1
|
Jeong KY, Park JW. Neglected but Clinically Relevant Allergens in Korea. Curr Allergy Asthma Rep 2024; 24:519-526. [PMID: 38980649 DOI: 10.1007/s11882-024-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Allergy diagnostics and immunotherapeutics in Asia heavily rely on imported products from Western countries, raising concerns about the accuracy and efficacy of these products for the management of Asian allergy patients. RECENT FINDINGS Recent advancements in allergen research have led to the identification and characterization of novel allergens from indigenous Korean species. While some allergens share homology with well-known allergens, others lack counterparts in imported allergen extracts. Classifying regional allergens in Asia into three categories based on their cross-reactivity with imported allergens offers valuable insights. Highly cross-reactive allergens, such as oak allergens Que m 1 from Quercus mongolica and Que ac 1 from Q. acutissima, can be effectively substituted with the imported allergens. Allergens with partial cross-reactivity, like the Asian needle ant allergen Pac c 3 (Antigen 5), permit limited diagnostic value by the currently available products. Unique allergens, including the Japanese hop allergen Hum j 6 (pectin methylesterase inhibitor) and the silkworm pupa allergen Bomb m 4 (30 kDa hemolymph lipoprotein) lack alternatives in the available product list. Greater attention is needed, particularly for species listed as ecologically invasive in Western regions. Additionally, allergens from domestic fruits and vegetables causing pollen food allergy syndrome require characterization for the development of improved diagnostics.
Collapse
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Jung-Won Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, 03722, Korea
| |
Collapse
|
2
|
Suh SM, Kim K, Yang SM, Lee H, Jun M, Byun J, Lee H, Kim D, Lee D, Cha JE, Kim JS, Kim E, Park ZY, Kim HY. Comparative analysis of LC-MS/MS and real-time PCR assays for efficient detection of potential allergenic silkworm. Food Chem 2024; 445:138761. [PMID: 38367561 DOI: 10.1016/j.foodchem.2024.138761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The silkworm (Bombyx mori) has long been valued food and feed in East Asia for its abundant nutritional and medicinal attributes, conversely, it can elicit allergic responses in susceptible individuals. Therefore, the development of silkworm detection method is required to avert allergenic incidents. In this study, two methodologies, tandem mass spectrometry (LC-MS/MS) and real-time PCR, were developed to achieve effective silkworm detection. These methods exhibited exceptional sensitivity in identifying silkworm presence in processed foods. Furthermore, model cookies spiked with silkworm were used to validate the sensitivities of LC-MS/MS (0.0005%) and real-time PCR (0.001%). Overall, these techniques were useful for trace silkworm detection in food products; therefore, they may help prevent allergic reactions. To the best of our knowledge, this study represents the first comparison of LC-MS/MS and real-time PCR methods for silkworm detection, marking an important contribution to the field. Data are available from ProteomeXchange under identifier PXD042494.
Collapse
Affiliation(s)
- Seung-Man Suh
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kyungdo Kim
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hana Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Minkyung Jun
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jisun Byun
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeongjoo Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Daseul Kim
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dain Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae-Eun Cha
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jun-Su Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zee-Yong Park
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
3
|
Li S, Chu KH, Wai CYY. Genomics of Shrimp Allergens and Beyond. Genes (Basel) 2023; 14:2145. [PMID: 38136967 PMCID: PMC10742822 DOI: 10.3390/genes14122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Allergy to shellfishes, including mollusks and crustaceans, is a growing health concern worldwide. Crustacean shellfish is one of the "Big Eight" allergens designated by the U.S. Food and Drug Administration and is the major cause of food-induced anaphylaxis. Shrimp is one of the most consumed crustaceans triggering immunoglobulin E (IgE)-mediated allergic reactions. Over the past decades, the allergen repertoire of shrimp has been unveiled based on conventional immunodetection methods. With the availability of genomic data for penaeid shrimp and other technological advancements like transcriptomic approaches, new shrimp allergens have been identified and directed new insights into their expression levels, cross-reactivity, and functional impact. In this review paper, we summarize the current knowledge on shrimp allergens, as well as allergens from other crustaceans and mollusks. Specific emphasis is put on the genomic information of the shrimp allergens, their protein characteristics, and cross-reactivity among shrimp and other organisms.
Collapse
Affiliation(s)
- Shanshan Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.L.); (K.H.C.)
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.L.); (K.H.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Christine Yee Yan Wai
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
5
|
Zhang Z, Li XM, Wang H, Lin H, Xiao H, Li Z. Seafood allergy: Allergen, epitope mapping and immunotherapy strategy. Crit Rev Food Sci Nutr 2023; 63:1314-1338. [PMID: 36825451 DOI: 10.1080/10408398.2023.2181755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Seafoods are fashionable delicacies with high nutritional values and culinary properties, while seafood belongs to worldwide common food allergens. In recent years, many seafood allergens have been identified, while the diversity of various seafood species give a great challenge in identifying and characterizing seafood allergens, mapping IgE-binding epitopes and allergen immunotherapy development, which are critical for allergy diagnostics and immunotherapy treatments. This paper reviewed the recent progress on seafood (fish, crustacean, and mollusk) allergens, IgE-binding epitopes and allergen immunotherapy for seafood allergy. In recent years, many newly identified seafood allergens were reported, this work concluded the current situation of seafood allergen identification and designation by the World Health Organization (WHO)/International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee. Moreover, this review represented the recent advances in identifying the IgE-binding epitopes of seafood allergens, which were helpful to the diagnosis, prevention and treatment for seafood allergy. Furthermore, the allergen immunotherapy could alleviate seafood allergy and provide promising approaches for seafood allergy treatment. This review represents the recent advances and future outlook on seafood allergen identification, IgE-binding epitope mapping and allergen immunotherapy strategies for seafood allergy prevention and treatment.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Hao Wang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Zhao J, Timira V, Ahmed I, Chen Y, Wang H, Zhang Z, Lin H, Li Z. Crustacean shellfish allergens: influence of food processing and their detection strategies. Crit Rev Food Sci Nutr 2022; 64:3794-3822. [PMID: 36263970 DOI: 10.1080/10408398.2022.2135485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite the increasing popularity of crustacean shellfish among consumers due to their rich nutrients, they can induce a serious allergic response, sometimes even life-threatening. In the past decades, a variety of crustacean allergens have been identified to facilitate the diagnosis and management of crustacean allergies. Although food processing techniques can ease the risk of crustacean shellfish allergy, no available processing methods to tackle crustacean allergies thoroughly. Strict dietary avoidance of crustacean shellfish and its component is the best option for the protection of sensitized individuals, which should rely on the compliance of food labeling and, as such, on their verification by sensitive, reliable, and accurate detection techniques. In this present review, the physiochemical properties, structure aspects, and immunological characteristics of the major crustacean allergens have been described and discussed. Subsequently, the current research progresses on how various processing techniques cause the alterations and modifications in crustacean allergens to produce hypoallergenic crustacean food products were summarized and discussed. Particularly, various analytical methodologies employed in crustacean shellfish allergen detection, and the effect of food processing and matrix on these techniques, are also herein emphasized for the appropriate selection of analytical detection tools to safeguard consumers safety.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Yan Chen
- China National Center for Food Safety Risk Assessment, Chaoyang District, Beijing, P.R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
7
|
The Arginine Kinase from the Tick Rhipicephalus sanguineus Is an Efficient Biocatalyst. Catalysts 2022. [DOI: 10.3390/catal12101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Arginine kinase (AK) is a reversible enzyme that regulates invertebrates’ phosphagen arginine phosphate levels. AK also elicits an immune response in humans, and it is a major food allergen in crustacea and may be a target for novel antiparasitic drugs. Although AK has been primarily described in the shrimp, it is also present in other invertebrates, such as the brown tick Rhipicephalus sanguineus (Rs), the vector for Rocky Mountain Spotted Fever. Here we report the enzymatic activity and the crystal structure of AK from Rhipicephalus sanguineus (RsAK) in an open conformation without substrate or ligands and a theoretical structure of RsAK modeled bound with the substrate/product (Arg-ADP) in a closed conformation. The Michaelis-Menten kinetics confirmed that RsAK is an efficient biocatalyst due to its high kcat/Km parameter. The recombinant enzyme was expressed in bacteria and purified to a 20 mg/L culture yield. AK is an essential enzyme in invertebrates. Future work will be focused on the RsAK enzymatic inhibition that may lead to novel strategies to control this pest, a burden to animal and human health.
Collapse
|
8
|
Bombyx mori from a food safety perspective: A systematic review. Food Res Int 2022; 160:111679. [DOI: 10.1016/j.foodres.2022.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
|
9
|
Lian AA, Yamaji Y, Kajiwara K, Takaki K, Mori H, Liew MWO, Kotani E, Maruta R. A Bioengineering Approach for the Development of Fibroblast Growth Factor-7-Functionalized Sericin Biomaterial Applicable for the Cultivation of Keratinocytes. Int J Mol Sci 2022; 23:ijms23179953. [PMID: 36077351 PMCID: PMC9456417 DOI: 10.3390/ijms23179953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Growth factors, including fibroblast growth factor-7 (FGF-7), are a group of proteins that stimulate various cellular processes and are often used with carriers to prevent the rapid loss of their activities. Sericin with great biocompatibility has been investigated as a proteinaceous carrier to enhance the stability of incorporated proteins. The difficulties in obtaining intact sericin from silkworm cocoons and the handling of growth factors with poor stability necessitate an efficient technique to incorporate the protein into a sericin-based biomaterial. Here, we report the generation of a transgenic silkworm line simultaneously expressing and incorporating FGF-7 into cocoon shells containing almost exclusively sericin. Growth-factor-functionalized sericin cocoon shells requiring simple lyophilization and pulverization processes were successfully used to induce the proliferation and migration of keratinocytes. Moreover, FGF-7 incorporated into sericin-cocoon powder exhibited remarkable stability, with more than 70% of bioactivity being retained after being stored as a suspension at 25 °C for 3 months. Transgenic sericin-cocoon powder was used to continuously supply biologically active FGF-7 to generate a three-dimensionally cultured keratinocyte model in vitro. The outcomes of this study propound a feasible approach to producing cytokine-functionalized sericin materials that are ready to use for cell cultivation.
Collapse
Affiliation(s)
- Ai Ai Lian
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuka Yamaji
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazuki Kajiwara
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mervyn Wing On Liew
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| | - Rina Maruta
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| |
Collapse
|
10
|
Jeong KY, Lee J, Yuk JE, Song H, Lee HJ, Kim KJ, Kim BJ, Lim KJ, Park KH, Lee JH, Park JW. Allergenic characterization of Bomb m 4, a 30 kDa lipoprotein Bombyx mori lipoprotein 6 from silkworm pupa. Clin Exp Allergy 2022; 52:888-897. [PMID: 35028994 DOI: 10.1111/cea.14095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Silkworm pupa (SWP) food anaphylaxis has been described frequently in Asian countries. However, false-positive reactions by skin pricks and serum IgE (sIgE) tests to the extract complicate diagnosis, requiring identification of clinically relevant major allergens. OBJECTIVES In this study, we characterized a novel SWP allergen, Bomb m 4, a 30 kDa lipoprotein, and evaluated its diagnostic sensitivity. METHODS Bomb m 4 was identified by a proteomic analysis. This recombinant (r)Bomb m 4 was overexpressed in Escherichia coli, and the IgE reactivity by ELISA was compared with other reported allergenic proteins: Bomb m 1 (arginine kinase), 27 kDa glycoprotein, Bomb m 3 (tropomyosin) using the serum samples from 17 SWP allergy patients and 11 asymptomatic sensitized subjects. RESULTS rBomb m 4 specific IgE was recognized by all 17 SWP allergy patients. The 27 kDa glycoprotein and Bomb m 1 sIgE were found in 35.3% and 0%, respectively in the SWP allergic patients. ELISA sIgE reactivity increased significantly, when 4 M urea was added in serum samples. However, only 16% inhibition of sIgE reactivity to the whole SWP extract was exhibited by rBomb m 4, whereas more than 93% of self-inhibition of rBomb m 4 sIgE was obtained, possibly due to the low abundance of Bomb m 4 in the extract. Three linear epitopes (81-95, 191-205, and 224-238 residues) of rBomb m 4 were identified. These epitopes are shown to be released by pepsin digestion. ROC analysis showed the highest diagnostic value of Bomb m 4 followed by Bomb m 1, 27 kDa glycoprotein, and Bomb m 3. CONCLUSION Bomb m 4 is the major allergen of SWP allergy patients. It has cryptic epitopes which are exposed to IgE antibodies with digestive enzymes. This recombinant Bomb m 4 allergen permits exact diagnosis of SWP allergy.
Collapse
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jongsun Lee
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ji Eun Yuk
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hangyeol Song
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | | | | | | | | | - Kyung Hee Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jae-Hyun Lee
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jung-Won Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, 03722, Korea
| |
Collapse
|
11
|
Characterization of protein in cricket (Acheta domesticus), locust (Locusta migratoria), and silk worm pupae (Bombyx mori) insect powders. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112314] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Long Y, Cheng X, Tang Q, Chen L. The antigenicity of silk-based biomaterials: sources, influential factors and applications. J Mater Chem B 2021; 9:8365-8377. [PMID: 34542139 DOI: 10.1039/d1tb00752a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Silk is an ancient material with essential roles in numerous biomedical applications, such as tissue regeneration and drug delivery, because of its excellent tunable mechanical properties and diverse physical structures. In addition to the necessary functionalities for biomedical applications, another critical factor for materials applied in biology is the appropriate immune interactions with the body. This review focuses on the immune responses of silk-based materials applied in biomedical applications, specifically antigenicity. The factors affecting the antigenicity of silk-based materials are complicated and are related to the composition and structural characteristics of the materials. At the same time, the composition of silk-based materials varies with its species sources, such as silkworms, spiders, honey bees, or engineered recombinant silk. Additionally, different processing methods are used to fabricate different material formats, such as films, hydrogels, scaffolds, particles, and fibers, resulting in different structural characteristics. Furthermore, the resulting body reactions are also different with different degrees of the immune response. Silk protein typically induces a mild immune response, and immunogenicity can play active roles in osteogenesis, angiogenesis, and protection from inflammation. However, there are some rare reports of severe immune responses caused by silk, which can result in an allergic response or tissue necrosis. The source of allergenicity in silk-based materials is currently under-studied and how to regulate and eliminate the overreaction of the immune system is essential for further applications. Overall, the diverse characteristics of silk-based materials mostly show beneficial bioresponses with mild immunogenicity, and the tunable properties make it applicable in immune-related biomedical applications.
Collapse
Affiliation(s)
- Yanlin Long
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. .,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xian Cheng
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. .,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. .,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
13
|
Valera-Vera EA, Concepción JL, Cáceres AJ, Acevedo GR, Fernández M, Hernández Y, Digirolamo FA, Duschak VG, Soprano LL, Pereira CA, Miranda MR, Gómez KA. IgE antibodies against Trypanosoma cruzi arginine kinase in patients with chronic Chagas disease. Mol Immunol 2021; 138:68-75. [PMID: 34364074 DOI: 10.1016/j.molimm.2021.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Arginine kinase (AK) is an enzyme present in various invertebrates, as well as in some trypanosomatids such as T. cruzi, the etiological agent that causes Chagas disease. In invertebrates, this protein acts as an allergen inducing an IgE-type humoral immune response. Since AK is a highly conserved protein, we decided to study whether patients with chronic Chagas disease (CCD) produce specific antibodies against T. cruzi AK (TcAK). Plasma from patients with CCD, with and without cardiac alterations and non-infected individuals were evaluated for the presence of anti-TcAK IgG and IgE antibodies by ELISA, including detection of specific IgG subclasses. Our results showed that the levels of specific anti-TcAK IgG and IgE were different between infected and non-infected individuals, but comparable between those with different clinical manifestations. Interestingly, anti-TcAK IgG4 antibodies associated with IgE-mediated allergenic processes were also increased in CCD patients. Finally, we found that several of the predicted B cell epitopes in TcAK matched allergenic peptides previously described for its homologues in other organisms. Our results revealed for the first time a parasite's specific IgE antibody target and suggest that TcAK could contribute to delineate an inefficient B cell response by prompting a bias towards a Th2 profile. These findings also shed light on a potential allergenic response in the context of T. cruzi infection.
Collapse
Affiliation(s)
- Edward Augusto Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas "Alfredo Lanari", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Ana Judith Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Gonzalo Raúl Acevedo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Marisa Fernández
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén", ANLIS-Malbrán, Ministerio de Salud, Buenos Aires, Argentina
| | - Yolanda Hernández
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén", ANLIS-Malbrán, Ministerio de Salud, Buenos Aires, Argentina
| | - Fabio Augusto Digirolamo
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas "Alfredo Lanari", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Vilma Gladys Duschak
- Área de Bioquímica de Proteínas y Glicobiología de Parásitos, Departamento de Investigación, Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben", ANLIS-Malbrán, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - Luciana Lía Soprano
- Área de Bioquímica de Proteínas y Glicobiología de Parásitos, Departamento de Investigación, Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben", ANLIS-Malbrán, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - Claudio Alejandro Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas "Alfredo Lanari", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Mariana Reneé Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas "Alfredo Lanari", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Karina Andrea Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Wu X, He K, Velickovic TC, Liu Z. Nutritional, functional, and allergenic properties of silkworm pupae. Food Sci Nutr 2021; 9:4655-4665. [PMID: 34401111 PMCID: PMC8358373 DOI: 10.1002/fsn3.2428] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 01/14/2023] Open
Abstract
Edible insects are a food source that has high nutritional value. Domestic silkworm pupae are an important by-product of sericulture and have a long history as food and feed ingredients in East Asia. Silkworm pupae are a good source of protein, lipids, minerals, and vitamins and are considered a good source of nutrients for humans. Silkworm pupae are a valuable insect source of substances used in healthcare products, medicines, food additives, and animal feed. Because silkworm pupae are being increasingly used in the human diet, potential allergic reactions to the substances they contain must be elucidated. Here, we present an overview of the benefits of silkworm pupae. First, we describe their nutritional value. Second, we report their functional properties and applications, focusing on their potential use in the food and pharmaceutical industries. Finally, we consider the current state of research regarding silkworm pupae-induced allergies.
Collapse
Affiliation(s)
- Xuli Wu
- Health Science CenterSchool of Public HealthShenzhen UniversityShenzhenChina
| | - Kan He
- Health Science CenterSchool of Public HealthShenzhen UniversityShenzhenChina
| | - Tanja Cirkovic Velickovic
- Faculty of ChemistryCenter of Excellence for Molecular Food Sciences and Department of BiochemistryUniversity of BelgradeBelgradeSerbia
- Ghent University Global CampusIncheonSouth Korea
- Serbian Academy of Sciences and ArtBelgradeSerbia
| | - Zhigang Liu
- Health Science CenterSchool of Public HealthShenzhen UniversityShenzhenChina
| |
Collapse
|
15
|
Fukutomi Y, Kawakami Y. Respiratory sensitization to insect allergens: Species, components and clinical symptoms. Allergol Int 2021; 70:303-312. [PMID: 33903033 DOI: 10.1016/j.alit.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Airborne insect particles have been identified as an important cause of respiratory allergies, including allergic asthma and rhinitis. In the literature, the significance of respiratory exposure to insect particles as a cause of occupational allergy has been well-documented. Indeed, many cases of occupational allergy have been reported including allergy to the larvae of flies and moths in anglers and occupationally exposed workers, to grain pests in bakers or other workers handling grains, and to crickets and/or locusts in researchers and workers in aquaculture companies. Furthermore, the prevalence of sensitization to insect allergens is considerably high among patients with asthma and/or rhinitis who are not occupationally exposed to insects, suggesting the clinical relevance of exposure to insects in indoor and outdoor environmental non-occupational settings. Exposure to cockroaches, a well-studied indoor insect, is associated with cockroach sensitization and the development and exacerbation of asthma. Booklice, another common indoor insect, were recently identified as a significant sensitizer of asthmatic patients in Japan and India, and potentially of asthma patients living in warm and humid climates around the world. Lip b 1 was identified as an allergenic protein contributing to the species-specific sensitization to booklice. Moths are considered a significant seasonal outdoor allergen and their allergens are considered to have the highest sensitization rate among Japanese patients. However, other than cockroaches, allergenic insect proteins contributing to sensitization have not been fully characterized to date.
Collapse
|
16
|
De Marchi L, Wangorsch A, Zoccatelli G. Allergens from Edible Insects: Cross-reactivity and Effects of Processing. Curr Allergy Asthma Rep 2021; 21:35. [PMID: 34056688 PMCID: PMC8165055 DOI: 10.1007/s11882-021-01012-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The recent introduction of edible insects in Western countries has raised concerns about their safety in terms of allergenic reactions. The characterization of insect allergens, the sensitization and cross-reactivity mechanisms, and the effects of food processing represent crucial information for risk assessment. RECENT FINDINGS Allergic reactions to different insects and cross-reactivity with crustacean and inhalant allergens have been described, with the identification of new IgE-binding proteins besides well-known pan-allergens. Depending on the route of sensitization, different potential allergens seem to be involved. Food processing may affect the solubility and the immunoreactivity of insect allergens, with results depending on species and type of proteins. Chemical/enzymatic hydrolysis, in some cases, abolishes immunoreactivity. More studies based on subjects with a confirmed insect allergy are necessary to identify major and minor allergens and the role of the route of sensitization. The effects of processing need to be further investigated to assess the risk associated with the ingestion of insect-containing food products.
Collapse
Affiliation(s)
- Laura De Marchi
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | | |
Collapse
|
17
|
He W, Li S, He K, Sun F, Mu L, Li Q, Yi J, He Z, Liu Z, Wu X. Identification of potential allergens in larva, pupa, moth, silk, slough and feces of domestic silkworm (Bombyx mori). Food Chem 2021; 362:130231. [PMID: 34237653 DOI: 10.1016/j.foodchem.2021.130231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022]
Abstract
The silkworm (Bombyx mori) is an important economic insect that can be used as food in many countries in Asia. However, silkworms and their metabolites are an important source of allergens, which can induce severe allergic reactions. So far, there are no systematic studies on the potential allergens in silkworm and its metabolites. These studies have important guiding significance for the prevention, diagnosis, and treatment of silkworm allergy. The aim of this study was to identify the potential allergens from larva, pupa, moth, silk, slough and feces of silkworm and analyze the sequence homology of silkworm allergens with other allergens identified in the Allergenonline database. We have found 45 potential allergens in silkworm. The results of the homology comparison suggested that silkworm allergens likely cross-react with those of Dermatophagoides farinae, Aedes aegypti, Tyrophagus putrescentiae, Triticum aestivum and Malassezia furfur.
Collapse
Affiliation(s)
- Weiyi He
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, Guangdong Province, PR China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Shuiming Li
- College of Life Science, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Kan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Fan Sun
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Lixia Mu
- Sericulture and Agro-Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong Province, PR China
| | - Qingrong Li
- Sericulture and Agro-Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong Province, PR China
| | - Jiang Yi
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Zhendan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Zhigang Liu
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, Guangdong Province, PR China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China.
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China.
| |
Collapse
|
18
|
Jeong KY, Park JW. Allergens of Regional Importance in Korea. FRONTIERS IN ALLERGY 2021; 2:652275. [PMID: 35386990 PMCID: PMC8974691 DOI: 10.3389/falgy.2021.652275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
Allergen repertoire should reflect the region's climate, flora, and dining culture to allow for a better diagnosis. In Korea, tree pollens of oak and birch in the spring in conjunction with weed pollens of mugwort, ragweed, and Japanese hop are the main causes of seasonal allergic rhinitis. More specifically, the sawtooth oak in Korea and the Japanese hop in East Asia make a difference from western countries. Among food allergens, the sensitization to silkworm pupa and buckwheat is also common in Korean patients. Honey bee venom due to apitherapy in traditional medicine and Asian needle ant, Pachycondyla chinensis, are important causes of anaphylaxis in Korea. Climate change, frequent overseas traveling, and international product exchanges make situations more complicated. Ragweed, for example, was not native to Korea, but invaded the country in the early 1950s. Recently, Japanese hop and Asian needle ants have been recognized as important invasive ecosystem disturbing species in western countries. However, the molecular properties of the component allergens from these unique culprit allergens have been poorly characterized. The present review summarizes the molecular studies on the allergens of regional importance in Korea.
Collapse
|
19
|
Sarzsinszky E, Lupinek C, Vrtala S, Huang HJ, Hofer G, Keller W, Chen KW, Panaitescu CB, Resch-Marat Y, Zieglmayer P, Zieglmayer R, Lemell P, Horak F, Duchêne M, Valenta R. Expression in Escherichia coli and Purification of Folded rDer p 20, the Arginine Kinase From Dermatophagoides pteronyssinus: A Possible Biomarker for Allergic Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:154-163. [PMID: 33191683 PMCID: PMC7680834 DOI: 10.4168/aair.2021.13.1.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/26/2020] [Accepted: 05/10/2020] [Indexed: 11/25/2022]
Abstract
Arginine kinase (AK) was first identified as an allergen in the Indian-meal moth and subsequently shown to occur as allergen in various invertebrates and shellfish. The cDNA coding for AK from the house dust mite (HDM) species Dermatophagoides pteronyssinus, Der p 20, has been isolated, but no recombinant Der p 20 (rDer p 20) allergen has been produced and characterized so far. We report the expression of Der p 20 as recombinant protein in Escherichia coli. rDer p 20 was purified and shown to be a monomeric, folded protein by size exclusion chromatography and circular dichroism spectroscopy, respectively. Using AK-specific antibodies, Der p 20 was found to occur mainly in HDM bodies, but not in fecal particles. Thirty percent of clinically well-characterized HDM allergic patients (n = 98) whose immunoglobulin E (IgE) reactivity profiles had been determined with an extensive panel of purified HDM allergens (Der f 1, 2; Der p 1, 2, 4, 5, 7, 10, 11, 14, 15, 18, 21, 23 and 37) showed IgE reactivity to Der p 20. IgE reactivity to Der p 20 was more frequently associated with lung symptoms. AKs were detected in several invertebrates with specific antibodies and Der p 20 showed IgE cross-reactivity with AK from shrimp (Litopenaeus vannamei). Thus, Der p 20 is a cross-reactive HDM allergen and may serve as a diagnostic marker for HDM-induced lung symptoms such as asthma.
Collapse
Affiliation(s)
- Eszter Sarzsinszky
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hofer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Kuan Wei Chen
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,OncoGen Center, County Clinical Emergency Hospital 'Pius Branzeu', Timisoara, Romania
| | - Carmen Bunu Panaitescu
- OncoGen Center, County Clinical Emergency Hospital 'Pius Branzeu', Timisoara, Romania.,Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Yvonne Resch-Marat
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Zieglmayer
- Vienna Challenge Chamber, Allergy Center Vienna West, Vienna, Austria
| | - René Zieglmayer
- Vienna Challenge Chamber, Allergy Center Vienna West, Vienna, Austria
| | - Patrick Lemell
- Vienna Challenge Chamber, Allergy Center Vienna West, Vienna, Austria
| | - Friedrich Horak
- Vienna Challenge Chamber, Allergy Center Vienna West, Vienna, Austria
| | - Michael Duchêne
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia.,Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia.,Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
20
|
Jeong KY, Park JW. Insect Allergens on the Dining Table. Curr Protein Pept Sci 2020; 21:159-169. [PMID: 31309888 DOI: 10.2174/1389203720666190715091951] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Edible insects are important sources of nutrition, particularly in Africa, Asia, and Latin America. Recently, edible insects have gained considerable interest as a possible solution to global exhaustion of the food supply with population growth. However, little attention has been given to the adverse reactions caused by insect consumption. Here, we provide an overview of the food allergens in edible insects and offer insights for further studies. Most of the edible insect allergens identified to date are highly cross-reactive invertebrate pan-allergens such as tropomyosin and arginine kinase. Allergic reactions to these allergens may be cross-reactions resulting from sensitization to shellfish and/or house dust mites. No unique insect allergen specifically eliciting a food allergy has been described. Many of the edible insect allergens described thus far have counterpart allergens in cockroaches, which are an important cause of respiratory allergies, but it is questionable whether inhalant allergens can cause food allergies. Greater effort is needed to characterize the allergens that are unique to edible insects so that safe edible insects can be developed. The changes in insect proteins upon food processing or cooking should also be examined to enhance our understanding of edible insect food allergies.
Collapse
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University, College of Medicine, Seoul 03722, Korea
| | - Jung-Won Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University, College of Medicine, Seoul 03722, Korea
| |
Collapse
|
21
|
Karnaneedi S, Huerlimann R, Johnston EB, Nugraha R, Ruethers T, Taki AC, Kamath SD, Wade NM, Jerry DR, Lopata AL. Novel Allergen Discovery through Comprehensive De Novo Transcriptomic Analyses of Five Shrimp Species. Int J Mol Sci 2020; 22:E32. [PMID: 33375120 PMCID: PMC7792927 DOI: 10.3390/ijms22010032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Shellfish allergy affects 2% of the world's population and persists for life in most patients. The diagnosis of shellfish allergy, in particular shrimp, is challenging due to the similarity of allergenic proteins from other invertebrates. Despite the clinical importance of immunological cross-reactivity among shellfish species and between allergenic invertebrates such as dust mites, the underlying molecular basis is not well understood. Here we mine the complete transcriptome of five frequently consumed shrimp species to identify and compare allergens with all known allergen sources. The transcriptomes were assembled de novo, using Trinity, from raw RNA-Seq data of the whiteleg shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), banana shrimp (Fenneropenaeus merguiensis), king shrimp (Melicertus latisulcatus), and endeavour shrimp (Metapenaeus endeavouri). BLAST searching using the two major allergen databases, WHO/IUIS Allergen Nomenclature and AllergenOnline, successfully identified all seven known crustacean allergens. The analyses revealed up to 39 unreported allergens in the different shrimp species, including heat shock protein (HSP), alpha-tubulin, chymotrypsin, cyclophilin, beta-enolase, aldolase A, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Multiple sequence alignment (Clustal Omega) demonstrated high homology with allergens from other invertebrates including mites and cockroaches. This first transcriptomic analyses of allergens in a major food source provides a valuable resource for investigating shellfish allergens, comparing invertebrate allergens and future development of improved diagnostics for food allergy.
Collapse
Affiliation(s)
- Shaymaviswanathan Karnaneedi
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Roger Huerlimann
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Elecia B. Johnston
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Department of Aquatic Product Technology, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Aya C. Taki
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Sandip D. Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Nicholas M. Wade
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- CSIRO Agriculture and Food, Aquaculture Program, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Dean R. Jerry
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, 149 Sims Drive, Singapore 387380, Singapore
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
22
|
Johnson W, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Gill LJ, Heldreth B. Safety Assessment of Silk Protein Ingredients as Used in Cosmetics. Int J Toxicol 2020; 39:127S-144S. [DOI: 10.1177/1091581820966953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of Hydrolyzed Silk and 9 other silk protein ingredients, which function primarily as skin and hair conditioning agents and bulking agents in cosmetic products. The Panel reviewed relevant data relating to the safety of these ingredients and concluded that 8 ingredients are safe in the present practices of use and concentration in cosmetics, as described in this safety assessment, but that the available data are insufficient for determining the safety of 2 silk protein ingredients in cosmetic products, MEA-Hydrolyzed Silk and Silkworm Cocoon Extract.
Collapse
Affiliation(s)
- Wilbur Johnson
- Cosmetic Ingredient Review Senior Scientific Analyst/Writer
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Identification of the major allergenic proteins from silkworm moth (Bombyx mori) involved in respiratory allergic diseases. Allergol Immunopathol (Madr) 2020; 48:597-602. [PMID: 32284266 DOI: 10.1016/j.aller.2019.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022]
Abstract
INTRODUCTION AND OBJECTIVES Moths are a significant source of indoor and outdoor aeroallergens. High prevalence of IgE-mediated sensitization was demonstrated in a group of patients with allergic respiratory diseases. There are no studies on adult stage of these moth species allergens involved in allergic respiratory reactions - the aim of this study. MATERIAL AND METHODS 36 participants were included in an experimental study, submitted to skin prick test with Bombyx mori wing extract and six other common allergens, as well as Western blot analysis with incubated nitrocellulose membrane impregnated with silkworm moth extract and human IgE-antibody. The participants were divided into 3 groups: 1) 21 allergic patients whose skin prick test was positive to Bombyx mori wing extract, 2) eight allergic patients whose skin prick test was positive to mite and negative to Bombyx mori extract 3) seven negative non-allergic subjects. RESULTS Among the 21 participants from group 1, 19 serum samples reacted to Bombyx mori extract by Western blot. All of them reacted to a protein at 80 kDa and five other proteins (66, 50, 45, 37 and 30 kDa) were identified in more than 50% of the individuals tested, considered as major allergenic proteins. Sera from seven out of eight patients sensitized to house dust mite demonstrated IgE-reactivity to Bombyx mori extract by Western blot analysis. Serum samples from healthy participants did not react at all. CONCLUSION Six major reactive proteins by immunoblot analysis from moth's wings sensitized patients can be potential allergens. The one at 80 kDa is the major protein, seen in all IgE-reactive patients from group 1 and in none from group 2, yet to be identified. Future studies should be conducted to better characterize these proteins.
Collapse
|
24
|
He W, He K, Sun F, Mu L, Liao S, Li Q, Yi J, Liu Z, Wu X. Effect of heat, enzymatic hydrolysis and acid-alkali treatment on the allergenicity of silkworm pupa protein extract. Food Chem 2020; 343:128461. [PMID: 33131957 DOI: 10.1016/j.foodchem.2020.128461] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022]
Abstract
Silkworm pupae are edible insects with high-quality nutrition in many Asian countries, but consumption of silkworm pupae can cause severe IgE-mediated allergic disease. The aim of this study was to investigate the effect of heat, enzymatic hydrolysis and acid-alkali treatment on the allergenicity of silkworm pupa protein extract (SPPE). Heating reduced the allergenicity of SPPE when the temperature was higher than 60 °C. Spectroscopy studies suggested an unfolded conformation of SPPE with heating, dependent on temperature and time. Enzymatic hydrolysis revealed that SPPE at 25 to 33 kDa contained pepsin- and trypsin-resistant allergens. The results of acid-alkali treatment suggested that low pH can promote hydrolysis of SPPE and decrease its allergenicity. Thus, heat, enzymatic hydrolysis and acid-alkali treatment can significantly decrease the allergenicity of SPPE, with heat-, enzyme- and acid-alkali-resistant allergens at 25 to 33 kDa SPPE. This study can help in the development of methods to prepare silkworm pupa protein.
Collapse
Affiliation(s)
- Weiyi He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Kan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Fan Sun
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Lixia Mu
- Sericulture and Agro-Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province 510610, PR China
| | - Sentai Liao
- Sericulture and Agro-Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province 510610, PR China
| | - Qingrong Li
- Sericulture and Agro-Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province 510610, PR China
| | - Jiang Yi
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Zhigang Liu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China.
| |
Collapse
|
25
|
Panzer R, Krebs S. Mites, caterpillars and moths. J Dtsch Dermatol Ges 2020; 18:867-880. [PMID: 32776473 DOI: 10.1111/ddg.14207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
Besides conditions such as scabies and hypersensitivity to house dust mites, other diseases caused by mites and caterpillars tend to be more uncommon in everyday practice. Nevertheless, there is a broad spectrum of medically relevant disorders associated with these arthropods. Mites may act as parasites that infect or colonize the skin (e.g., scabies, pseudoscabies, demodicosis) or they may pierce the host's skin and feed on tissue fluid and blood (trombiculosis). In the latter case, they also play a role as vectors transmitting Orientia tsutsugamushi, the pathogen that causes Tsutsugamushi fever. In addition to house dust mites, storage mites, too, are characterized by their allergenic potential. The terms erucism and lepidopterism are used for the various diseases caused by caterpillars and moths. Both terms are not used consistently. With respect to pathogenesis, various mechanisms have been described, including type I and type IV hypersensitivity as well as irritant and toxin-induced reactions. In Germany, skin reactions following exposure to the hairs of oak processionary caterpillars are particularly common. Extracutaneous manifestations including nausea, vomiting, hemorrhage, arthropathy or even life-threatening reactions have been reported in association with certain exotic species. Some species act as parasites by feeding on blood or tears. As natural silk can cause immediate and delayed-type hypersensitivity reactions, workers in the silk industry may develop allergic asthma, rhinitis, or conjunctivitis. Consumption of silkworm pupae is associated with the risk of food allergy.
Collapse
Affiliation(s)
- Rüdiger Panzer
- Department of Dermatology and Venereology, University Medical Center, Rostock, Germany
| | - Susanne Krebs
- Department of Dermatology and Venereology, University Medical Center, Rostock, Germany
| |
Collapse
|
26
|
Panzer R, Krebs S. Milben, Raupen und Falter. J Dtsch Dermatol Ges 2020; 18:867-882. [DOI: 10.1111/ddg.14207_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/11/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Rüdiger Panzer
- Klinik und Poliklinik für Dermatologie und Venerologie Universitätsmedizin Rostock
| | - Susanne Krebs
- Klinik und Poliklinik für Dermatologie und Venerologie Universitätsmedizin Rostock
| |
Collapse
|
27
|
Altomare AA, Baron G, Aldini G, Carini M, D'Amato A. Silkworm pupae as source of high-value edible proteins and of bioactive peptides. Food Sci Nutr 2020; 8:2652-2661. [PMID: 32566182 PMCID: PMC7300080 DOI: 10.1002/fsn3.1546] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
To characterize the high-value protein content and to discover new bioactive peptides, present in edible organisms, as silkworm pupae, semiquantitative analytical approach has been applied. The combination of appropriate protein extraction methods, semiquantitative high-resolution mass spectrometry analyses of peptides, in silico bioactivity and gene ontology analyses, allowed protein profiling of silkworm pupae (778 gene products) and the characterization of bioactive peptides. The semiquantitative analysis, based on the measurement of the emPAI, revealed the presence of high-abundance class of proteins, such as larval storage protein (LSP) class. This class of proteins, beside its nutrient reservoir activity, is of great pharmaceutical interest for their efficacy in cardiovascular diseases. Potential allergens were also characterized and quantified, such as arginine kinase, thiol peroxiredoxin, and Bom m 9. This powerful bioanalytical approach proved the potential industrial applications of Bombyx mori pupae, as source of high-value proteins in a green and "circular" economy perspective.
Collapse
Affiliation(s)
| | - Giovanna Baron
- Department of Pharmaceutical SciencesUniversità degli Studi di MilanoMilanItaly
| | - Giancarlo Aldini
- Department of Pharmaceutical SciencesUniversità degli Studi di MilanoMilanItaly
| | - Marina Carini
- Department of Pharmaceutical SciencesUniversità degli Studi di MilanoMilanItaly
| | - Alfonsina D'Amato
- Department of Pharmaceutical SciencesUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|
28
|
Murefu T, Macheka L, Musundire R, Manditsera F. Safety of wild harvested and reared edible insects: A review. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Lamberti C, Gai F, Cirrincione S, Giribaldi M, Purrotti M, Manfredi M, Marengo E, Sicuro B, Saviane A, Cappellozza S, Giuffrida MG, Cavallarin L. Investigation of the protein profile of silkworm ( Bombyx mori) pupae reared on a well-calibrated artificial diet compared to mulberry leaf diet. PeerJ 2019; 7:e6723. [PMID: 31223520 PMCID: PMC6571003 DOI: 10.7717/peerj.6723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/06/2019] [Indexed: 01/24/2023] Open
Abstract
Background Silkworm pupae is the main by-product of the sericulture industry with an interesting nutritional profile, especially in terms of proteins. In consideration of its possible use as a food or food ingredient in Western countries, a comparative proteomic experiment has been performed to investigate the differences of the protein profile of male and female silkworm pupae reared on mulberry leaves or on an artificial diet. Methods The nutritional profile of lyophilized silkworm pupae in terms of dry matter and ash was evaluated according to the AOAC procedures, the total nitrogen content was determined by a nitrogen analyzer and the silkworm pupae gross energy value was measured using an adiabatic calorimetric bomb. The comparative proteomic analysis was performed on male and female silkworm pupae reared on mulberry leaves or on the artificial diet. Proteins were separated by two-dimensional electrophoresis and, after a multivariate statistical analysis, the differentially expressed proteins were identified by LC-MS/MS. Results The comparative proteomic approach highlighted 47 silkworm pupae proteins differentially expressed comparing diet and gender. PCA analysis showed that seven proteins were more effective in discriminating the sex and five were more effective in discriminating the diet type. In spite of the above-mentioned differences in the silkworm pupae protein profile, no strong alteration of the pupa physiological traits have been demonstrated, suggesting a general silkworm pupae flexibility to adapt to a well-balanced artificial diet. Differences in lipid transport and metabolism were found among the experimental groups, that might have a relevant effect on the timing and on hormone secretion. This aspect may also affect silk production, as univoltine strains are the most productive. The proteomic data provided in this work, may offer a contribution in understanding also the influence of gender and farming strategy on the allergen profile of Bombyx mori, when used as food or as a food ingredient. Female silkworm pupae reared on mulberry leaves seemed to contain lower levels of known allergens than those reared in the other experimental conditions; these findings will have to be taken into account when farming B. mori for food production purposes. However, our results need to be supported by further characterization of the allergenic potential of B. mori.
Collapse
Affiliation(s)
- Cristina Lamberti
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| | - Simona Cirrincione
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| | - Marzia Giribaldi
- Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Analysis of Economics, Torino, Italy
| | - Micol Purrotti
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Novara, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Novara, Italy
| | - Benedetto Sicuro
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Alessio Saviane
- Centre of Research for Agriculture and Environment, Sericulture Laboratory, Council for Agricultural Research and Analysis of Economics, Padova, Italy
| | - Silvia Cappellozza
- Centre of Research for Agriculture and Environment, Sericulture Laboratory, Council for Agricultural Research and Analysis of Economics, Padova, Italy
| | | | - Laura Cavallarin
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| |
Collapse
|
30
|
Chitinases as Food Allergens. Molecules 2019; 24:molecules24112087. [PMID: 31159327 PMCID: PMC6600546 DOI: 10.3390/molecules24112087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
Food allergies originate from adverse immune reactions to some food components. Ingestion of food allergens can cause effects of varying severity, from mild itching to severe anaphylaxis reactions. Currently there are no clues to predict the allergenic potency of a molecule, nor are cures for food allergies available. Cutting-edge research on allergens is aimed at increasing information on their diffusion and understanding structure-allergenicity relationships. In this context, purified recombinant allergens are valuable tools for advances in the diagnostic and immunotherapeutic fields. Chitinases are a group of allergens often found in plant fruits, but also identified in edible insects. They are classified into different families and classes for which structural analyses and identification of epitopes have been only partially carried out. Moreover, also their presence in common allergen databases is not complete. In this review we provide a summary of the identified food allergenic chitinases, their main structural characteristics, and a clear division in the different classes.
Collapse
|
31
|
Pali‐Schöll I, Blank S, Verhoeckx K, Mueller RS, Janda J, Marti E, Seida AA, Rhyner C, DeBoer DJ, Jensen‐Jarolim E. EAACI position paper: Comparing insect hypersensitivity induced by bite, sting, inhalation or ingestion in human beings and animals. Allergy 2019; 74:874-887. [PMID: 30644576 DOI: 10.1111/all.13722] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/08/2023]
Abstract
Adverse reactions to insects occur in both human and veterinary patients. Systematic comparison may lead to improved recommendations for prevention and treatment in all species. In this position paper, we summarize the current knowledge on insect allergy induced via stings, bites, inhalation or ingestion, and compare reactions in companion animals to those in people. With few exceptions, the situation in human insect allergy is better documented than in animals. We focus on a review of recent literature and give overviews of the epidemiology and clinical signs. We discuss allergen sources and allergenic molecules to the extent described, and aspects of diagnosis, prophylaxis, management and therapy.
Collapse
Affiliation(s)
- Isabella Pali‐Schöll
- Comparative Medicine The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University of Vienna and University of Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Simon Blank
- Center of Allergy and Environment (ZAUM) Member of the German Center of Lung Research (DZL) Technical University of Munich and Helmholtz Center Munich Munich Germany
| | - Kitty Verhoeckx
- Department of Dermatology/Allergology University Medical Center Utrecht Utrecht The Netherlands
- TNO Zeist The Netherlands
| | - Ralf S. Mueller
- Centre for Clinical Veterinary Medicine Ludwig Maximilian University Munich Munich Germany
| | - Jozef Janda
- Faculty of Science Charles University Prague Czech Republic
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty University of Berne Berne Switzerland
| | - Ahmed A. Seida
- Department of Microbiology and Immunology Faculty of Veterinary Medicine Cairo University Cairo Egypt
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF) Davos Switzerland
| | - Douglas J. DeBoer
- School of Veterinary Medicine University of Wisconsin Madison Wisconsin
| | - Erika Jensen‐Jarolim
- Comparative Medicine The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University of Vienna and University of Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
32
|
Ling XD, Dong WT, Zhang Y, Hu JJ, Zhang WD, Wu JT, Liu JX, Zhao XX. Baculoviral infection reduces the expression of four allergen proteins of silkworm pupa. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21539. [PMID: 30790339 DOI: 10.1002/arch.21539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Silkworm (Bombyx mori) larvae are widely used to express exogenous proteins. Moreover, some silkworm pupal proteins can be used as drug-loading materials for selfexpressed oral tolerance drugs. However, several proteins expressed in silkworm pupae cause severe allergic reactions in humans and animals. Interestingly, some baculovirus vectors have been shown to alter the host gene and its expression in insect cells, but this has not been confirmed in silkworm. Here, we analyzed the effects of infection with an empty B. mori baculovirus (BmNPV) vector on silkworm pupal protein expression. Using a proteomics approach, the allergens thiol peroxiredoxin (Jafrac1), 27-kDa glycoprotein (p27k), arginine kinase, and paramyosin as well as 32 additional differentially expressed proteins were identified. Downregulation of the messenger RNA expression of the four known allergens was observed after BmNPV infection; subsequent changes in protein expression were confirmed by the western blot analysis using polyclonal antibodies prepared with recombinant proteins of the four allergens. Collectively, these data indicate that the four known allergens of silkworm pupae can be reduced by infection ith an empty BmNPV vector to increase the safety of silkworm pupa-based exogenous protein expression and drug delivery of oral pharmaceuticals. In addition, the four recombinant allergen proteins may contribute to the diagnosis of allergic diseases of silkworm pupa.
Collapse
Affiliation(s)
- Xiao-Dong Ling
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wei-Tao Dong
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun-Jie Hu
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wang-Dong Zhang
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jin-Tang Wu
- Product R&D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, China
| | - Ji-Xing Liu
- Product R&D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, China
| | - Xing-Xu Zhao
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
33
|
Barre A, Simplicien M, Cassan G, Benoist H, Rougé P. Food allergen families common to different arthropods (mites, insects, crustaceans), mollusks and nematods: Cross-reactivity and potential cross-allergenicity. REVUE FRANCAISE D ALLERGOLOGIE 2018. [DOI: 10.1016/j.reval.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Pascal M, Kamath SD, Faber M. Diagnosis and Management of Shellfish Allergy: Current Approach and Future Needs. CURRENT TREATMENT OPTIONS IN ALLERGY 2018. [DOI: 10.1007/s40521-018-0186-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Francis F, Doyen V, Debaugnies F, Mazzucchelli G, Caparros R, Alabi T, Blecker C, Haubruge E, Corazza F. Limited cross reactivity among arginine kinase allergens from mealworm and cricket edible insects. Food Chem 2018; 276:714-718. [PMID: 30409653 DOI: 10.1016/j.foodchem.2018.10.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 01/04/2023]
Abstract
Insects are seen as a solution to the increasing demand for protein sources for food. However, entomophagy has unfortunately been linked to allergic reactions in Europe with people with professional contacts. As mealworms (Tenebrio molitor) and crickets (Acheta domesticus) have recently become commercially available (both whole or in food formulation) in several European countries, this research assessed the cross allergenicity of arginine kinase (AK). Based on the collection of sera from a entomology laboratory staff, oven cooked insects but also purified AK fractions were tested. Immunoblotting against the protein extracts revealed different Immunoglobulin E reactivity of sera according to the insect target species: two bands (40 and 14 kDa) for crickets and a pattern including light responses at 17, 25 and 37 kDa for mealworms. Focusing on AK, low specific allergenicity was here illustrated and discussed in relation to the development of a safe edible insect consumption by humans.
Collapse
Affiliation(s)
- F Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes-2, B-5030 Gembloux, Belgium; TERRA Research and Teaching Center, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes-2, B-5030 Gembloux, Belgium.
| | - V Doyen
- CHU Brugman, Immunology IRIS Laboratory, Belgium.
| | - F Debaugnies
- CHU Brugman, Immunology IRIS Laboratory, Belgium.
| | - G Mazzucchelli
- Mass Spectrometry Laboratory, University of Liege, Belgium.
| | - R Caparros
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes-2, B-5030 Gembloux, Belgium; TERRA Research and Teaching Center, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes-2, B-5030 Gembloux, Belgium.
| | - T Alabi
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes-2, B-5030 Gembloux, Belgium.
| | - C Blecker
- Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes-2, B-5030 Gembloux, Belgium; TERRA Research and Teaching Center, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes-2, B-5030 Gembloux, Belgium.
| | - E Haubruge
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes-2, B-5030 Gembloux, Belgium; TERRA Research and Teaching Center, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes-2, B-5030 Gembloux, Belgium.
| | - F Corazza
- CHU Brugman, Immunology IRIS Laboratory, Belgium.
| |
Collapse
|
36
|
Khan MU, Ahmed I, Lin H, Li Z, Costa J, Mafra I, Chen Y, Wu YN. Potential efficacy of processing technologies for mitigating crustacean allergenicity. Crit Rev Food Sci Nutr 2018; 59:2807-2830. [DOI: 10.1080/10408398.2018.1471658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Yan Chen
- China National Center for Food Safety Risk Assessment, Chaoyang, Beijing, P.R. China
| | - Yong-Ning Wu
- China National Center for Food Safety Risk Assessment, Chaoyang, Beijing, P.R. China
| |
Collapse
|
37
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
38
|
de Gier S, Verhoeckx K. Insect (food) allergy and allergens. Mol Immunol 2018; 100:82-106. [PMID: 29731166 DOI: 10.1016/j.molimm.2018.03.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Insects represent an alternative for meat and fish in satisfying the increasing demand for sustainable sources of nutrition. Approximately two billion people globally consume insects. They are particularly popular in Asia, Latin America, and Africa. Most research on insect allergy has focussed on occupational or inhalation allergy. Research on insect food safety, including allergenicity, is therefore of great importance. The objective of this review is to provide an overview of cases reporting allergy following insect ingestion, studies on food allergy to insects, proteins involved in insect allergy including cross-reactive proteins, and the possibility to alter the allergenic potential of insects by food processing and digestion. Food allergy to insects has been described for silkworm, mealworm, caterpillars, Bruchus lentis, sago worm, locust, grasshopper, cicada, bee, Clanis bilineata, and the food additive carmine, which is derived from female Dactylopius coccus insects. For cockroaches, which are also edible insects, only studies on inhalation allergy have been described. Various insect allergens have been identified including tropomyosin and arginine kinase, which are both pan-allergens known for their cross-reactivity with homologous proteins in crustaceans and house dust mite. Cross-reactivity and/or co-sensitization of insect tropomyosin and arginine kinase has been demonstrated in house dust mite and seafood (e.g. prawn, shrimp) allergic patients. In addition, many other (allergenic) species (various non-edible insects, arachnids, mites, seafoods, mammals, nematoda, trematoda, plants, and fungi) have been identified with sequence alignment analysis to show potential cross-reactivity with allergens of edible insects. It was also shown that thermal processing and digestion did not eliminate insect protein allergenicity. Although purified natural allergens are scarce and yields are low, recombinant allergens from cockroach, silkworm, and Indian mealmoth are readily available, giving opportunities for future research on diagnostic allergy tests and vaccine candidates.
Collapse
Affiliation(s)
- Steffie de Gier
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kitty Verhoeckx
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands; TNO, Zeist, The Netherlands.
| |
Collapse
|
39
|
Rougé P, Barre A. Allergy to Edible Insects: A Computational Identification of the IgE-Binding Cross-Reacting Allergen Repertoire of Edible Insects. FUTURE FOODS 2017. [DOI: 10.5772/68124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
40
|
Nongonierma AB, FitzGerald RJ. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.08.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Khurana T, Bridgewater JL, Rabin RL. Allergenic extracts to diagnose and treat sensitivity to insect venoms and inhaled allergens. Ann Allergy Asthma Immunol 2017; 118:531-536. [PMID: 28477785 DOI: 10.1016/j.anai.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/18/2016] [Accepted: 05/31/2016] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To review allergenic extracts used to diagnose or treat insect allergies, including how the extracts are manufactured and their measurements of potency or concentration. DATA SOURCES Peer-reviewed articles derived from searching PubMed (National Center for Biotechnology Information) about insect allergies and extract preparation. Encyclopedia of Life (http://www.eol.org/) and http://allergome.org/ were also referenced for background information on insects and associated allergens. STUDY SELECTIONS Search terms used for the PubMed searches included insect allergens and allergies, Apidae, Vespidae, fire ants, cockroach allergies, insect allergen extract preparation, and standardization. RESULTS Humans may be sensitized to insect allergens by inhalation or through stings. Cockroaches and moths are predominantly responsible for inhalation insect allergy and are a major indoor allergen in urban settings. Bees, fire ants, and wasps are responsible for sting allergy. In the United States, there are multiple insect allergen products commercially available that are regulated by the US Food and Drug Administration. Of those extracts, honeybee venom and insect venom proteins are standardized with measurements of potency. The remaining insect allergen extracts are nonstandardized products that do not have potency measurements. CONCLUSION Sensitization to inhalational and stinging insect allergens is reported worldwide. Crude insect allergen extracts are used for diagnosis and specific immunotherapy. A variety of source materials are used by different manufacturers to prepare these extracts, which may result in qualitative differences that are not reflected in measurements of potency or protein concentration.
Collapse
Affiliation(s)
- Taruna Khurana
- Division of Vaccines and Related Products Applications, US Food and Drug Administration, Silver Spring, Maryland
| | - Jennifer L Bridgewater
- Division of Bacterial, Parasitic and Allergenic Products, US Food and Drug Administration, Silver Spring, Maryland
| | - Ronald L Rabin
- Division of Bacterial, Parasitic and Allergenic Products, US Food and Drug Administration, Silver Spring, Maryland.
| |
Collapse
|
42
|
Ribeiro JC, Cunha LM, Sousa-Pinto B, Fonseca J. Allergic risks of consuming edible insects: A systematic review. Mol Nutr Food Res 2017; 62. [PMID: 28654197 DOI: 10.1002/mnfr.201700030] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 02/05/2023]
Abstract
The expected future demand for food and animal-derived protein will require environment-friendly novel food sources with high nutritional value. Insects may be one of such novel food sources. However, there needs to be an assessment of the risks associated with their consumption, including allergic risks. Therefore, we performed a systematic review aiming to analyse current data available regarding the allergic risks of consuming insects. We reviewed all reported cases of food allergy to insects, and studied the possibility of cross-reactivity and co-sensitisation between edible insects, crustaceans and house dust mites. We analysed a total of 25 articles - eight assessing the cross-reactivity/co-sensitisation between edible insects, crustaceans and house dust mites; three characterizing allergens in edible insects and 14 case reports, describing case series or prevalence studies of food allergy caused by insects. Cross-reactivity/co-sensitisation between edible insects and crustaceans seems to be clinically relevant, while it is still unknown if co-sensitisation between house dust mites and edible insects can lead to a food allergy. Additionally, more information is also needed about the molecular mechanisms underlying food allergy to insects, although current data suggest that an important role is played by arthropod pan-allergens such as tropomyosin or arginine kinase.
Collapse
Affiliation(s)
- José Carlos Ribeiro
- LAQV/REQUIMTE, DGAOT, Faculdade de Ciências da Universidade do Porto, Campus Agrário de Vairão, Vila do Conde, Portugal
| | - Luís Miguel Cunha
- LAQV/REQUIMTE, DGAOT, Faculdade de Ciências da Universidade do Porto, Campus Agrário de Vairão, Vila do Conde, Portugal.,GreenUP/CITAB-UP, DGAOT, Faculdade de Ciências da Universidade do Porto, Campus Agrário de Vairão, Vila do Conde, Portugal
| | - Bernardo Sousa-Pinto
- MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.,Laboratory of Immunology, Basic and Clinical Immunology Unit, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.,CINTESIS - Centre for Health Technology and Services Research, Porto, Portugal
| | - João Fonseca
- MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Centre for Health Technology and Services Research, Porto, Portugal.,Allergy Unit, CUF Porto Institute & Hospital, Porto, Portugal
| |
Collapse
|
43
|
Broekman HCHP, Knulst AC, de Jong G, Gaspari M, den Hartog Jager CF, Houben GF, Verhoeckx KCM. Is mealworm or shrimp allergy indicative for food allergy to insects? Mol Nutr Food Res 2017; 61. [PMID: 28500661 DOI: 10.1002/mnfr.201601061] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/10/2022]
Abstract
SCOPE The growing world population is a key driver for the exploration of sustainable protein sources to ensure food security. Mealworm and other insects are promising candidates. Previously we found that shrimp allergic patients are at risk for mealworm allergy, and that mealworm can induce a primary allergy . This study set out to investigate the allergenic potential of edible insects, suggested for human consumption by agencies such as WHO/FAO, in both the shrimp (potentially cross-reactive) and primary mealworm allergic population. The following insects were studied: mealworm, house cricket, giant mealworm, lesser mealworm, African grasshopper, large wax moth, and black soldier fly. METHODS AND RESULTS Fifteen shrimp (mealworm sensitized or allergic) patients and four primary mealworm allergic subjects, who participated in previous studies, were included. All shrimp allergic patients were sensitized to multiple insects with similar response profiles for all insects tested. Primary mealworm allergic patients, showed IgE binding to proteins from only a few insects on immunoblot, although basophil activation test was positive for all tested insects. CONCLUSION Shrimp allergic patients are most likely at risk of food allergy to mealworm and other insects. Primary mealworm allergy does not mean subjects are likely to react to all insects.
Collapse
Affiliation(s)
- Henrike C H P Broekman
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - André C Knulst
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marco Gaspari
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Italy
| | | | - Geert F Houben
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht, the Netherlands.,TNO, Zeist, the Netherlands
| | - Kitty C M Verhoeckx
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht, the Netherlands.,TNO, Zeist, the Netherlands
| |
Collapse
|
44
|
Varelas V, Langton M. Forest biomass waste as a potential innovative source for rearing edible insects for food and feed – A review. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Faber MA, Pascal M, El Kharbouchi O, Sabato V, Hagendorens MM, Decuyper II, Bridts CH, Ebo DG. Shellfish allergens: tropomyosin and beyond. Allergy 2017; 72:842-848. [PMID: 28027402 DOI: 10.1111/all.13115] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 01/08/2023]
Abstract
IgE-mediated shellfish allergy constitutes an important cause of food-related adverse reactions. Shellfish are classified into mollusks and crustaceans, the latter belonging to the class of arthropoda. Among crustaceans, shrimps are the most predominant cause of allergic reactions and thus more extensively studied. Several major and minor allergens have been identified and cloned. Among them, invertebrate tropomyosin, arginine kinase, myosin light chain, sarcoplasmic calcium-binding protein, and hemocyanin are the most relevant. This review summarizes our current knowledge about these allergens.
Collapse
Affiliation(s)
- M. A. Faber
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - M. Pascal
- Immunology Department; Centre de Diagnòstic Biomèdic (CDB); Hospital Clínic; Universitat de Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
| | - O. El Kharbouchi
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - V. Sabato
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - M. M. Hagendorens
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
- Department of Pediatrics; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - I. I. Decuyper
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
- Department of Pediatrics; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - C. H. Bridts
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - D. G. Ebo
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| |
Collapse
|
46
|
Jeong KY, Han IS, Lee JY, Park KH, Lee JH, Park JW. Role of tropomyosin in silkworm allergy. Mol Med Rep 2017; 15:3264-3270. [DOI: 10.3892/mmr.2017.6373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/27/2017] [Indexed: 11/05/2022] Open
|
47
|
Barre A, Velazquez E, Delplanque A, Caze-Subra S, Bienvenu F, Bienvenu J, Benoist H, Rougé P. Les allergènes croisants des insectes comestibles. REVUE FRANCAISE D ALLERGOLOGIE 2016. [DOI: 10.1016/j.reval.2016.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Pedrosa M, Boyano-Martínez T, García-Ara C, Quirce S. Shellfish Allergy: a Comprehensive Review. Clin Rev Allergy Immunol 2016; 49:203-16. [PMID: 24870065 DOI: 10.1007/s12016-014-8429-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Shellfish allergy is of increasing concern, as its prevalence has risen in recent years. Many advances have been made in allergen characterization. B cell epitopes in the major allergen tropomyosin have been characterized. In addition to tropomyosin, arginine kinase, sarcoplasmic calcium-binding protein, and myosin light chain have recently been reported in shellfish. All are proteins that play a role in muscular contraction. Additional allergens such as hemocyanin have also been described. The effect of processing methods on these allergens has been studied, revealing thermal stability and resistance to peptic digestion in some cases. Modifications after Maillard reactions have also been addressed, although in some cases with conflicting results. In recent years, new hypoallergenic molecules have been developed, which constitute a new therapeutic approach to allergic disorders. A recombinant hypoallergenic tropomyosin has been developed, which opens a new avenue in the treatment of shellfish allergy. Cross-reactivity with species that are not closely related is common in shellfish-allergic patients, as many of shellfish allergens are widely distributed panallergens in invertebrates. Cross-reactivity with house dust mites is well known, but other species can also be involved in this phenomenon.
Collapse
Affiliation(s)
- María Pedrosa
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Teresa Boyano-Martínez
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Carmen García-Ara
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Santiago Quirce
- Allergy Department, Hospital La Paz Institute for Health Research (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| |
Collapse
|
49
|
Abstract
Shellfish are diverse, serve as main constituents of seafood, and are extensively consumed globally because of their nutritional values. Consequently, increase in reports of IgE-mediated seafood allergy is particularly food associated to shellfish. Seafood-associated shellfish consists of crustaceans (decapods, stomatopods, barnacles, and euphausiids) and molluskans (gastropods, bivalves, and cephalopods) and its products can start from mild local symptoms and lead to severe systemic anaphylactic reactions through ingestion, inhalation, or contact like most other food allergens. Globally, the most commonly causative shellfish are shrimps, crabs, lobsters, clams, oysters, and mussels. The prevalence of shellfish allergy is estimated to be 0.5-2.5% of the general population but higher in coastal Asian countries where shellfish constitute a large proportion of the diet. Diversity in allergens such as tropomyosin, arginine kinase, myosin light chain, and sarcoplasmic binding protein are from crustaceans whereas tropomyosin, paramyosin, troponin, actine, amylase, and hemoyanin are reported from molluskans shellfish. Tropomyosin is the major allergen and is responsible for cross-reactivity between shellfish and other invertebrates, within crustaceans, within molluskans, between crustaceans vs. molluskans as well as between shellfish and fish. Allergenicity diagnosis requires clinical history, in vivo skin prick testing, in vitro quantification of IgE, immunoCAP, and confirmation by oral challenge testing unless the reactions borne by it are life-threatening. This comprehensive review provides the update and new findings in the area of shellfish allergy including demographic, diversity of allergens, allergenicity, their cross-reactivity, and innovative molecular genetics approaches in diagnosing and managing this life-threatening as well as life-long disease.
Collapse
Affiliation(s)
- Samanta S Khora
- a Medical Biotechnology Lab, Department of Medical Biotechnology , School of Biosciences and Technology, VIT University , Vellore , India
| |
Collapse
|
50
|
Van der Brempt X, Beaudouin E, Lavaud F. Manger des insectes, est-ce dangereux pour l’allergique ? REVUE FRANCAISE D ALLERGOLOGIE 2016. [DOI: 10.1016/j.reval.2016.01.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|