1
|
Shi J, Zhang M, Zhang L, Yu X, Sun L, Liu J, Zhao Y, Zheng W. Shelterin dysfunction promotes CD4+ T cell senescence in Behçet's disease. Rheumatology (Oxford) 2024; 63:2819-2827. [PMID: 38145496 DOI: 10.1093/rheumatology/kead703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVES To investigate the potential role of shelterin dysfunction in naïve CD4+ T cells in the pathogenesis of Behçet's disease (BD). METHODS Naïve CD4+ T cells were isolated from 40 BD patients and 40 sex- and age-matched healthy controls (HC). Senescent profiles, shelterin subunits expression, telomere length, telomerase activity and critical DNA damage response (DDR) were evaluated. Telomere repeat factor-2 (TRF2) silencing was conducted for further validation. RESULTS Compared with HC, BD patients had significantly decreased naïve CD4+ T cells, increased cell apoptosis, senescence, and productions of TNF-α and IFN-γ upon activation. Notably, BD naïve CD4+ T cells had shortened telomere, impaired telomerase activity, and expressed lower levels of shelterin subunits TRF2, TRF1- and TRF2-Interacting Nuclear Protein 2 (TIN2) and Repressor/Activator Protein 1 (RAP1). Furthermore, BD naïve CD4+ T cells exhibited significantly increased DDR, evidenced by elevated phosphorylated ataxia telangiectasia (AT) mutated (pATM), phosphorylated p53 (pp53) and p21. Finally, TRF2 silencing markedly upregulated DDR, apoptosis and proinflammatory cytokines production in HC naïve CD4+ T cells. CONCLUSION Our study demonstrated that TRF2 deficiency in BD naïve CD4+ T cells promoted cell apoptosis and senescence, leading to proinflammatory cytokines overproduction. Therefore, restoring TRF2 might be a promising therapeutic strategy for BD.
Collapse
Affiliation(s)
- Jing Shi
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Menghao Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
| | - Lili Zhang
- Department of Rheumatology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xin Yu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
| | - Luxi Sun
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Jinjing Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
| |
Collapse
|
2
|
Novello G, Souza FF, Canisso IF. Platelet-Rich Plasma Proteome of Mares Susceptible to Persistent-Breeding-Induced Endometritis Differs from Resistant Mares. Animals (Basel) 2024; 14:2100. [PMID: 39061562 PMCID: PMC11273647 DOI: 10.3390/ani14142100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Persistent-breeding-induced endometritis (PBIE) is the leading cause of subfertility and poor reproductive efficiency in mares. Platelet-rich plasma (PRP) treatment has been shown to mitigate PBIE, reduce uterine infections, and improve fertility in mares. However, the proteome of PRP in mares, particularly those susceptible to PBIE, remains unknown. This study aimed to fill this knowledge gap by comparing the most abundant proteins present in PRP prepared from mares with histories of being susceptible or resistant to PBIE. The study involved twelve light-breed mares: seven susceptible and five resistant to PBIE. A complete blood count and physical examination were performed on each mare before blood drawing to ensure good health. The PRP was prepared following collection in a blood transfusion bag and double centrifugation. Platelet counts in the PRP were compared across the groups. The PRP was cryopreserved in liquid nitrogen until proteomics could be completed. Physical parameters and complete blood cell counts were within normal ranges. The platelet counts for resistant (561 ± 152 × 103) and susceptible mares (768 ± 395 × 103) differed (p < 0.05). One hundred and five proteins were detected in all mares, and four proteins were more abundant in resistant mares (p < 0.05). The proteins were apolipoprotein C-II, serpin family G member 1, protection of telomeres protein 1, and non-specific serine/threonine protein kinase. All these proteins are linked to the immune response. These results suggest that PRP prepared from mares resistant to PBIE may be more beneficial in mitigating PBIE in mares, offering a promising avenue for improving equine reproductive health. However, this remains to be determined with in vivo studies.
Collapse
Affiliation(s)
- Guilherme Novello
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu 01419-901, SP, Brazil; (G.N.); (F.F.S.)
| | - Fabiana F. Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu 01419-901, SP, Brazil; (G.N.); (F.F.S.)
| | - Igor F. Canisso
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu 01419-901, SP, Brazil; (G.N.); (F.F.S.)
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61822, USA
| |
Collapse
|
3
|
Liu S, Yang R, Zuo Y, Qiao C, Jiang W, Cheng W, Wei W, Liu Z, Geng Y, Dong Y. The association of circulating systemic inflammation with premature death and the protective role of the Mediterranean diet: a large prospective cohort study of UK biobank. BMC Public Health 2024; 24:1449. [PMID: 39118094 PMCID: PMC11312373 DOI: 10.1186/s12889-024-18888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/20/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Although previous studies have identified specific circulating inflammatory markers associated with the risk of mortality, they have often overlooked the broader impact of a comprehensive inflammatory response on health outcomes. This study aims to assess the association between circulating systemic inflammation and age-related hospitalization and premature death, as well as explore the potential mediating effects of various dietary patterns on these associations. METHODS A total of 448,574 participants enrolled in the UK Biobank study were included. Circulating C-reactive protein(CRP), white blood cell count(WBC), platelet count(Plt), and neutrophil/lymphocyte ratio(NLR) were measured, which were used to establish a weighted systemic inflammatory index of inflammation index(INFLA-Score). Dietary intake information was documented through 24-hour dietary recalls, and dietary pattern scores including Dietary Approaches to Stop Hypertension(DASH), Mediterranean(MED), and Healthy Eating Index-2020(HEI-2020) were calculated. Cox proportional hazards regression models were performed to assess the associations between INFLA-Score and age-related disease hospitalization, cause-specific and all-cause premature death. RESULTS During a median follow-up of 12.65 years, 23,784 premature deaths were documented. After adjusting for multiple covariates, higher levels of CRP, WBC, NLR, and INFLA-Score were significantly associated with increased risks of age-related disease hospitalization(HRCRP=1.19; 95%:1.17-1.21; HRWBC=1.17; 95%:1.15-1.19; HRNLR=1.18; 95%:1.16-1.20; HRINFLA-Score=1.19; 95%:1.17-1.21) and premature death(HRCRP=1.68; 95%:1.61-1.75; HRWBC=1.23; 95%:1.18-1.27; HRNLR=1.45; 95%:1.40-1.50; HRINFLA-Score=1.58; 95%:1.52-1.64). Compared to the lowest INFLA-Score group, the highest INFLA-Score group was associated with increased values of whole-body and organ-specific biological age, and had a shortened life expectancy of 2.96 (95% CI 2.53-3.41) and 4.14 (95% CI 3.75-4.56) years at the age of 60 years in women and men, respectively. Additionally, we observed no significant association of the INFLA-Score with aging-related hospitalization and premature death among participants who were more adhering to the Mediterranean (MED) dietary pattern(HRAging-related hospitalization=1.07; 95%:0.99-1.16;HRPremature death=1.19; 95%:0.96-1.47). CONCLUSION A higher INFLA-Score was correlated with an increased risk of age-related hospitalization and premature death. Nevertheless, adherence to a Mediterranean (MED) diet may mitigate these associations.
Collapse
Affiliation(s)
- ShiJian Liu
- Department of kidney, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Ruiming Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, 150081, China
| | - Yingdong Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, 150081, China
| | - Conghui Qiao
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, 150081, China
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, 150081, China
| | - Weilun Cheng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, 150081, China
| | - Zijie Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, 150081, China
| | - Yiding Geng
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, 150081, China
| | - Ying Dong
- Department of Endocrinology and Metabolic Disease, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
4
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
5
|
Küçüksolak M, Yılmaz S, Ballar-Kırmızıbayrak P, Bedir E. Potent telomerase activators from a novel sapogenin via biotransformation utilizing Camarosporium laburnicola, an endophytic fungus. Microb Cell Fact 2023; 22:66. [PMID: 37024895 PMCID: PMC10080871 DOI: 10.1186/s12934-023-02069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Cycloartane-type triterpenoids possess important biological activities, including immunostimulant, wound healing, and telomerase activation. Biotransformation is one of the derivatization strategies of natural products to improve their bioactivities. Endophytic fungi have attracted attention in biotransformation studies because of their ability to perform modifications in complex structures with a high degree of stereospecificity. RESULTS This study focuses on biotransformation studies on cyclocephagenol (1), a novel cycloartane-type sapogenin from Astragalus species, and its 12-hydroxy derivatives (2 and 3) to obtain new telomerase activators. Since the hTERT protein levels of cyclocephagenol (1) and its 12-hydroxy derivatives (2 and 3) on HEKn cells were found to be notable, biotransformation studies were carried out on cyclocephagenol and its 12-hydroxy derivatives using Camarosporium laburnicola, an endophytic fungus isolated from Astragalus angustifolius. Later, immunoblotting and PCR-based ELISA assay were used to screen starting compounds and biotransformation products for their effects on hTERT protein levels and telomerase activation. All compounds showed improved telomerase activation compared to the control group. CONCLUSIONS As a result of biotransformation studies, seven new metabolites were obtained and characterized, verifying the potential of C. laburnicola as a biocatalyst. Additionally, the bioactivity results showed that this endophytic biocatalyst is unique in transforming the metabolites of its host to afford potent telomerase activators.
Collapse
Affiliation(s)
- Melis Küçüksolak
- Department of Bioengineering, Izmir Institute of Technology, Urla, 35430, İzmir, Türkiye, Turkey
| | - Sinem Yılmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Bornova, İzmir, Türkiye, Turkey
- Department of Bioengineering, Faculty of Engineering, University of Alanya Aladdin Keykubat, Antalya, Türkiye, Turkey
| | | | - Erdal Bedir
- Department of Bioengineering, Izmir Institute of Technology, Urla, 35430, İzmir, Türkiye, Turkey.
| |
Collapse
|
6
|
Lu Y, Ruan Y, Hong P, Rui K, Liu Q, Wang S, Cui D. T-cell senescence: A crucial player in autoimmune diseases. Clin Immunol 2023; 248:109202. [PMID: 36470338 DOI: 10.1016/j.clim.2022.109202] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Senescent T cells are proliferative disabled lymphocytes that lack antigen-specific responses. The development of T-cell senescence in autoimmune diseases contributes to immunological disorders and disease progression. Senescent T cells lack costimulatory markers with the reduction of T cell receptor repertoire and the uptake of natural killer cell receptors. Senescent T cells exert cytotoxic effects through the expression of perforin, granzymes, tumor necrosis factor, and other molecules without the antigen-presenting process. DNA damage accumulation, telomere damage, and limited DNA repair capacity are important features of senescent T cells. Impaired mitochondrial function and accumulation of reactive oxygen species contribute to T cell senescence. Alleviation of T-cell senescence could provide potential targets for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yinyun Lu
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Yongchun Ruan
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Pan Hong
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, China
| | - Ke Rui
- Department of Transfusion, Shaoxing People's Hospital, Shaoxing, China
| | - Qi Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Ye M, Wang Y, Zhan Y. Genetic association of leukocyte telomere length with Graves' disease in Biobank Japan: A two-sample Mendelian randomization study. Front Immunol 2022; 13:998102. [PMID: 36248806 PMCID: PMC9559571 DOI: 10.3389/fimmu.2022.998102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Telomere length (TL) has been recognized to be fundamental to the risk of autoimmune disorders. However, the role of leukocyte TL in Graves' disease has not yet been fully elucidated. In the study, we exploited the two-sample Mendelian randomization (MR) design to evaluate the causal effect of leukocyte TL on the risk of Graves' disease. Methods Genome-wide association study (GWAS) data of leukocyte TL from the Singapore Chinese Health Study (SCHS) cohort and Graves' disease from Biobank Japan (BBJ, 2176 cases and 210,277 controls) were analyzed. Nine single nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs) for TL. We used the inverse variance weighted (IVW) approach as the main estimator and MR-Egger regression, weighted median, simple mode, and weighed mode methods as complementary estimators. Horizontal pleiotropy was assessed using the intercept from MR-Egger. Results The analysis demonstrated that genetically predicted longer leukocyte TL was causally associated with a lower risk of Graves' disease using the IVW method (odds ratio [OR]: 1.64, 95% confidence interval [CI]: 1.23-2.17, P=2.27e-04, and other complementary MR approaches achieved similar results. The intercept from the MR-Egger analysis provided no noticeable evidence of horizontal pleiotropy (β=0.02, P=0.641). MR-PRESSO method reported no outliers (P=0.266). Conclusions Our results provided evidence to support a genetic predisposition to shorter leukocyte TL with an increased risk of Graves' disease. Further studies are warranted to explore the mechanism underlying the association.
Collapse
Affiliation(s)
| | | | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
8
|
Törn C, Liu X, Onengut-Gumuscu S, Counts KM, Moreno JL, Remedios CL, Chen WM, LeFaive J, Butterworth MD, Akolkar B, Krischer JP, Lernmark Å, Rewers M, She JX, Toppari J, Ziegler AG, Ratan A, Smith AV, Hagopian WA, Rich SS, Parikh HM. Telomere length is not a main factor for the development of islet autoimmunity and type 1 diabetes in the TEDDY study. Sci Rep 2022; 12:4516. [PMID: 35296692 PMCID: PMC8927592 DOI: 10.1038/s41598-022-08058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
The Environmental Determinants of Diabetes in the Young (TEDDY) study enrolled 8676 children, 3-4 months of age, born with HLA-susceptibility genotypes for islet autoimmunity (IA) and type 1 diabetes (T1D). Whole-genome sequencing (WGS) was performed in 1119 children in a nested case-control study design. Telomere length was estimated from WGS data using five tools: Computel, Telseq, Telomerecat, qMotif and Motif_counter. The estimated median telomere length was 5.10 kb (IQR 4.52-5.68 kb) using Computel. The age when the blood sample was drawn had a significant negative correlation with telomere length (P = 0.003). European children, particularly those from Finland (P = 0.041) and from Sweden (P = 0.001), had shorter telomeres than children from the U.S.A. Paternal age (P = 0.019) was positively associated with telomere length. First-degree relative status, presence of gestational diabetes in the mother, and maternal age did not have a significant impact on estimated telomere length. HLA-DR4/4 or HLA-DR4/X children had significantly longer telomeres compared to children with HLA-DR3/3 or HLA-DR3/9 haplogenotypes (P = 0.008). Estimated telomere length was not significantly different with respect to any IA (P = 0.377), IAA-first (P = 0.248), GADA-first (P = 0.248) or T1D (P = 0.861). These results suggest that telomere length has no major impact on the risk for IA, the first step to develop T1D. Nevertheless, telomere length was shorter in the T1D high prevalence populations, Finland and Sweden.
Collapse
Affiliation(s)
- Carina Törn
- Unit for Diabetes and Celiac Disease, Wallenberg/CRC, Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, 21428, Malmö, Sweden.
| | - Xiang Liu
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Kevin M Counts
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Jose Leonardo Moreno
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Cassandra L Remedios
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jonathon LeFaive
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Martha D Butterworth
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Beena Akolkar
- National Institutes of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA
| | - Åke Lernmark
- Unit for Diabetes and Celiac Disease, Wallenberg/CRC, Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, 21428, Malmö, Sweden
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany.,Forschergruppe Diabetes, Technical University of Munich, Klinikum Rechts der Isar, Munich, Germany.,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Hemang M Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd #100, Tampa, FL, 33612, USA.
| | | |
Collapse
|
9
|
The effect of mindfulness-based interventions on immunity-related biomarkers: a comprehensive meta-analysis of randomised controlled trials. Clin Psychol Rev 2022; 92:102124. [DOI: 10.1016/j.cpr.2022.102124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 12/17/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022]
|
10
|
DAĞ T, ŞAHİNDURAN Ş. Measurement of paraoxonase and telomerase enzymes and HDL (high density lipoprotein) values and research of their possible relationships with each other in bloodserum of obese cats. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2021. [DOI: 10.24880/maeuvfd.920578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
11
|
Association of the PINX1 Variant rs6984094, Which Lengthens Telomeres, with Systemic Lupus Erythematosus Susceptibility in Chinese Populations. J Immunol Res 2021; 2021:7079359. [PMID: 34337078 PMCID: PMC8294968 DOI: 10.1155/2021/7079359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
A recent genome-wide association study (GWAS) of Asian ancestry reported that single nucleotide polymorphism (SNP) in TERT (telomerase reverse transcriptase) was associated with systemic lupus erythematosus (SLE). TERT has a critical role in maintaining the chromosomal stability and the length of telomere. Given that only a small portion of the genetic heritability of SLE has been explained so far, we aimed to identify novel loci in telomere-related genes responsible for SLE susceptibility in Chinese populations. We performed a comprehensive genetic association analysis of SLE with telomere-related genes. To identify functional significance, we analyzed the publicly available HaploReg v4.1 and RegulomeDB databases. Differential gene expression analysis was also performed using ArrayExpress. A novel signal of PINX1 rs6984094 was identified (P discovery = 4.13 × 10-2, OR = 0.58, 95% CI 0.35-0.98) and successfully replicated (P replication = 5.73 × 10-3, OR = 0.45, 95% CI 0.26-0.81). Multiple layers of functional analysis suggested that the PINX1 rs6984094 risk T allele exhibited increased nuclear protein binding. We also observed an increased expression of PINX1 mRNA in peripheral blood mononuclear cells from SLE patients compared with healthy controls. Overall, we observed a novel genetic association between PINX1 (encodes the PinX1 protein, an inhibitory telomerase enzyme that lengthens telomeres) and SLE susceptibility in Chinese populations.
Collapse
|
12
|
Farid Aql MM, Bahget SAEG, Kholoussi N, Abdel-Salam GMEH, Abdel Raouf H, Mohamed Eid M, Esmail REB. Telomerase Dysfunction in the Tumorigenesis of Genetic Disorders. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:56-68. [PMID: 34268254 PMCID: PMC8256828 DOI: 10.22088/ijmcm.bums.10.1.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 12/03/2022]
Abstract
Telomeres are nucleoprotein complexes present at the ends of chromosome to maintain its integrity. Telomere length is maintained by an enzyme called "telomerase". Thus, telomerase activity and telomere length are crucial for the initiation of cancer and tumors survival. Also, oxidative stress will cause DNA, protein, and/or lipid damage, which end with changes in chromosome instability, genetic mutation, and may affect cell growth and lead to cancer. Some genetic diseases such as chromosomal instability syndrome, overgrowth syndrome, and neurofibromatosis make the patients at higher risk for developing different types of cancers. Therefore, we aimed to estimate telomerase activity and oxidative stress in these patients. Blood samples were collected from 31 patients (10 with neurofibromatosis, 11 with chromosomal breakage, and 10 with overgrowth syndrome) and 12 healthy subjects. Blood hTERT mRNA was detected by real time quantitative reverse-transcription PCR (RT-qPCR). All patients were subjected to chromosomal examination and chromosome breakage study using diepoxybutane method. Moreover, serum glutathione (GSH), glutathione-s-transferase (GST) activity and nitric oxide (NO) levels were measured among the control and patients groups. Receiver operating characteristic (ROC) curve was drawn to evaluate the efficiency of telomerase activity as a biomarker for the prediction of cancer occurrence. The relative telomerase activity in neurofibromatosis patients was significantly higher than controls (P = 0.014), while it was non-significantly higher in chromosomal breakage and overgrowth patients (P = 0.424 and 0.129, respectively). NO levels in neurofibromatosis, chromosomal breakage and overgrowth patients significantly increased with respect to control (P = 0.021, 0.002, 0.050, respectively). GSH levels were non-significantly lower in neurofibromatosis and chromosomal breakage patients in comparison with the control group, while it remained unchanged in overgrowth patients. The GST activity was significantly upregulated in neurofibromatosis, chromosomal breakage and overgrowth groups in comparison with the control group (P = 0.001, 0.009, and 0.025, respectively). Chromosomal examination revealed normal karyotype in all four chromosomal breakage patients with positive diepoxybutane test. The results of the present study revealed altered telomerase activity and oxidative stress in the studied genetic disorders. More research studies with a larger number of patients are required to confirm whether this alteration is related to cancer occurrence risk or not.
Collapse
Affiliation(s)
| | | | - Naglaa Kholoussi
- Immunogenetic Department, National Research Centre, Cairo, Egypt
| | | | | | | | | |
Collapse
|
13
|
Liu X, Hoft DF, Peng G. Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. J Clin Invest 2020; 130:1073-1083. [PMID: 32118585 DOI: 10.1172/jci133679] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functional state of the preexisting T cells in the tumor microenvironment is a key determinant for effective antitumor immunity and immunotherapy. Increasing evidence suggests that immunosenescence is an important state of T cell dysfunction that is distinct from exhaustion, a key strategy used by malignant tumors to evade immune surveillance and sustain the suppressive tumor microenvironment. Here, we discuss the phenotypic and functional characteristics of senescent T cells and their role in human cancers. We also explore the possible mechanisms and signaling pathways responsible for induction of T cell senescence by malignant tumors, and then discuss potential strategies to prevent and/or reverse senescence in tumor-specific T cells. A better understanding of these critical issues should provide novel strategies to enhance cancer immunotherapy.
Collapse
|
14
|
Lulkiewicz M, Bajsert J, Kopczynski P, Barczak W, Rubis B. Telomere length: how the length makes a difference. Mol Biol Rep 2020; 47:7181-7188. [PMID: 32876842 PMCID: PMC7561533 DOI: 10.1007/s11033-020-05551-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
Abstract
Telomerase is perceived as an immortality enzyme that might provide longevity to cells and whole organisms. Importantly, it is generally inactive in most somatic cells of healthy, adult men. Consequently, its substrates, i.e. telomeres, get shorter in most human cells with time. Noteworthy, cell life limitation due to telomere attrition during cell divisions, may not be as bad as it looks since longer cell life means longer exposition to harmful factors. Consequently, telomere length (attrition rate) becomes a factor that is responsible for inducing the signaling that leads to the elimination of cells that lived long enough to acquire severe damage. It seems that telomere length that depends on many different factors (including telomerase activity but also genetic factors, a hormonal profile that reflects sex, etc.) might become a useful marker of aging and exposition to stress. Thus in the current paper, we review the factors that affect telomere length in human cells focusing on sex that all together with different environmental and hormonal regulations as well as parental aspect affect telomere attrition rate. We also raise some limitations in the assessment of telomere length that hinders a trustworthy meta-analysis that might lead to acknowledgment of the real value of this parameter.
Collapse
Affiliation(s)
- M Lulkiewicz
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznan, Poland
| | - J Bajsert
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznan, Poland
| | - P Kopczynski
- Centre for Orthodontic Mini-Implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812, Poznan, Poland
| | - W Barczak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866, Poznan, Poland.,Radiobiology Laboratory, Department of Medical Physics, The Greater Poland Cancer Centre, 61-866, Poznan, Poland
| | - B Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznan, Poland.
| |
Collapse
|
15
|
Fazzini F, Lamina C, Raschenberger J, Schultheiss UT, Kotsis F, Schönherr S, Weissensteiner H, Forer L, Steinbrenner I, Meiselbach H, Bärthlein B, Wanner C, Eckardt KU, Köttgen A, Kronenberg F. Results from the German Chronic Kidney Disease (GCKD) study support association of relative telomere length with mortality in a large cohort of patients with moderate chronic kidney disease. Kidney Int 2020; 98:488-497. [PMID: 32641227 DOI: 10.1016/j.kint.2020.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Telomere length is known to be inversely associated with aging and has been proposed as a marker for aging-related diseases. Telomere attrition can be accelerated by oxidative stress and inflammation, both commonly present in patients with chronic kidney disease. Here, we investigated whether relative telomere length is associated with mortality in a large cohort of patients with chronic kidney disease stage G3 and A1-3 or G1-2 with overt proteinuria (A3) at enrollment. Relative telomere length was quantified in peripheral blood by a quantitative PCR method in 4,955 patients from the GCKD study, an ongoing prospective observational cohort. Complete four-year follow-up was available from 4,926 patients in whom we recorded 354 deaths. Relative telomere length was a strong and independent predictor of all-cause mortality. Each decrease of 0.1 relative telomere length unit was highly associated with a 14% increased risk of death (hazard ratio1.14 [95% confidence interval 1.06-1.22]) in a model adjusted for age, sex, baseline eGFR, urine albumin/creatinine ratio, diabetes mellitus, prevalent cardiovascular disease, LDL-cholesterol, HDL-cholesterol, smoking, body mass index, systolic and diastolic blood pressure, C-reactive protein and serum albumin. This translated to a 75% higher risk for those in the lowest compared to the highest quartile of relative telomere length. The association was mainly driven by 117 cardiovascular deaths (1.20 [1.05-1.35]) as well as 67 deaths due to infections (1.27 [1.07-1.50]). Thus, our findings support an association of shorter telomere length with all-cause mortality, cardiovascular mortality and death due to infections in patients with moderate chronic kidney disease.
Collapse
Affiliation(s)
- Federica Fazzini
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Raschenberger
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Renal Division, Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Renal Division, Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Barbara Bärthlein
- Medical Centre for Information and Communication Technology (MIK), University Hospital Erlangen, Erlangen, Germany
| | - Christoph Wanner
- Division of Nephrology, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
16
|
The Psilocybin-Telomere Hypothesis: An empirically falsifiable prediction concerning the beneficial neuropsychopharmacological effects of psilocybin on genetic aging. Med Hypotheses 2020; 134:109406. [DOI: 10.1016/j.mehy.2019.109406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
|
17
|
Massanella M, Karris MY, Pérez-Santiago J, Yek C, Vitomirov A, Mehta SR. Analyses of Mitochondrial DNA and Immune Phenotyping Suggest Accelerated T-Cell Turnover in Treated HIV. J Acquir Immune Defic Syndr 2019; 79:399-406. [PMID: 30312276 DOI: 10.1097/qai.0000000000001824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND HIV infection is associated with premature aging, and mitochondrial integrity is compromised during the aging process. Because mitochondrial toxicity is a consequence of antiretroviral therapies (ARTs), we hypothesized HIV and long-term ART would correlate with immunosenescence and mitochondrial DNA (mtDNA) pathology. SETTING Thirteen older HIV-infected individuals (aged >40 years) with virologic suppression (stratified by duration of ART) were compared with 10 uninfected controls well-matched for age. METHODS Peripheral blood T-cells were immunophenotyped to measure immune activation, proliferation, and immunosenescence in subsets. mtDNA copies per cell and the relative abundance of mtDNA carrying the "common deletion" (RACD) were quantified by droplet digital polymerase chain reaction. RESULTS Immune activation was higher in HIV-infected individuals than HIV-uninfected individuals in mature CD4 T-cell subsets (CD4TTM P = 0.025, CD4TEM P = 0.0020) regardless of ART duration. Cell populations from uninfected individuals were more likely to be more senescent populations in mature CD4 T-cell subsets (TTM P = 0.017), and CD8 (CD8TEMRA+ P = 0.0026). No differences were observed in mtDNA or RACD levels in any CD4 T-cell subsets, while CD8TSCM of infected individuals trended to have more mtDNA (P = 0.057) and reduced RACD (P = 0.0025). CONCLUSIONS HIV-infected individuals demonstrated increased immune activation, but reduced senescence in more mature T-cell subsets. Increased mtDNA content and lower RACD in CD8TSCM suggest immune activation driven turnover of these cells in HIV-infected persons.
Collapse
Affiliation(s)
- Marta Massanella
- Department of Medicine, University of California San Diego, CA.,Department of Microbiology, Infectiology and Immunology, Centre de Recherche du CHUM, Universite[Combining Acute Accent] de Montre[Combining Acute Accent]al, Montre[Combining Acute Accent]al, QC, Canada
| | - Maile Y Karris
- Department of Medicine, University of California San Diego, CA
| | - Josué Pérez-Santiago
- Department of Medicine, University of California San Diego, CA.,Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR
| | - Christina Yek
- Department of Medicine, University of California San Diego, CA.,University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Sanjay R Mehta
- Department of Medicine, University of California San Diego, CA.,Department of Pathology, University of California San Diego, CA.,Veterans Affairs Medical Center, San Diego, CA
| |
Collapse
|
18
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
19
|
Gamal RM, Hammam N, Zakary MM, Abdelaziz MM, Razek MRA, Mohamed MSE, Emad Y, Elnaggar MG, Furst DE. Telomere dysfunction-related serological markers and oxidative stress markers in rheumatoid arthritis patients: correlation with diseases activity. Clin Rheumatol 2018; 37:3239-3246. [PMID: 30328024 DOI: 10.1007/s10067-018-4318-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune polyarthritis with progressive destruction of the synovial joints associated with systemic manifestations. RA is characterized by infiltration of the synovial joints with inflammatory immune cells with premature immunosenescence. Shorter telomere length in the peripheral blood cells and increase in the oxidative stress have been detected in patients with RA. The aim of the present study was to study the association of markers of telomere shortening and oxidative stress with RA disease activity. Sixty-one RA patients and 15 healthy controls were enrolled in the study. Demographic data, clinical examination, and disease activity status were evaluated for the RA patients. Serum levels of chitinase and NAG (telomere markers) were determined by biochemical reactions using colloidal chitin and NAG as substrates, respectively. Nitric oxide and superoxide dismutase (oxidative stress markers) were determined colometrically and spectrophotometrically, respectively, in the sera of RA patients and controls. Results were correlated with disease activity. Indices of telomere shortening and oxidative markers were significantly higher in RA patients compared to controls. These indices were correlated with signs of disease activity (including number of swollen and tender joints, DAS-28, and inflammatory markers). Rheumatoid arthritis is a disease in which markers of telomere shortening and elevated oxidant stress correlate with disease activity.
Collapse
Affiliation(s)
- Rania M Gamal
- Rheumatology and Rehabilitation Department, Assiut University Hospitals, Faculty of Medicine, Assiut, Egypt.
| | - Nevin Hammam
- Rheumatology and Rehabilitation Department, Assiut University Hospitals, Faculty of Medicine, Assiut, Egypt.,Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Madeha M Zakary
- Department of Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa Mahmoud Abdelaziz
- Rheumatology and Rehabilitation Department, Assiut University Hospitals, Faculty of Medicine, Assiut, Egypt
| | - Mohamed Raouf Abdel Razek
- Rheumatology and Rehabilitation Department, Assiut University Hospitals, Faculty of Medicine, Assiut, Egypt
| | | | - Yaser Emad
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University Hospital, Cairo, Egypt
| | | | - Daniel E Furst
- Department of Medicine, Division of Rheumatology, University of California in Los Angeles (emeritus), Los Angeles, CA, USA.,Department of Rheumatology, Division of Rheumatology, University of Washington, Seattle, WA, USA.,Division of Rheumatology and Experimental Medicine, University of Florence, Florence, Italy
| |
Collapse
|
20
|
Abstract
Telomere length measurement is increasingly recognized as a clinical gauge for age-related disease risk. There are several methods for studying blood telomere length (BTL) as a clinical biomarker. The first is an observational study approach, which directly measures telomere lengths using either cross-sectional or longitudinal patient cohorts and compares them to a population of age- and sex-matched individuals. These direct traceable measurements can be considered reflective of an individual's current health or disease state. Escalating interest in personalized medicine, access to high-throughput genotyping and resulting acquisition of large volumes of genetic data corroborates the second method, Mendelian randomization (MR). MR employs telomere length-associated genetic variants to indicate predisposition to disease risk based on the genomic composition of the individual. When assessed from cells in the bloodstream, telomeres can show variation from their genetically predisposed lengths due to environmental-induced changes. These alterations in telomere length act as an indicator of cellular health, which, in turn, can provide disease risk status. Overall, BTL measurement is a dynamic marker of biological health and well-being that together with genetically defined telomere lengths can provide insights into improved healthcare for the individual.
Collapse
|
21
|
Doherty JA, Grieshober L, Houck JR, Barnett MJ, De Dieu Tapsoba J, Thornquist MD, Wang CY, Goodman GE, Chen C. Nested case-control study of telomere length and lung cancer risk among heavy smokers in the β-Carotene and Retinol Efficacy Trial. Br J Cancer 2018; 118:1513-1517. [PMID: 29670295 PMCID: PMC5988820 DOI: 10.1038/s41416-018-0075-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/02/2022] Open
Abstract
Background Telomeres protect cells from genomic instability. We examined telomere length and lung cancer risk prospectively in heavy smokers. Methods In a nested case–control study with 709 cases and 1313 controls, conditional logistic regression was used to evaluate associations between telomere length (global, chromosome 5p, and 13q) and lung cancer risk by histotype, controlling for detailed smoking history. Results Risks of overall lung cancer and adenocarcinoma were suggestively elevated among individuals with telomere length in the longest tertile. No clear patterns were observed for other histotypes, or for chromosome 5p or 13q telomere length. Associations with adenocarcinoma were strongest among (OR, 95% CI for longest versus shortest tertile): former smokers (2.26, 1.03–4.96), individuals <65 years (2.22, 1.13–4.35), and women (2.21, 0.99–4.93). Conclusions Our large study of heavy smokers adds additional evidence that long telomere length prior to diagnosis is associated with risk of lung adenocarcinoma, but not other histotypes.
Collapse
Affiliation(s)
- Jennifer Anne Doherty
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112-5550, USA. .,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA.
| | - Laurie Grieshober
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112-5550, USA
| | - John R Houck
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Matt J Barnett
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Jean De Dieu Tapsoba
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Mark D Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Ching-Yun Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Gary E Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, 98195, USA.,Department of Otolaryngology: Head and Neck Surgery, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
22
|
Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front Immunol 2018; 9:339. [PMID: 29545794 PMCID: PMC5839096 DOI: 10.3389/fimmu.2018.00339] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023] Open
Abstract
T lymphocytes, from their first encounter with their specific antigen as naïve cell until the last stages of their differentiation, in a replicative state of senescence, go through a series of phases. In several of these stages, T lymphocytes are subjected to exponential growth in successive encounters with the same antigen. This entire process occurs throughout the life of a human individual and, earlier, in patients with chronic infections/pathologies through inflammatory mediators, first acutely and later in a chronic form. This process plays a fundamental role in amplifying the activating signals on T lymphocytes and directing their clonal proliferation. The mechanisms that control cell growth are high levels of telomerase activity and maintenance of telomeric length that are far superior to other cell types, as well as metabolic adaptation and redox control. Large numbers of highly differentiated memory cells are accumulated in the immunological niches where they will contribute in a significant way to increase the levels of inflammatory mediators that will perpetuate the new state at the systemic level. These levels of inflammation greatly influence the process of T lymphocyte differentiation from naïve T lymphocyte, even before, until the arrival of exhaustion or cell death. The changes observed during lymphocyte differentiation are correlated with changes in cellular metabolism and these in turn are influenced by the inflammatory state of the environment where the cell is located. Reactive oxygen species (ROS) exert a dual action in the population of T lymphocytes. Exposure to high levels of ROS decreases the capacity of activation and T lymphocyte proliferation; however, intermediate levels of oxidation are necessary for the lymphocyte activation, differentiation, and effector functions. In conclusion, we can affirm that the inflammatory levels in the environment greatly influence the differentiation and activity of T lymphocyte populations. However, little is known about the mechanisms involved in these processes. The elucidation of these mechanisms would be of great help in the advance of improvements in pathologies with a large inflammatory base such as rheumatoid arthritis, intestinal inflammatory diseases, several infectious diseases and even, cancerous processes.
Collapse
Affiliation(s)
- Marco A Moro-García
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Juan C Mayo
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
23
|
Abstract
Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.
Collapse
|
24
|
Barkovskaya MS, Bogomolov AG, Knauer NY, Rubtsov NB, Kozlov VA. Development of software and modification of Q-FISH protocol for estimation of individual telomere length in immunopathology. J Bioinform Comput Biol 2017; 15:1650041. [DOI: 10.1142/s0219720016500414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Telomere length is an important indicator of proliferative cell history and potential. Decreasing telomere length in the cells of an immune system can indicate immune aging in immune-mediated and chronic inflammatory diseases. Quantitative fluorescent in situ hybridization (Q-FISH) of a labeled (C3TA[Formula: see text] peptide nucleic acid probe onto fixed metaphase cells followed by digital image microscopy allows the evaluation of telomere length in the arms of individual chromosomes. Computer-assisted analysis of microscopic images can provide quantitative information on the number of telomeric repeats in individual telomeres. We developed new software to estimate telomere length. The MeTeLen software contains new options that can be used to solve some Q-FISH and microscopy problems, including correction of irregular light effects and elimination of background fluorescence. The identification and description of chromosomes and chromosome regions are essential to the Q-FISH technique. To improve the quality of cytogenetic analysis after Q-FISH, we optimized the temperature and time of DNA-denaturation to get better DAPI-banding of metaphase chromosomes. MeTeLen was tested by comparing telomere length estimations for sister chromatids, background fluorescence estimations, and correction of nonuniform light effects. The application of the developed software for analysis of telomere length in patients with rheumatoid arthritis was demonstrated.
Collapse
Affiliation(s)
- M. Sh. Barkovskaya
- Laboratory of the Clinical Immunopathology, Research Institute of Fundamental and Clinical Immunology, 630099, Yadrintsevskaya Street 14, Novosibirsk, Russia
| | - A. G. Bogomolov
- Laboratory of the Clinical Immunopathology, Research Institute of Fundamental and Clinical Immunology, 630099, Yadrintsevskaya Street 14, Novosibirsk, Russia
- Novosibirsk State University, 630090, Pirogova Street 2, Novosibirsk, Russia
| | - N. Yu. Knauer
- Laboratory of the Clinical Immunopathology, Research Institute of Fundamental and Clinical Immunology, 630099, Yadrintsevskaya Street 14, Novosibirsk, Russia
| | - N. B. Rubtsov
- Laboratory of the Morphology and Function of Subcellular Components, Institute of Cytology and Genetics SB RAS, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia
- Novosibirsk State University, 630090, Pirogova Street 2, Novosibirsk, Russia
| | - V. A. Kozlov
- Laboratory of the Clinical Immunopathology, Research Institute of Fundamental and Clinical Immunology, 630099, Yadrintsevskaya Street 14, Novosibirsk, Russia
| |
Collapse
|
25
|
Mazidi M, Penson P, Banach M. Association between telomere length and complete blood count in US adults. Arch Med Sci 2017; 13:601-605. [PMID: 28507575 PMCID: PMC5420635 DOI: 10.5114/aoms.2017.67281] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Telomere length (TL) is related to age-related health outcomes, but little is known about the relationship between TL and complete blood count (CBC) parameters. We aimed to determine the relationship between TL and CBC in a sample of healthy US adults. MATERIAL AND METHODS Participants in the National Health and Nutrition Examination Survey (NHANES) recruited between 1999 and 2002 who had essential data on total CBC and TL were studied. We computed age- and race-adjusted mean values for total CBC using analysis of covariance (ANCOVA). All statistical analyses accounted for the survey design and sample weights by using SPSS Complex Samples v22.0 (IBM Corp, Armonk, NY). RESULTS Of the 8892 eligible participants, 47.8% (n = 4123) were men. The mean age was 41.8 years overall, 41.0 years in men and 42.6 in women (p = 0.238). The sex-stratified ANCOVA showed no significant difference in the total CBC across TL quartiles (all p > 0.05) in both sexes. In the adjusted model, there was a significant negative relationship with monocyte count (β = -0.051, 95% CI: -0.422; -0.142), mean cell hemoglobin (β = -0.051, 95% CI: -0.038; -0.011) and red cell distribution width (β = -0.031, 95% CI: -0.054; -0.003), while there was a significant positive relationship with basophil ratio (β = 0.046, 95% CI: 0.049-0.171). CONCLUSIONS These results support the possibility that telomere attrition may be a marker for reduced proliferative reserve in hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Genetics and Developmental Biology, International College, University of Chinese Academy of Science, Beijing, China
| | - Peter Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
26
|
The Telomere/Telomerase System in Chronic Inflammatory Diseases. Cause or Effect? Genes (Basel) 2016; 7:genes7090060. [PMID: 27598205 PMCID: PMC5042391 DOI: 10.3390/genes7090060] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/26/2016] [Accepted: 08/29/2016] [Indexed: 12/23/2022] Open
Abstract
Telomeres are specialized nucleoprotein structures located at the end of linear chromosomes and telomerase is the enzyme responsible for telomere elongation. Telomerase activity is a key component of many cancer cells responsible for rapid cell division but it has also been found by many laboratories around the world that telomere/telomerase biology is dysfunctional in many other chronic conditions as well. These conditions are characterized by chronic inflammation, a situation mostly overlooked by physicians regarding patient treatment. Among others, these conditions include diabetes, renal failure, chronic obstructive pulmonary disease, etc. Since researchers have in many cases identified the association between telomerase and inflammation but there are still many missing links regarding this correlation, the latest findings about this phenomenon will be discussed by reviewing the literature. Our focus will be describing telomere/telomerase status in chronic diseases under the prism of inflammation, reporting molecular findings where available and proposing possible future approaches.
Collapse
|
27
|
Nersisyan L. Integration of Telomere Length Dynamics into Systems Biology Framework: A Review. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:35-42. [PMID: 27346946 PMCID: PMC4912229 DOI: 10.4137/grsb.s39836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/11/2016] [Accepted: 05/21/2016] [Indexed: 01/02/2023]
Abstract
Telomere length dynamics plays a crucial role in regulation of cellular processes and cell fate. In contrast to epidemiological studies revealing the association of telomere length with age, age-related diseases, and cancers, the role of telomeres in regulation of transcriptome and epigenome and the role of genomic variations in telomere lengthening are not extensively analyzed. This is explained by the fact that experimental assays for telomere length measurement are resource consuming, and there are very few studies where high-throughput genomics, transcriptomics, and/or epigenomics experiments have been coupled with telomere length measurements. Recent development of computational approaches for assessment of telomere length from whole genome sequencing data pave a new perspective on integration of telomeres into high-throughput systems biology analysis framework. Herein, we review existing methodologies for telomere length measurement and compare them to computational approaches, as well as discuss their applications in large-scale studies on telomere length dynamics.
Collapse
Affiliation(s)
- Lilit Nersisyan
- Group of Bioinformatics, Institute of Molecular Biology, National Academy of Sciences RA, Yerevan, Republic of Armenia
| |
Collapse
|
28
|
Qian Y, Ding T, Wei L, Cao S, Yang L. Shorter telomere length of T-cells in peripheral blood of patients with lung cancer. Onco Targets Ther 2016; 9:2675-82. [PMID: 27226730 PMCID: PMC4863689 DOI: 10.2147/ott.s98488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Telomere shortening occurs in tumor tissues and peripheral blood lymphocytes of many common human malignancies, including lung cancer, but its variation in T-cells has never been investigated. Thus, the aim of this study was to assess telomere length in T-cells and its correlation with the clinical characteristics of patients with lung cancer. PATIENTS AND METHODS A total of 40 patients with lung cancer but without prior cancer history and 25 healthy individuals were selected. T-cells were isolated and their telomere lengths were measured using quantitative real-time polymerase chain reaction methods. RESULTS Telomere length in T-cells was significantly shorter in patients with lung cancer than in controls (P<0.001). Shorter telomere length was significantly associated with increased clinical stage (P=0.008) and distant metastasis (P=0.028). Naïve T-cells from patients with lung cancer had significantly decreased telomere length when compared with those from controls (P=0.012). CONCLUSION The shortened telomere length in T-cells occurred in naïve T-cells and might be related to lung cancer progression.
Collapse
Affiliation(s)
- Yaqin Qian
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China; National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Tingting Ding
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China; National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Lijuan Wei
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
| | - Shui Cao
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China; Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China; National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| |
Collapse
|
29
|
Snetselaar R, van Moorsel CHM, Kazemier KM, van der Vis JJ, Zanen P, van Oosterhout MFM, Grutters JC. Telomere length in interstitial lung diseases. Chest 2016; 148:1011-1018. [PMID: 25973743 DOI: 10.1378/chest.14-3078] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) is a heterogeneous group of rare diseases that primarily affect the pulmonary interstitium. Studies have implicated a role for telomere length (TL) maintenance in ILD, particularly in idiopathic interstitial pneumonia (IIP). Here, we measure TL in a wide spectrum of sporadic and familial cohorts of ILD and compare TL between patient cohorts and control subjects. METHODS A multiplex quantitative polymerase chain reaction method was used to measure TL in 173 healthy subjects and 359 patients with various ILDs, including familial interstitial pneumonia (FIP). The FIP cohort was divided into patients carrying TERT mutations, patients carrying SFTPA2 or SFTPC mutations, and patients without a proven mutation (FIP-no mutation). RESULTS TL in all cases of ILD was significantly shorter compared with those of control subjects (P range: .038 to < .0001). Furthermore, TL in patients with idiopathic pulmonary fibrosis (IPF) was significantly shorter than in patients with other IIPs (P = .002) and in patients with sarcoidosis (P < .0001). Within the FIP cohort, patients in the FIP-telomerase reverse transcriptase (TERT) group had the shortest telomeres (P < .0001), and those in the FIP-no mutation group had TL comparable to that of patients with IPF (P = .049). Remarkably, TL of patients with FIP-surfactant protein (SFTP) was significantly longer than in patients with IPF, but similar to that observed in patients with other sporadic IIPs. CONCLUSIONS The results show telomere shortening across all ILD diagnoses. The difference in TL between the FIP-TERT and FIP-SFTP groups indicates the distinction between acquired and innate telomere shortening. Short TL in the IPF and FIP-no mutation groups is indicative of an innate telomere-biology defect, while a stress-induced, acquired telomere shortening might be the underlying process for the other ILD diagnoses.
Collapse
Affiliation(s)
- Reinier Snetselaar
- Center of Interstitial Lung Diseases, Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coline H M van Moorsel
- Center of Interstitial Lung Diseases, Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands; Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Karin M Kazemier
- Center of Interstitial Lung Diseases, Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands; Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joanne J van der Vis
- Center of Interstitial Lung Diseases, Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Clinical Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter Zanen
- Center of Interstitial Lung Diseases, Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands; Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jan C Grutters
- Center of Interstitial Lung Diseases, Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands; Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Abstract
A hallmark of aging, and major contributor to the increased prevalence of cardiovascular disease in patients with chronic kidney disease (CKD), is the progressive structural and functional deterioration of the arteries and concomitant accrual of mineral. Vascular calcification (VC) was long viewed as a degenerative age-related pathology that resulted from the passive deposition of mineral in the extracellular matrix; however, since the discovery of "bone-related" protein expression in calcified atherosclerotic plaques over 20 years ago, a plethora of studies have evoked the now widely accepted view that VC is a highly regulated and principally cell-mediated phenomenon that recapitulates many features of physiologic ossification. Central to this theory are changes in vascular smooth muscle cell (VSMC) phenotype and viability, thought to be driven by chronic exposure to a number of dystrophic stimuli characteristics of the uremic state. Here, dedifferentiated synthetic VSMCs are seen to spawn calcifying matrix vesicles that actively seed mineralization of the arterial matrix. This review provides an overview of the major epidemiological, histological, and molecular aspects of VC in the context of CKD, and a counterpoint to the prevailing paradigm that emphasizes the primacy of VSMC-mediated mechanisms. Particular focus is given to the import of protein and small molecule inhibitors in regulating physiologic and pathological mineralization and the emerging role of mineral nanoparticles and their interplay with proinflammatory processes.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.
| |
Collapse
|
31
|
Chae DH, Epel ES, Nuru-Jeter AM, Lincoln KD, Taylor RJ, Lin J, Blackburn EH, Thomas SB. Discrimination, mental health, and leukocyte telomere length among African American men. Psychoneuroendocrinology 2016; 63:10-6. [PMID: 26398001 PMCID: PMC5407686 DOI: 10.1016/j.psyneuen.2015.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
African American men in the US experience disparities across multiple health outcomes. A common mechanism underlying premature declines in health may be accelerated biological aging, as reflected by leukocyte telomere length (LTL). Racial discrimination, a qualitatively unique source of social stress reported by African American men, in tandem with poor mental health, may negatively impact LTL in this population. The current study examined cross-sectional associations between LTL, self-reported racial discrimination, and symptoms of depression and anxiety among 92 African American men 30-50 years of age. LTL was measured in kilobase pairs using quantitative polymerase chain reaction assay. Controlling for sociodemographic factors, greater anxiety symptoms were associated with shorter LTL (b=-0.029, standard error [SE]=0.014; p<0.05). There were no main effects of racial discrimination or depressive symptoms on LTL, but we found evidence for a significant interaction between the two (b=0.011, SE=0.005; p<0.05). Racial discrimination was associated with shorter LTL among those with lower levels of depressive symptoms. Findings from this study highlight the role of social stressors and individual-level psychological factors for physiologic deterioration among African American men. Consistent with research on other populations, greater anxiety may reflect elevated stress associated with shorter LTL. Racial discrimination may represent an additional source of social stress among African American men that has detrimental consequences for cellular aging among those with lower levels of depression.
Collapse
Affiliation(s)
- David H. Chae
- Department of Epidemiology and Biostatistics, University of Maryland at College Park, School of Public Health, 2234 School of Public Health, College Park, Maryland 20742, USA.,Corresponding author at Department of Epidemiology and Biostatistics, University of Maryland at College Park, School of Public Health, 2234 School of Public Health, College Park, Maryland 20742, USA. Tel.: +1 301 405 6425; fax: +1 301 405 3575;
| | - Elissa S. Epel
- Department of Psychiatry, University of California, San Francisco, School of Medicine, 3333 California Street, San Francisco, California 94143, USA
| | - Amani M. Nuru-Jeter
- Divisions of Epidemiology and Community Health and Human Development, University of California, Berkeley, School of Public Health, 50 University Hall, Berkeley, California 94720, USA
| | - Karen D. Lincoln
- University of Southern California, School of Social Work, 669 West 34th Street, Los Angeles, California 90089, USA
| | - Robert Joseph Taylor
- University of Michigan, School of Social Work, 1080 South University, Ann Arbor, Michigan 48109, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, School of Medicine, 600 16th Street, San Francisco, California 94158, USA
| | - Elizabeth H. Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, School of Medicine, 600 16th Street, San Francisco, California 94158, USA
| | - Stephen B. Thomas
- Department of Health Services Administration, University of Maryland at College Park, School of Public Health, 2234 School of Public Health, College Park, Maryland 20742, USA
| |
Collapse
|
32
|
Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP, Lai MKP, Kappei D, Kumar AP, Sethi G. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res Rev 2016; 25:55-69. [PMID: 26616852 DOI: 10.1016/j.arr.2015.11.006] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022]
Abstract
Telomeres are the heterochromatic repeat regions at the ends of eukaryotic chromosomes, whose length is considered to be a determinant of biological ageing. Normal ageing itself is associated with telomere shortening. Here, critically short telomeres trigger senescence and eventually cell death. This shortening rate may be further increased by inflammation and oxidative stress and thus affect the ageing process. Apart from shortened or dysfunctional telomeres, cells undergoing senescence are also associated with hyperactivity of the transcription factor NF-κB and overexpression of inflammatory cytokines such as TNF-α, IL-6, and IFN-γ in circulating macrophages. Interestingly, telomerase, a reverse transcriptase that elongates telomeres, is involved in modulating NF-κB activity. Furthermore, inflammation and oxidative stress are implicated as pre-disease mechanisms for chronic diseases of ageing such as neurodegenerative diseases, cardiovascular disease, and cancer. To date, inflammation and telomere shortening have mostly been studied individually in terms of ageing and the associated disease phenotype. However, the interdependent nature of the two demands a more synergistic approach in understanding the ageing process itself and for developing new therapeutic approaches. In this review, we aim to summarize the intricate association between the various inflammatory molecules and telomeres that together contribute to the ageing process and related diseases.
Collapse
|
33
|
Zhang J, Wei MH, Lu R, Du GF, Zhou G. Declined hTERT expression of peripheral blood CD4+
T cells in oral lichen planus correlated with clinical parameter. J Oral Pathol Med 2015; 45:516-22. [PMID: 26662465 DOI: 10.1111/jop.12399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Medicine; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Ming-hui Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Rui Lu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Medicine; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Ge-fei Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Medicine; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Medicine; School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
34
|
Garland SN, Palmer C, Donelson M, Gehrman P, Johnson FB, Mao JJ. A nested case-controlled comparison of telomere length and psychological functioning in breast cancer survivors with and without insomnia symptoms. Rejuvenation Res 2015; 17:453-7. [PMID: 25111028 DOI: 10.1089/rej.2014.1586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The ability to achieve sufficient restorative sleep is important in the maintenance of physical and mental health; however, disturbed sleep and insomnia symptoms are a common experience among women with breast cancer. In non-cancer populations, insufficient sleep quantity and quality has been associated with shortened telomere length (TL), a measure of accumulated cellular damage and human aging. This feasibility study compared TL in women previously diagnosed with breast cancer with clinically significant insomnia symptoms (n=70) to an age- and body mass index (BMI)-matched comparison group (n=70) of breast cancer survivors. Women with significant insomnia symptoms had higher levels of unemployment compared to women without insomnia. TL was positively skewed and shorter in the insomnia group (Median=6.000, S=1.000, standard error [SE]=0.287) than the control group (Median=6.195, S=-0.269, SE=0.287); however, this was not significant (p=0.29). Women with insomnia also reported significantly higher levels of depression (p<0.001), anxiety (p<0.001), and fatigue (p<0.001). This study provides the first measure of effect size and variability of TL in women with breast cancer and highlights the need for larger sample sizes to investigate the impact of insomnia and co-morbid symptom distress on cellular aging.
Collapse
Affiliation(s)
- Sheila N Garland
- 1 Department of Family Medicine and Community Health, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
35
|
Borghini A, Giardini G, Tonacci A, Mastorci F, Mercuri A, Mrakic-Sposta S, Sposta SM, Moretti S, Andreassi MG, Pratali L. Chronic and acute effects of endurance training on telomere length. Mutagenesis 2015; 30:711-6. [PMID: 26001753 DOI: 10.1093/mutage/gev038] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Telomere shortening is considered a cellular marker of health status and biological ageing. Exercise may influence the health and lifespan of an individual by affecting telomere length (TL). However, it is unclear whether different endurance exercise levels may have beneficial or detrimental effects on biological aging. The aims of the study were to assess both chronic and acute effects of endurance training on TL after an exceptional and extreme trail race. TL was assessed in 20 endurance athletes (17 males; age = 45.4 ± 9.2 years) and 42 age- and gender-matched sedentary controls (32 males; age = 45.9 ± 9.5 years) with quantitative real-time PCR at baseline conditions. Of the 20 runners enrolled in the 'Tor des Géants ®' ultra-distance trail race, 15 athletes (12 males; age = 47.2 ± 8.5 years) were re-evaluated at the intermediate point and 14 athletes (11 males; age = 47.1 ± 8.8 years) completed the competition and were analysed at the final point. Comparison between the two groups (endurance athletes vs. sedentary controls) revealed a significant difference in TL (1.28 ± 0.4 vs. 1.02 ± 0.3, P = 0.005). TL was better preserved in elder endurance runners compared with the same age control group (1.3 ± 0.27 vs. 0.91 ± 0.21, P = 0.003). TL was significantly reduced at the intermediate (0.88 ± 0.36 vs. 1.11 ± 0.34, P = 0.002) and final point compared with baseline measurements (0.86 ± 0.4 vs. 1.11 ± 0.34, P = 0.0006) for athletes engaged in the ultra-marathon race. Our data suggest that chronic endurance training may provide protective effects on TL attenuating biological aging. Conversely, acute exposure to an ultra-distance endurance trail race implies telomere shortening probably caused by oxidative DNA damage.
Collapse
Affiliation(s)
- Andrea Borghini
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy, Department of Neurology and Neurophysiology, Mountain Medicine Center, Valle d'Aosta Regional Hospital, Viale Ginevra 3, 11100 Aosta, Italy and Institute of Bioimaging and Molecular Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Guido Giardini
- Department of Neurology and Neurophysiology, Mountain Medicine Center, Valle d'Aosta Regional Hospital, Viale Ginevra 3, 11100 Aosta, Italy and
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy, Department of Neurology and Neurophysiology, Mountain Medicine Center, Valle d'Aosta Regional Hospital, Viale Ginevra 3, 11100 Aosta, Italy and Institute of Bioimaging and Molecular Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Francesca Mastorci
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy, Department of Neurology and Neurophysiology, Mountain Medicine Center, Valle d'Aosta Regional Hospital, Viale Ginevra 3, 11100 Aosta, Italy and Institute of Bioimaging and Molecular Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Antonella Mercuri
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy, Department of Neurology and Neurophysiology, Mountain Medicine Center, Valle d'Aosta Regional Hospital, Viale Ginevra 3, 11100 Aosta, Italy and Institute of Bioimaging and Molecular Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | | | - Simona Mrakic Sposta
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Sarah Moretti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy, Department of Neurology and Neurophysiology, Mountain Medicine Center, Valle d'Aosta Regional Hospital, Viale Ginevra 3, 11100 Aosta, Italy and Institute of Bioimaging and Molecular Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Lorenza Pratali
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy, Department of Neurology and Neurophysiology, Mountain Medicine Center, Valle d'Aosta Regional Hospital, Viale Ginevra 3, 11100 Aosta, Italy and Institute of Bioimaging and Molecular Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| |
Collapse
|
36
|
Chen SH, Epel ES, Mellon SH, Lin J, Reus VI, Rosser R, Kupferman E, Burke H, Mahan L, Blackburn EH, Wolkowitz OM. Adverse childhood experiences and leukocyte telomere maintenance in depressed and healthy adults. J Affect Disord 2014; 169:86-90. [PMID: 25173430 PMCID: PMC4172492 DOI: 10.1016/j.jad.2014.07.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Adverse childhood experiences (ACEs) are associated with poor physical and mental health outcomes in adulthood. Adverse childhood experiences are also associated with shortened leukocyte telomere length (LTL) in adults, suggesting accelerated cell aging. No studies have yet assessed the relationship of ACEs to LTL in individuals with major depressive disorder (MDD), despite the high incidence of antecedent ACEs in individuals with MDD. Further, no studies in any population have assessed the relationship of ACEs to the activity of telomerase, the major enzyme responsible for maintaining LTL, or the relationship between telomerase and LTL in individuals with ACEs. METHODS Twenty healthy, unmedicated adults with MDD and 20 healthy age-, sex- and ethnicity-matched controls had ACEs assessed and had blood drawn for LTL and peripheral blood mononuclear cell (PBMC) resting telomerase activity. RESULTS In healthy controls, greater ACE exposure was associated with shorter LTL (p<.05) but was unassociated with telomerase activity. In MDD, however, the opposite pattern was seen: greater ACE exposure was unrelated to LTL but was associated with increased telomerase activity (p<.05) and with a higher telomerase:LTL ratio (p=.022). LIMITATIONS Study limitations include the small sample size, a single timepoint assessment of telomerase activity, and the use of retrospective self-report to assess ACEs. CONCLUSIONS These results replicate prior findings of shortened LTL in healthy adults with histories of multiple ACEs. However, in MDD, this relationship was substantially altered, raising the possibility that activation of telomerase in ACE-exposed individuals with MDD could represent a compensatory response to endangered telomeres.
Collapse
Affiliation(s)
| | - Elissa S. Epel
- Dept. of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA
| | - Synthia H. Mellon
- Dept. of OB-GYN and Reproductive Sciences, UCSF School of Medicine, San Francisco, CA
| | - Jue Lin
- Dept. of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA
| | - Victor I. Reus
- Dept. of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA
| | - Rebecca Rosser
- Dept. of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA
| | - Eve Kupferman
- Dept. of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA
| | - Heather Burke
- Dept. of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA
| | - Laura Mahan
- Dept. of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA
| | - Elizabeth H. Blackburn
- Dept. of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA
| | - Owen M. Wolkowitz
- Dept. of Psychiatry, University of California, San Francisco (UCSF), School of Medicine, San Francisco, CA
| |
Collapse
|
37
|
Compté N, Bailly B, De Breucker S, Goriely S, Pepersack T. Study of the association of total and differential white blood cell counts with geriatric conditions, cardio-vascular diseases, seric IL-6 levels and telomere length. Exp Gerontol 2014; 61:105-12. [PMID: 25446500 DOI: 10.1016/j.exger.2014.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND/OBJECTIVES Geriatric patients are highly susceptible to infections. While reduced lymphocyte count has been associated with age, other studies found no change in WBC counts with age. Increased circulating white blood cell (WBC) count has been associated with cardiovascular (CV) diseases and frailty but there are discrepancies. Frailty, geriatric conditions, cardiovascular diseases and WBC count have also been associated with low grade inflammation. Association between geriatric conditions and WBC has been scarcely studied. The aim of the study is to assess the association between WBC and geriatric conditions, CV diseases, and seric IL-6 levels. DESIGN, SETTING, PARTICIPANTS, MEASUREMENTS We recruited 100 subjects in the general population and hospitalized for chronic medical conditions (age, 23-96years). We collected information on clinical status (medical history, comorbidities, treatments and geriatric syndromes), biological parameters (hematological tests, cytomegalovirus serology) and cytokine production (basal IL-6). Using stepwise backward multivariate analyses, we defined which set of clinical and biological variables could be predictive of increased total and differential WBC counts. RESULTS We found that low-grade inflammation is independently associated with total WBC, monocyte and neutrophil counts, but not geriatric conditions. CV diseases were the only significant associated factor for high monocyte count. CONCLUSION In this study, we observed that differential and total WBC counts do not seem to be associated with geriatric conditions but with CV diseases, low-grade inflammation and telomere length.
Collapse
Affiliation(s)
- Nathalie Compté
- Service de gériatrie, Hôpital Soignies, Rue de la station 103, 7090 Braine-le-comte, Belgium.
| | - Benjamin Bailly
- Service d'hématologie, Hôpital Erasme, 808 route de Lennik, 1070 Bruxelles, Belgium
| | - Sandra De Breucker
- Service de gériatrie, Hôpital Erasme, 808 route de Lennik, 1070 Bruxelles, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles, 8 rue Adrienne Bolland, B-6041 Charleroi, Belgium
| | - Thierry Pepersack
- CHU Saint Pierre, Université Libre de Bruxelles, rue Haute 322, 1000 Bruxelles, Belgium
| |
Collapse
|
38
|
Reste J, Zvigule G, Zvagule T, Kurjane N, Eglite M, Gabruseva N, Berzina D, Plonis J, Miklasevics E. Telomere length in Chernobyl accident recovery workers in the late period after the disaster. JOURNAL OF RADIATION RESEARCH 2014; 55:1089-100. [PMID: 25015931 PMCID: PMC4229925 DOI: 10.1093/jrr/rru060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 05/02/2023]
Abstract
The outcome of the Chernobyl nuclear power plant (CNPP) accident was that a huge number of people were exposed to ionizing radiation. Previous studies of CNPP clean-up workers from Latvia revealed a high occurrence of age-associated degenerative diseases and cancer in young adults, as well as a high mortality as a result of cardiovascular disorders at age 45-54 years. DNA tandem repeats that cap chromosome ends, known as telomeres, are sensitive to oxidative damage and exposure to ionizing radiation. Telomeres are important in aging processes and carcinogenesis. The aim of this study was to investigate the long-term effect of protracted ionizing radiation exposure on telomere length in CNPP clean-up workers. Relative telomere length (RTL) was measured in peripheral blood leukocytes of 595 CNPP clean-up workers and 236 gender- and age-matched controls using real-time quantitative polymerase chain reaction (q-PCR). Close attention was paid to participation year and tasks performed during the worker's stay in Chernobyl, health status, and RTL differences between subgroups. Telomere shortening was not found in CNPP clean-up workers; on the contrary, their RTL was slightly greater than in controls (P = 0.001). Longer telomeres were found in people who worked during 1986, in those undertaking 'dirty' tasks (digging and deactivation), and in people with cancer. Shorter telomeres appeared frequently in those with cataract, osteoporosis, atherosclerosis, or coronary heart disease. We conclude that the longer telomeres revealed in people more heavily exposed to ionizing radiation probably indicate activation of telomerase as a chromosome healing mechanism following damage, and reflect defects in telomerase regulation that could potentiate carcinogenesis.
Collapse
Affiliation(s)
- Jelena Reste
- Institute of Occupational Safety and Environmental Health, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007, Latvia Centre of Occupational and Radiological Medicine, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, Riga, LV-1002, Latvia
| | - Gunda Zvigule
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007, Latvia
| | - Tija Zvagule
- Institute of Occupational Safety and Environmental Health, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007, Latvia Centre of Occupational and Radiological Medicine, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, Riga, LV-1002, Latvia
| | - Natalja Kurjane
- Institute of Occupational Safety and Environmental Health, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007, Latvia Centre of Occupational and Radiological Medicine, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, Riga, LV-1002, Latvia
| | - Maija Eglite
- Institute of Occupational Safety and Environmental Health, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007, Latvia Centre of Occupational and Radiological Medicine, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, Riga, LV-1002, Latvia
| | - Natalija Gabruseva
- Centre of Occupational and Radiological Medicine, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, Riga, LV-1002, Latvia
| | - Dace Berzina
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007, Latvia
| | - Juris Plonis
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007, Latvia
| | - Edvins Miklasevics
- Institute of Oncology, Riga Stradins University, Dzirciema Street 16, Riga, LV-1007, Latvia
| |
Collapse
|
39
|
Garland SN, Johnson B, Palmer C, Speck RM, Donelson M, Xie SX, DeMichele A, Mao JJ. Physical activity and telomere length in early stage breast cancer survivors. Breast Cancer Res 2014; 16:413. [PMID: 25074648 PMCID: PMC4303228 DOI: 10.1186/s13058-014-0413-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/17/2014] [Indexed: 01/09/2023] Open
Abstract
Introduction Telomere length (TL) is a biomarker of accumulated cellular damage and human aging. Evidence in healthy populations suggests that TL is impacted by a host of psychosocial and lifestyle factors, including physical activity. This is the first study to evaluate the relationship between self-reported physical activity and telomere length in early stage breast cancer survivors. Methods A cross-sectional sample of 392 postmenopausal women with stage I-III breast cancer at an outpatient oncology clinic of a large university hospital completed questionnaires and provided a blood sample. TL was determined using terminal restriction fragment length analysis of genomic DNA isolated from peripheral blood mononuclear cells. Physical activity was dichotomized into two groups (none versus moderate to vigorous) using the International Physical Activity Questionnaire. Multivariate linear and logistic regression analyses were performed to identify factors associated with mean TL and physical activity. Results Among participants, 66 (17%) did not participate in any physical activity. In multivariate model adjusted for age, compared to those who participated in moderate to vigorous physical activity, women who participated in no physical activity had significantly shorter TL (adjusted coefficient β = −0.22; 95% confidence interval (CI), −0.41 to −0.03; P = .03). Non-white race, lower education and depressive symptoms were associated with lack of self-reported physical activity (P < 0.05 for all) but not TL. Conclusion Lack of physical activity is associated with shortened TL, warranting prospective investigation of the potential role of physical activity on cellular aging in breast cancer survivors. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0413-y) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW With progressive age, the immune system and the propensity for abnormal immunity change fundamentally. Individuals greater than 50 years of age are not only more susceptible to infection and cancer, but also at higher risk for chronic inflammation and immune-mediated tissue damage. The process of immunosenescence is accelerated in rheumatoid arthritis (RA). RECENT FINDINGS Premature T-cell senescence occurs not only in RA, but also has been involved in morbidity and mortality of chronic HIV infection. Senescent cells acquire the 'senescence-associated secretory phenotype', which promotes and sustains tissue inflammation. Molecular mechanisms underlying T-cell aging are beginning to be understood. In addition to the contraction of T-cell diversity because of uneven clonal expansion, senescent T cells have defects in balancing cytoplasmic kinase and phosphatase activities, changing their activation thresholds. Also, leakiness in repairing DNA lesions and uncapped telomeres imposes genomic stress. Age-induced changes in the tissue microenvironment may alter the T-cell responses. SUMMARY Gain-of-function and loss-of-function in senescent T cells undermine protective immunity and create the conditions for chronic tissue inflammation, a combination typically encountered in RA. Genetic programs involved in T-cell signaling and DNA repair are of high interest in the search for underlying molecular defects.
Collapse
|
41
|
Tamayo M, Pértega S, Mosquera A, Rodríguez M, Blanco FJ, Fernández-Sueiro JL, Gosálvez J, Fernández JL. Individual telomere length decay in patients with spondyloarthritis. Mutat Res 2014; 765:1-5. [PMID: 24769426 DOI: 10.1016/j.mrfmmm.2014.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 11/17/2022]
Abstract
Telomere length was sequentially determined in peripheral blood leukocytes (PBL) from patients with ankylosing spondylitis (AS; n = 44) and psoriatic arthritis (PsA; n = 42) followed through 2.93 ± 0.99 years, using a quantitative PCR (qPCR) assay. The initial telomere size from PsA patients was higher than those with cutaneous psoriasis only (n = 53), possibly due to the inflammatory condition. The qPCR assay was sensitive enough to evidence a significant telomere length shortening in PBL from practically all subjects and PsA patients showed a higher rate of loss of telomere sequence than patients with AS during the follow-up time.
Collapse
Affiliation(s)
- María Tamayo
- Genetics Unit, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), As Xubias, 84, 15006 A Coruña, Spain; Laboratorio de Genética Molecular y Radiobiología, Centro Oncológico de Galicia, c/ Doctor Camilo Veiras n°1, 15009 A Coruña, Spain
| | - Sonia Pértega
- Clinical Epidemiology and Biostatistics Unit, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), As Xubias, 84, 15006 A Coruña, Spain
| | - Alejandro Mosquera
- Genetics Unit, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), As Xubias, 84, 15006 A Coruña, Spain
| | - Montserrat Rodríguez
- Genetics Unit, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), As Xubias, 84, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Rheumatology Division, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), As Xubias, 84, 15006 A Coruña, Spain
| | - José Luis Fernández-Sueiro
- Rheumatology Division, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), As Xubias, 84, 15006 A Coruña, Spain
| | - Jaime Gosálvez
- Unidad de Genética, Facultad de Biología, Universidad Autónoma de Madrid, Spain
| | - José Luis Fernández
- Genetics Unit, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), As Xubias, 84, 15006 A Coruña, Spain; Laboratorio de Genética Molecular y Radiobiología, Centro Oncológico de Galicia, c/ Doctor Camilo Veiras n°1, 15009 A Coruña, Spain.
| |
Collapse
|
42
|
Innes KE, Selfe TK. Meditation as a therapeutic intervention for adults at risk for Alzheimer's disease - potential benefits and underlying mechanisms. Front Psychiatry 2014; 5:40. [PMID: 24795656 PMCID: PMC4005947 DOI: 10.3389/fpsyt.2014.00040] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/31/2014] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic, progressive, brain disorder that affects at least 5.3 million Americans at an estimated cost of $148 billion, figures that are expected to rise steeply in coming years. Despite decades of research, there is still no cure for AD, and effective therapies for preventing or slowing progression of cognitive decline in at-risk populations remain elusive. Although the etiology of AD remains uncertain, chronic stress, sleep deficits, and mood disturbance, conditions common in those with cognitive impairment, have been prospectively linked to the development and progression of both chronic illness and memory loss and are significant predictors of AD. Therapies such as meditation that specifically target these risk factors may thus hold promise for slowing and possibly preventing cognitive decline in those at risk. In this study, we briefly review the existing evidence regarding the potential utility of meditation as a therapeutic intervention for those with and at risk for AD, discuss possible mechanisms underlying the observed benefits of meditation, and outline directions for future research.
Collapse
Affiliation(s)
- Kim E. Innes
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA
- Center for the Study of Complementary and Alternative Therapies, University of Virginia Health System, Charlottesville, VA, USA
| | - Terry Kit Selfe
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA
- Center for the Study of Complementary and Alternative Therapies, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
43
|
Promoter polymorphism in the serotonin transporter (5-HTT) gene is significantly associated with leukocyte telomere length in Han Chinese. PLoS One 2014; 9:e94442. [PMID: 24710073 PMCID: PMC3978058 DOI: 10.1371/journal.pone.0094442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/17/2014] [Indexed: 11/23/2022] Open
Abstract
The serotonin transporter gene (5-HTT)-linked polymorphic region (5-HTTLPR) plays an important role in modulating mood and behavior by regulating 5-HTT expression and thereby controlling the concentration of serotonin (5-HT) in brain synapses: The homozygous shorter allele (S/S) in 5-HTTLPR results in lower 5-HTT expression coupled with stronger psycho-pathological reactions to stressful experiences compared to the homozygous long (L/L) and heterozygous (S/L) alleles. Psychological insults and mood disorders have been shown to cause accelerated telomere shortening, a marker of biological aging, however, it is currently unclear whether the allelic variants of 5-HTTLPR affect telomere length (TL) in the healthy population without mood disorders. In the present study, we determined the relationship between TL and the 5-HTTLPR variants in healthy Han Chinese. The 5-HTTLPR genotyping and leukocyte TL analysis of 280 young female Han Chinese freshmen showed a significantly shorter TL in 149 of them carrying the 5-HTTLPR S/S version compared to those (131) with the L/S or L/S plus L/L genotypes (mean ± SD, 0.533±0.241 for S/S vs 0.607±0.312 for L/S, P = 0.034; or vs 0.604±0.313 for L/S plus L/L, P = 0.038). Similar results were achieved in the other cohort including 220 adult healthy individuals of different age, gender and profession (0.691±0.168 for S/S vs 0.729±0.211 for L/S, P = 0.046, or vs 0.725±0.213 for L/S plus L/L, P = 0.039). Taken together, shorter leukocyte TL is significantly associated with the 5-HTTLPR S/S allelic variant, which may be implicated in psychological stress-related health problems.
Collapse
|
44
|
Hohensinner PJ, Goronzy JJ, Weyand CM. Targets of immune regeneration in rheumatoid arthritis. Mayo Clin Proc 2014; 89:563-75. [PMID: 24684878 PMCID: PMC4605139 DOI: 10.1016/j.mayocp.2014.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
Many of the aging-related morbidities, including cancer, cardiovascular disease, neurodegenerative disease, and infectious susceptibility, are linked to a decline in immune competence with a concomitant rise in proinflammatory immunity, placing the process of immune aging at the center of aging biology. Immune aging affects individuals older than 50 years and is accelerated in patients with the autoimmune disease rheumatoid arthritis. Immune aging results in a marked decline in protective immune responses and a parallel increase in tissue inflammatory responses. By studying immune cells in patients with rheumatoid arthritis, several of the molecular underpinnings of the immune aging process have been delineated, such as the loss of telomeres and inefficiencies in the repair of damaged DNA. Aging T cells display a series of abnormalities, including the unopposed up-regulation of cytoplasmic phosphatases and the loss of glycolytic competence, that alter their response to stimulating signals and undermine their longevity. Understanding the connection between accelerated immune aging and autoimmunity remains an area of active research. With increasing knowledge of the molecular pathways that cause immunosenescence, therapeutic interventions can be designed to slow or halt the seemingly inevitable deterioration of protective immunity with aging.
Collapse
Affiliation(s)
- Philipp J Hohensinner
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA
| | - Jörg J Goronzy
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA
| | - Cornelia M Weyand
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA.
| |
Collapse
|
45
|
Telomere dysfunction in peripheral blood mononuclear cells from patients with primary biliary cirrhosis. Dig Liver Dis 2014; 46:363-8. [PMID: 24378524 DOI: 10.1016/j.dld.2013.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chromosomal instability in peripheral blood mononuclear cells has a role in the onset of primary biliary cirrhosis. We hypothesized that patients with primary biliary cirrhosis may harbour telomere dysfunction, with consequent chromosomal instability and cellular senescence. AIM To evaluate the clinical significance of telomerase activity and telomere length in peripheral blood mononuclear cells from patients with primary biliary cirrhosis. STUDY DESIGN In this population-based case control study, 48 women with primary biliary cirrhosis (25 with cirrhosis), 12 with chronic hepatitis C matched by age and severity of disease, and 55 age-matched healthy women were identified. Mononuclear cells from the peripheral blood of patients and controls were isolated. Telomere length and telomerase activity were measured. RESULTS Telomere length and telomerase activity did not differ between cases (5.9 ± 1.5 kb) and controls (6.2 ± 1.4 kb, pc=0.164). Telomere shortening and advanced-stage disease strongly correlated with telomerase activity. Patients with advanced disease retained significantly less telomerase activity than those with early-stage disease (0.6 ± 0.9 OD vs. 1.5 ± 3.7 OD, p=0.03). Telomere loss correlated with age, suggesting premature cellular ageing in patients with primary biliary cirrhosis. CONCLUSION Our data strongly support the telomere hypothesis of human cirrhosis, indicating that telomere shortening and telomerase activity represent a molecular mechanism in the evolution of human cirrhosis in a selected population of patients.
Collapse
|
46
|
Cribbet MR, Carlisle M, Cawthon RM, Uchino BN, Williams PG, Smith TW, Gunn HE, Light KC. Cellular aging and restorative processes: subjective sleep quality and duration moderate the association between age and telomere length in a sample of middle-aged and older adults. Sleep 2014; 37:65-70. [PMID: 24470696 DOI: 10.5665/sleep.3308] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STUDY OBJECTIVES To examine whether subjective sleep quality and sleep duration moderate the association between age and telomere length (TL). DESIGN Participants completed a demographic and sleep quality questionnaire, followed by a blood draw. SETTING Social Neuroscience Laboratory. PARTICIPANTS One hundred fifty-four middle-aged to older adults (age 45-77 y) participated. Participants were excluded if they were on immunosuppressive treatment and/or had a disease with a clear immunologic (e.g., cancer) component. INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Subjective sleep quality and sleep duration were assessed using the Pittsburgh Sleep Quality Index (PSQI) and TL was determined using peripheral blood mononuclear cells (PBMCs). There was a significant first-order negative association between age and TL. Age was also negatively associated with the self-reported sleep quality item and sleep duration component of the PSQI. A significant age × self-reported sleep quality interaction revealed that age was more strongly related to TL among poor sleepers, and that good sleep quality attenuated the association between age and TL. Moreover, adequate subjective sleep duration among older adults (i.e. greater than 7 h per night) was associated with TL comparable to that in middle-aged adults, whereas sleep duration was unrelated to TL for the middle-aged adults in our study. CONCLUSIONS The current study provides evidence for an association between sleep quality, sleep duration, and cellular aging. Among older adults, better subjective sleep quality was associated with the extent of cellular aging, suggesting that sleep duration and sleep quality may be added to a growing list of modifiable behaviors associated with the adverse effects of aging.
Collapse
Affiliation(s)
- Matthew R Cribbet
- Department of Psychology and Health Psychology Program, University of Utah, Salt Lake City, UT
| | - McKenzie Carlisle
- Department of Psychology and Health Psychology Program, University of Utah, Salt Lake City, UT
| | - Richard M Cawthon
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| | - Bert N Uchino
- Department of Psychology and Health Psychology Program, University of Utah, Salt Lake City, UT
| | - Paula G Williams
- Department of Psychology and Health Psychology Program, University of Utah, Salt Lake City, UT
| | - Timothy W Smith
- Department of Psychology and Health Psychology Program, University of Utah, Salt Lake City, UT
| | - Heather E Gunn
- Department of Psychology and Health Psychology Program, University of Utah, Salt Lake City, UT
| | - Kathleen C Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| |
Collapse
|
47
|
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 2013; 55:325-56. [PMID: 24112071 DOI: 10.1111/jpi.12090] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
The classic theories of aging such as the free radical theory, including its mitochondria-related versions, have largely focused on a few specific processes of senescence. Meanwhile, numerous interconnections have become apparent between age-dependent changes previously thought to proceed more or less independently. Increased damage by free radicals is not only linked to impairments of mitochondrial function, but also to inflammaging as it occurs during immune remodeling and by release of proinflammatory cytokines from mitotically arrested, DNA-damaged cells that exhibit the senescence-associated secretory phenotype (SASP). Among other effects, SASP can cause mutations in stem cells that reduce the capacity for tissue regeneration or, in worst case, lead to cancer stem cells. Oxidative stress has also been shown to promote telomere attrition. Moreover, damage by free radicals is connected to impaired circadian rhythmicity. Another nexus exists between cellular oscillators and metabolic sensing, in particular to the aging-suppressor SIRT1, which acts as an accessory clock protein. Melatonin, being a highly pleiotropic regulator molecule, interacts directly or indirectly with all the processes mentioned. These influences are critically reviewed, with emphasis on data from aged organisms and senescence-accelerated animals. The sometimes-controversial findings obtained either in a nongerontological context or in comparisons of tumor with nontumor cells are discussed in light of evidence obtained in senescent organisms. Although, in mammals, lifetime extension by melatonin has been rarely documented in a fully conclusive way, a support of healthy aging has been observed in rodents and is highly likely in humans.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
48
|
Moro-García MA, Alonso-Arias R, López-Larrea C. Molecular mechanisms involved in the aging of the T-cell immune response. Curr Genomics 2013; 13:589-602. [PMID: 23730199 PMCID: PMC3492799 DOI: 10.2174/138920212803759749] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 12/24/2022] Open
Abstract
T-lymphocytes play a central role in the effector and regulatory mechanisms of the adaptive immune response. Upon exiting the thymus they begin to undergo a series of phenotypic and functional changes that continue throughout the lifetime and being most pronounced in the elderly. The reason postulated for this is that the dynamic processes of repeated interaction with cognate antigens lead to multiple division cycles involving a high degree of cell differentiation, senescence, restriction of the T-cell receptor (TCR) repertoire, and cell cycle arrest. This cell cycle arrest is associated with the loss of telomere sequences from the ends of chromosomes. Telomere length is reduced at each cell cycle, and critically short telomeres recruit components of the DNA repair machinery and trigger replicative senescence or apoptosis. Repetitively stimulated T-cells become refractory to telomerase induction, suffer telomere erosion and enter replicative senescence. The latter is characterized by the accumulation of highly differentiated T-cells with new acquired functional capabilities, which can be caused by aberrant expression of genes normally suppressed by epigenetic mechanisms in CD4+ or CD8+ T-cells. Age-dependent demethylation and overexpression of genes normally suppressed by DNA methylation have been demonstrated in senescent subsets of T-lymphocytes. Thus, T-cells, principally CD4+CD28null T-cells, aberrantly express genes, including those of the KIR gene family and cytotoxic proteins such as perforin, and overexpress CD70, IFN-γ, LFA-1 and others. In summary, owing to a lifetime of exposure to and proliferation against a variety of pathogens, highly differentiated T-cells suffer molecular modifications that alter their cellular homeostasis mechanisms.
Collapse
|
49
|
Moro-García MA, Alonso-Arias R, López-Larrea C. When Aging Reaches CD4+ T-Cells: Phenotypic and Functional Changes. Front Immunol 2013; 4:107. [PMID: 23675374 PMCID: PMC3650461 DOI: 10.3389/fimmu.2013.00107] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/25/2013] [Indexed: 12/30/2022] Open
Abstract
Beyond midlife, the immune system shows aging features and its defensive capability becomes impaired, by a process known as immunosenescence that involves many changes in the innate and adaptive responses. Innate immunity seems to be better preserved globally, while the adaptive immune response exhibits profound age-dependent modifications. Elderly people display a decline in numbers of naïve T-cells in peripheral blood and lymphoid tissues, while, in contrast, their proportion of highly differentiated effector and memory T-cells, such as the CD28null T-cells, increases markedly. Naïve and memory CD4+ T-cells constitute a highly dynamic system with constant homeostatic and antigen-driven proliferation, influx, and loss of T-cells. Thymic activity dwindles with age and essentially ceases in the later decades of life, severely constraining the generation of new T-cells. Homeostatic control mechanisms are very effective at maintaining a large and diverse subset of naïve CD4+ T-cells throughout life, but although later than in CD8 + T-cell compartment, these mechanisms ultimately fail with age.
Collapse
|
50
|
Telomere, aging and age-related diseases. Aging Clin Exp Res 2013; 25:139-46. [PMID: 23739898 DOI: 10.1007/s40520-013-0021-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 03/30/2012] [Indexed: 12/28/2022]
Abstract
Aging is an inevitable biological process that affects most living organisms. The process of aging is regulated at the level of the organism, as well as at the level of tissues and cells. Despite the enormous consequences associated with the aging process, relatively little systematic effort has been expended on the scientific understanding of this important life process. Many theories have been proposed to explain the aging process, the centerpiece of which is molecular damage. Located at the ends of eukaryotic chromosomes and synthesized by telomerase, telomeres maintain the stabilization of chromosomes. Thus, the loss of telomeres may lead to DNA damage. The relationship between cellular senescence and telomere shortening is well established. Furthermore, telomere attrition occurs with age, and is proposed to be a fundamental factor in the aging process. Here, we review the contemporary literatures to explore the current views on the correlation of telomere loss and telomerase action with aging and age-related diseases.
Collapse
|