1
|
Jesus CPS, Pimenta GF, de Oliveira MG, Dourado TMH, Antunes E, Tirapelli CR. Nebivolol prevents redox imbalance and attenuates bladder dysfunction induced by cyclophosphamide in mice. Can J Physiol Pharmacol 2024; 102:729-740. [PMID: 39270309 DOI: 10.1139/cjpp-2024-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cyclophosphamide (CYP) is combined with cytoprotective agents to minimize its toxicity in the bladder, which is mediated by reactive oxygen species (ROS). Using multiple antioxidant mechanisms, nebivolol protects from oxidative stress in distinctive conditions. We hypothesized that nebivolol would attenuate both molecular and functional alterations induced by CYP in the bladder. Male C57BL/6 were pretreated or not with nebivolol (10 mg/kg/day, gavage), which was given 5 days before a single injection of CYP (300 mg/kg; i.p.). Molecular and functional parameters were assessed at 24 h in the bladder. Nebivolol prevented increases in ROS generation and lipoperoxidation as well as reduction of superoxide dismutase activity induced by CYP. Increased voiding frequency, decreased voiding interval, and reduced bladder capacity were found in CYP-treated mice. These responses were prevented by nebivolol. An augmented number of urinary spots and smaller urinary volumes were detected in CYP-injected mice, and nebivolol partially prevented these responses. The reduction of ROS levels is the primary mechanism by which nebivolol attenuates the deleterious effects of CYP in the bladder. The association of nebivolol with other cytoprotective agents could be an option to prevent CYP-associated oxidative damage to the bladder during chemotherapy.
Collapse
Affiliation(s)
- Carolina P S Jesus
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo F Pimenta
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Mariana G de Oliveira
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thales M H Dourado
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Edson Antunes
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Otçu S, Deveci E, Özgökçe Ç, Gürsoy GT, Tuncer MC. Protective effect of nebivolol on rat ovary exposed to deltamethrin toxicity. Acta Cir Bras 2023; 38:e385423. [PMID: 37878988 PMCID: PMC10629476 DOI: 10.1590/acb385423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE We aimed to investigate the antioxidant activity of nebivolol against possible damage to the ovarian tissue due to the application of deltamethrin as a toxic agent, by evaluating histopathological proliferating cell nuclear antigen (PCNA) and tumor necrosis factor-alpha (TNF-α) signal molecules immunohistochemically. METHODS The animals were divided into three groups as control, deltamethrin and deltamethrin + nebivolol groups. Vaginal smears were taken after the animals were mated and detected on the first day of pregnancy. After the sixth day, deltamethrin (0.5 mL of 30 mg/kg BW undiluted ULV), and 2 mL of sterile nebivolol solution were administered intraperitoneally every day for 6-21 periods. After routine histopathological follow-up, the ovarian tissue was stained with hematoxylin and eosin stain. RESULTS Control group showed normal histology of ovarium. In deltamethrin group, hyperplasic cells, degenerative follicles, pyknotic nuclei, inflammation and hemorrhagic areas were observed. Nebivolol treatment restored these pathologies. Deltamethrin treatment increased TNF-α and PCNA reaction. However, nebivolol decreased the expression. CONCLUSIONS It was thought that deltamethrin toxicity adversely affected follicle development by inducing degeneration and apoptotic process in preantral and antra follicle cells, and nebivolol administration might reduce inflammation and slow down the apoptotic signal in the nuclear phase and regulate reorganization.
Collapse
Affiliation(s)
- Serap Otçu
- Health Sciences University – Diyarbakır Gazi Yaşargil, Training and Research Hospital – Department of Obstetrics and Gynecology – Diyarbakır – Turkey
| | - Engin Deveci
- Dicle University – Medical School – Department of Histology and Embryology – Diyarbakır – Turkey
| | - Çağdaş Özgökçe
- Zeynep Kamil Hospital – Department of Obstetrics and Gynecology – Perinatology Department – Istanbul – Turkey
| | - Görkem Tutal Gürsoy
- Healt Ministry of Türkiye Republic – Ankara Bilkent City Hospital – Department of Neurology – Ankara –Turkey
| | - Mehmet Cudi Tuncer
- Dicle University – Medical School – Department of Anatomy – Diyarbakır – Turkey
| |
Collapse
|
3
|
Nascimento MM, Bernardo DRD, de Bragança AC, Massola Shimizu MH, Seguro AC, Volpini RA, Canale D. Treatment with β-blocker nebivolol ameliorates oxidative stress and endothelial dysfunction in tenofovir-induced nephrotoxicity in rats. Front Med (Lausanne) 2022; 9:953749. [PMID: 35991671 PMCID: PMC9386005 DOI: 10.3389/fmed.2022.953749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tenofovir disoproxil fumarate (TDF), a widely prescribed component in antiretroviral regimens, has been associated with nephrotoxicity. Nebivolol is a third generation selective β-1 adrenergic receptor blocker and may protect renal structure and function through the suppression of oxidative stress and enhancement of nitric oxide (NO) synthesis. We aimed to investigate whether nebivolol could be an effective therapeutic strategy to mitigate tenofovir-induced nephrotoxicity. Methods We allocated Wistar rats to four groups: control (C), received a standard diet for 30 days; NBV, received a standard diet for 30 days added with nebivolol (100 mg/kg food) in the last 15 days; TDF, received a standard diet added with tenofovir (300 mg/kg food) for 30 days; and TDF+NBV, received a standard diet added with tenofovir for 30 days and nebivolol in the last 15 days. Results Long-term exposure to tenofovir led to impaired renal function, induced hypertension, endothelial dysfunction and oxidative stress. Nebivolol treatment partially recovered glomerular filtration rate, improved renal injury, normalized blood pressure and attenuated renal vasoconstriction. Administration of nebivolol contributed to reductions in asymmetric dimethylarginine (ADMA) levels as well as increases in endothelial nitric oxide sintase (eNOS) accompanied by renin-angiotensin-aldosterone system downregulation and decreases in macrophage and T-cells infiltrate. Furthermore, nebivolol was responsible for the maintenance of the adequate balance of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels and it was associated with reductions in NADPH oxidase (NOX) subunits. Conclusion Nebivolol holds multifaceted actions that promote an advantageous option to slow the progression of kidney injury in tenofovir-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mariana Moura Nascimento
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Carolina de Bragança
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Antonio Carlos Seguro
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Rildo Aparecido Volpini
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Daniele Canale
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Daniele Canale
| |
Collapse
|
4
|
Vrablik M, Corsini A, Tůmová E. Beta-blockers for Atherosclerosis Prevention: a Missed Opportunity? Curr Atheroscler Rep 2022; 24:161-169. [PMID: 35174437 DOI: 10.1007/s11883-022-00983-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Current guidelines for the management of arterial hypertension endorse β-adrenergic receptor blocking agents (beta-blockers, BBs) as being particularly useful for hypertension in specific situations such as symptomatic angina, tachycardia, post-myocardial infarction, heart failure with reduced ejection fraction (HFrEF), and as an alternative to angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) in hypertensive women planning pregnancy or at least of child-bearing potential. One of the most common uses of BBs is in patients with a recent myocardial infarction, with or without hypertension. Although this one use is specifically in a setting of atherosclerotic cardiovascular disease (ASCVD), it is not primarily for atheroprevention, but rather for cases with impaired systolic function, and it is intended primarily to lessen adverse cardiac remodeling and worsening of congestive heart failure (CHF). The BB class consists of numerous agents which differ widely in pharmacologic properties and physiologic effects. These differences include selectivity for β-adrenergic receptors and their subtypes, hydro- or lipophilicity, effects on blood pressure and heart rate, influence on lipoprotein and glucose metabolism, and direct impact on the artery wall, including platelet reactivity, endothelial function, infiltration of inflammatory cells and on inflammation per se, and on smooth muscle cell proliferation. Importantly, BBs are not commonly used for prevention of atherosclerosis or ASCVD per se. Many studies of early-generation BBs showed adverse effects on lipoprotein levels and metabolism of glucose and insulin and thus discouraged their use in atheroprevention. Nevertheless, newer BBs often have neutral or favorable metabolic effects on these important factors in ASCVD pathophysiology, and recent scientific studies now document direct beneficial effects of BBs on the artery wall. This document reviews both types of newer data, not only to encourage consideration of BB treatment to reduce ASCVD in the present, but also to call for future research to better explore the clinical settings in which BBs may be proven to have additional benefit in preventing ASCVD when added to the better-established treatments for dyslipidemia and diabetes. RECENT FINDINGS Relatively recent publications have clarified the diversity among BBs regarding adverse, neutral, or favorable effects on lipoproteins (especially triglycerides (TG) and low-density lipoprotein (LDL)) and on glucose/insulin metabolism. Specifically, the newer BBs (metoprolol ER, carvedilol ER, bisoprolol, and nebivolol) are now documented to be metabolically beneficial. These new data are complex but instructive regarding potential mechanisms of the diverse effects of various BBs on metabolism. Further and more importantly, these new data refute the traditional, but now outmoded, concept that BBs are universally harmful metabolically and therefore must be used sparingly, if at all, for atheroprevention. Recent studies have also reported exciting new data regarding how certain BBs can reduce platelet adhesion and improve the function of the major cell types in the artery wall, including the endothelium, macrophages, and smooth muscle cells. Specifically, BBs can improve endothelial function by enhancing arterial vasodilation and by reducing monocyte adhesion and transmigration. Further, BBs can decrease numbers and activity of inflammatory cells, including decreasing proliferation of smooth muscle cells and their transformation into inflammatory cells. These data help with the crucial step of distinguishing among available BBs regarding their likely overall arterial effects, whether to accelerate or prevent the development of atherosclerosis. In this regard, there is even some limited published information beyond these intermediary steps, going directly to the clinically more important endpoints of atherosclerosis and ASCVD events. The negative metabolic effects observed with the use of traditional/earlier generations of BBs have discouraged use of any BBs to prevent ASCVD. These adverse effects are not seen, however, with newer BBs. Thus, BBs continue to be a useful component of combination regimens not only in the treatment of arterial hypertension, heart failure, and arrhythmia, but also potentially in the prevention of atherosclerosis and ASCVD. Despite this exciting potential, further research is greatly needed to better establish the possible benefits of the most promising BBs as they might work in combination with other better-established atheropreventive agents. Specifically, there is a need for randomized, prospective, cardiovascular outcome trials (CVOTs) in high-risk patients, adding a BB to background LDL-lowering (statins, etc.), TG-lowering (specifically icosapent ethyl, which reduces ASCVD in patients with high TG, although apparently not via TG-lowering), and/or anti-diabetic (sodium glucose transport-2 inhibitors, SGLT2i, and glucagon-like protein-1 receptor agonists, GLP1-RA) treatments, as indicated in a given subject population.
Collapse
Affiliation(s)
- Michal Vrablik
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08, Prague, Czech Republic.,3Rd Department of Internal Medicine, General Teaching Hospital, U Nemocnice 1, 128 08, Prague 2, Czech Republic
| | - Alberto Corsini
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.,IRCCS Multimedica, Milan, Italy
| | - Eva Tůmová
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08, Prague, Czech Republic. .,3Rd Department of Internal Medicine, General Teaching Hospital, U Nemocnice 1, 128 08, Prague 2, Czech Republic.
| |
Collapse
|
5
|
Archer M, Dogra N, Dovey Z, Ganta T, Jang HS, Khusid JA, Lantz A, Mihalopoulos M, Stockert JA, Zahalka A, Björnebo L, Gaglani S, Noh MR, Kaplan SA, Mehrazin R, Badani KK, Wiklund P, Tsao K, Lundon DJ, Mohamed N, Lucien F, Padanilam B, Gupta M, Tewari AK, Kyprianou N. Role of α- and β-adrenergic signaling in phenotypic targeting: significance in benign and malignant urologic disease. Cell Commun Signal 2021; 19:78. [PMID: 34284799 PMCID: PMC8290582 DOI: 10.1186/s12964-021-00755-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
The urinary tract is highly innervated by autonomic nerves which are essential in urinary tract development, the production of growth factors, and the control of homeostasis. These neural signals may become dysregulated in several genitourinary (GU) disease states, both benign and malignant. Accordingly, the autonomic nervous system is a therapeutic target for several genitourinary pathologies including cancer, voiding dysfunction, and obstructing nephrolithiasis. Adrenergic receptors (adrenoceptors) are G-Protein coupled-receptors that are distributed throughout the body. The major function of α1-adrenoceptors is signaling smooth muscle contractions through GPCR and intracellular calcium influx. Pharmacologic intervention of α-and β-adrenoceptors is routinely and successfully implemented in the treatment of benign urologic illnesses, through the use of α-adrenoceptor antagonists. Furthermore, cell-based evidence recently established the antitumor effect of α1-adrenoceptor antagonists in prostate, bladder and renal tumors by reducing neovascularity and impairing growth within the tumor microenvironment via regulation of the phenotypic epithelial-mesenchymal transition (EMT). There has been a significant focus on repurposing the routinely used, Food and Drug Administration-approved α1-adrenoceptor antagonists to inhibit GU tumor growth and angiogenesis in patients with advanced prostate, bladder, and renal cancer. In this review we discuss the current evidence on (a) the signaling events of the autonomic nervous system mediated by its cognate α- and β-adrenoceptors in regulating the phenotypic landscape (EMT) of genitourinary organs; and (b) the therapeutic significance of targeting this signaling pathway in benign and malignant urologic disease. Video abstract.
Collapse
Affiliation(s)
- M. Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - N. Dogra
- Department of Pathology and Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Z. Dovey
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - T. Ganta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY USA
| | - H.-S. Jang
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - J. A. Khusid
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. Lantz
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institute, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - M. Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - J. A. Stockert
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. Zahalka
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - L. Björnebo
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - S. Gaglani
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - M. R. Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - S. A. Kaplan
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - R. Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - K. K. Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - P. Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - K. Tsao
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY USA
| | - D. J. Lundon
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - N. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - F. Lucien
- Department of Urology, Mayo Clinic, Rochester, MN USA
| | - B. Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - M. Gupta
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - N. Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Department of Pathology and Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
6
|
Araújo Encinas JF, Foncesca Peiró CH, Perez MM, Santos Raimundo JR, de Gois KC, Peres MC, Draghi PF, Costas Arcia CG, Simões DP, Murad N, da Costa Aguiar Alves B, Affonso Fonseca FL, Luciano da Veiga G. Does nebivolol have renoprotective action in patients with chronic kidney disease conditions? An integrative review. Eur J Pharmacol 2021; 905:174180. [PMID: 34015319 DOI: 10.1016/j.ejphar.2021.174180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Systemic arterial hypertension (SAH) is a chronic disease of multifactorial origin and one of the main risk factors for major adverse cardiovascular events (MACE), which are the leading causes of morbidity and mortality worldwide. The pharmacological treatment of SAH involves five main classes of drugs, and Nebivolol (NEB) is one of those drugs, belonging to the class of third generation β1-adrenoceptors selective blockers. NEB is composed of a racemic mixture of two enantiomers: d-nebivolol, which exerts antagonist effects on β1-adrenoceptors, and l-nebivolol, a vascular β3 receptor agonist. There are several studies that report different actions of NEB, not only for the treatment of SAH, but also as an antioxidant agent or even as a protector of renal damage. The aim of this systematic review was to investigate the available evidence regarding the effects of NEB on kidney diseases, evaluating its possible renoprotective action.
Collapse
Affiliation(s)
| | | | - Matheus Moreira Perez
- Laboratório de Análises Clínicas - Centro Universitário Saúde ABC/FMABC, Santo André, Brazil
| | | | | | - Marina Cristina Peres
- Laboratório de Análises Clínicas - Centro Universitário Saúde ABC/FMABC, Santo André, Brazil
| | | | | | - Diogo Pimenta Simões
- Laboratório de Análises Clínicas - Centro Universitário Saúde ABC/FMABC, Santo André, Brazil; Universidade Municipal de São Caetano Do Sul/USCS, São Caetano Do Sul, Brazil
| | - Neif Murad
- Setor de Cardiologia - Centro Universitário Saúde ABC/FMABC, Santo André, Brazil
| | | | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas - Centro Universitário Saúde ABC/FMABC, Santo André, Brazil; Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, Brazil
| | | |
Collapse
|
7
|
Kamar SS, Latif NSA, Elrefai MFM, Amin SN. Gastroprotective effects of nebivolol and simvastatin against cold restraint stress-induced gastric ulcer in rats. Anat Cell Biol 2020; 53:301-312. [PMID: 32993280 PMCID: PMC7527116 DOI: 10.5115/acb.20.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/06/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
Gastric ulcer is one of the most serious diseases. Nebivolol (Neb), a β1-blocker, exhibits vasodilator and anti-oxidative properties, simvastatin (Sim) antihyperlipidemic drug, exhibits anti-oxidative, anti-inflammatory properties and promote endogenous nitric oxide (NO) production. The aim of this study was to evaluate the gastroprotective effects of Neb and Sim against cold restraint stress (CRS)-induced gastric ulcer in rats. Rats were restrained, and maintained at 4°C for 3 hours. Animals were divided into six groups; control group, CRS group, and four treatment groups received ranitidine (Ran), Neb, Sim and both Neb and Sim. Treatments were given orally on a daily basis for 7 days prior to CRS. The gastroprotective effects of Neb and Sim were assessed biochemically by measuring variations in prostaglandins E2, NO, reduced glutathione and malondialdehyde, and functionally by estimating force of contractions of isolated rat fundus in the studied groups in response to acetylecholine stimulation and morphologically using hematoxylin and eosin staining, periodic acid Schiff's reaction and immunohistochemistry for cyclooxygenase 2 in gastric mucosa. CRS caused significant ulcerogenic effect. Alternatively, pretreatment with Ran, Neb, and Sim significantly corrected biochemical findings, pharmacological and histological studies.
Collapse
Affiliation(s)
- Samaa Samir Kamar
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Mohamed Fathi Mohamed Elrefai
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqaa, Jordan, Egypt.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shaimaa Nasr Amin
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqaa, Jordan, Egypt.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Bhanu SP, Pentyala S, Sankar DK. Incidence of hypoplastic posterior communicating artery and fetal posterior cerebral artery in Andhra population of India: a retrospective 3-Tesla magnetic resonance angiographic study. Anat Cell Biol 2020; 53:272-278. [PMID: 32647075 PMCID: PMC7527118 DOI: 10.5115/acb.20.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/27/2022] Open
Abstract
The posterior communicating arteries (PCoA) are important component of collateral circulation between the anterior and posterior part of circle of Willis (CW). The hypoplasia or aplasia of PCoA will reflect on prognosis of the neurological diseases. Precise studies of the incidence of hypoplastic PCoA in Andhra Pradesh population of India are hitherto unreported, since the present study was undertaken. Two hundred and thirty one magnetic resonance angiography (MRA) images were analyzed to identify the hypoplasia of PCoA and presence of fetal type of posterior cerebral artery (f-PCA) in patients with different neurological symptoms. All the patients underwent 3.0T MRI exposure. The results were statistically analysed. A total of 63 (27.3%) PCoA hypoplasia and 13 cases with f-PCA (5.6%) cases were identified. The hypoplastic PCoA was noted more in males than females (P<0.05) and right side hypoplasia was common than the left (P<0.04); bilateral hypoplasia of PCoA was seen in 37 cases out of 63 and is significant. The hypoplastic cases of the present study also were associated with variations of anterior cerebral arteries and one case was having vertebral artery hypoplasia. Incidence of PCoA as unilateral or bilateral with other associated anomalies of CW is more prone to develop stroke, migraine and cognitive dysfunction. Knowledge of these variations in the PCoA plays a pivotal role in diagnoses of neurological disorders and in neurovascular surgeries and angiographic point of view.
Collapse
Affiliation(s)
- Sharmila P Bhanu
- Department of of Anatomy, Narayana Medical College, Nellore, Andhra Pradesh, India
| | - Suneetha Pentyala
- Department of of Radiology, Narayana Medical College & General Hospital, Nellore, Andhra Pradesh, India
| | - Devi K Sankar
- Department of of Anatomy, Narayana Medical College, Nellore, Andhra Pradesh, India
| |
Collapse
|
9
|
Nasr AM, Rezq S, Shaheen A, Elshazly SM. Renal protective effect of nebivolol in rat models of acute renal injury: role of sodium glucose co-transporter 2. Pharmacol Rep 2020; 72:956-968. [PMID: 32128711 DOI: 10.1007/s43440-020-00059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/17/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Upregulation of the sodium glucose co-transporter (SGLT2) is implicated in acute renal injury (ARI) progression and is regulated by extracellular signal-regulated kinase (ERK), hypoxia-inducible factor 1 alpha (HIF1α) or prostaglandin E2 (PGE2). This study aimed to assess the possible protective effect of nebivolol on renal ischemia/reperfusion (IR) and glycerol-induced ARI targeting SGLT2 via modulating the ERK-HIF1α pathway. METHODS Rats were divided into control, sham, IR or nebivolol-treated group, in which rats were treated with nebivolol (10 mg/kg) for 3 days prior to the induction of IR. The rats were subjected to renal ischemia by bilateral clamping of the pedicles for 45 min, followed by 24 h reperfusion. Another group of rats received the vehicle or nebivolol (10 mg/kg) for 3 days followed by injection of 50% glycerol (8 ml/kg, IM) or saline. Kidney function tests, systolic blood pressure (SBP), oxidative stress markers [malondialdehyde (MDA) and NADPH oxidase] and kidney levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS), HIF1α, ERK phosphorylation and PGE2 were determined. Additionally, renal sections were used for histological grading of renal injury and immunological expression of SGLT2. RESULTS ARI rats showed significantly increased SBP, poor kidney function tests, increased oxidative stress, iNOS, NO, HIF1α levels, decreased PGE2 and ERK phosphorylation and upregulation of SGLT2 expression. Nebivolol treatment protected against the kidney damage both on the biochemical and histological levels. CONCLUSION Nebivolol has a direct renoprotective effect, at least in part, by down-regulating SGLT2 possibly via modulating HIF1α, ERK activity and PGE2 production.
Collapse
Affiliation(s)
- Ahmed M Nasr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Samar Rezq
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt. .,Department of Cell and Molecular Biology, UMMC, 2500 N State St., Jackson, MS, 39216, USA.
| | - Aya Shaheen
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Shimaa M Elshazly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Ge C, Xu M, Qin Y, Gu T, Lou D, Li Q, Hu L, Nie X, Wang M, Tan J. Fisetin supplementation prevents high fat diet-induced diabetic nephropathy by repressing insulin resistance and RIP3-regulated inflammation. Food Funct 2019; 10:2970-2985. [DOI: 10.1039/c8fo01653d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity-related renal disease is related to caloric excess promoting deleterious cellular responses.
Collapse
|
11
|
iRhom2 loss alleviates renal injury in long-term PM2.5-exposed mice by suppression of inflammation and oxidative stress. Redox Biol 2018; 19:147-157. [PMID: 30165303 PMCID: PMC6118040 DOI: 10.1016/j.redox.2018.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Particulate matter (PM2.5) is a risk factor for organ injury and disease progression, such as lung, brain and liver. However, its effects on renal injury and the underlying molecular mechanism have not been understood. The inactive rhomboid protein 2 (iRhom2), also known as rhomboid family member 2 (Rhbdf2), is a necessary modulator for shedding of tumor necrosis factor-α (TNF-α) in immune cells, and has been explored in the pathogenesis of chronic renal diseases. In the present study, we found that compared to the wild type (iRhom2+/+) mice, iRhom2 knockout (iRhom2-/-) protected PM2.5-exposed mice from developing severe renal injury, accompanied with improved renal pathological changes and functions. iRhom2-/- mice exhibited reduced inflammatory response, as evidenced by the reduction of interleukin 1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) and IL-18 in kidney samples, which might be, at least partly, through inactivating TNF-α converting enzyme/TNF-α receptors (TACE/TNFRs) and inhibitor of α/nuclear factor κ B (IκBα/NF-κB) signaling pathways. In addition, oxidative stress was also restrained by iRhom2-/- in kidney of PM2.5-exposed mice by enhancing heme oxygenase/nuclear factor erythroid 2-related factor 2 (HO-1/Nrf-2) expressions, and reducing phosphorylated c-Jun N-terminal kinase (JNK). In vitro, blockage of HO-1 or Nrf-2 rescued the inflammatory response and oxidative stress that were reduced by iRhom2 knockdown in PM2.5-incubated RAW264.7 cells. Similar results were observed in JNK activator-treated cells. Taken together, our findings indicated that iRhom2 played an essential role in regulating PM2.5-induced chronic renal damage, thus revealing a potential target for preventing chronic kidney diseases development. Suppression of iRhom2 negatively regulates inflammatory response in mouse macrophages RAW264.7 cells. iRhom2 deficiency alleviates PM2.5-induced renal injury by reducing inflammatory infiltration. iRhom2 inhibition reduces oxidative stress and JNK activation in PM2.5-induced renal injury in vitro and in vivo. PM2.5-induced renal injury via iRhom2-regulated oxidative stress and inflammation.
Collapse
|
12
|
Protein Kinase A/CREB Signaling Prevents Adriamycin-Induced Podocyte Apoptosis via Upregulation of Mitochondrial Respiratory Chain Complexes. Mol Cell Biol 2017; 38:MCB.00181-17. [PMID: 29038164 DOI: 10.1128/mcb.00181-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022] Open
Abstract
Previous work showed that the activation of protein kinase A (PKA) signaling promoted mitochondrial fusion and prevented podocyte apoptosis. The cAMP response element binding protein (CREB) is the main downstream transcription factor of PKA signaling. Here we show that the PKA agonist 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate-cyclic AMP (pCPT-cAMP) prevented the production of adriamycin (ADR)-induced reactive oxygen species and apoptosis in podocytes, which were inhibited by CREB RNA interference (RNAi). The activation of PKA enhanced mitochondrial function and prevented the ADR-induced decrease of mitochondrial respiratory chain complex I subunits, NADH-ubiquinone oxidoreductase complex (ND) 1/3/4 genes, and protein expression. Inhibition of CREB expression alleviated pCPT-cAMP-induced ND3, but not the recovery of ND1/4 protein, in ADR-treated podocytes. In addition, CREB RNAi blocked the pCPT-cAMP-induced increase in ATP and the expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1-α). The chromatin immunoprecipitation assay showed enrichment of CREB on PGC1-α and ND3 promoters, suggesting that these promoters are CREB targets. In vivo, both an endogenous cAMP activator (isoproterenol) and pCPT-cAMP decreased the albumin/creatinine ratio in mice with ADR nephropathy, reduced glomerular oxidative stress, and retained Wilm's tumor suppressor gene 1 (WT-1)-positive cells in glomeruli. We conclude that the upregulation of mitochondrial respiratory chain proteins played a partial role in the protection of PKA/CREB signaling.
Collapse
|
13
|
Nebivolol prevents ethanol-induced reactive oxygen species generation and lipoperoxidation in the rat kidney by regulating NADPH oxidase activation and expression. Eur J Pharmacol 2017; 799:33-40. [DOI: 10.1016/j.ejphar.2017.01.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
14
|
Hewedy WA, Mostafa DK. Nebivolol suppresses asymmetric dimethylarginine and attenuates cyclosporine-induced nephrotoxicity and endothelial dysfunction in rats. Pharmacol Rep 2016; 68:1319-1325. [DOI: 10.1016/j.pharep.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
|
15
|
Jiang H, Polhemus DJ, Islam KN, Torregrossa AC, Li Z, Potts A, Lefer DJ, Bryan NS. Nebivolol Acts as a S-Nitrosoglutathione Reductase Inhibitor. J Cardiovasc Pharmacol Ther 2016; 21:478-85. [DOI: 10.1177/1074248415626300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/12/2015] [Indexed: 11/15/2022]
Abstract
Background and Purpose: Published data on nebivolol reveal selective β1 adrenergic selectively along with novel nitric oxide (NO)-dependent vasodilatory properties. However, the exact molecular mechanism is unknown. Protein S-nitrosylation constitutes a large part of the ubiquitous influence of NO on cellular signal transduction and is involved in a number of human diseases. More recently, protein denitrosylation has been shown to play a major role in controlling cellular S-nitrosylation (SNO). Several enzymes have been reported to catalyze the reduction of SNOs and are viewed as candidate denitrosylases. One of the first described is known as S-nitrosoglutathione reductase (GSNOR). Importantly, GSNOR has been shown to play a role in regulating SNO signaling downstream of the β-adrenergic receptor and is therefore operative in cellular signal transduction. Pharmacological inhibition or genetic deletion of GSNOR leads to enhanced vasodilation and characteristic of known effects of nebivolol. Structurally, nebivolol is similar to known inhibitors of GSNOR. Therefore, we hypothesize that some of the known effects of nebivolol may occur through this mechanism. Experimental Approach: Using cell culture systems, tissue organ bath, and intact animal models, we report that nebivolol treatment leads to a dose-dependent accumulation of nitrosothiols in cells, and this is associated with an enhanced vasodilation by S-nitrosoglutathione. Key Results: These data suggest a new mechanism of action of nebivolol that may explain in part the reported NO activity. Conclusions and Implications: Because exogenous mediators of protein SNO or denitrosylation can substantially affect the development or progression of disease, this may call for new utility of nebivolol.
Collapse
Affiliation(s)
- Hong Jiang
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - David J. Polhemus
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Kazi N. Islam
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Ashley C. Torregrossa
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Zhen Li
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Amy Potts
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - David J. Lefer
- LSU Health Science Center, Cardiovascular Center of Excellence, New Orleans, LA, USA
| | - Nathan S. Bryan
- Texas Therapeutics Institute at Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
16
|
Velasco A, Solow E, Price A, Wang Z, Arbique D, Arbique G, Adams-Huet B, Schwedhelm E, Lindner JR, Vongpatanasin W. Differential effects of nebivolol vs. metoprolol on microvascular function in hypertensive humans. Am J Physiol Heart Circ Physiol 2016; 311:H118-24. [PMID: 27199121 PMCID: PMC4967201 DOI: 10.1152/ajpheart.00237.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
Abstract
Use of β-adrenergic receptor (AR) blocker is associated with increased risk of fatigue and exercise intolerance. Nebivolol is a newer generation β-blocker, which is thought to avoid this side effect via its vasodilating property. However, the effects of nebivolol on skeletal muscle perfusion during exercise have not been determined in hypertensive patients. Accordingly, we performed contrast-enhanced ultrasound perfusion imaging of the forearm muscles in 25 untreated stage I hypertensive patients at rest and during handgrip exercise at baseline or after 12 wk of treatment with nebivolol (5-20 mg/day) or metoprolol succinate (100-300 mg/day), with a subsequent double crossover for 12 wk. Metoprolol and nebivolol each induced a reduction in the resting blood pressure and heart rate (130.9 ± 2.6/81.7 ± 1.8 vs. 131.6 ± 2.7/80.8 ± 1.5 mmHg and 63 ± 2 vs. 64 ± 2 beats/min) compared with baseline (142.1 ± 2.0/88.7 ± 1.4 mmHg and 75 ± 2 beats/min, respectively, both P < 0.01). Metoprolol significantly attenuated the increase in microvascular blood volume (MBV) during handgrip at 12 and 20 repetitions/min by 50% compared with baseline (mixed-model P < 0.05), which was not observed with nebivolol. Neither metoprolol nor nebivolol affected microvascular flow velocity (MFV). Similarly, metoprolol and nebivolol had no effect on the increase in the conduit brachial artery flow as determined by duplex Doppler ultrasound. Thus our study demonstrated a first direct evidence for metoprolol-induced impairment in the recruitment of microvascular units during exercise in hypertensive humans, which was avoided by nebivolol. This selective reduction in MBV without alteration in MFV by metoprolol suggested impaired vasodilation at the precapillary arteriolar level.
Collapse
Affiliation(s)
- Alejandro Velasco
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Solow
- Rheumatology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Angela Price
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhongyun Wang
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Debbie Arbique
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gary Arbique
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Beverley Adams-Huet
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Edzard Schwedhelm
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Jonathan R Lindner
- Knight Cardiovascular Center, Oregon Health and Science University, Portland, Oregon
| | - Wanpen Vongpatanasin
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas; Rheumatology Division, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
17
|
Ignjatovic V, Pavlovic S, Miloradovic V, Andjelkovic N, Davidovic G, Djurdjevic P, Stolic R, Iric-Cupic V, Simic I, Ignjatovic VD, Petrovic N, Smiljanic Z, Zdravkovic V, Simovic S, Jovanovic D, Nesic J. Influence of Different β-Blockers on Platelet Aggregation in Patients With Coronary Artery Disease on Dual Antiplatelet Therapy. J Cardiovasc Pharmacol Ther 2015; 21:44-52. [PMID: 25868659 DOI: 10.1177/1074248415581175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/27/2015] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The use of β-blockers in the treatment of patients with coronary heart disease is associated with a decrease in the frequency of angina pectoris and mortality of patients. Due to the severity of the disease and previous cardiovascular interventions, many patients with coronary artery disease (CAD) use dual antiplatelet therapy to achieve greater inhibition of platelet aggregation. The influence of β-blockers on platelet aggregation in patients using antiplatelet therapy is not well understood. OBJECTIVE To examine the effect of different β-blockers on platelet aggregation in patients on dual antiplatelet therapy. METHODOLOGY The study included 331 patients who were treated at the Department of Cardiology, Clinical Center Kragujevac during 2011. Patients were divided into 4 groups depending on the type of β-blockers that were used (bisoprolol, nebivolol, metoprolol, and carvedilol). Platelet aggregation was measured using the multiplate analyzer and expressed through the value of adenosine diphosphate (ADP) test (to assess the effect of clopidogrel), ASPI test (to assess the effect of acetyl salicylic acid), TRAP test (to assess baseline platelet aggregation), and the ratio of ADP/TRAP and ASPI/TRAP ASPI/TRAP (ASPI - aranchidonic acid induced aggregation, TRAP - thrombin receptor activating peptide) representing the degree of inhibition of platelet aggregation compared to the basal value. In consideration were taken the representation of demographic, clinical characteristics, laboratory parameters, and cardiovascular medications between the groups. RESULTS Patients who used nebivolol had a significantly lower value of the ratio of ADP/TRAP (0.39 ± 0.30) compared to patients who used bisoprolol (0.48 ± 0.26; P = .038), and trend toward the lower values of ADP test (328.0 ± 197.3 vs 403.7 ± 213.2; P = .059), while there was no statistically significant difference in values of other laboratory parameters of platelet function between other groups. CONCLUSION Patients with CAD on dual antiplatelet therapy who used nebivolol had significantly lower levels of residual ADP-induced platelet aggregation compared to baseline than patients who used bisoprolol.
Collapse
Affiliation(s)
| | | | | | | | - Goran Davidovic
- Clinic for Cardiology, Clinical Center Kragujevac, Kragujevac, Serbia
| | | | - Radojica Stolic
- Clinic for Nephrology and Urology, Clinical Center Kragujevac, Kragujevac, Serbia
| | | | - Ivan Simic
- Clinic for Cardiology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Vesna D Ignjatovic
- Center for Nuclear Medicine, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Njegos Petrovic
- Clinic for Cardiology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Zorica Smiljanic
- Clinic for Cardiology, Clinical Center Kragujevac, Kragujevac, Serbia
| | | | - Stefan Simovic
- Clinic for Cardiology, Clinical Center Kragujevac, Kragujevac, Serbia
| | | | - Jelena Nesic
- Center for Endocrinology, Clinical Center Kragujevac, Kragujevac, Serbia
| |
Collapse
|
18
|
Varagic J, Punzi H, Ferrario CM. Clinical utility of fixed-dose combinations in hypertension: evidence for the potential of nebivolol/valsartan. Integr Blood Press Control 2014; 7:61-70. [PMID: 25473311 PMCID: PMC4251532 DOI: 10.2147/ibpc.s50954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in pharmacologic approaches to treat hypertension during the last decades, hypertension- and hypertension-related organ damage are still a high health and economic burden because a large proportion of patients with hypertension do not achieve optimal blood pressure control. There is now general agreement that combination therapy with two or more antihypertensive drugs is required for targeted blood pressure accomplishment and reduction of global cardiovascular risk. The goals of combination therapies are to reduce long-term cardiovascular events by targeting different mechanism underlying hypertension and target organ disease, to block the counterregulatory pathways activated by monotherapies, to improve tolerability and decrease the adverse effects of up-titrated single agents, and to increase persistence and adherence with antihypertensive therapy. Multiple clinical trials provide evidence that fixed-dose combinations in a single pill offer several advantages when compared with loose-dose combinations. This review discusses the advances in hypertension control and associated cardiovascular disease as they relate to the prospect of combination therapy targeting a third-generation beta (β) 1-adrenergic receptor (nebivolol) and an angiotensin II receptor blocker (valsartan) in fixed-dose single-pill formulations.
Collapse
Affiliation(s)
- Jasmina Varagic
- Hypertension and Vascular Research Center, Wake Forest University, Winston-Salem, NC USA ; Division of Surgical Sciences, Wake Forest University, Winston-Salem, NC USA ; Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC USA
| | - Henry Punzi
- Trinity Hypertension and Diagnostic Research Center, Carrollton, TX, USA ; Department of Family and Community Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos M Ferrario
- Division of Surgical Sciences, Wake Forest University, Winston-Salem, NC USA ; Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC USA ; Department of Internal Medicine and Nephrology, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
19
|
Functional sympatholysis in hypertension. Auton Neurosci 2014; 188:64-8. [PMID: 25458424 DOI: 10.1016/j.autneu.2014.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/14/2014] [Accepted: 10/13/2014] [Indexed: 11/22/2022]
Abstract
Sympathetic vasoconstriction is normally attenuated in exercising muscle by local changes in muscle metabolites and other substances that reduce vascular responsiveness to α-adrenergic receptor activation. Termed functional sympatholysis, this protective mechanism is thought to optimize muscle blood flow distribution to match perfusion with metabolic demand. Emerging evidence from both animal and human studies indicate that functional sympatholysis is impaired in hypertension and may constitute an important underlying cause of skeletal muscle malperfusion during exercise in this common cardiovascular condition. Findings from studies of animal models of hypertension and patients with essential hypertension will be integrated in this review to provide insight into the underlying mechanisms responsible for inappropriate sympathetic vasoconstriction in exercising muscle and the treatment options that may restore functional sympatholysis and improve muscle perfusion during exercise.
Collapse
|
20
|
Short-term use of telmisartan attenuates oxidation and improves Prdx2 expression more than antioxidant β-blockers in the cardiovascular systems of spontaneously hypertensive rats. Hypertens Res 2014; 38:106-15. [DOI: 10.1038/hr.2014.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 01/12/2023]
|
21
|
Hamza SM, Dyck JRB. Systemic and renal oxidative stress in the pathogenesis of hypertension: modulation of long-term control of arterial blood pressure by resveratrol. Front Physiol 2014; 5:292. [PMID: 25140155 PMCID: PMC4122172 DOI: 10.3389/fphys.2014.00292] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/19/2014] [Indexed: 12/12/2022] Open
Abstract
Hypertension affects over 25% of the global population and is associated with grave and often fatal complications that affect many organ systems. Although great advancements have been made in the clinical assessment and treatment of hypertension, the cause of hypertension in over 90% of these patients is unknown, which hampers the development of targeted and more effective treatment. The etiology of hypertension involves multiple pathological processes and organ systems, however one unifying feature of all of these contributing factors is oxidative stress. Once the body's natural anti-oxidant defense mechanisms are overwhelmed, reactive oxygen species (ROS) begin to accumulate in the tissues. ROS play important roles in normal regulation of many physiological processes, however in excess they are detrimental and cause widespread cell and tissue damage as well as derangements in many physiological processes. Thus, control of oxidative stress has become an attractive target for pharmacotherapy to prevent and manage hypertension. Resveratrol (trans-3,5,4'-Trihydroxystilbene) is a naturally occurring polyphenol which has anti-oxidant effects in vivo. Many studies have shown anti-hypertensive effects of resveratrol in different pre-clinical models of hypertension, via a multitude of mechanisms that include its function as an anti-oxidant. However, results have been mixed and in some cases resveratrol has no effect on blood pressure. This may be due to the heavy emphasis on peripheral vasodilator effects of resveratrol and virtually no investigation of its potential renal effects. This is particularly troubling in the arena of hypertension, where it is well known and accepted that the kidney plays an essential role in the long term regulation of arterial pressure and a vital role in the initiation, development and maintenance of chronic hypertension. It is thus the focus of this review to discuss the potential of resveratrol as an anti-hypertensive treatment via amelioration of oxidative stress within the framework of the fundamental physiological principles of long term regulation of arterial blood pressure.
Collapse
Affiliation(s)
- Shereen M. Hamza
- Department of Pediatrics, Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
| | - Jason R. B. Dyck
- Department of Pediatrics, Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
- Department of Pharmacology, Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
22
|
Ceron CS, Rizzi E, Guimarães DA, Martins-Oliveira A, Gerlach RF, Tanus-Santos JE. Nebivolol attenuates prooxidant and profibrotic mechanisms involving TGF-β and MMPs, and decreases vascular remodeling in renovascular hypertension. Free Radic Biol Med 2013; 65:47-56. [PMID: 23806385 DOI: 10.1016/j.freeradbiomed.2013.06.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/31/2013] [Accepted: 06/17/2013] [Indexed: 01/13/2023]
Abstract
Nebivolol and metoprolol are β1-adrenergic receptor blockers with different properties. We hypothesized that nebivolol, but not metoprolol, could attenuate prooxidant and profibrotic mechanisms of hypertension and therefore protect against the vascular remodeling associated with hypertension. Hypertension was induced in male Wistar rats by clipping the left renal artery. Six weeks after surgery, hypertensive and sham rats were treated with nebivolol (10 mg kg(-1) day(-1)) or metoprolol (20 mg kg(-1) day(-1)) for 4 weeks. Systolic blood pressure was monitored weekly. Morphologic changes in the aortic wall were studied in hematoxylin/eosin and picrosirius red sections. Aortic NAD(P)H activity and superoxide production were evaluated by luminescence and dihydroethidium, respectively, and TBARS levels were measured in plasma. Aortic nitrotyrosine staining was evaluated to assess peroxynitrite formation. TGF-β levels and p-ERK 1/2 expression were determined by immunofluorescence and Western blotting, respectively. Matrix metalloproteinase (MMP) activity and expression were determined by in situ zymography, gel zymography, Western blotting, and immunofluorescence, and TIMP-1 was assessed by immunohistochemistry. Both β1-receptor antagonists exerted very similar antihypertensive effects. However, while metoprolol had no significant effects, nebivolol significantly attenuated vascular remodeling and collagen deposition associated with hypertension. Moreover, nebivolol, but not metoprolol, attenuated hypertension-induced increases in aortic NAD(P)H oxidase activity, superoxide production, TBARS concentrations, nitrotyrosine levels, TGF-β upregulation, and MMP-2 and -9 expression/activity. No effects on p-ERK 1/2 and TIMP-1 expression were found. These results show for the first time that nebivolol, but not metoprolol, attenuates prooxidant and profibrotic mechanisms involving TGF-β and MMP-2 and MMP-9, which promote vascular remodeling in hypertension.
Collapse
Affiliation(s)
- Carla S Ceron
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Danielle A Guimarães
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Alisson Martins-Oliveira
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Estomatology, and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP, Brazil, 14049-900
| | - Jose E Tanus-Santos
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
23
|
Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:839761. [PMID: 24319690 PMCID: PMC3844218 DOI: 10.1155/2013/839761] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/16/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023]
Abstract
Proteinuria is an independent risk factor for end-stage renal disease (ESRD) (Shankland, 2006). Recent studies highlighted the mechanisms of podocyte injury and implications for potential treatment strategies in proteinuric kidney diseases (Zhang et al., 2012). Reactive oxygen species (ROS) are cellular signals which are closely associated with the development and progression of glomerular sclerosis. NADPH oxidase is a district enzymatic source of cellular ROS production and prominently expressed in podocytes (Zhang et al., 2010). In the last decade, it has become evident that NADPH oxidase-derived ROS overproduction is a key trigger of podocyte injury, such as renin-angiotensin-aldosterone system activation (Whaley-Connell et al., 2006), epithelial-to-mesenchymal transition (Zhang et al., 2011), and inflammatory priming (Abais et al., 2013). This review focuses on the mechanism of NADPH oxidase-mediated ROS in podocyte injury under different pathophysiological conditions. In addition, we also reviewed the therapeutic perspectives of NADPH oxidase in kidney diseases related to podocyte injury.
Collapse
|
24
|
Lương KVQ, Nguyen LTH. The role of Beta-adrenergic receptor blockers in Alzheimer's disease: potential genetic and cellular signaling mechanisms. Am J Alzheimers Dis Other Demen 2013; 28:427-39. [PMID: 23689075 PMCID: PMC10852699 DOI: 10.1177/1533317513488924] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
According to genetic studies, Alzheimer's disease (AD) is linked to beta-adrenergic receptor blockade through numerous factors, including human leukocyte antigen genes, the renin-angiotensin system, poly(adenosine diphosphate-ribose) polymerase 1, nerve growth factor, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate. Beta-adrenergic receptor blockade is also implicated in AD due to its effects on matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase-2, and nitric oxide synthase. Beta-adrenergic receptor blockade may also have a significant role in AD, although the role is controversial. Behavioral symptoms, sex, or genetic factors, including Beta 2-adrenergic receptor variants, apolipoprotein E, and cytochrome P450 CYP2D6, may contribute to beta-adrenergic receptor blockade modulation in AD. Thus, the characterization of beta-adrenergic receptor blockade in patients with AD is needed.
Collapse
Affiliation(s)
- Khanh vinh quoc Lương
- Vietnamese American Medical Research Foundation, Westminster, California, CA 92683, USA.
| | | |
Collapse
|
25
|
Luong KVQ, Nguyen LTH. The role of β-adrenergic blockers in Parkinson's disease: possible genetic and cell-signaling mechanisms. Am J Alzheimers Dis Other Demen 2013; 28:306-17. [PMID: 23695225 PMCID: PMC10852762 DOI: 10.1177/1533317513488919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic studies have identified numerous factors linking β-adrenergic blockade to Parkinson's disease (PD), including human leukocyte antigen genes, the renin-angiotensin system, poly(adenosine diphosphate-ribose) polymerase 1, nerve growth factor, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate. β-Adrenergic blockade has also been implicated in PD via its effects on matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase 2, and nitric oxide synthase. β-Adrenergic blockade may have a significant role in PD; therefore, the characterization of β-adrenergic blockade in patients with PD is needed.
Collapse
|
26
|
Ozakca I, Arioglu-Inan E, Esfahani H, Altan VM, Balligand JL, Kayki-Mutlu G, Ozcelikay AT. Nebivolol prevents desensitization of β-adrenoceptor signaling and induction of cardiac hypertrophy in response to isoprenaline beyond β1-adrenoceptor blockage. Am J Physiol Heart Circ Physiol 2013; 304:H1267-76. [DOI: 10.1152/ajpheart.00352.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The importance of chronic stimulation of β-adrenoceptors in the development of cardiac dysfunction is the rationale for the use of β-blockers in the treatment of heart failure. Nebivolol is a third-generation β-blocker, which has further properties including stimulation of endothelial nitric oxide synthase and/or β3-adrenoceptors. The aim of this study was to investigate whether nebivolol has additional effects on β-adrenoceptor-mediated functional responses along with morphologic and molecular determinants of cardiac hypertrophy compared with those of metoprolol, a selective β1-adrenoceptor blocker. Rats infused by isoprenaline (100 μg·kg−1·day−1, 14 days) were randomized into three groups according to the treatment with metoprolol (30 mg·kg−1·day−1), nebivolol (10 mg·kg−1·day−1), or placebo for 13 days starting on day 1 after implantation of minipump. Both metoprolol and nebivolol caused a similar reduction on heart rate. Nebivolol mediated a significant improvement on cardiac mass, coronary flow, mRNA expression levels of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and atrial natriuretic peptide and phospholamban (PLN)/SERCA2a and phospho-PLN/PLN ratio compared with metoprolol and placebo. Nebivolol prevented the detrimental effects of isoprenaline infusion on isoprenaline (68% of control at 30 μM), BRL37344 (63% of control at 0.1 μM), and forskolin (64% of control at 1 μM) responses compared with metoprolol (isoprenaline, 34% of control; BRL37344, no response; forskolin, 26% of control) and placebo (isoprenaline, 33% of control; BRL37344, 28% of control; forskolin, 12% of control). Both β-blockers improved the changes in mRNA expressions of β1- and β3-adrenoceptors. Our results suggest that nebivolol partially protects the responsiveness of β-adrenoceptor signaling and the development of cardiac hypertrophy independent of its β1-adrenoceptor blocking effect.
Collapse
Affiliation(s)
- Isil Ozakca
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey; and
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey; and
| | - Hrag Esfahani
- Pole of Pharmacology and Therapeutics, FATH/IREC, Universite Catholique de Louvain, Brussels, Belgium
| | - V. Melih Altan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey; and
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, FATH/IREC, Universite Catholique de Louvain, Brussels, Belgium
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey; and
| | - A. Tanju Ozcelikay
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey; and
| |
Collapse
|
27
|
Price A, Raheja P, Wang Z, Arbique D, Adams-Huet B, Mitchell JH, Victor RG, Thomas GD, Vongpatanasin W. Differential effects of nebivolol versus metoprolol on functional sympatholysis in hypertensive humans. Hypertension 2013; 61:1263-9. [PMID: 23547240 DOI: 10.1161/hypertensionaha.113.01302] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In young healthy humans, sympathetic vasoconstriction is markedly blunted during exercise to optimize blood flow to the metabolically active muscle. This phenomenon known as functional sympatholysis is impaired in hypertensive humans and rats by angiotensin II-dependent mechanisms, involving oxidative stress and inactivation of nitric oxide (NO). Nebivolol is a β1-adrenergic receptor blocker that has NO-dependent vasodilatory and antioxidant properties. We therefore asked whether nebivolol would restore functional sympatholysis in hypertensive humans. In 21 subjects with stage 1 hypertension, we measured muscle oxygenation and forearm blood flow responses to reflex increases in sympathetic nerve activity evoked by lower body negative pressure at rest, and during rhythmic handgrip exercise at baseline, after 12 weeks of nebivolol (5-20 mg/d) or metoprolol (100-300 mg/d), using a double-blind crossover design. We found that nebivolol had no effect on lower body negative pressure-induced decreases in oxygenation and forearm blood flow in resting forearm (from -29±5% to -30±5% and from -29±3% to -29±3%, respectively; P=NS). However, nebivolol attenuated the lower body negative pressure-induced reduction in oxygenation and forearm blood flow in exercising forearm (from -14±4% to -1±5% and from -15±2% to -6±2%, respectively; both P<0.05). This effect of nebivolol on oxygenation and forearm blood flow in exercising forearm was not observed with metoprolol in the same subjects, despite a similar reduction in blood pressure. Nebivolol had no effect on sympathetic nerve activity at rest or during handgrip, suggesting a direct effect on vascular function. Thus, our data demonstrate that nebivolol restored functional sympatholysis in hypertensive humans by a mechanism that does not involve β1-adrenergic receptors. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT01502787.
Collapse
Affiliation(s)
- Angela Price
- Hypertension Section, Cardiology Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, U9.400, Dallas, TX 75390-8586, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
quốc Lu’o’ng KV, Nguyễn LTH. The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment: possible genetic and cell-signaling mechanisms. Cancer Manag Res 2012; 4:431-45. [PMID: 23293538 PMCID: PMC3534394 DOI: 10.2147/cmar.s39153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer is the leading cause of death in the USA, and the incidence of cancer increases dramatically with age. Beta-adrenergic blockers appear to have a beneficial clinical effect in cancer patients. In this paper, we review the evidence of an association between β-adrenergic blockade and cancer. Genetic studies have provided the opportunity to determine which proteins link β-adrenergic blockade to cancer pathology. In particular, this link involves the major histocompatibility complex class II molecules, the renin-angiotensin system, transcription factor nuclear factor-kappa-light-chain-enhancer of activated B cells, poly(ADP-ribose) polymerase-1, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate oxidase. Beta-adrenergic blockers also exert anticancer effects through non-genomic factors, including matrix metalloproteinase, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase-2, oxidative stress, and nitric oxide synthase. In conclusion, β-adrenergic blockade may play a beneficial role in cancer treatment. Additional investigations that examine β-adrenergic blockers as cancer therapeutics are required to further elucidate this role.
Collapse
|
29
|
Sasser JM, Moningka NC, Tsarova T, Baylis C. Nebivolol does not protect against 5/6 ablation/infarction induced chronic kidney disease in rats - comparison with angiotensin II receptor blockade. Life Sci 2012; 91:54-63. [PMID: 22727796 DOI: 10.1016/j.lfs.2012.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 05/24/2012] [Accepted: 05/31/2012] [Indexed: 01/31/2023]
Abstract
AIMS Nitric oxide (NO) deficiency contributes to chronic kidney disease progression. Nebivolol, a beta adrenergic receptor antagonist, may enhance endogenous NO. Here, we investigated whether Nebivolol attenuates hypertension and renal injury after 5/6 ablation/infarction (A/I). Efficacy was compared to the AT1 receptor antagonist Olmesartan. MAIN METHODS Kidney disease and hypertension were induced by right kidney ablation and ~2/3 infarction of the left kidney. Rats were treated orally with vehicle (placebo), Nebivolol (5mg/kg b.i.d.), or Olmesartan (2.5mg/kg/day) for 6 weeks after A/I. KEY FINDINGS With placebo, glomerular sclerosis and tubulointersititial fibrosis developed with increased blood pressure and proteinuria, and a fall in NO(x) excretion. Olmesartan prevented these changes, but Nebivolol had no effect on these measures but lowered heart rate. Neither treatment reduced systemic oxidative stress (urinary hydrogen peroxide and TBARS). Compared to controls, renal cortex abundance of nNOSα decreased and nNOSβ increased in rats after 5/6 A/I, with no changes in eNOS. Neither treatment restored nNOSα; however, both reduced nNOSβ. Activity of DDAH was decreased by 5/6 A/I but restored by both treatments despite no increase in DDAH protein abundance. Kidney cortex abundance of manganese SOD fell after 5/6 A/I and was restored by treatment with Olmesartan but not Nebivolol. Extracellular and copper/zinc SOD abundances were not changed. SIGNIFICANCE In conclusion, Nebivolol showed no benefit after 6 weeks in rapidly progressing, ANG II-dependent 5/6 A/I model of chronic kidney disease. This contrasts to the protection seen with 6 month treatment of Nebivolol in the slowly progressing 5/6 ablation model.
Collapse
Affiliation(s)
- Jennifer M Sasser
- Departments of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
30
|
Feng MG, Prieto MC, Navar LG. Nebivolol-induced vasodilation of renal afferent arterioles involves β3-adrenergic receptor and nitric oxide synthase activation. Am J Physiol Renal Physiol 2012; 303:F775-82. [PMID: 22674024 DOI: 10.1152/ajprenal.00233.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nebivolol is a β(1)-adrenergic blocker that also elicits renal vasodilation and increases the glomerular filtration rate (GFR). However, its direct actions on the renal microvasculature and vasodilator mechanism have not been established. We used the in vitro blood-perfused juxtamedullary nephron technique to determine the vasodilator effects of nebivolol and to test the hypothesis that nebivolol induces vasodilation of renal afferent arterioles via an nitric oxide synthase (NOS)/nitric oxide (NO)/soluble guanylate cyclase (sGC)/cGMP pathway and the afferent arteriolar vasodilation effect may be mediated through the release of NO by activation of NOS via a β(3)-adrenoceptor-dependent mechanism. Juxtamedullary nephrons were superfused with nebivolol either alone or combined with the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or the NOS inhibitor N(ω)-nitro-l-arginine (l-NNA) or the β-blockers metoprolol (β(1)), butoxamine (β(2)), and SR59230A (β(3)). Nebivolol (100 μmol/l) markedly increased afferent and efferent arteriolar diameters by 18.9 ± 3.0 and 15.8 ± 1.8%. Pretreatment with l-NNA (1,000 μmol/l) or ODQ (10 μmol/l) decreased afferent vasodilator diameters and prevented the vasodilator effects of nebivolol (2.0 ± 0.2 and 2.4 ± 0.6%). Metoprolol did not elicit significant changes in afferent vasodilator diameters and did not prevent the effects of nebivolol to vasodilate afferent arterioles. However, treatment with SR59230A, but not butoxamine, markedly attenuated the vasodilation responses to nebivolol. Using a monoclonal antibody to β(3)-receptors revealed predominant immunostaining on vascular and glomerular endothelial cells. These data indicate that nebivolol vasodilates both afferent and efferent arterioles and that the afferent vasodilator effect is via a mechanism that is independent of β(1)-receptors but is predominantly mediated via a NOS/NO/sGC/cGMP-dependent mechanisms initiated by activation of endothelial β(3)-receptors.
Collapse
Affiliation(s)
- Ming-Guo Feng
- Department of Physiology, Hypertension and Renal Center of Excellence, School of Medicine, Tulane University Medical Center,1430 Tulane Ave., New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
31
|
Ma L, Gul R, Habibi J, Yang M, Pulakat L, Whaley-Connell A, Ferrario CM, Sowers JR. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat. Am J Physiol Heart Circ Physiol 2012; 302:H2341-51. [PMID: 22447938 DOI: 10.1152/ajpheart.01126.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Angiotensin II contributes to myocardial tissue remodeling and interstitial fibrosis through NADPH oxidase-mediated generation of oxidative stress in the progression of heart failure. Recent data have suggested that nebivolol, a third-generation β-blocker, improves diastolic dysfunction by targeting nitric oxide (NO) and metabolic pathways that decrease interstitial fibrosis. We sought to determine if targeting NO would improve diastolic function in a model of tissue renin-angiotensin system overactivation. We used the transgenic (TG) (mRen2)27 rat, which overexpresses the murine renin transgene and manifests insulin resistance and left ventricular dysfunction. We treated 6- to 7-wk-old TG (mRen2)27 rats and age-matched Sprague-Dawley control rats with nebivolol (10 mg·kg(-1)·day(-1)) or placebo via osmotic minipumps for a period of 21 days. Compared with Sprague-Dawley control rats, TG (mRen2)27 rats displayed a prolonged diastolic relaxation time and reduced initial filling rate associated with increased interstitial fibrosis and left ventricular hypertrophy. These findings were temporally related to increased NADPH oxidase activity and subunits p47(phox) and Rac1 and increased total ROS and peroxynitrite formation in parallel with reductions in the antioxidant heme oxygenase as well as the phosphorylation/activation of endothelial NO synthase and PKB/Akt. Treatment with nebivolol restored diastolic function and interstitial fibrosis through increases in the phosphorylation of 5'-AMP-activated protein kinase, Akt, and endothelial NO synthase and reductions in oxidant stress. These results support that targeting NO with nebivolol treatment improves diastolic dysfunction through reducing myocardial oxidative stress by enhancing 5'-AMP-activated protein kinase and Akt activation of NO biosynthesis.
Collapse
Affiliation(s)
- Lixin Ma
- Department of Radiology, University of Missouri School of Medicine, Columbia, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Montezano AC, Touyz RM. Molecular mechanisms of hypertension--reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol 2012; 28:288-95. [PMID: 22445098 DOI: 10.1016/j.cjca.2012.01.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/26/2012] [Accepted: 01/26/2012] [Indexed: 02/07/2023] Open
Abstract
Many factors have been implicated in the pathophysiology of hypertension such as upregulation of the renin-angiotensin-aldosterone system, activation of the sympathetic nervous system, perturbed G protein-coupled receptor signalling, inflammation, and altered T-cell function. Common to these processes is increased bioavailability of reactive oxygen species (ROS) (termed oxidative stress) due to excess ROS generation, decreased nitric oxide (NO) levels, and reduced antioxidant capacity in the cardiovascular, renal, and nervous systems. Although oxidative stress may not be the sole etiology of hypertension, it amplifies blood pressure elevation in the presence of other prohypertensive factors. In the cardiovascular system ROS play a physiological role in controlling endothelial function, vascular tone, and cardiac function, and a pathophysiological role in inflammation, hypertrophy, proliferation, apoptosis, migration, fibrosis, angiogenesis, and rarefaction, all of which are important processes contributing to endothelial dysfunction and cardiovascular remodelling in hypertension. A major source for cardiovascular ROS is a family of nonphagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox1, Nox2, Nox4, and Nox5). Other sources include mitochondrial enzymes, xanthine oxidase, and uncoupled NO synthase (NOS). Although convincing data from animal studies support a causative role for oxidative stress in the pathogenesis of hypertension, there is still no solid evidence that oxidative stress causes hypertension in humans. However, biomarkers of excess ROS are increased in patients with hypertension and oxidative damage is important in the molecular mechanisms associated with cardiovascular and renal injury in hypertension. Although clinical trials failed to show beneficial antihypertensive effects of antioxidants, strategies that combat oxidative stress by targeting Noxs in an isoform-specific manner may have therapeutic potential.
Collapse
Affiliation(s)
- Augusto C Montezano
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
33
|
Toblli JE, DiGennaro F, Giani JF, Dominici FP. Nebivolol: impact on cardiac and endothelial function and clinical utility. Vasc Health Risk Manag 2012; 8:151-60. [PMID: 22454559 PMCID: PMC3310359 DOI: 10.2147/vhrm.s20669] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Endothelial dysfunction is a systemic pathological state of the endothelium characterized by a reduction in the bioavailability of vasodilators, essentially nitric oxide, leading to impaired endothelium-dependent vasodilation, as well as disarrangement in vascular wall metabolism and function. One of the key factors in endothelial dysfunction is overproduction of reactive oxygen species which participate in the development of hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and stroke. Because impaired endothelial activity is believed to have a major causal role in the pathophysiology of vascular disease, hypertension, and heart failure, therapeutic agents which modify this condition are of clinical interest. Nebivolol is a third-generation β-blocker with high selectivity for β1-adrenergic receptors and causes vasodilation by interaction with the endothelial L-arginine/ nitric oxide pathway. This dual mechanism of action underscores several hemodynamic qualities of nebivolol, which include reductions in heart rate and blood pressure and improvements in systolic and diastolic function. Although nebivolol reduces blood pressure to a degree similar to that of conventional β-blockers and other types of antihypertensive drugs, it may have advantages in populations with difficult-to-treat hypertension, such as patients with heart failure along with other comorbidities, like diabetes and obesity, and elderly patients in whom nitric oxide-mediated endothelial dysfunction may be more pronounced. Furthermore, recent data indicate that nebivolol appears to be a cost-effective treatment for elderly patients with heart failure compared with standard care. Thus, nebivolol is an effective and well tolerated agent with benefits above those of traditional β-blockers due to its influence on nitric oxide release, which give it singular hemodynamic effects, cardioprotective activity, and a good tolerability profile. This paper reviews the pharmacology structure and properties of nebivolol, focusing on endothelial dysfunction, clinical utility, comparative efficacy, side effects, and quality of life in general with respect to the other antihypertensive agents.
Collapse
|
34
|
Song L, Mei A, Hu Y, Zhang J, Chai X. Response surface optimized extraction of carbohydrate compound from Folium Ginkgo and its bioactivity. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Hayden MR, Habibi J, Joginpally T, Karuparthi PR, Sowers JR. Ultrastructure Study of Transgenic Ren2 Rat Aorta - Part 1: Endothelium and Intima. Cardiorenal Med 2012; 2:66-82. [PMID: 22493605 PMCID: PMC3318941 DOI: 10.1159/000335565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND: The renin-angiotensin-aldosterone system plays an important role in the development and progression of hypertension and accelerated atherosclerosis (atheroscleropathy) associated with the cardiorenal metabolic syndrome and type 2 diabetes mellitus. Additionally, the renin-angiotensin-aldosterone system plays an important role in vascular-endothelial-intimal cellular and extracellular remodeling. METHODS: Thoracic aortas of young male transgenic heterozygous (mRen2)27 (Ren2) rats were utilized for this ultrastructural study. This lean model of hypertension, insulin resistance and oxidative stress harbors the mouse renin gene with increased local tissue (aortic) levels of angiotensin II and angiotensin type 1 receptors and elevated plasma aldosterone levels. RESULTS: The ultrastructural observations included marked endothelial cell retraction, separation, terminal nuclear lifting, adjacent duplication, apoptosis and a suggestion of endothelial progenitor cell attachment. The endothelium demonstrated increased caveolae, microparticles, depletion of Weibel-Palade bodies, loss of cell-cell and basal adhesion hemidesmosome-like structures, platelet adhesion and genesis of subendothelial neointima. CONCLUSION: These observational ultrastructural studies of the transgenic Ren2 vasculature provide an in-depth evaluation of early abnormal remodeling changes within conduit-elastic arteries under conditions of increased local levels of angiotensin II, oxidative stress, insulin resistance and hypertension.
Collapse
Affiliation(s)
- Melvin R. Hayden
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - Javad Habibi
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Harry S. Truman VA Medical Center, Columbia, Mo., USA
| | - Tejaswini Joginpally
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - Poorna R. Karuparthi
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Cardiovascular Disease, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - James R. Sowers
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Medical Physiology and Pharmacology, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Harry S. Truman VA Medical Center, Columbia, Mo., USA
| |
Collapse
|
36
|
Uzar E, Acar A, Evliyaoğlu O, Fırat U, Kamasak K, Göçmez C, Alp H, Tüfek A, Taşdemir N, Ilhan A. The anti-oxidant and anti-apoptotic effects of nebivolol and zofenopril in a model of cerebral ischemia/reperfusion in rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:22-8. [PMID: 21888941 DOI: 10.1016/j.pnpbp.2011.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
The aim of this experiment was to investigate whether nebivolol and zofenopril have protective effects against oxidative damage and apoptosis induced by cerebral ischemia/reperfusion (I/R). There were seven groups of rats, with each containing eight rats. The groups were: the control group, I/R group, I/R plus zofenopril, I/R plus nebivolol, I/R plus nebivolol and zofenopril, zofenopril only and nebivolol only. Cerebral I/R was induced by clamping the bilateral common carotid artery and through hypotension. The rats were sacrificed 1h after ischemia, and histopathological and biochemical analyses were carried out on their brains. The total antioxidant capacity was evaluated by using an automated and colorimetric measurement method developed by Erel. I/R produced a significant increase in the levels of total oxidant status and malondialdehyde levels, the number of caspase-3 immunopositive cells and activities of prolidase and paraoxonase in brain when compared with the control group (p<0.05). A significant decrease in brain total antioxidant capacity and nitric oxide levels were found in I/R group when compared with the control group (p<0.05). Both nebivolol and zofenopril treatment prevented decreasing of the total antioxidant capacity and nitric oxide levels, produced by I/R in the brain (p<0.05). Both nebivolol and zofenopril treatment prevented the total oxidant status, malondialdehyde levels, activities of paraoxonase and prolidase from increasing in brains of rats exposed to I/R (p<0.05). In conclusion, both nebivolol and zofenopril protected rats from ischemia-induced brain injury. The protection may be due to the indirect prevention of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Ertuğrul Uzar
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Manrique C, Lastra G, Habibi J, Pulakat L, Schneider R, Durante W, Tilmon R, Rehmer J, Hayden MR, Ferrario CM, Whaley-Connell A, Sowers JR. Nebivolol improves insulin sensitivity in the TGR(Ren2)27 rat. Metabolism 2011; 60:1757-66. [PMID: 21640361 PMCID: PMC3170670 DOI: 10.1016/j.metabol.2011.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/13/2011] [Accepted: 04/16/2011] [Indexed: 11/23/2022]
Abstract
Hypertension is often associated with increased oxidative stress and systemic insulin resistance. Use of β-adrenergic receptor blockers in hypertension is limited because of potential negative influence on insulin sensitivity and glucose homeostasis. We sought to determine the impact of nebivolol, a selective vasodilatory β₁-adrenergic blocker, on whole-body insulin sensitivity, skeletal muscle oxidative stress, insulin signaling, and glucose transport in the transgenic TG(mRen2)27 rat (Ren2). This rodent model manifests increased tissue renin angiotensin expression, excess oxidative stress, and whole-body insulin resistance. Young (age, 6-9 weeks) Ren2 and age-matched Sprague-Dawley control rats were treated with nebivolol 10 mg/(kg d) or placebo for 21 days. Basal measurements were obtained for glucose and insulin to calculate the homeostasis model assessment. In addition, insulin metabolic signaling, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, reactive oxygen species, and ultrastructural changes as evaluated by transmission electron microscopy were examined ex vivo in skeletal muscle tissue. The Ren2 rat demonstrated systemic insulin resistance as examined by the homeostasis model assessment, along with impaired insulin metabolic signaling in skeletal muscle. This was associated with increased oxidative stress and mitochondrial remodeling. Treatment with nebivolol was associated with improvement in insulin resistance and decreased NADPH oxidase activity/levels of reactive oxygen species in skeletal muscle tissue. Nebivolol treatment for 3 weeks reduces NADPH oxidase activity and improves systemic insulin resistance in concert with reduced oxidative stress in skeletal muscle in a young rodent model of hypertension, insulin resistance, and enhanced tissue RAS expression.
Collapse
Affiliation(s)
- Camila Manrique
- Diabetes Cardiovascular Center of Excellence, University of Missouri-Columbia School of Medicine
| | - Guido Lastra
- Diabetes Cardiovascular Center of Excellence, University of Missouri-Columbia School of Medicine
| | - Javad Habibi
- Diabetes Cardiovascular Center of Excellence, University of Missouri-Columbia School of Medicine
- Research Service, Harry S. Truman Veterans Affairs Medical Center, Columbia, Missouri, 65201
| | - Lakshmi Pulakat
- Diabetes Cardiovascular Center of Excellence, University of Missouri-Columbia School of Medicine
| | - Rebecca Schneider
- Diabetes Cardiovascular Center of Excellence, University of Missouri-Columbia School of Medicine
- Research Service, Harry S. Truman Veterans Affairs Medical Center, Columbia, Missouri, 65201
| | - William Durante
- Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine
| | - Roger Tilmon
- Diabetes Cardiovascular Center of Excellence, University of Missouri-Columbia School of Medicine
| | - Jenna Rehmer
- Diabetes Cardiovascular Center of Excellence, University of Missouri-Columbia School of Medicine
| | - Melvin R Hayden
- Diabetes Cardiovascular Center of Excellence, University of Missouri-Columbia School of Medicine
| | - Carlos M. Ferrario
- Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina, 27157
| | - Adam Whaley-Connell
- Diabetes Cardiovascular Center of Excellence, University of Missouri-Columbia School of Medicine
- Research Service, Harry S. Truman Veterans Affairs Medical Center, Columbia, Missouri, 65201
| | - James R. Sowers
- Diabetes Cardiovascular Center of Excellence, University of Missouri-Columbia School of Medicine
- Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine
- Research Service, Harry S. Truman Veterans Affairs Medical Center, Columbia, Missouri, 65201
| |
Collapse
|
38
|
Moningka NC, Tsarova T, Sasser JM, Baylis C. Protective actions of nebivolol on chronic nitric oxide synthase inhibition-induced hypertension and chronic kidney disease in the rat: a comparison with angiotensin II receptor blockade. Nephrol Dial Transplant 2011; 27:913-20. [PMID: 21856762 DOI: 10.1093/ndt/gfr449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) deficiency contributes to chronic kidney disease (CKD) progression and hypertension. The β-blocker, nebivolol (N), also enhances NO production, and we studied whether N attenuates CKD and hypertension caused by chronic NO synthase inhibition (CNOSI). METHODS Male Sprague-Dawley rats on 6 weeks of CNOSI (L-NAME, 150 mg/L drinking water) received placebo (P), N (10 mg/kg/day), olmesartan (O, 2.5 mg/kg/day) or N + O. Blood pressure (BP) and urine protein and NOx (metabolites of NO) were monitored throughout. We measured glomerular sclerosis (GS), creatinine clearance (C(Cr)) and components of the NO and oxidant pathways in the renal cortex. RESULTS BP increased >50 mmHg in P by weeks 4-6, but no change occurred in N, O or N + O. P rats developed proteinuria and GS and C(Cr) was ∼30% of normal. In N, O and N + O, all values remained normal. In renal cortex of P, p22phox and nitrotyrosine abundance as well as H(2)O(2) levels were higher and extracellular superoxide dismutase (EC SOD) was lower versus normal kidneys. N, O and N + O normalized p22phox, H(2)O(2) and EC SOD and increased Mn SOD above normal. The cortical neuronal NO synthase (nNOS) β abundance increased in P and this was prevented by N, O and N + O. CONCLUSION We suggest that the major benefit from both N and O is reduction in oxidative stress in the renal cortex, which may potentiate residual local NO. There was no additive benefit of N + O since each drug effectively prevented injury, but a combination may be beneficial where protection is incomplete with each drug. The increased nNOSβ protein seen early in the course of the CKD may contribute to the evolving GS.
Collapse
Affiliation(s)
- Natasha C Moningka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
39
|
Long-term treatment with nebivolol attenuates renal damage in Zucker diabetic fatty rats. J Hypertens 2011; 29:1613-23. [DOI: 10.1097/hjh.0b013e328349064c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Botdorf J, Chaudhary K, Whaley-Connell A. Hypertension in Cardiovascular and Kidney Disease. Cardiorenal Med 2011; 1:183-192. [PMID: 22096454 DOI: 10.1159/000329927] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 01/13/2023] Open
Abstract
The relationship between hypertension and chronic kidney disease (CKD) is bidirectional in nature and, generally, management strategies for cardiovascular risk reduction also attenuate progression of CKD. Prevalent hypertension increases with diminishing kidney function, and the management strategy changes with level of kidney function. In this review, we will examine the evidence for management of hypertension, as a modifiable risk factor for cardiovascular disease in CKD, and the impact of this management on progression of CKD.
Collapse
Affiliation(s)
- Joshua Botdorf
- Division of Nephrology and Hypertension, Harry S. Truman VA Medical Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | | | | |
Collapse
|
41
|
Habibi J, Hayden MR, Sowers JR, Pulakat L, Tilmon RD, Manrique C, Lastra G, Demarco VG, Whaley-Connell A. Nebivolol attenuates redox-sensitive glomerular and tubular mediated proteinuria in obese rats. Endocrinology 2011; 152:659-68. [PMID: 21177830 PMCID: PMC3037162 DOI: 10.1210/en.2010-1038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity and insulin resistance-related proteinuria is associated with oxidative stress and impaired tissue bioavailable nitric oxide. Recent data suggest that nicotinamide adenine dinucleotide phosphate oxidase-mediated oxidative injury to the proximal tubule, like that seen in the glomerulus, contributes to proteinuria in insulin-resistant states. The vasodilator β-blocker nebivolol reduces nicotinamide adenine dinucleotide phosphate oxidase activity, increases bioavailable nitric oxide, and improves insulin sensitivity. To test the hypothesis that a treatment strategy that reduces oxidative stress and attenuates obesity-associated increases in glomerular and proximal tubule derived protein, we treated young Zucker obese (ZO) and age-matched Zucker lean male rats with nebivolol (10 mg · kg(-1) · d(-1)) for 21 d. Compared with Zucker lean, ZO controls exhibited increased proteinuria and γ-glutamyl transpeptidase, reductions in systemic insulin sensitivity in association with increased renal renin, (pro)renin receptor, angiotensin II type 1 receptor, and mineralocorticoid receptor immunostaining, oxidative stress, and glomerular tubular structural abnormalities that were substantially improved with in vivo nebivolol treatment. Nebivolol treatment also led to improvements in glomerular podocyte foot-process effacement and improvement in podocyte-specific proteins (nephrin and synaptopodin) as well as proximal tubule-specific proteins (megalin and lysosomal-associated membrane protein-2) and proximal tubule ultrastructural remodeling in the ZO kidney. Our findings support the notion that obesity and insulin resistance lead to increased glomerulotubular oxidative stress and resultant glomerular and tubular sources of excess urine protein. Furthermore, the results of this study suggest the beneficial effect of nebivolol on proteinuria was derived from improvements in weight and insulin sensitivity and reductions in renal oxidative stress in a state of obesity and insulin resistance.
Collapse
Affiliation(s)
- Javad Habibi
- Diabetes and Cardiovascular Center, the University of Missouri-ColumbiaSchool of Medicine, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Whaley-Connell A, Pulakat L, DeMarco VG, Hayden MR, Habibi J, Henriksen EJ, Sowers JR. Overnutrition and the Cardiorenal Syndrome: Use of a Rodent Model to Examine Mechanisms. Cardiorenal Med 2011; 1:23-30. [PMID: 22258463 DOI: 10.1159/000322827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Obesity has reached epidemic proportions with far-reaching health care and economic implications. Overnutrition, characterized by excess intake of carbohydrates and fats, has been associated with end-organ damage in several tissues, including the heart and the kidney. Furthermore, overnutrition is one of the most important modifiable and preventable causes of morbidity and mortality associated with cardiovascular and kidney diseases. Insulin resistance and compensatory hyperinsulinemia as well as associated mechanisms, including enhanced renin-angiotensin-aldosterone system activity, inflammation, and oxidative stress, have been implicated in obesity-related cardiorenal injury. In this review, the effect of overnutrition on heart and kidney disease is assessed in a rodent model of overnutrition and obesity, the Zucker obese rat.
Collapse
|
43
|
Current world literature. Curr Opin Cardiol 2010; 25:411-21. [PMID: 20535070 DOI: 10.1097/hco.0b013e32833bf995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Gongora MC, Harrison DG. NO solution for a radical problem: a TAL story. Am J Physiol Renal Physiol 2010; 298:F883-4. [DOI: 10.1152/ajprenal.00023.2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Maria Carolina Gongora
- Department of Medicine and Division of Cardiology, Emory University School of Medicine and Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - David G. Harrison
- Department of Medicine and Division of Cardiology, Emory University School of Medicine and Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| |
Collapse
|
45
|
Hayden MR, Habibi J, Whaley-Connell A, Sowers D, Johnson M, Tilmon R, Jain D, Ferrario C, Sowers JR. Nebivolol attenuates maladaptive proximal tubule remodeling in transgenic rats. Am J Nephrol 2010; 31:262-72. [PMID: 20110666 DOI: 10.1159/000278757] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/14/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS The impact of nebivolol therapy on the renal proximal tubular cell (PTC) structure and function was investigated in a transgenic (TG) rodent model of hypertension and the cardiometabolic syndrome. The TG Ren2 rat develops nephropathy with proteinuria, increased renal angiotensin II levels and oxidative stress, and PTC remodeling. Nebivolol, a beta(1)-antagonist, has recently been shown to reduce albuminuria, in part, through reductions in renal oxidative stress. Accordingly, we hypothesized that nebivolol therapy would attenuate PTC damage and tubulointerstitial fibrosis. METHODS Young Ren2 (R2-N) and SD (SD-N) rats were treated with nebivolol (10 mg/kg/day) or vehicle (R2-C; SD-C) for 3 weeks. PTC structure and function were tested using transmission electron microscopy and functional measurements. RESULTS Nebivolol treatment decreased urinary N-acetyl-beta-D-glucosaminidase, tubulointerstitial ultrastructural remodeling and fibrosis, NADPH oxidase activity, 3-nitrotyrosine levels, and increased megalin and lysosomal-associated membrane protein-2 immunostaining in PTCs. Ultrastructural abnormalities that were improved with therapy included altered canalicular structure, reduced endosomes/lysosomes and PTC vacuoles, basement membrane thickening, and mitochondrial remodeling/fragmentation. CONCLUSION These observations support the notion that nebivolol may improve PTC reabsorption of albumin and other glomerular filtered small molecular weight proteins in association with the attenuation of oxidative stress, tubulointerstitial injury and fibrosis in this rat model of metabolic kidney disease.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Benzopyrans/pharmacology
- Blood Pressure/drug effects
- Disease Models, Animal
- Ethanolamines/pharmacology
- Fibrosis
- Hypertension, Renal/drug therapy
- Hypertension, Renal/metabolism
- Hypertension, Renal/pathology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Low Density Lipoprotein Receptor-Related Protein-2/metabolism
- Lysosomes/metabolism
- Lysosomes/ultrastructure
- Male
- Microscopy, Electron
- Nebivolol
- Oxidative Stress/drug effects
- Proteinuria/drug therapy
- Proteinuria/pathology
- Rats
- Rats, Sprague-Dawley
- Rats, Transgenic
- Renin/genetics
- Vacuoles/metabolism
- Vacuoles/ultrastructure
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Whaley-Connell A, Nistala R, Habibi J, Hayden MR, Schneider RI, Johnson MS, Tilmon R, Rehmer N, Ferrario CM, Sowers JR. Comparative effect of direct renin inhibition and AT1R blockade on glomerular filtration barrier injury in the transgenic Ren2 rat. Am J Physiol Renal Physiol 2009; 298:F655-61. [PMID: 20007350 DOI: 10.1152/ajprenal.00373.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Renin-angiotensin system (RAS) activation contributes to kidney injury through oxidative stress. Renin is the rate-limiting step in angiotensin (ANG II) generation. Recent work suggests renin inhibition improves proteinuria comparable to ANG type 1 receptor (AT1R) blockade (ARB). Thereby, we investigated the relative impact of treatment with a renin inhibitor vs. an ARB on renal oxidative stress and associated glomerular structural and functional changes in the transgenic Ren2 rat, which manifests hypertension, albuminuria, and increased tissue RAS activity. Young Ren2 and age-matched Sprague-Dawley (SD) controls (age 6-9 wk) were treated with a renin inhibitor (aliskiren), an ARB (irbesartan), or vehicle for 21 days. Ren2 rats exhibited increases in systolic pressure (SBP), albuminuria, and renal 3-nitrotyrosine content as well as ultrastructural podocyte foot-process effacement and diminution of the podocyte-specific protein nephrin. Structural and functional alterations were accompanied by increased renal cortical ANG II, AT1R, as well as NADPH oxidase subunit (Nox2) expression compared with SD controls. Abnormalities were attenuated to a similar extent with both aliskiren and irbesartan treatment. Despite the fact the dose of irbesartan used caused a greater reduction in SBP than aliskerin treatment (P < 0.05), the effects on proteinuria, nephrin, and oxidative stress were similar between the two treatments. Our results highlight both the importance of pressor-related reductions on podocyte integrity and albuminuria as well as RAS-mediated oxidant stress largely comparable between ARB and renin inhibition treatment.
Collapse
Affiliation(s)
- Adam Whaley-Connell
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Taylor DA, Abdel-Rahman AA. Novel strategies and targets for the management of hypertension. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2009; 57:291-345. [PMID: 20230765 DOI: 10.1016/s1054-3589(08)57008-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hypertension, as the sole or comorbid component of a constellation of disorders of the cardiovascular (CV) system, is present in over 90% of all patients with CV disease and affects nearly 74 million individuals in the United States. The number of medications available to treat hypertension has dramatically increased during the past 3 decades to some 50 medications as new targets involved in the normal regulation of blood pressure have been identified, resulting in the development of new agents in those classes with improved therapeutic profiles (e.g., renin-angiotensin-aldosterone system; RAAS). Despite these new agents, hypertension is not adequately managed in approximately 30% of patients, who are compliant with prescriptive therapeutics, suggesting that new agents and/or strategies to manage hypertension are still needed. Some of the newest classes of agents have targeted other components of the RAS, for example, the selective renin inhibitors, but recent advances in vascular biology have provided novel potential targets that may provide avenues for new agent development. These newer targets include downstream signaling participants in pathways involved in contraction, growth, hypertrophy, and relaxation. However, perhaps the most unique approach to the management of hypertension is a shift in strategy of using existing agents with respect to the time of day at which the agent is taken. This new strategy, termed "chronotherapy," has shown considerable promise in effectively managing hypertensive patients. Therefore, there remains great potential for future development of safe and effective agents and strategies to manage a disorder of the CV system of epidemic proportion.
Collapse
Affiliation(s)
- David A Taylor
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA
| | | |
Collapse
|