23 transgenic mice and wildtype littermates from 7 to 14 months of age, tracking amyloid-β accumulation and vasomotion in individual pial arterioles over time. MRI was used in separate groups of 12-, 18-, and 24-month-old APP23 transgenic mice and wildtype littermates to detect microbleeds and to assess cerebral blood flow and cerebrovascular reactivity with pseudo-continuous arterial spin labeling. Results We observed a significant decline in vasomotion with age in APP23 mice, while vasomotion remained unchanged in wildtype mice with age. This decline corresponded in timing to initial vascular amyloid-β deposition (∼8-10 months of age), although was more strongly correlated with age than with vascular amyloid-β burden in individual arterioles. Declines in vasomotion preceded the development of MRI-visible microbleeds and the loss of smooth muscle actin in arterioles, both of which were observed in APP23 mice by 18 months of age. Additionally, evoked cerebrovascular reactivity was intact in APP23 mice at 12 months of age, but significantly lower in APP23 mice by 24 months of age. Conclusions Our findings suggest that a decline in spontaneous vasomotion is an early, potentially pre-symptomatic, manifestation of CAA and vascular dysfunction, and a possible future treatment target.
Collapse
|
4
|
Munting LP, Bonnar O, Kozberg MG, Auger CA, Hirschler L, Hou SS, Greenberg SM, Bacskai BJ, van Veluw SJ. Spontaneous vasomotion propagates along pial arterioles in the awake mouse brain like stimulus-evoked vascular reactivity. J Cereb Blood Flow Metab 2023; 43:1752-1763. [PMID: 36655606 PMCID: PMC10581232 DOI: 10.1177/0271678x231152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/20/2023]
Abstract
Sensory stimulation evokes a local, vasodilation-mediated blood flow increase to the activated brain region, which is referred to as functional hyperemia. Spontaneous vasomotion is a change in arteriolar diameter that occurs without sensory stimulation, at low frequency (∼0.1 Hz). These vessel diameter changes are a driving force for perivascular soluble waste clearance, the failure of which has been implicated in neurodegenerative disease. Stimulus-evoked vascular reactivity is known to propagate along penetrating arterioles to pial arterioles, but it is unclear whether spontaneous vasomotion propagates similarly. We therefore imaged both stimulus-evoked and spontaneous changes in pial arteriole diameter in awake, head-fixed mice with 2-photon microscopy. By cross-correlating different regions of interest (ROIs) along the length of imaged arterioles, we assessed vasomotion propagation. We found that both during rest and during visual stimulation, one-third of the arterioles showed significant propagation (i.e., a wave), with a median (interquartile range) wave speed of 405 (323) µm/s at rest and 345 (177) µm/s during stimulation. In a second group of mice, with GCaMP expression in their vascular smooth muscle cells, we also found spontaneous propagation of calcium signaling along pial arterioles. In summary, we demonstrate that spontaneous vasomotion propagates along pial arterioles like stimulus-evoked vascular reactivity.
Collapse
Affiliation(s)
- Leon P Munting
- MassGeneral Institute for Neurodegenerative Research, Massachusetts General Hospital, Charlestown Navy Yard, MA, USA
| | - Orla Bonnar
- MassGeneral Institute for Neurodegenerative Research, Massachusetts General Hospital, Charlestown Navy Yard, MA, USA
| | - Mariel G Kozberg
- MassGeneral Institute for Neurodegenerative Research, Massachusetts General Hospital, Charlestown Navy Yard, MA, USA
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Corinne A Auger
- MassGeneral Institute for Neurodegenerative Research, Massachusetts General Hospital, Charlestown Navy Yard, MA, USA
| | - Lydiane Hirschler
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Steven S Hou
- MassGeneral Institute for Neurodegenerative Research, Massachusetts General Hospital, Charlestown Navy Yard, MA, USA
| | - Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Brian J Bacskai
- MassGeneral Institute for Neurodegenerative Research, Massachusetts General Hospital, Charlestown Navy Yard, MA, USA
| | - Susanne J van Veluw
- MassGeneral Institute for Neurodegenerative Research, Massachusetts General Hospital, Charlestown Navy Yard, MA, USA
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Murrant CL, Fletcher NM. Capillary communication: the role of capillaries in sensing the tissue environment, coordinating the microvascular, and controlling blood flow. Am J Physiol Heart Circ Physiol 2022; 323:H1019-H1036. [PMID: 36149771 DOI: 10.1152/ajpheart.00088.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Historically, capillaries have been viewed as the microvascular site for flux of nutrients to cells and removal of waste products. Capillaries are the most numerous blood vessel segment within the tissue, whose vascular wall consists of only a single layer of endothelial cells and are situated within microns of each cell of the tissue, all of which optimizes capillaries for the exchange of nutrients between the blood compartment and the interstitial space of tissues. There is, however, a growing body of evidence to support that capillaries play an important role in sensing the tissue environment, coordinating microvascular network responses, and controlling blood flow. Much of our growing understanding of capillaries stems from work in skeletal muscle and more recent work in the brain, where capillaries can be stimulated by products released from cells of the tissue during increased activity and are able to communicate with upstream and downstream vascular segments, enabling capillaries to sense the activity levels of the tissue and send signals to the microvascular network to coordinate the blood flow response. This review will focus on the emerging role that capillaries play in communication between cells of the tissue and the vascular network required to direct blood flow to active cells in skeletal muscle and the brain. We will also highlight the emerging central role that disruptions in capillary communication may play in blood flow dysregulation, pathophysiology, and disease.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicole M Fletcher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Favre J, Vessieres E, Guihot AL, Proux C, Grimaud L, Rivron J, Garcia MC, Réthoré L, Zahreddine R, Davezac M, Fébrissy C, Adlanmerini M, Loufrani L, Procaccio V, Foidart JM, Flouriot G, Lenfant F, Fontaine C, Arnal JF, Henrion D. Membrane estrogen receptor alpha (ERα) participates in flow-mediated dilation in a ligand-independent manner. eLife 2021; 10:68695. [PMID: 34842136 PMCID: PMC8676342 DOI: 10.7554/elife.68695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα (Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent manner.
Collapse
Affiliation(s)
- Julie Favre
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Emilie Vessieres
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Anne-Laure Guihot
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Coralyne Proux
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Linda Grimaud
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Jordan Rivron
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Manuela Cl Garcia
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Léa Réthoré
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Rana Zahreddine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Morgane Davezac
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Chanaelle Fébrissy
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Marine Adlanmerini
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Laurent Loufrani
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Vincent Procaccio
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgium
| | - Gilles Flouriot
- INSERM U1085, IRSET (Institut de Recherche en Santé, Environnement et Travail), University of Rennes, Rennes, France
| | - Françoise Lenfant
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Coralie Fontaine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Jean-François Arnal
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Daniel Henrion
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| |
Collapse
|
8
|
Hakim MA, Behringer EJ. Development of Alzheimer's Disease Progressively Alters Sex-Dependent KCa and Sex-Independent KIR Channel Function in Cerebrovascular Endothelium. J Alzheimers Dis 2021; 76:1423-1442. [PMID: 32651315 DOI: 10.3233/jad-200085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Development of Alzheimer's disease (AD) pathology is associated with impaired blood flow delivery of oxygen and nutrients throughout the brain. Cerebrovascular endothelium regulates vasoreactivity of blood vessel networks for optimal cerebral blood flow. OBJECTIVE We tested the hypothesis that cerebrovascular endothelial Gq-protein-coupled receptor (GPCR; purinergic and muscarinic) and K+ channel [Ca2+-activated (KCa2.3/SK3 and KCa3.1/IK1) and inward-rectifying (KIR2.x)] function declines during progressive AD pathology. METHODS We applied simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and membrane potential (Vm) in freshly isolated endothelium from posterior cerebral arteries of 3×Tg-AD mice [young, no pathology (1- 2 mo), cognitive impairment (CI; 4- 5 mo), extracellular Aβ plaques (Aβ; 6- 8 mo), and Aβ plaques + neurofibrillary tangles (AβT; 12- 15 mo)]. RESULTS The coupling of ΔVm-to-Δ[Ca2+]i during AβT pathology was lowest for both sexes but, overall, ATP-induced purinergic receptor function was stable throughout AD pathology. SKCa/IKCa channel function itself was enhanced by ∼20% during AD (Aβ+ AβT) versus pre-AD (Young + CI) in males while steady in females. Accordingly, hyperpolarization-induced [Ca2+]i increases following SKCa/IKCa channel activation and Δ[Ca2+]i-to-ΔVm coupling was enhanced by ≥two-fold during AD pathology in males but not females. Further, KIR channel function decreased by ∼50% during AD conditions versus young regardless of sex. Finally, other than a ∼40% increase in females versus males during Aβ pathology, [Ca2+]i responses to the mitochondrial uncoupler FCCP were similar among AD versus pre-AD conditions. CONCLUSION Altogether, AD pathology represents a condition of altered KCa and KIR channel function in cerebrovascular endothelium in a sex-dependent and sex-independent manner respectively.
Collapse
Affiliation(s)
- Md A Hakim
- Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | | |
Collapse
|
9
|
Ghonaim NW, Fraser GM, Goldman D, Milkovich S, Yang J, Ellis CG. Evidence for role of capillaries in regulation of skeletal muscle oxygen supply. Microcirculation 2021; 28:e12699. [PMID: 33853202 DOI: 10.1111/micc.12699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
How oxygen (O2 ) supply to capillaries is regulated to match the tissue's demand is unknown. Erythrocytes have been proposed as sensors in this regulatory mechanism since they release ATP, a vasodilator, in an oxygen saturation (SO2 )-dependent manner. ATP causes hyperpolarization of endothelial cells resulting in conducted vasodilation to arterioles. OBJECTIVE We propose individual capillary units can regulate their own O2 supply by direct communication to upstream arterioles via electrically coupled endothelium. METHODS To test this hypothesis, we developed a transparent micro-exchange device for localized O2 exchange with surface capillaries of intact tissue. The device was fabricated with an O2 permeable micro-outlet 0.2 × 1.0 mm. Experiments were performed on rat extensor digitorum longus (EDL) muscle using dual wavelength video microscopy to measure capillary hemodynamics and erythrocyte SO2 . Responses to local O2 perturbations were measured with only capillaries positioned over the micro-outlet. RESULTS Step changes in the gas mixture %O2 caused physiological changes in erythrocyte SO2 , and appropriate changes in flow to offset the O2 challenge if at least 3-4 capillaries were stimulated. CONCLUSION These results support our hypothesis that individual capillary units play a role in regulating their erythrocyte supply in response to a changing O2 environment.
Collapse
Affiliation(s)
- Nour W Ghonaim
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, ON, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Daniel Goldman
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
| | - Stephanie Milkovich
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.,Schulich School of Medicine & Dentistry, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Jun Yang
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, ON, Canada.,Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, Canada
| | - Christopher G Ellis
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.,Schulich School of Medicine & Dentistry, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
10
|
Loesch A. On P2X receptors in the brain: microvessels. Dedicated to the memory of the late Professor Geoffrey Burnstock (1929-2020). Cell Tissue Res 2021; 384:577-588. [PMID: 33755804 DOI: 10.1007/s00441-021-03411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022]
Abstract
This tribute article presents selected immunocytochemical and transmission electron microscope data on the location of ATP-gated P2X receptor in the rat brain, as studied in the 1990s in Prof G. Burnstock's laboratory at University College London. There are examples of immuno-ultrastructural findings and introductory information about pre- and post-synaptic location of P2X receptors in the rat cerebellum and endocrine hypothalamus to support the concept of purinergic transmission in the central nervous system. Then findings of diverse immunoreactivity for P2X1, P2X2, P2X4, and P2X6 receptors associated with brain microvessels are shown, including vascular endothelium and pericytes as well as perivascular astrocytes and neuronal components. These findings imply the involvement of P2X receptors and hence purinergic signalling in the neurovascular unit, at least in microvessels in the rat cerebellum and hypothalamic paraventricular and supraoptic nuclei examined here. Various aspects of P2X receptors in brain microvessels are discussed.
Collapse
Affiliation(s)
- Andrzej Loesch
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London Medical School, Royal Free Campus, London, UK.
| |
Collapse
|
11
|
Hong J, Hong SG, Lee J, Park JY, Eriksen JL, Rooney BV, Park Y. Exercise training ameliorates cerebrovascular dysfunction in a murine model of Alzheimer's disease: role of the P2Y2 receptor and endoplasmic reticulum stress. Am J Physiol Heart Circ Physiol 2020; 318:H1559-H1569. [PMID: 32383993 DOI: 10.1152/ajpheart.00129.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebrovascular dysfunction is a critical risk factor for the pathogenesis of Alzheimer's disease (AD). The purinergic P2Y2 receptor and endoplasmic reticulum (ER) stress are tightly associated with vascular dysfunction and the pathogenesis of AD. However, the protective effects of exercise training on P2Y2 receptor- and ER stress-associated cerebrovascular dysfunction in AD are mostly unknown. Control (C57BL/6, CON) and AD (APP/PS1dE9, AD) mice underwent treadmill exercise training (EX). 2-MeS-ATP-induced dose-dependent vasoreactivity was determined by using a pressurized posterior cerebral artery (PCA) from 10-12-mo-old mice. Human brain microvascular endothelial cells (HBMECs) were exposed to laminar shear stress (LSS) at 20 dyn/cm2 for 30 min, 2 h, and 24 h. The expression of P2Y2 receptors, endothelial nitric oxide synthase (eNOS), and ER stress signaling were quantified by Western blot analysis. Notably, exercise converted ATP-induced vasoconstriction in the PCA from AD mice to vasodilation in AD+EX mice to a degree commensurate to the vascular reactivity observed in CON mice. Exercise reduced the expression of amyloid peptide precursor (APP) and increased the P2Y2 receptor and Akt/eNOS expression in AD mice brain. Mechanistically, LSS increased the expression of both P2Y2 receptor and eNOS protein in HBMECs, but these increases were blunted by a P2Y2 receptor antagonist in HBMECs. Exercise also reduced the expression of aberrant ER stress markers p-IRE1, p/t-eIF2α, and CHOP, as well as Bax/Bcl-2, in AD mice brain. Collectively, our results demonstrate for the first time that exercise mitigates cerebrovascular dysfunction in AD through modulating P2Y2 receptor- and ER stress-dependent endothelial dysfunction.NEW & NOTEWORTHY A limited study has investigated whether exercise training can improve cerebrovascular function in Alzheimer's disease. The novel findings of the study are that exercise training improves cerebrovascular dysfunction through enhancing P2Y2 receptor-mediated eNOS signaling and reducing ER stress-associated pathways in AD. These data suggest that exercise training, which regulates P2Y2 receptor and ER stress in AD brain, is a potential therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Junyoung Hong
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Soon-Gook Hong
- Department of Kinesiology and Cardiovascular Research Center, Temple University, Philadelphia, Pennsylvania
| | - Jonghae Lee
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Joon-Young Park
- Department of Kinesiology and Cardiovascular Research Center, Temple University, Philadelphia, Pennsylvania
| | - Jason L Eriksen
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Bridgette V Rooney
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas.,Geocontrol Systems, Incorporated, Johnson Space Center, National Aeronautics and Space Administration, Houston, Texas
| | - Yoonjung Park
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas
| |
Collapse
|
12
|
Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses. Proc Natl Acad Sci U S A 2018; 115:E5796-E5804. [PMID: 29866853 DOI: 10.1073/pnas.1707702115] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Functional neuroimaging, such as fMRI, is based on coupling neuronal activity and accompanying changes in cerebral blood flow (CBF) and metabolism. However, the relationship between CBF and events at the level of the penetrating arterioles and capillaries is not well established. Recent findings suggest an active role of capillaries in CBF control, and pericytes on capillaries may be major regulators of CBF and initiators of functional imaging signals. Here, using two-photon microscopy of brains in living mice, we demonstrate that stimulation-evoked increases in synaptic activity in the mouse somatosensory cortex evokes capillary dilation starting mostly at the first- or second-order capillary, propagating upstream and downstream at 5-20 µm/s. Therefore, our data support an active role of pericytes in cerebrovascular control. The gliotransmitter ATP applied to first- and second-order capillaries by micropipette puffing induced dilation, followed by constriction, which also propagated at 5-20 µm/s. ATP-induced capillary constriction was blocked by purinergic P2 receptors. Thus, conducted vascular responses in capillaries may be a previously unidentified modulator of cerebrovascular function and functional neuroimaging signals.
Collapse
|
13
|
Hakim MA, Buchholz JN, Behringer EJ. Electrical dynamics of isolated cerebral and skeletal muscle endothelial tubes: Differential roles of G-protein-coupled receptors and K + channels. Pharmacol Res Perspect 2018; 6:e00391. [PMID: 29636977 PMCID: PMC5889193 DOI: 10.1002/prp2.391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022] Open
Abstract
Electrical dynamics of freshly isolated cerebral endothelium have not been determined independently of perivascular nerves and smooth muscle. We tested the hypothesis that endothelium of cerebral and skeletal muscle arteries differentially utilizes purinergic and muscarinic signaling pathways to activate endothelium‐derived hyperpolarization. Changes in membrane potential (Vm) were recorded in intact endothelial tubes freshly isolated from posterior cerebral and superior epigastric arteries of male and female C57BL/6 mice (age: 3‐8 months). Vm was measured in response to activation of purinergic (P2Y) and muscarinic (M3) receptors in addition to small‐ and intermediate‐conductance Ca2+‐activated K+ (SKCa/IKCa) and inward rectifying K+ (KIR) channels using ATP (100 μmol·L−1), acetylcholine (ACh; 10 μmol·L−1), NS309 (0.01‐10 μmol·L−1), and 15 mmol·L−1 KCl, respectively. Intercellular coupling was demonstrated via transfer of propidium iodide dye and electrical current (±0.5‐3 nA) through gap junctions. With similarities observed across gender, peak hyperpolarization to ATP and ACh in skeletal muscle endothelial tubes was ~twofold and ~sevenfold higher, respectively, vs cerebral endothelial tubes, whereas responses to NS309 were similar (from resting Vm ~−30 mV to maximum ~−80 mV). Hyperpolarization (~8 mV) occurred during 15 mmol·L−1 KCl treatment in cerebral but not skeletal muscle endothelial tubes. Despite weaker hyperpolarization during endothelial GPCR stimulation in cerebral vs skeletal muscle endothelium, the capability for robust SKCa/IKCa activity is preserved across brain and skeletal muscle. As vascular reactivity decreases with aging and cardiovascular disease, endothelial K+ channel activity may be calibrated to restore blood flow to respective organs regardless of gender.
Collapse
Affiliation(s)
- Md A Hakim
- Basic Sciences Loma Linda University Loma Linda CA USA
| | | | | |
Collapse
|
14
|
Guerra G, Lucariello A, Perna A, Botta L, De Luca A, Moccia F. The Role of Endothelial Ca 2+ Signaling in Neurovascular Coupling: A View from the Lumen. Int J Mol Sci 2018; 19:E938. [PMID: 29561829 PMCID: PMC5979341 DOI: 10.3390/ijms19040938] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity (NA) leads to local elevation in cerebral blood flow (CBF) to match the metabolic requirements of firing neurons. Following synaptic activity, an increase in neuronal and/or astrocyte Ca2+ concentration leads to the synthesis of multiple vasoactive messengers. Curiously, the role of endothelial Ca2+ signaling in NVC has been rather neglected, although endothelial cells are known to control the vascular tone in a Ca2+-dependent manner throughout peripheral vasculature. METHODS We analyzed the literature in search of the most recent updates on the potential role of endothelial Ca2+ signaling in NVC. RESULTS We found that several neurotransmitters (i.e., glutamate and acetylcholine) and neuromodulators (e.g., ATP) can induce dilation of cerebral vessels by inducing an increase in endothelial Ca2+ concentration. This, in turn, results in nitric oxide or prostaglandin E2 release or activate intermediate and small-conductance Ca2+-activated K⁺ channels, which are responsible for endothelial-dependent hyperpolarization (EDH). In addition, brain endothelial cells express multiple transient receptor potential (TRP) channels (i.e., TRPC3, TRPV3, TRPV4, TRPA1), which induce vasodilation by activating EDH. CONCLUSIONS It is possible to conclude that endothelial Ca2+ signaling is an emerging pathway in the control of NVC.
Collapse
Affiliation(s)
- Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Angela Lucariello
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| | - Antonio De Luca
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
15
|
Hearon CM, Richards JC, Racine ML, Luckasen GJ, Larson DG, Joyner MJ, Dinenno FA. Sympatholytic effect of intravascular ATP is independent of nitric oxide, prostaglandins, Na + /K + -ATPase and K IR channels in humans. J Physiol 2017; 595:5175-5190. [PMID: 28590059 PMCID: PMC5538228 DOI: 10.1113/jp274532] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Intravascular ATP attenuates sympathetic vasoconstriction (sympatholysis) similar to what is observed in contracting skeletal muscle of humans, and may be an important contributor to exercise hyperaemia. Similar to exercise, ATP-mediated vasodilatation occurs via activation of inwardly rectifying potassium channels (KIR ), and synthesis of nitric oxide (NO) and prostaglandins (PG). However, recent evidence suggests that these dilatatory pathways are not obligatory for sympatholysis during exercise; therefore, we tested the hypothesis that the ability of ATP to blunt α1 -adrenergic vasoconstriction in resting skeletal muscle would be independent of KIR , NO, PGs and Na+ /K+ -ATPase activity. Blockade of KIR channels alone or in combination with NO, PGs and Na+ /K+ -ATPase significantly reduced the vasodilatatory response to ATP, although intravascular ATP maintained the ability to attenuate α1 -adrenergic vasoconstriction. This study highlights similarities in the vascular response to ATP and exercise, and further supports a potential role of intravascular ATP in blood flow regulation during exercise in humans. ABSTRACT Exercise and intravascular ATP elicit vasodilatation that is dependent on activation of inwardly rectifying potassium (KIR ) channels, with a modest reliance on nitric oxide (NO) and prostaglandin (PG) synthesis. Both exercise and intravascular ATP attenuate sympathetic α-adrenergic vasoconstriction (sympatholysis). However, KIR channels, NO, PGs and Na+ /K+ -ATPase activity are not obligatory to observe sympatholysis during exercise. To further determine similarities between exercise and intravascular ATP, we tested the hypothesis that inhibition of KIR channels, NO and PG synthesis, and Na+ /K+ -ATPase would not alter the ability of ATP to blunt α1 -adrenergic vasoconstriction. In healthy subjects, we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (FVC) to intra-arterial infusion of phenylephrine (PE; α1 -agonist) during ATP or control vasodilatator infusion, before and after KIR channel inhibition alone (barium chloride; n = 7; Protocol 1); NO (l-NMMA) and PG (ketorolac) inhibition alone, or combined NO, PGs, Na+ /K+ -ATPase (ouabain) and KIR channel inhibition (n = 6; Protocol 2). ATP attenuated PE-mediated vasoconstriction relative to adenosine (ADO) and sodium nitroprusside (SNP) (PE-mediated ΔFVC: ATP: -16 ± 2; ADO: -38 ± 6; SNP: -59 ± 6%; P < 0.05 vs. ADO and SNP). Blockade of KIR channels alone or combined with NO, PGs and Na+ /K+ -ATPase, attenuated ATP-mediated vasodilatation (∼35 and ∼60% respectively; P < 0.05 vs. control). However, ATP maintained the ability to blunt PE-mediated vasoconstriction (PE-mediated ΔFVC: KIR blockade alone: -6 ± 5%; combined blockade:-4 ± 14%; P > 0.05 vs. control). These findings demonstrate that intravascular ATP modulates α1 -adrenergic vasoconstriction via pathways independent of KIR channels, NO, PGs and Na+ /K+ -ATPase in humans, consistent with a role for endothelium-derived hyperpolarization in functional sympatholysis.
Collapse
Affiliation(s)
- Christopher M. Hearon
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
| | - Jennifer C. Richards
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
| | - Mathew L. Racine
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
| | - Gary J. Luckasen
- Medical Center of the Rockies FoundationUniversity of Colorado HealthLovelandCOUSA
| | - Dennis G. Larson
- Medical Center of the Rockies FoundationUniversity of Colorado HealthLovelandCOUSA
| | | | - Frank A. Dinenno
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
- Center for Cardiovascular ResearchColorado State UniversityFort CollinsCO80523USA
| |
Collapse
|
16
|
Dora KA. Conducted dilatation to ATP and K + in rat skeletal muscle arterioles. Acta Physiol (Oxf) 2017; 219:202-218. [PMID: 26804547 PMCID: PMC5215486 DOI: 10.1111/apha.12656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/25/2015] [Accepted: 01/19/2016] [Indexed: 11/28/2022]
Abstract
AIM During exercise in humans, circulating levels of ATP and K+ increase at a time when blood flow increases to satisfy metabolic demand. Both molecules can activate arteriolar K+ channels to stimulate vasodilatation; here, it is established whether conducted dilatation is observed in a skeletal muscle bed. METHODS Isolated and cannulated rat cremaster arterioles were used to assess both local and conducted responses. Agents were either added to the bath, focally pulse-ejected to the downstream end of arterioles, or in triple-cannulated arterioles, luminally perfused into the downstream branches to assess both local and conducted responses. RESULTS The endothelium-dependent agonist ACh and the KATP channel opener levcromakalim each stimulated both local and conducted vasodilatation. Focal, bolus delivery of ATP (10 μm) or KCl (33 mm) to the outside of arterioles stimulated a biphasic vasomotor response: rapid vasoconstriction followed by dilatation as each washed away. At lower concentrations of KCl (19 mm), constriction was avoided, and instead, Ba2+ -sensitive local dilatation and conducted dilatation were both observed. Luminal perfusion of ATP avoided constriction and activated P2Y1 receptors stimulating vasodilatation secondary to opening of KCa channels. In triple-cannulated arterioles, either ATP (10 μm) or K+ (15 mm) luminally perfused into daughter branches of a bifurcation stimulated local dilatation which conducted into the parent arteriole. CONCLUSION The recognized physiological autocrine and paracrine mediators ATP and K+ each act to evoke both local and conducted vasodilatation in rat cremaster arterioles. Therefore, in situations when circulating levels are raised, such as during exercise, these agents can act as important regulators of blood flow.
Collapse
Affiliation(s)
- K. A. Dora
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
17
|
Busija DW, Rutkai I, Dutta S, Katakam PV. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone. Compr Physiol 2016; 6:1529-48. [PMID: 27347901 DOI: 10.1002/cphy.c150051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016.
Collapse
Affiliation(s)
- David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
18
|
Siler DA, Martini RP, Ward JP, Nelson JW, Borkar RN, Zuloaga KL, Liu JJ, Fairbanks SL, Raskin JS, Anderson VC, Dogan A, Wang RK, Alkayed NJ, Cetas JS. Protective role of p450 epoxyeicosanoids in subarachnoid hemorrhage. Neurocrit Care 2016; 22:306-19. [PMID: 25231529 DOI: 10.1007/s12028-014-0011-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Patients recovering from aneurysmal subarachnoid hemorrhage (SAH) are at risk for developing delayed cerebral ischemia (DCI). Experimental and human studies implicate the vasoconstrictor P450 eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE) in the pathogenesis of DCI. To date, no studies have evaluated the role of vasodilator epoxyeicosatrienoic acids (EETs) in DCI. METHODS Using mass spectrometry, we measured P450 eicosanoids in cerebrospinal fluid (CSF) from 34 SAH patients from 1 to 14 days after admission. CSF eicosanoid levels were compared in patients who experienced DCI versus those who did not. We then studied the effect of EETs in a model of SAH using mice lacking the enzyme soluble epoxide hydrolase (sEH), which catabolizes EETs into their inactive diol. To assess changes in vessel morphology and cortical perfusion in the mouse brain, we used optical microangiography, a non-invasive coherence-based imaging technique. RESULTS Along with increases in 20-HETE, we found that CSF levels of 14,15-EET were elevated in SAH patients compared to control CSF, and levels were significantly higher in patients who experienced DCI compared to those who did not. Mice lacking sEH had elevated 14,15-EET and were protected from the delayed decrease in microvascular cortical perfusion after SAH, compared to wild type mice. CONCLUSIONS Our findings suggest that P450 eicosanoids play an important role in the pathogenesis of DCI. While 20-HETE may contribute to the development of DCI, 14,15-EET may afford protection against DCI. Strategies to enhance 14,15-EET, including sEH inhibition, should be considered as part of a comprehensive approach to prevent DCI.
Collapse
Affiliation(s)
- Dominic A Siler
- Department of Anesthesiology & Perioperative Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Murata T, Dietrich HH, Horiuchi T, Hongo K, Dacey RG. Mechanisms of magnesium-induced vasodilation in cerebral penetrating arterioles. Neurosci Res 2015; 107:57-62. [PMID: 26712324 DOI: 10.1016/j.neures.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 01/14/2023]
Abstract
We investigated in cerebral penetrating arterioles the signaling mechanisms and dose-dependency of extracellular magnesium-induced vasodilation and also its vasodilatory effects in vessels preconstricted with agonists associated with delayed cerebral vasospasm following SAH. Male rat penetrating arterioles were cannulated. Their internal diameters were monitored. To investigate mechanisms of magnesium-induced vasodilation, inhibitors of endothelial function, potassium channels and endothelial impairment were tested. To simulate cerebral vasospasm we applied several spasmogenic agonists. Increased extracellular magnesium concentration produced concentration-dependent vasodilation, which was partially attenuated by non-specific calcium-sensitive potassium channel inhibitor tetraethylammonium, but not by other potassium channel inhibitors. Neither the nitric oxide synthase inhibitor L-NNA nor endothelial impairment induced by air embolism reduced the dilation. Although the magnesium-induced vasodilation was slightly attenuated by the spasmogen ET-1, neither application of PF2α nor TXA2 analog effect the vasodilation. Magnesium induced a concentration- and smooth muscle cell-dependent dilation in cerebral penetrating arterioles. Calcium-sensitive potassium channels of smooth muscle cells may play a key role in magnesium-induced vasodilation. Magnesium also dilated endothelium-impaired vessels as well as vessels preconstricted with spasmogenic agonists. These results provide a fundamental background for the clinical use of magnesium, especially in treatment against delayed cerebral ischemia or vasospasm following SAH.
Collapse
Affiliation(s)
- Takahiro Murata
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
| | - Hans H Dietrich
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, United States; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Tetsuyoshi Horiuchi
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Kazuhiro Hongo
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Ralph G Dacey
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
20
|
Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 2015; 310:R398-413. [PMID: 26676248 DOI: 10.1152/ajpregu.00270.2015] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
This review highlights the influence of oxygen (O2) availability on cerebral blood flow (CBF). Evidence for reductions in O2 content (CaO2 ) rather than arterial O2 tension (PaO2 ) as the chief regulator of cerebral vasodilation, with deoxyhemoglobin as the primary O2 sensor and upstream response effector, is discussed. We review in vitro and in vivo data to summarize the molecular mechanisms underpinning CBF responses during changes in CaO2 . We surmise that 1) during hypoxemic hypoxia in healthy humans (e.g., conditions of acute and chronic exposure to normobaric and hypobaric hypoxia), elevations in CBF compensate for reductions in CaO2 and thus maintain cerebral O2 delivery; 2) evidence from studies implementing iso- and hypervolumic hemodilution, anemia, and polycythemia indicate that CaO2 has an independent influence on CBF; however, the increase in CBF does not fully compensate for the lower CaO2 during hemodilution, and delivery is reduced; and 3) the mechanisms underpinning CBF regulation during changes in O2 content are multifactorial, involving deoxyhemoglobin-mediated release of nitric oxide metabolites and ATP, deoxyhemoglobin nitrite reductase activity, and the downstream interplay of several vasoactive factors including adenosine and epoxyeicosatrienoic acids. The emerging picture supports the role of deoxyhemoglobin (associated with changes in CaO2 ) as the primary biological regulator of CBF. The mechanisms for vasodilation therefore appear more robust during hypoxemic hypoxia than during changes in CaO2 via hemodilution. Clinical implications (e.g., disorders associated with anemia and polycythemia) and future study directions are considered.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Anthony R Bain
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Mathew G Rieger
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Damian M Bailey
- Neurovascular Research Laboratory, Research Institute of Science and Health, University of South Wales, Glamorgan, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and Neurovascular Research Laboratory, Research Institute of Science and Health, University of South Wales, Glamorgan, United Kingdom
| |
Collapse
|
21
|
The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem Int 2015; 89:126-39. [PMID: 26260546 DOI: 10.1016/j.neuint.2015.08.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 02/01/2023]
Abstract
The projected increase in the incidence of dementia in the population highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular exercise and diet, may affect neural function and consequent cognitive performance throughout the life course. In this regard, flavonoids, found in a variety of fruits, vegetables and derived beverages, have been identified as a group of promising bioactive compounds capable of influencing different aspects of brain function, including cerebrovascular blood flow and synaptic plasticity, both resulting in improvements in learning and memory in mammalian species. However, the precise mechanisms by which flavonoids exert these actions are yet to be fully established, although accumulating data indicate an ability to interact with neuronal receptors and kinase signaling pathways which are key to neuronal activation and communication and synaptic strengthening. Alternatively or concurrently, there is also compelling evidence derived from human clinical studies suggesting that flavonoids can positively affect peripheral and cerebrovascular blood flow, which may be an indirect effective mechanism by which dietary flavonoids can impact on brain health and cognition. The current review examines the beneficial effects of flavonoids on both human and animal brain function and attempts to address and link direct and indirect actions of flavonoids and their derivatives within the central nervous system (CNS).
Collapse
|
22
|
Erb L, Cao C, Ajit D, Weisman GA. P2Y receptors in Alzheimer's disease. Biol Cell 2014; 107:1-21. [PMID: 25179475 DOI: 10.1111/boc.201400043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 10% of people over the age of 65. Age is the greatest risk factor for AD, although a combination of genetic, lifestyle and environmental factors also contribute to disease development. Common features of AD are the formation of plaques composed of beta-amyloid peptides (Aβ) and neuronal death in brain regions involved in learning and memory. Although Aβ is neurotoxic, the primary mechanisms by which Aβ affects AD development remain uncertain and controversial. Mouse models overexpressing amyloid precursor protein and Aβ have revealed that Aβ has potent effects on neuroinflammation and cerebral blood flow that contribute to AD progression. Therefore, it is important to consider how endogenous signalling in the brain responds to Aβ and contributes to AD pathology. In recent years, Aβ has been shown to affect ATP release from brain and blood cells and alter the expression of G protein-coupled P2Y receptors that respond to ATP and other nucleotides. Accumulating evidence reveals a prominent role for P2Y receptors in AD pathology, including Aβ production and elimination, neuroinflammation, neuronal function and cerebral blood flow.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, MO, 65211, U.S.A
| | | | | | | |
Collapse
|
23
|
Busija DW, Katakam PV. Mitochondrial mechanisms in cerebral vascular control: shared signaling pathways with preconditioning. J Vasc Res 2014; 51:175-89. [PMID: 24862206 PMCID: PMC4149841 DOI: 10.1159/000360765] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/19/2014] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial-initiated events protect the neurovascular unit against lethal stress via a process called preconditioning, which independently promotes changes in cerebrovascular tone through shared signaling pathways. Activation of adenosine triphosphate (ATP)-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels) is a specific and dependable way to induce protection of neurons, astroglia, and cerebral vascular endothelium. Through the opening of mitoKATP channels, mitochondrial depolarization leads to activation of protein kinases and transient increases in cytosolic calcium (Ca(2+)) levels that activate terminal mechanisms that protect the neurovascular unit against lethal stress. The release of reactive oxygen species from mitochondria has similar protective effects. Signaling elements of the preconditioning pathways also are involved in the regulation of vascular tone. Activation of mitoKATP channels in cerebral arteries causes vasodilation, with cell-specific contributions from the endothelium, vascular smooth muscles, and nerves. Preexisting chronic conditions, such as insulin resistance and/or diabetes, prevent preconditioning and impair relaxation to mitochondrial-centered responses in cerebral arteries. Surprisingly, mitochondrial activation after anoxic or ischemic stress appears to protect cerebral vascular endothelium and promotes the restoration of blood flow; therefore, mitochondria may represent an important, but underutilized target in attenuating vascular dysfunction and brain injury in stroke patients.
Collapse
Affiliation(s)
- David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, La., USA
| | | |
Collapse
|
24
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
25
|
Bolduc V, Thorin-Trescases N, Thorin E. Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging. Am J Physiol Heart Circ Physiol 2013; 305:H620-33. [PMID: 23792680 DOI: 10.1152/ajpheart.00624.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cognitive performances are tightly associated with the maximal aerobic exercise capacity, both of which decline with age. The benefits on mental health of regular exercise, which slows the age-dependent decline in maximal aerobic exercise capacity, have been established for centuries. In addition, the maintenance of an optimal cerebrovascular endothelial function through regular exercise, part of a healthy lifestyle, emerges as one of the key and primary elements of successful brain aging. Physical exercise requires the activation of specific brain areas that trigger a local increase in cerebral blood flow to match neuronal metabolic needs. In this review, we propose three ways by which exercise could maintain the cerebrovascular endothelial function, a premise to a healthy cerebrovascular function and an optimal regulation of cerebral blood flow. First, exercise increases blood flow locally and increases shear stress temporarily, a known stimulus for endothelial cell maintenance of Akt-dependent expression of endothelial nitric oxide synthase, nitric oxide generation, and the expression of antioxidant defenses. Second, the rise in circulating catecholamines during exercise not only facilitates adequate blood and nutrient delivery by stimulating heart function and mobilizing energy supplies but also enhances endothelial repair mechanisms and angiogenesis. Third, in the long term, regular exercise sustains a low resting heart rate that reduces the mechanical stress imposed to the endothelium of cerebral arteries by the cardiac cycle. Any chronic variation from a healthy environment will perturb metabolism and thus hasten endothelial damage, favoring hypoperfusion and neuronal stress.
Collapse
Affiliation(s)
- Virginie Bolduc
- Departments of Surgery and Pharmacology, Université de Montréal, and Centre de recherche, Montreal Heart Institute, Montreal, Quebec, Canada
| | | | | |
Collapse
|
26
|
Nyberg M, Al-Khazraji BK, Mortensen SP, Jackson DN, Ellis CG, Hellsten Y. Effect of extraluminal ATP application on vascular tone and blood flow in skeletal muscle: implications for exercise hyperemia. Am J Physiol Regul Integr Comp Physiol 2013; 305:R281-90. [PMID: 23761642 DOI: 10.1152/ajpregu.00189.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During skeletal muscle contractions, the concentration of ATP increases in muscle interstitial fluid as measured by microdialysis probes. This increase is associated with the magnitude of blood flow, suggesting that interstitial ATP may be important for contraction-induced vasodilation. However, interstitial ATP has solely been described to induce vasoconstriction in skeletal muscle. To examine whether interstitial ATP induces vasodilation in skeletal muscle and to what extent this vasoactive effect is mediated by formation of nitric oxide (NO) and prostanoids, three different experimental models were studied. The rat gluteus maximus skeletal muscle model was used to study changes in local skeletal muscle hemodynamics. Superfused ATP at concentrations found during muscle contractions (1-10 μM) increased blood flow by up to 400%. In this model, the underlying mechanism was also examined by inhibition of NO and prostanoid formation. Inhibition of these systems abolished the vasodilator effect of ATP. Cell-culture experiments verified ATP-induced formation of NO and prostacyclin in rat skeletal muscle microvascular endothelial cells, and ATP-induced formation of NO in rat skeletal muscle cells. To confirm these findings in humans, ATP was infused into skeletal muscle interstitium of healthy subjects via microdialysis probes and found to increase muscle interstitial concentrations of NO and prostacyclin by ~60% and ~40%, respectively. Collectively, these data suggest that a physiologically relevant elevation in interstitial ATP concentrations increases muscle blood flow, indicating that the contraction-induced increase in skeletal muscle interstitial [ATP] is important for exercise hyperemia. The vasodilator effect of ATP application is mediated by NO and prostanoid formation.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Despite recent advances in our understanding of the molecular and cellular mechanisms behind vascular conducted responses (VCRs) in systemic arterioles, we still know very little about their potential physiological and pathophysiological role in brain penetrating arterioles controlling blood flow to the deeper areas of the brain. The scope of the present review is to present an overview of the conceptual, mechanistic, and physiological role of VCRs in resistance vessels, and to discuss in detail the recent advances in our knowledge of VCRs in brain arterioles controlling cerebral blood flow. We provide a schematic view of the ion channels and intercellular communication pathways necessary for conduction of an electrical and mechanical response in the arteriolar wall, and discuss the local signaling mechanisms and cellular pathway involved in the responses to different local stimuli and in different vascular beds. Physiological modulation of VCRs, which is a rather new finding in this field, is discussed in the light of changes in plasma membrane ion channel conductance as a function of health status or disease. Finally, we discuss the possible role of VCRs in cerebrovascular function and disease as well as suggest future directions for studying VCRs in the cerebral circulation.
Collapse
|
28
|
Murata T, Dietrich HH, Xiang C, Dacey RG. G protein-coupled estrogen receptor agonist improves cerebral microvascular function after hypoxia/reoxygenation injury in male and female rats. Stroke 2013; 44:779-85. [PMID: 23362079 DOI: 10.1161/strokeaha.112.678177] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Reduced risk and severity of stroke in adult females are thought to depend on normal levels of endogenous estrogen, which is a known neuro- and vasoprotective agent in experimental cerebral ischemia. Recently, a novel G protein-coupled estrogen receptor (GPER, formerly GPR30) has been identified and may mediate the vasomotor and -protective effects of estrogen. However, the signaling mechanisms associated with GPER in the cerebral microcirculation remain unclear. We investigated the mechanism of GPER-mediated vasoreactivity and also its vasoprotective effect after hypoxia/reoxygenation (H/RO) injury. METHODS Rat cerebral penetrating arterioles from both sexes were isolated, cannulated, and pressurized. Vessel diameters were recorded by computer-aided videomicroscopy. To investigate vasomotor mechanism of the GPER agonist (G-1), several inhibitors with or without endothelial impairment were tested. Ischemia/reperfusion injury was simulated using H/RO. Vasomotor responses to adenosine triphophate after H/RO were measured with or without G-1 and compared with controls. RESULTS G-1 produced a vasodilatory response, which was partially dependent on endothelium-derived nitric oxide (NO) but not arachidonic acid cascades and endothelial hyperpolarization factor. Attenuation of G-1-vasodilation by the NO synthase inhibitor and endothelium-impairment were greater in vessels from female than male animals. G-1 treatment after H/RO injury fully restored arteriolar dilation to adenosine triphophate compared with controls. CONCLUSIONS GPER agonist elicited dilation, which was partially caused by endothelial NO pathway and induced by direct relaxation of smooth muscle cells. Further, GPER agonist restored vessel function of arterioles after H/RO injury and may play an important role in the ability of estrogen to protect the cerebrovasculature against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Takahiro Murata
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
29
|
Ellis CG, Milkovich S, Goldman D. What is the efficiency of ATP signaling from erythrocytes to regulate distribution of O(2) supply within the microvasculature? Microcirculation 2012; 19:440-50. [PMID: 22587367 DOI: 10.1111/j.1549-8719.2012.00196.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Erythrocytes appear to be ideal sensors for regulating microvascular O(2) supply as they release the potent vasodilator ATP in an O(2) saturation-dependent manner. Whether erythrocytes play a significant role in regulating O(2) supply in the complex environment of diffusional O(2) exchange among capillaries, arterioles, and venules, depends on the efficiency with which erythrocytes signal the vascular endothelium. If one assumes that the distribution of purinergic receptors is uniform throughout the microvasculature, then the most efficient site for signaling should occur in capillaries, where the erythrocyte membrane is in close proximity to the endothelium. ATP released from erythrocytes would diffuse a short distance to P(2y) receptors inducing an increase in blood flow, possibly the result of endothelial hyperpolarization. We hypothesize that this hyperpolarization varies across the capillary bed depending upon erythrocyte supply rate and the flux of O(2) from these erythrocytes to support O(2) metabolism. This would suggest that the capillary bed would be the most effective site for erythrocytes to communicate tissue oxygen needs. Electrically coupled endothelial cells conduct the integrated signal upstream where arterioles adjust vascular resistance, thus enabling ATP released from erythrocytes to regulate the magnitude and distribution of O(2) supply to individual capillary networks.
Collapse
Affiliation(s)
- Christopher G Ellis
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
30
|
Crecelius AR, Kirby BS, Luckasen GJ, Larson DG, Dinenno FA. ATP-mediated vasodilatation occurs via activation of inwardly rectifying potassium channels in humans. J Physiol 2012; 590:5349-59. [PMID: 22777673 DOI: 10.1113/jphysiol.2012.234245] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Circulating ATP possesses unique vasomotor properties in humans and has been hypothesized to play a role in vascular control under a variety of physiological conditions. However, the primary downstream signalling mechanisms underlying ATP-mediated vasodilatation remain unclear. The purpose of the present experiment was to determine whether ATP-mediated vasodilatation is independent of nitric oxide (NO) and prostaglandin (PG) synthesis and occurs primarily via the activation of Na(+)/K(+)-ATPase and inwardly rectifying potassium (K(IR)) channels in humans. In all protocols, young healthy adults were studied and forearm vascular conductance (FVC) was calculated from forearm blood flow (measured via venous occlusion plethysmography) and intra-arterial blood pressure to quantify local vasodilatation. Vasodilator responses (%FVC) during intra-arterial ATP infusions were unchanged following combined inhibition of NO and PGs (n = 8; P > 0.05) whereas the responses to KCl were greater (P < 0.05). Combined infusion of ouabain (to inhibit Na(+)/K(+)-ATPase) and barium chloride (BaCl(2); to inhibit K(IR) channels) abolished KCl-mediated vasodilatation (n = 6; %FVC = 134 ± 13 vs. 4 ± 5%; P < 0.05), demonstrating effective blockade of direct vascular hyperpolarization. The vasodilator responses to three different doses of ATP were inhibited on average 56 ± 5% (n = 16) following combined ouabain plus BaCl(2) infusion. In follow-up studies, BaCl(2) alone inhibited the vasodilator responses to ATP on average 51 ± 3% (n = 6), which was not different than that observed for combined ouabain plus BaCl(2) administration. Our novel results indicate that the primary mechanism of ATP-mediated vasodilatation is vascular hyperpolarization via activation of K(IR) channels. These observations translate in vitro findings to humans in vivo and may help explain the unique vasomotor properties of intravascular ATP in the human circulation.
Collapse
Affiliation(s)
- Anne R Crecelius
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1582, USA
| | | | | | | | | |
Collapse
|
31
|
Sprague RS, Ellsworth ML. Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication. Microcirculation 2012; 19:430-9. [PMID: 22775760 PMCID: PMC3324633 DOI: 10.1111/j.1549-8719.2011.00158.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In complex organisms, both intracellular and intercellular communication are critical for the appropriate regulation of the distribution of perfusion to assure optimal O(2) delivery and organ function. The mobile erythrocyte is in a unique position in the circulation as it both senses and responds to a reduction in O(2) tension in its environment. When erythrocytes enter a region of the microcirculation in which O(2) tension is reduced, they release both O(2) and the vasodilator, ATP, via activation of a specific and dedicated signaling pathway that requires increases in cAMP, which are regulated by PDE3B. The ATP released initiates a conducted vasodilation that results in alterations in the distribution of perfusion to meet the tissue's metabolic needs. This delivery mechanism is modulated by both positive and negative feedback regulators. Importantly, defects in low O(2) -induced ATP release from erythrocytes have been observed in several human disease states in which impaired vascular function is present. Understanding of the role of erythrocytes in controlling perfusion distribution and the signaling pathways that are responsible for ATP release from these cells makes the erythrocyte a novel therapeutic target for the development of new approaches for the treatment of vascular dysfunction.
Collapse
Affiliation(s)
- Randy S Sprague
- Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| | | |
Collapse
|
32
|
Kapela A, Nagaraja S, Parikh J, Tsoukias NM. Modeling Ca2+ signaling in the microcirculation: intercellular communication and vasoreactivity. Crit Rev Biomed Eng 2012; 39:435-60. [PMID: 22196162 DOI: 10.1615/critrevbiomedeng.v39.i5.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A network of intracellular signaling pathways and complex intercellular interactions regulate calcium mobilization in vascular cells, arteriolar tone, and blood flow. Different endothelium-derived vasoreactive factors have been identified and the importance of myoendothelial communication in vasoreactivity is now well appreciated. The ability of many vascular networks to conduct signals upstream also is established. This phenomenon is critical for both short-term changes in blood perfusion as well as long-term adaptations of a vascular network. In addition, in a phenomenon termed vasomotion, arterioles often exhibit spontaneous oscillations in diameter. This is thought to improve tissue oxygenation and enhance blood flow. Experimentation has begun to reveal important aspects of the regulatory machinery and the significance of these phenomena for the regulation of local perfusion and oxygenation. Mathematical modeling can assist in elucidating the complex signaling mechanisms that participate in these phenomena. This review highlights some of the important experimental studies and relevant mathematical models that provide the current understanding of these mechanisms in vasoreactivity.
Collapse
Affiliation(s)
- Adam Kapela
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | | | | | | |
Collapse
|
33
|
Davis CM, Siler DA, Alkayed NJ. Endothelium-derived hyperpolarizing factor in the brain: influence of sex, vessel size and disease state. ACTA ACUST UNITED AC 2011; 7:293-303. [PMID: 21612351 DOI: 10.2217/whe.11.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endothelial layer of cells lining the intimal surface of blood vessels is essential for vascular function. The endothelium releases multiple vasodilator and protective factors, including nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor; an imbalance in these factors predisposes individuals to vascular diseases such as stroke. These factors are differentially regulated by vessel size, sex hormones and disease state, therefore playing differential roles in different tissues following vascular injury. In particular, the endothelium-derived hyperpolarizing factor candidate termed epoxyeicosatrienoic acid, plays a prominent role in microvessel function, especially after ischemia, thereby making this signaling pathway an attractive target for therapy in vascular disease, including stroke.
Collapse
Affiliation(s)
- Catherine M Davis
- Cerebrovascular Research Division, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
34
|
Qiu F, Wang J, Spray DC, Scemes E, Dahl G. Two non-vesicular ATP release pathways in the mouse erythrocyte membrane. FEBS Lett 2011; 585:3430-5. [PMID: 21983290 DOI: 10.1016/j.febslet.2011.09.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/22/2011] [Indexed: 02/01/2023]
Abstract
Erythrocytes are exceptionally suited for analysis of non-exocytotic release mechanisms of ATP, because these cells under physiological conditions lack vesicles. Previous studies have indicated, that Pannexin1 (Panx1) provides a key ATP permeation pathway in many cell types, including human and frog erythrocytes. Here we show that erythrocytes of Panx1(-/-) mice lend further support to this conclusion. However, ATP release, although attenuated, was still observed in Panx1(-/-) mouse erythrocytes. In contrast to Panx1(+/+) cells, this release was not correlated with uptake of extracellularly applied dyes, was insensitive to Panx1 channel blockers, and was inhibited by dipyridamole and stimulated by iloprost. Thus, in erythrocytes, two independent pathways mediate the release of ATP. We also show that glyburide is a strong inhibitor of Panx1 channels.
Collapse
Affiliation(s)
- Feng Qiu
- Department of Physiology and Biophysics, University of Miami, School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
35
|
Sprague RS, Bowles EA, Achilleus D, Stephenson AH, Ellis CG, Ellsworth ML. A selective phosphodiesterase 3 inhibitor rescues low PO2-induced ATP release from erythrocytes of humans with type 2 diabetes: implication for vascular control. Am J Physiol Heart Circ Physiol 2011; 301:H2466-72. [PMID: 21963837 DOI: 10.1152/ajpheart.00729.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythrocytes, via release of ATP in areas of low oxygen (O(2)) tension, are components of a regulatory system for the distribution of perfusion in skeletal muscle ensuring optimal O(2) delivery to meet tissue needs. In type 2 diabetes (DM2), there are defects in O(2) supply to muscle as well as a failure of erythrocytes to release ATP. The goal of this study was to ascertain if a phosphodiesterase 3 (PDE3) inhibitor, cilostazol, would rescue low O(2)-induced ATP release from DM2 erythrocytes and, thereby, enable these cells to dilate isolated erythrocyte-perfused skeletal muscle arterioles exposed to decreased extraluminal O(2). Erythrocytes were obtained from healthy humans (HH; n = 12) and humans with DM2 (n = 17). We determined that 1) PDE3B is similarly expressed in both groups, 2) mastoparan 7 (G(i) activation) stimulates increases in cAMP in HH but not in DM2 erythrocytes, and 3) pretreatment of DM2 erythrocytes with cilostazol resulted in mastoparan 7-induced increases in cAMP not different from those in HH cells. Most importantly, cilostazol restored the ability of DM2 erythrocytes to release ATP in response to low O(2). In contrast with perfusion with HH erythrocytes, isolated hamster retractor muscle arterioles perfused with DM2 erythrocytes constricted in response to low extraluminal PO(2). However, in the presence of cilostazol (100 μM), DM2 erythrocytes induced vessel dilation not different from that seen with HH erythrocytes. Thus rescue of low O(2)-induced ATP release from DM2 erythrocytes by cilostazol restored the ability of erythrocytes to participate in the regulation of perfusion distribution in skeletal muscle.
Collapse
Affiliation(s)
- Randy S Sprague
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Missouri 63104, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Vetri F, Xu H, Mao L, Paisansathan C, Pelligrino DA. ATP hydrolysis pathways and their contributions to pial arteriolar dilation in rats. Am J Physiol Heart Circ Physiol 2011; 301:H1369-77. [PMID: 21803949 DOI: 10.1152/ajpheart.00556.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ATP is thought to be released to the extracellular compartment by neurons and astrocytes during neural activation. We examined whether ATP exerts its effect of promoting pial arteriolar dilation (PAD) directly or upon conversion (via ecto-nucleotidase action) to AMP and adenosine. Blockade of extracellular direct ATP to AMP conversion, with ARL-67156, significantly reduced sciatic nerve stimulation-evoked PADs by 68%. We then monitored PADs during suffusions of ATP, ADP, AMP, and adenosine in the presence and absence of the following: 1) the ecto-5'-nucleotidase inhibitor α,β-methylene adenosine 5'-diphosphate (AOPCP), 2) the A(2) receptor blocker ZM 241385, 3) the ADP P2Y(1) receptor antagonist MRS 2179, and 4) ARL-67156. Vasodilations induced by 1 and 10 μM, but not 100 μM, ATP were markedly attenuated by ZM 241385, AOPCP, and ARL-67156. Substantial loss of reactivity to 100 μM ATP required coapplications of ZM 241385 and MRS 2179. Dilations induced by ADP were blocked by MRS 2179 but were not affected by either ZM 241385 or AOPCP. AMP-elicited dilation was partially inhibited by AOPCP and completely abolished by ZM 241385. Collectively, these and previous results indicate that extracellular ATP-derived adenosine and AMP, via A(2) receptors, play key roles in neural activation-evoked PAD. However, at high extracellular ATP levels, some conversion to ADP may occur and contribute to PAD through P2Y(1) activation.
Collapse
Affiliation(s)
- Francesco Vetri
- Neuroanesthesia Research, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
This review is concerned with understanding how vasodilation initiated from local sites in the tissue can spread to encompass multiple branches of the resistance vasculature. Within tissues, arteriolar networks control the distribution and magnitude of capillary perfusion. Vasodilation arising from the microcirculation can 'ascend' into feed arteries that control blood flow into arteriolar networks. Thus distal segments of the resistance network signal proximal segments to dilate and thereby increase total oxygen supply to parenchymal cells. August Krogh proposed that innervation of capillaries provided the mechanism for a spreading vasodilatory response. With greater understanding of the ultrastructural organization of resistance networks, an alternative explanation has emerged: Electrical signalling from cell to cell along the vessel wall through gap junctions. Hyperpolarization originates from ion channel activation at the site of stimulation with the endothelium serving as the predominant cellular pathway for signal conduction along the vessel wall. As hyperpolarization travels, it is transmitted into surrounding smooth muscle cells through myoendothelial coupling to promote relaxation. Conducted vasodilation (CVD) encompasses greater distances than can be explained by passive decay and understanding such behaviour is the focus of current research efforts. In the context of athletic performance, the ability of vasodilation to ascend into feed arteries is essential to achieving peak levels of muscle blood flow. CVD is tempered by sympathetic neuroeffector signalling when governing muscle blood flow at rest and during exercise. Impairment of conduction during ageing and in diseased states can limit physical work capacity by restricting muscle blood flow.
Collapse
Affiliation(s)
- P Bagher
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | | |
Collapse
|
38
|
Kulik TB, Aronhime SN, Echeverry G, Beylin A, Winn HR. The relationship between oxygen and adenosine in astrocytic cultures. Glia 2011; 58:1335-44. [PMID: 20607719 DOI: 10.1002/glia.21011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brain tissue oxygenation affects cerebral function and blood flow (CBF). Adenosine (Ado), a purine nucleoside, moderates neuronal activity, and arterial diameter. The cellular source of Ado in brain remains elusive; however, astrocytes are a logical site of production. Using astrocytic cultures, we tested the hypothesis that astrocytic derived Ado reflects cerebral oxygenation. We found that during alterations in pO(2), extracellular levels of Ado [Ado](e) changed rapidly. Graded reductions of oxygen tension revealed that[Ado](e) reached 10(-7) M to 10(-6) M with a pO(2) of 30-10mmHg, comparable with [Ado](e) and oxygen levels found in brain tissue during normoxemia. Higher O(2) levels were associated with a depression of [Ado](e). Under conditions of low pO(2) (pO(2) <or= 3 mmHg), inhibition of extracellular catabolism of adenosine monophosphate (AMP) prevented an increase of [Ado](e) and resulted in a rise in [AMP](e). The rise in [AMP](e) preceded the increase in [Ado](e). In the presence of nucleoside transporter inhibitors, accumulation of [Ado](e) persisted. On the basis of our studies in culture we conclude that astrocytes are a significant source of Ado and that during hypoxia, the changes in [Ado](e) are in a range to affect both neuronal activity as well as CBF.
Collapse
Affiliation(s)
- Tobias B Kulik
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York
| | | | | | | | | |
Collapse
|
39
|
Mottin S, Montcel B, de Chatellus HG, Ramstein S. Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds. J Cereb Blood Flow Metab 2011; 31:393-400. [PMID: 20959852 PMCID: PMC3049536 DOI: 10.1038/jcbfm.2010.189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Contrary to the intense debate about brain oxygen dynamics and its uncoupling in mammals, very little is known in birds. In zebra finches, picosecond optical tomography with a white laser and a streak camera can measure in vivo oxyhemoglobin (HbO(2)) and deoxyhemoglobin (Hb) concentration changes following physiologic stimulation (familiar calls and songs). Picosecond optical tomography showed sufficient submicromolar sensitivity to resolve the fast changes in the hippocampus and auditory forebrain areas with 250 μm resolution. The time course is composed of (1) an early 2-second-long event with a significant decrease in Hb and HbO(2) levels of -0.7 and -0.9 μmol/L, respectively, (2) a subsequent increase in blood oxygen availability with a plateau of HbO(2) (+0.3 μmol/L), and (3) pronounced vasodilatation events immediately after the end of the stimulus. One of the findings of our study is the direct link between blood oxygen level-dependent signals previously published in birds and our results. Furthermore, the early vasoconstriction event and poststimulus ringing seem to be more pronounced in birds than in mammals. These results in birds, tachymetabolic vertebrates with a long lifespan, can potentially yield new insights, e.g., into brain aging.
Collapse
|
40
|
Zheng W, Watts LT, Holstein DM, Prajapati SI, Keller C, Grass EH, Walter CA, Lechleiter JD. Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria. PLoS One 2010; 5:e14401. [PMID: 21203502 PMCID: PMC3008710 DOI: 10.1371/journal.pone.0014401] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Treatments to improve the neurological outcome of edema and cerebral ischemic stroke are severely limited. Here, we present the first in vivo single cell images of cortical mouse astrocytes documenting the impact of single vessel photothrombosis on cytotoxic edema and cerebral infarcts. The volume of astrocytes expressing green fluorescent protein (GFP) increased by over 600% within 3 hours of ischemia. The subsequent growth of cerebral infarcts was easily followed as the loss of GFP fluorescence as astrocytes lysed. Cytotoxic edema and the magnitude of ischemic lesions were significantly reduced by treatment with the purinergic ligand 2-methylthioladenosine 5' diphosphate (2-MeSADP), an agonist with high specificity for the purinergic receptor type 1 isoform (P2Y(1)R). At 24 hours, cytotoxic edema in astrocytes was still apparent at the penumbra and preceded the cell lysis that defined the infarct. Delayed 2MeSADP treatment, 24 hours after the initial thrombosis, also significantly reduced cytotoxic edema and the continued growth of the brain infarction. Pharmacological and genetic evidence are presented indicating that 2MeSADP protection is mediated by enhanced astrocyte mitochondrial metabolism via increased inositol trisphosphate (IP(3))-dependent Ca(2+) release. We suggest that mitochondria play a critical role in astrocyte energy metabolism in the penumbra of ischemic lesions, where low ATP levels are widely accepted to be responsible for cytotoxic edema. Enhancement of this energy source could have similar protective benefits for a wide range of brain injuries.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Lora Talley Watts
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Deborah M. Holstein
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Suresh I. Prajapati
- Greenhey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Charles Keller
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greenhey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Eileen H. Grass
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christi A. Walter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - James D. Lechleiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Soluble amyloid-beta, effect on cerebral arteriolar regulation and vascular cells. Mol Neurodegener 2010; 5:15. [PMID: 20388225 PMCID: PMC2873254 DOI: 10.1186/1750-1326-5-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 04/13/2010] [Indexed: 12/22/2022] Open
Abstract
Background Evidence indicates that soluble forms of amyloid-β (Aβ) are vasoactive, which may contribute to cerebrovascular dysfunction noted in patients with Alzheimer's Disease and cerebral amyloid angiopathy. The effects of soluble Aβ on penetrating cerebral arterioles - the vessels most responsible for controlling cerebrovascular resistance - have not been studied. Results Freshly dissolved Aβ1-40 and Aβ1-42, but not the reverse peptide Aβ40-1 constricted isolated rat penetrating arterioles and diminished dilation to adenosine tri-phosphate (ATP). Aβ1-42 also enhanced ATP-induced vessel constriction. Aβ1-40 diminished arteriolar myogenic response, and an anti-Aβ antibody reduced Aβ1-40 induced arteriolar constriction. Prolonged Aβ exposure in vessels of Tg2576 mice resulted in a marked age-dependent effect on ATP-induced vascular responses. Vessels from 6 month old Tg2576 mice had reduced vascular responses whereas these were absent from 12 month old animals. Aβ1-40 and Aβ1-42 acutely increased production of reactive oxygen species (ROS) in cultured rat cerebro-microvascular cells. The radical scavenger MnTBAP attenuated this Aβ-induced oxidative stress and Aβ1-40-induced constriction in rat arterioles. Conclusions Our results suggest that soluble Aβ1-40 and Aβ1-42 directly affect the vasomotor regulation of isolated rodent penetrating arterioles, and that ROS partially mediate these effects. Once insoluble Aβ deposits are present, arteriolar reactivity is greatly diminished.
Collapse
|
42
|
Morton JS, Rueda-Clausen CF, Davidge ST. Mechanisms of endothelium-dependent vasodilation in male and female, young and aged offspring born growth restricted. Am J Physiol Regul Integr Comp Physiol 2010; 298:R930-8. [PMID: 20053962 DOI: 10.1152/ajpregu.00641.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous epidemiological studies have shown that cardiovascular dysfunction in adult life may be programmed by compromised growth in utero. Aging is a risk factor for vascular endothelial-dependent dysfunction. After birth, the impact of intrauterine growth restriction (IUGR) on normal aging mechanisms of vascular dysfunction is not known. We hypothesized that IUGR would cause changes in vascular function that would affect the mechanisms of endothelium-dependent vasodilation later in life in an age- or sex-dependent manner. To create an IUGR model, pregnant Sprague-Dawley rats were placed in a hypoxic (12% O(2)) or control (room air, 21% O(2)) environment from days 15 to 21 of the pregnancy, and both male and female offspring were investigated at 4 or 12 mo of age. Endothelial function was assessed in small mesenteric arteries using methacholine (MCh)-induced vasodilation in a wire myograph system. The involvement of nitric oxide (NO), prostaglandins, and endothelium-derived hyperpolarizing factor (EDHF) was assessed using the inhibitors N(omega)-nitro-l-arginine methyl ester hydrochloride, meclofenamate, or a combination of apamin and TRAM-34 (SK(Ca) and IK(Ca) blockers), respectively. EDHF-induced vasodilation was further investigated by using inhibitors of P450 epoxygenases [N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide] and gap junctions (18alpha-glycyrrhetinic acid). NO-mediated vasodilation was significantly reduced in aged controls and both young and aged IUGR females. EDHF-mediated vasodilation was maintained in all groups; however, an additional involvement of gap junctions was found in females exposed to hypoxia in utero, which may represent a compensatory mechanism. A change in the mechanisms of vasodilation occurring at an earlier age in IUGR offspring may predispose them to adult cardiovascular diseases.
Collapse
Affiliation(s)
- J S Morton
- Department of Obstetrics, 232 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | | | | |
Collapse
|
43
|
Wu GB, Zhou EX, Qing DX, Li J. Role of potassium channels in regulation of rat coronary arteriole tone. Eur J Pharmacol 2009; 620:57-62. [DOI: 10.1016/j.ejphar.2009.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 07/17/2009] [Accepted: 08/04/2009] [Indexed: 11/25/2022]
|
44
|
Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS. Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology (Bethesda) 2009; 24:107-16. [PMID: 19364913 DOI: 10.1152/physiol.00038.2008] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Through oxygen-dependent release of the vasodilator ATP, the mobile erythrocyte plays a fundamental role in matching microvascular oxygen supply with local tissue oxygen demand. Signal transduction within the erythrocyte and microvessels as well as feedback mechanisms controlling ATP release have been described. Our understanding of the impact of this novel control mechanism will rely on the integration of in vivo experiments and computational models.
Collapse
Affiliation(s)
- Mary L Ellsworth
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | | | |
Collapse
|