1
|
Gu Y, Pope A, Smith C, Carmona C, Johnstone A, Shi L, Chen X, Santos S, Bacon-Brenes CC, Shoff T, Kleczko KM, Frydman J, Thompson LM, Mobley WC, Wu C. BDNF and TRiC-inspired reagent rescue cortical synaptic deficits in a mouse model of Huntington's disease. Neurobiol Dis 2024; 195:106502. [PMID: 38608784 DOI: 10.1016/j.nbd.2024.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.
Collapse
Affiliation(s)
- Yingli Gu
- Department of Neurology, The Fourth Hospital of Harbin Medical University, 150001, China; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Alexander Pope
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Charlene Smith
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America
| | - Christopher Carmona
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America; Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America; Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, United States; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Aaron Johnstone
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Linda Shi
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America; Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, United States; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Xuqiao Chen
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Sarai Santos
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | | | - Thomas Shoff
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Korbin M Kleczko
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, United States of America
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, United States of America
| | - Leslie M Thompson
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, United States of America; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States of America; Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697, United States of America
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
2
|
Vints WAJ, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol 2022; 66:100993. [PMID: 35283168 DOI: 10.1016/j.yfrne.2022.100993] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/30/2023]
Abstract
Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are altered depending on the type of physical exercise (i.e., cardiovascular or resistance exercise) and how they respond to a single bout (i.e., acute exercise) or multiple bouts of physical exercise (i.e., chronic exercise). This information may be used for designing individualized physical exercise programs. Finally, this review may serve to direct future research towards fundamental gaps in our current knowledge regarding the biophysical interactions between muscle activity and the brain at both cellular and system levels.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Tervuursevest 101, 3001 Heverlee, Belgium.
| | - Hakuei Fujiyama
- Department of Psychology, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South St., WA 6150 Perth, Australia.
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania.
| |
Collapse
|
3
|
Villegas L, Nørremølle A, Freude K, Vilhardt F. Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington's Disease? Front Aging Neurosci 2021; 13:736734. [PMID: 34803655 PMCID: PMC8602359 DOI: 10.3389/fnagi.2021.736734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by neuronal loss and tissue atrophy mainly in the striatum and cortex. In the early stages of the disease, impairment of neuronal function, synaptic dysfunction and white matter loss precedes neuronal death itself. Relative to other neurodegenerative diseases such as Alzheimer's and Parkinson's disease and Amyotrophic Lateral Sclerosis, where the effects of either microglia or NADPH oxidases (NOXs) are recognized as important contributors to disease pathogenesis and progression, there is a pronounced lack of information in HD. This information void contrasts with evidence from human HD patients where blood monocytes and microglia are activated well before HD clinical symptoms (PET scans), and the clear signs of oxidative stress and inflammation in post mortem HD brain. Habitually, NOX activity and oxidative stress in the central nervous system (CNS) are equated with microglia, but research of the last two decades has carved out important roles for NOX enzyme function in neurons. Here, we will convey recent information about the function of NOX enzymes in neurons, and contemplate on putative roles of neuronal NOX in HD. We will focus on NOX-produced reactive oxygen species (ROS) as redox signaling molecules in/among neurons, and the specific roles of NOXs in important processes such as neurogenesis and lineage specification, neurite outgrowth and growth cone dynamics, and synaptic plasticity where NMDAR-dependent signaling, and long-term depression/potentiation are redox-regulated phenomena. HD animal models and induced pluripotent stem cell (iPSC) studies have made it clear that the very same physiological processes are also affected in HD, and we will speculate on possible roles for NOX in the pathogenesis and development of disease. Finally, we also take into account the limited information on microglia in HD and relate this to any contribution of NOX enzymes.
Collapse
Affiliation(s)
- Luisana Villegas
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Mujittapha SU, Kauthar M, Azeez IO, Oyem JC. Ascorbic acid improves extrapyramidal syndromes and corpus striatal degeneration induced by dopamine-2 receptor inhibition in Wistar rats. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0137/dmdi-2020-0137.xml. [PMID: 33125337 DOI: 10.1515/dmdi-2020-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022]
Abstract
Objectives The prolonged uses of fourth-generation antipsychotics have been implicated in inducing extrapyramidal syndromes characterized by the motor deficit. This was attributed to the loss of dopamine-2 receptor (D2R) signaling. However, ascorbic acid (SVCT2R stimulation) in the brain is proposed to modulate D2R activity. We, therefore, investigated the beneficial roles of ascorbic acid in improving the extrapyramidal symptoms seen in D2R loss. Methods Twenty adult male Wistar rats of average weight 200 g were distributed randomly into four groups. The control (NS) received normal saline for 28 days, Untreated D2R inhibition group (-D2R) received normal saline for seven days and then subsequently received chlorpromazine for 21 days, D2R inhibition group treated with ascorbic acid (-D2R+SVCT2R) received chlorpromazine for 21 days and was subsequently treated with ascorbate for seven days while the withdrawal group (WG) received chlorpromazine for 21 days and subsequently received normal saline for seven days. Motor deficits were assessed using a rotarod and cylinder test. The corpus striatum was harvested, processed, and stained using H&E and Nissl stains. Cellular density was analyzed using Image J software 1.8.0. Results Motor deficit was observed in -D2R animals administered chlorpromazine with less improvement in WG compared to control (p<0.05) in both rotarod and cylinder test. Ascorbic acid (SVCT2R stimulation) significantly (p<0.001) improved the latency of fall and climbing attempts observed in -D2R animals. The density of basophilic trigoid bodies was significantly (p<0.001) restored in -D2R+SVCT2R group, suggesting recovery of neural activity in the corpus striatum. Moreover, the hallmarks of neuronal degeneration were less expressed in the ascorbic acid treatment groups. Conclusions Ascorbic acid putatively ameliorates extrapyramidal symptoms observed in D2R blockage by chlorpromazine in Wistar rats.
Collapse
Affiliation(s)
| | - Murtala Kauthar
- Department of Medical Laboratory, Ahmadu Bello University, Kano, Nigeria
| | - Ishola O Azeez
- Department of Human Anatomy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - John C Oyem
- Department of Anatomy, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
5
|
Blumenstock S, Dudanova I. Cortical and Striatal Circuits in Huntington's Disease. Front Neurosci 2020; 14:82. [PMID: 32116525 PMCID: PMC7025546 DOI: 10.3389/fnins.2020.00082] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder that typically manifests in midlife with motor, cognitive, and/or psychiatric symptoms. The disease is caused by a CAG triplet expansion in exon 1 of the huntingtin gene and leads to a severe neurodegeneration in the striatum and cortex. Classical electrophysiological studies in genetic HD mouse models provided important insights into the disbalance of excitatory, inhibitory and neuromodulatory inputs, as well as progressive disconnection between the cortex and striatum. However, the involvement of local cortical and striatal microcircuits still remains largely unexplored. Here we review the progress in understanding HD-related impairments in the cortical and basal ganglia circuits, and outline new opportunities that have opened with the development of modern circuit analysis methods. In particular, in vivo imaging studies in mouse HD models have demonstrated early structural and functional disturbances within the cortical network, and optogenetic manipulations of striatal cell types have started uncovering the causal roles of certain neuronal populations in disease pathogenesis. In addition, the important contribution of astrocytes to HD-related circuit defects has recently been recognized. In parallel, unbiased systems biology studies are providing insights into the possible molecular underpinnings of these functional defects at the level of synaptic signaling and neurotransmitter metabolism. With these approaches, we can now reach a deeper understanding of circuit-based HD mechanisms, which will be crucial for the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sonja Blumenstock
- Department of Molecules – Signaling – Development, Max Planck Institute of Neurobiology, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Irina Dudanova
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
6
|
Cepeda C, Oikonomou KD, Cummings D, Barry J, Yazon VW, Chen DT, Asai J, Williams CK, Vinters HV. Developmental origins of cortical hyperexcitability in Huntington's disease: Review and new observations. J Neurosci Res 2019; 97:1624-1635. [PMID: 31353533 PMCID: PMC6801077 DOI: 10.1002/jnr.24503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD), an inherited neurodegenerative disorder that principally affects striatum and cerebral cortex, is generally thought to have an adult onset. However, a small percentage of cases develop symptoms before 20 years of age. This juvenile variant suggests that brain development may be altered in HD. Indeed, recent evidence supports an important role of normal huntingtin during embryonic brain development and mutations in this protein cause cortical abnormalities. Functional studies also demonstrated that the cerebral cortex becomes hyperexcitable with disease progression. In this review, we examine clinical and experimental evidence that cortical development is altered in HD. We also provide preliminary evidence that cortical pyramidal neurons from R6/2 mice, a model of juvenile HD, are hyperexcitable and display dysmorphic processes as early as postnatal day 7. Further, some symptomatic mice present with anatomical abnormalities reminiscent of human focal cortical dysplasia, which could explain the occurrence of epileptic seizures in this genetic mouse model and in children with juvenile HD. Finally, we discuss recent treatments aimed at correcting abnormal brain development.
Collapse
Affiliation(s)
- Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Katerina D. Oikonomou
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Damian Cummings
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Barry
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Vannah-Wila Yazon
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Dickson T. Chen
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Janelle Asai
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Smith‐Dijak AI, Sepers MD, Raymond LA. Alterations in synaptic function and plasticity in Huntington disease. J Neurochem 2019; 150:346-365. [DOI: 10.1111/jnc.14723] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/28/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Amy I. Smith‐Dijak
- Graduate Program in Neuroscience the University of British Columbia Vancouver British Columbia Canada
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Marja D. Sepers
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Lynn A. Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
8
|
Kakouri AC, Christodoulou CC, Zachariou M, Oulas A, Minadakis G, Demetriou CA, Votsi C, Zamba-Papanicolaou E, Christodoulou K, Spyrou GM. Revealing Clusters of Connected Pathways Through Multisource Data Integration in Huntington's Disease and Spastic Ataxia. IEEE J Biomed Health Inform 2018; 23:26-37. [PMID: 30176611 DOI: 10.1109/jbhi.2018.2865569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The advancement of scientific and medical research over the past years has generated a wealth of experimental data from multiple technologies, including genomics, transcriptomics, proteomics, and other forms of -omics data, which are available for a number of diseases. The integration of such multisource data is a key component toward the success of precision medicine. In this paper, we are investigating a multisource data integration method developed by our group, regarding its ability to drive to clusters of connected pathways under two different approaches: first, a disease-centric approach, where we integrate data around a disease, and second, a gene-centric approach, where we integrate data around a gene. We have used as a paradigm for the first approach Huntington's disease (HD), a disease with a plethora of available data, whereas for the second approach the GBA2, a gene that is related to spastic ataxia (SA), a phenotype with sparse availability of data. Our paper shows that valuable information at the level of disease-related pathway clusters can be obtained for both HD and SA. New pathways that classical pathway analysis methods were unable to reveal, emerged as necessary "connectors" to build connected pathway stories formed as pathway clusters. The capability to integrate multisource molecular data, concluding to something more than the sum of the existing information, empowers precision and personalized medicine approaches.
Collapse
|
9
|
Zhang T, Chen T, Chen P, Zhang B, Hong J, Chen L. MPTP-Induced Dopamine Depletion in Basolateral Amygdala via Decrease of D2R Activation Suppresses GABA A Receptors Expression and LTD Induction Leading to Anxiety-Like Behaviors. Front Mol Neurosci 2017; 10:247. [PMID: 28824377 PMCID: PMC5545577 DOI: 10.3389/fnmol.2017.00247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/24/2017] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders commonly occur in Parkinson’s disease. Using field potential recording and patch-clamp recording, we evaluated influence of MPTP-reduced dopaminergic afferent in basolateral amygdala (BLA), a main region for affective regulation, on excitatory–inhibitory circuits and synaptic plasticity. Field excitatory post-synaptic potential (fEPSP) slopes at external capsule-BLA synapses were increased in MPTP-mice with decreases in paired-pulse facilitation and long-term potentiation amplitude, which were corrected by bath-application of D2R agonist quinpirole or cannabinoid type 1 receptors agonist WIN55,212-2, but not D1R agonist SKF38393. Compared to single waveform fEPSP in control mice, a multi-spike waveform fEPSP was observed in MPTP-mice with prolongation of duration and an increase in paired-pulse inhibition, which were recovered by BLA-injection of quinpirole for 2 days rather than bath-application. Density of GABA-evoked current (IGABA) in BLA principal neurons and GABAAR-α2 subunit expression were reduced in MPTP-mice, which were recovered by administration of quinpirole. Decline of PKC phosphorylation in BLA of MPTP-mice was corrected by bath-application of quinpirole, but not SKF38393. In MPTP-mice, BLA-injection of quinpirole or PKC activator PMA could recover GABAAR expression, which was sensitive to PKC inhibitor GF109203X. The impairment of long-term depression (LTD) in MPTP-mice was rescued by bath-application of GABAAR agonist muscimol or BLA-injection of quinpirole and PMA. Finally, BLA-injection of muscimol, quinpirole or PMA relieved anxiety-like behaviors in MPTP-mice. The results indicate that the MPTP-induced dopamine depletion in BLA principal neurons through reducing D2R-mediated PKC phosphorylation suppresses GABAAR expression and activity, which impairs GABAAR-mediated inhibition and LTD induction leading to anxiety-like behaviors.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Lab of Reproductive Medicine, Nanjing Medical UniversityNanjing, China.,Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Tingting Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical UniversityNanjing, China.,Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Peipei Chen
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Baofeng Zhang
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Juan Hong
- State Key Lab of Reproductive Medicine, Nanjing Medical UniversityNanjing, China.,Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical UniversityNanjing, China.,Department of Physiology, Nanjing Medical UniversityNanjing, China
| |
Collapse
|
10
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
11
|
Piano C, Mazzucchi E, Bentivoglio AR, Losurdo A, Calandra Buonaura G, Imperatori C, Cortelli P, Della Marca G. Wake and Sleep EEG in Patients With Huntington Disease: An eLORETA Study and Review of the Literature. Clin EEG Neurosci 2017; 48:60-71. [PMID: 27094758 DOI: 10.1177/1550059416632413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 02/02/2023]
Abstract
The aim of the study was to evaluate the EEG modifications in patients with Huntington disease (HD) compared with controls, by means of the exact LOw REsolution Tomography (eLORETA) software. We evaluated EEG changes during wake, non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Moreover, we reviewed the literature concerning EEG modifications in HD. Twenty-three consecutive adult patients affected by HD were enrolled, 14 women and 9 men, mean age was 57.0 ± 12.4 years. Control subjects were healthy volunteers (mean age 58.2 ± 14.6 years). EEG and polygraphic recordings were performed during wake (before sleep) and during sleep. Sources of EEG activities were determined using the eLORETA software. In wake EEG, significant differences between patients and controls were detected in the delta frequency band (threshold T = ±4.606; P < .01) in the Brodmann areas (BAs) 3, 4, and 6 bilaterally. In NREM sleep, HD patients showed increased alpha power (T = ±4.516; P < .01) in BAs 4 and 6 bilaterally; decreased theta power (T = ±4.516; P < .01) in the BAs 23, 29, and 30; and decreased beta power (T = ±4.516; P < .01) in the left BA 30. During REM, HD patients presented decreased theta and alpha power (threshold T = ±4.640; P < .01) in the BAs 23, 29, 30, and 31 bilaterally. In conclusion, EEG data suggest a motor cortex dysfunction during wake and sleep in HD patients, which correlates with the clinical and polysomnographic evidence of increased motor activity during wake and NREM, and nearly absent motor abnormalities in REM.
Collapse
Affiliation(s)
- Carla Piano
- Center for Parkinson Disease and Extrapyramidal Disorders, Movement Disorders Unit, Institute of Neurology, Catholic University, Rome, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Edoardo Mazzucchi
- Sleep Disorders Unit; Institute of Neurology, Catholic University, Rome, Italy
| | - Anna Rita Bentivoglio
- Center for Parkinson Disease and Extrapyramidal Disorders, Movement Disorders Unit, Institute of Neurology, Catholic University, Rome, Italy.,Don Carlo Gnocchi Foundation, Milan, Italy
| | - Anna Losurdo
- Sleep Disorders Unit; Institute of Neurology, Catholic University, Rome, Italy
| | - Giovanna Calandra Buonaura
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giacomo Della Marca
- Sleep Disorders Unit; Institute of Neurology, Catholic University, Rome, Italy
| |
Collapse
|
12
|
Wang JR, Sun PH, Ren ZX, Meltzer HY, Zhen XC. GSK-3β Interacts with Dopamine D1 Receptor to Regulate Receptor Function: Implication for Prefrontal Cortical D1 Receptor Dysfunction in Schizophrenia. CNS Neurosci Ther 2016; 23:174-187. [PMID: 27996211 DOI: 10.1111/cns.12664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Impaired dopamine D1 receptor (D1R) function in prefrontal cortex (PFC) is believed to contribute to the PFC hypofunction that has been hypothesized to be associated with negative symptoms and cognitive deficits in schizophrenia. It is therefore critical to understand the mechanisms for modulation of D1R function. AIMS To investigate the physical interaction and functional modulation between D1R and GSK-3β. RESULTS D1R and GSK-3β physically interact in cultured cells and native brain tissues. This direct interaction was found to occur at the S(417)PALS(421) motif in the C-terminus of D1R. Inhibition of GSK-3β impaired D1R activation along with a decrease in D1R-GSK-3β interaction. GSK-3β inhibition reduced agonist-stimulated D1R desensitization and endocytosis, the latter associated with the reduction of membrane translocation of β-arrestin-2. Similarly, inhibition of GSK-3β in rat PFC also resulted in impaired D1R activation and association with GSK-3β. Moreover, in a NMDA antagonist animal model of schizophrenia, we detected a decrease in prefrontal GSK-3β activity and D1R-GSK-3β association and decreased D1R activation in the PFC. CONCLUSIONS The present work identified GSK-3β as a new interacting protein for D1R functional regulation and revealed a novel mechanism for GSK-3β-regulated D1R function which may underlie D1R dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Jing-Ru Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Pei-Hua Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Zhao-Xiang Ren
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Dallérac GM, Cummings DM, Hirst MC, Milnerwood AJ, Murphy KPSJ. Changes in Dopamine Signalling Do Not Underlie Aberrant Hippocampal Plasticity in a Mouse Model of Huntington's Disease. Neuromolecular Med 2016; 18:146-53. [PMID: 26782175 DOI: 10.1007/s12017-016-8384-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
Altered dopamine receptor labelling has been demonstrated in presymptomatic and symptomatic Huntington's disease (HD) gene carriers, indicating that alterations in dopaminergic signalling are an early event in HD. We have previously described early alterations in synaptic transmission and plasticity in both the cortex and hippocampus of the R6/1 mouse model of Huntington's disease. Deficits in cortical synaptic plasticity were associated with altered dopaminergic signalling and could be reversed by D1- or D2-like dopamine receptor activation. In light of these findings we here investigated whether defects in dopamine signalling could also contribute to the marked alteration in hippocampal synaptic function. To this end we performed dopamine receptor labelling and pharmacology in the R6/1 hippocampus and report a marked, age-dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that global perturbations to dopamine receptor expression do occur in HD transgenic mice, similarly in HD gene carriers and patients. However, the direction of change and the lack of effect of dopaminergic pharmacological agents on synaptic function demonstrate that the perturbations are heterogeneous and region-specific, a finding that may explain the mixed results of dopamine therapy in HD.
Collapse
Affiliation(s)
- Glenn M Dallérac
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK.
- CIRB, CNRS UMR 7241, INSERM U1050, Collège de France, 75005, Paris, France.
| | - Damian M Cummings
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK
- University College London, Neuroscience, Physiology and Pharmacology, Gower Street, London, WC1E 6BT, UK
| | - Mark C Hirst
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK
| | - Austen J Milnerwood
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK
- Department of Neurology & Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2255, Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Kerry P S J Murphy
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK.
| |
Collapse
|
14
|
Callahan JW, Abercrombie ED. Relationship between subthalamic nucleus neuronal activity and electrocorticogram is altered in the R6/2 mouse model of Huntington's disease. J Physiol 2015; 593:3727-38. [PMID: 25952461 DOI: 10.1113/jp270268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/05/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neural synchrony between the subthalamic nucleus (STN) and cortex is critical for proper information processing in basal ganglia circuits. Using in vivo extracellular recordings in urethane-anaesthetized mice, we demonstrate that single units and local field potentials from the STN exhibit oscillatory entrainment to low-frequency (0.5-4 Hz) rhythms when the cortex is in a synchronized state. Here we report novel findings in the R6/2 transgenic mouse model of Huntington's disease (HD) by demonstrating that STN activity is reduced and less phase-locked to cortical low-frequency oscillations. The spectral power of low-frequency oscillations in ECoG recordings of R6/2 mice is diminished while the spectral power of higher frequencies is augmented and such altered cortical patterning could lead to decreased synchrony in corticosubthalamic circuits. Our data establish that cortical entrainment of STN neural activity is disrupted in R6/2 mice and may be one of the mechanisms contributing to disordered motor control in HD. ABSTRACT Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder in which impairments in the processing of information between the cortex and basal ganglia are fundamental to the onset and progression of the HD phenotype. The corticosubthalamic hyperdirect pathway plays a pivotal role in motor selection and blockade of neuronal activity in the subthalamic nucleus (STN) results in a hyperkinetic movement syndrome, similar to the HD phenotype. The aim of the present study was to examine the relationship between neuronal activity in the STN and cortex in an animal model of HD. We performed in vivo extracellular recordings in the STN to measure single-unit activity and local field potentials in the R6/2 transgenic mouse model of HD. These recordings were obtained during epochs of simultaneously acquired electrocorticogram (ECoG) in discrete brain states representative of global cortical network synchronization or desynchronization. Cortically patterned STN neuronal activity was less phase-locked in R6/2 mice, which is likely to result in less efficient coding of cortical inputs by the basal ganglia. In R6/2 mice, the power of the ECoG in lower frequencies (0.5-4 Hz) was diminished while the power expressed in higher frequencies (13-100 Hz) was increased. In addition, the spontaneous activity of STN neurons in R6/2 mice was reduced and neurons exhibited a more irregular firing pattern. Glutamatergic STN neurons provide the major excitatory drive to the output nuclei of the basal ganglia and altered discharge patterns could lead to aberrant basal ganglia output and disordered motor control in HD.
Collapse
Affiliation(s)
- Joshua W Callahan
- Center for Molecular and Behavioural Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Elizabeth D Abercrombie
- Center for Molecular and Behavioural Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| |
Collapse
|
15
|
Li W, Silva HB, Real J, Wang YM, Rial D, Li P, Payen MP, Zhou Y, Muller CE, Tomé AR, Cunha RA, Chen JF. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. Neurobiol Dis 2015; 79:70-80. [PMID: 25892655 DOI: 10.1016/j.nbd.2015.03.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 01/23/2023] Open
Abstract
Cognitive impairments in Huntington's disease (HD) are attributed to a dysfunction of the cortico-striatal pathway and significantly affect the quality of life of the patients, but this has not been a therapeutic focus in HD to date. We postulated that adenosine A(2A) receptors (A(2A)R), located at pre- and post-synaptic elements of the cortico-striatal pathways, modulate striatal neurotransmission and synaptic plasticity and cognitive behaviors. To critically evaluate the ability of A(2A)R inactivation to prevent cognitive deficits in early HD, we cross-bred A(2A)R knockout (KO) mice with two R6/2 transgenic lines of HD (CAG120 and CAG240) to generate two double transgenic R6/2-CAG120-A(2A)R KO and R6/2-CAG240-A(2A)R KO mice and their corresponding wild-type (WT) littermates. Genetic inactivation of A(2A)R prevented working memory deficits induced by R6/2-CAG120 at post-natal week 6 and by R6/2-CAG240 at post-natal month 2 and post-natal month 3, without modifying motor deficits. Similarly the A2(A)R antagonist KW6002 selectively reverted working memory deficits in R6/2-CAG240 mice at post-natal month 3. The search for possible mechanisms indicated that the genetic inactivation of A(2A)R did not affect ubiquitin-positive neuronal inclusions, astrogliosis or Thr-75 phosphorylation of DARPP-32 in the striatum. Importantly, A(2A)R blockade preferentially controlled long-term depression at cortico-striatal synapses in R6/2-CAG240 at post-natal week 6. The reported reversal of working memory deficits in R6/2 mice by the genetic and pharmacological inactivation of A(2A)R provides a proof-of-principle for A(2A)R as novel targets to reverse cognitive deficits in HD, likely by controlling LTD deregulation.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Joana Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Yu-Mei Wang
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ping Li
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Marie-Pierce Payen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yuanguo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Christa E Muller
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Portugal
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Dallérac GM, Levasseur G, Vatsavayai SC, Milnerwood AJ, Cummings DM, Kraev I, Huetz C, Evans KA, Walters SW, Rezaie P, Cho Y, Hirst MC, Murphy KP. Dysfunctional Dopaminergic Neurones in Mouse Models of Huntington's Disease: A Role for SK3 Channels. NEURODEGENER DIS 2015; 15:93-108. [DOI: 10.1159/000375126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
|
17
|
Gardoni F, Bellone C. Modulation of the glutamatergic transmission by Dopamine: a focus on Parkinson, Huntington and Addiction diseases. Front Cell Neurosci 2015; 9:25. [PMID: 25784855 PMCID: PMC4345909 DOI: 10.3389/fncel.2015.00025] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) plays a major role in motor and cognitive functions as well as in reward processing by regulating glutamatergic inputs. In particular in the striatum the release of DA rapidly influences synaptic transmission modulating both AMPA and NMDA receptors. Several neurodegenerative and neuropsychiatric disorders, including Parkinson, Huntington and addiction-related diseases, manifest a dysregulation of glutamate and DA signaling. Here, we will focus our attention on the mechanisms underlying the modulation of the glutamatergic transmission by DA in striatal circuits.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milano Milano, Italy
| | - Camilla Bellone
- Department of Fundamental Neuroscience, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
18
|
Renoir T, Argyropoulos A, Chevarin C, Lanfumey L, Hannan AJ. Sexually dimorphic dopaminergic dysfunction in a transgenic mouse model of Huntington's disease. Pharmacol Biochem Behav 2014; 127:15-20. [PMID: 25316307 DOI: 10.1016/j.pbb.2014.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 02/09/2023]
Abstract
BACKGROUND Using the R6/1 transgenic mouse model of Huntington's disease (HD), we have recently shown that acute administration with the dopamine-norepinephrine reuptake inhibitor bupropion was able to rescue depressive-like behaviours in female HD mice at 12weeks of age. OBJECTIVE In this present study, we aimed to further investigate the dopamine system as well as specifically measure dopamine transporter (DAT) and D1 receptor function in female versus male R6/1 HD mice at a very early stage of the disease. METHODS We assessed the effects of acute administration of bupropion and the dopamine D1 receptor agonist SKF-8129 on spontaneous locomotor activity in 8-week-old HD and wild-type (WT) mice. We also measured dopamine levels in striatum via high performance liquid chromatography (HPLC). RESULTS We found that female (but not male) HD mice were hyposensitive to bupropion when compared to WT littermates. However, both female and male HD mice were less sensitive to SKF-81297 locomotor effects. We also found that striatal dopamine levels and dopamine turnover were reduced in HD animals, regardless of sex. CONCLUSION Our present findings suggest that whereas only female HD mice exhibit an impaired response to bupropion, dopamine D1 receptor function is altered in both female and male HD animals. These data are the first in vivo evidence of impaired dopamine D1 receptor-dependent function in pre-motor symptomatic HD mice suggesting that this is a candidate target for early therapeutic interventions.
Collapse
Affiliation(s)
- Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia.
| | - Andrew Argyropoulos
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | - Caroline Chevarin
- Inserm UMR S894, F-75013 Paris, France; UPMC, University of Paris 06, UMR S894, F-75013 Paris, France
| | - Laurence Lanfumey
- Inserm UMR S894, F-75013 Paris, France; UPMC, University of Paris 06, UMR S894, F-75013 Paris, France
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
19
|
Polyglutamine-expanded ataxin-3 impairs long-term depression in Purkinje neurons of SCA3 transgenic mouse by inhibiting HAT and impairing histone acetylation. Brain Res 2014; 1583:220-9. [PMID: 25139423 DOI: 10.1016/j.brainres.2014.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/11/2014] [Accepted: 08/07/2014] [Indexed: 01/13/2023]
Abstract
Our previous study using a transgenic mouse model of spinocerebellar ataxia type 3 (SCA3) reported that disease-causing ataxin-3-Q79 caused cerebellar malfunction by inducing transcriptional downregulation. Long-term depression (LTD) of parallel fiber-Purkinje neuron glutamatergic transmission is believed to be a cellular mechanism for motor learning and motor coordination in the cerebellum. Downregulated mRNA expression of calcineurin B, IP3-R1, myosin Va and PLC β4, which are required for the induction of cerebellar LTD, led to an impairment of LTD induction in Purkinje neurons of SCA3 transgenic mouse. Our study suggested that ataxin-3-Q79 caused hypoacetylation of cerebellar histone H3 or H4 by inhibiting the activity of histone acetyltransferase (HAT) without affecting the activity of histone deacetylase (HDAC). Consistent with the hypothesis that hypoacetylated H3 or H4 histone associated with promoter regions of downregulated genes is the molecular mechanism underlying ataxin-3-Q79-induced transcriptional repression, chromatin immunoprecipitation-quantitative real-time PCR analysis showed hypoacetylation of H3 or H4 histone associated with the proximal promoter of downregulated calcineurin B, IP3-R1, myosin Va or PLC β4 gene in the cerebellum of SCA3 mouse. HDAC inhibitor sodium butyrate reversed ataxin-3-Q79-induced hypoacetylation of histone H3 or H4 associated with the proximal promoter of calcineurin B, IP3-R1, myosin Va or PLC β4 gene. Sodium butyrate also prevented ataxin-3-Q79-induced impairment of LTD induction in Purkinje neurons of SCA3 mice. Our results suggest that polyglutamine-expanded ataxin-3-Q79 impairs HAT activity, leading to histone hypoacetylation, downregulated expression of cerebellar genes required for LTD induction and impaired induction of cerebellar LTD in the SCA3 transgenic mouse.
Collapse
|
20
|
Choi ML, Begeti F, Oh JH, Lee SY, O'Keeffe GC, Clelland CD, Tyers P, Cho ZH, Kim YB, Barker RA. Dopaminergic manipulations and its effects on neurogenesis and motor function in a transgenic mouse model of Huntington's disease. Neurobiol Dis 2014; 66:19-27. [PMID: 24561069 DOI: 10.1016/j.nbd.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/29/2014] [Accepted: 02/10/2014] [Indexed: 11/28/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that is classically defined by a triad of movement and cognitive and psychiatric abnormalities with a well-established pathology that affects the dopaminergic systems of the brain. This has classically been described in terms of an early loss of dopamine D2 receptors (D2R), although interestingly the treatments most effectively used to treat patients with HD block these same receptors. We therefore sought to examine the dopaminergic system in HD not only in terms of striatal function but also at extrastriatal sites especially the hippocampus, given that transgenic (Tg) mice also exhibit deficits in hippocampal-dependent cognitive tests and a reduction in adult hippocampal neurogenesis. We showed that there was an early reduction of D2R in both the striatum and dentate gyrus (DG) of the hippocampus in the R6/1 transgenic HD mouse ahead of any overt motor signs and before striatal neuronal loss. Despite downregulation of D2Rs in these sites, further reduction of the dopaminergic input to these sites by either medial forebrain bundle lesions or receptor blockade using sulpiride was able to improve both deficits in motor performance and adult hippocampal neurogenesis. In contrast, a reduction in dopaminergic innervation of the neurogenic niches resulted in impaired neurogenesis in healthy WT mice. This study therefore provides evidence that D2R blockade improves hippocampal and striatal deficits in HD mice although the underlying mechanism for this is unclear, and suggests that agents working within this network may have greater effects than previously thought.
Collapse
Affiliation(s)
- M L Choi
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - F Begeti
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK; School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, UK
| | - J H Oh
- Neuroscience Research Institute, Gachon University, Incheon 405-760, Republic of Korea
| | - S Y Lee
- Neuroscience Research Institute, Gachon University, Incheon 405-760, Republic of Korea
| | - G C O'Keeffe
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - C D Clelland
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - P Tyers
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Z H Cho
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Y B Kim
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - R A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK; Department of Neurology, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
21
|
Cepeda C, Murphy KPS, Parent M, Levine MS. The role of dopamine in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2014; 211:235-54. [PMID: 24968783 PMCID: PMC4409123 DOI: 10.1016/b978-0-444-63425-2.00010-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations in dopamine (DA) neurotransmission in Parkinson's disease are well known and widely studied. Much less is known about DA changes that accompany and underlie some of the symptoms of Huntington's disease (HD), a dominant inherited neurodegenerative disorder characterized by chorea, cognitive deficits, and psychiatric disturbances. The cause is an expansion in CAG (glutamine) repeats in the HTT gene. The principal histopathology of HD is the loss of medium-sized spiny neurons (MSNs) and, to a lesser degree, neuronal loss in cerebral cortex, thalamus, hippocampus, and hypothalamus. Neurochemical, electrophysiological, and behavioral studies in HD patients and genetic mouse models suggest biphasic changes in DA neurotransmission. In the early stages, DA neurotransmission is increased leading to hyperkinetic movements that can be alleviated by depleting DA stores. In contrast, in the late stages, DA deficits produce hypokinesia that can be treated by increasing DA function. Alterations in DA neurotransmission affect glutamate receptor modulation and could contribute to excitotoxicity. The mechanisms of DA dysfunction, in particular the increased DA tone in the early stages of the disease, are presently unknown but may include initial upregulation of DA neuron activity caused by the genetic mutation, reduced inhibition resulting from striatal MSN loss, increased excitation from cortical inputs, and DA autoreceptor dysfunction. Targeting both DA and glutamate receptor dysfunction could be the best strategy to treat HD symptoms.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kerry P S Murphy
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, Buckinghamshire, UK
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Pandian GN, Taylor RD, Junetha S, Saha A, Anandhakumar C, Vaijayanthi T, Sugiyama H. Alteration of epigenetic program to recover memory and alleviate neurodegeneration: prospects of multi-target molecules. Biomater Sci 2014; 2:1043-1056. [DOI: 10.1039/c4bm00068d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Next-generation sequence-specific small molecules modulating the epigenetic enzymes (DNMT/HDAC) and signalling factors can precisely turn ‘ON’ the multi-gene network in a neural cell.
Collapse
Affiliation(s)
- Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (iCeMS)
- Kyoto University
- Kyoto 606-8502, Japan
| | - Rhys D. Taylor
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Syed Junetha
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Abhijit Saha
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Chandran Anandhakumar
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Thangavel Vaijayanthi
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (iCeMS)
- Kyoto University
- Kyoto 606-8502, Japan
- Department of Chemistry
- Graduate School of Science
| |
Collapse
|
23
|
Chen JY, Wang EA, Cepeda C, Levine MS. Dopamine imbalance in Huntington's disease: a mechanism for the lack of behavioral flexibility. Front Neurosci 2013; 7:114. [PMID: 23847463 PMCID: PMC3701870 DOI: 10.3389/fnins.2013.00114] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023] Open
Abstract
Dopamine (DA) plays an essential role in the control of coordinated movements. Alterations in DA balance in the striatum lead to pathological conditions such as Parkinson's and Huntington's diseases (HD). HD is a progressive, invariably fatal neurodegenerative disease caused by a genetic mutation producing an expansion of glutamine repeats and is characterized by abnormal dance-like movements (chorea). The principal pathology is the loss of striatal and cortical projection neurons. Changes in brain DA content and receptor number contribute to abnormal movements and cognitive deficits in HD. In particular, during the early hyperkinetic stage of HD, DA levels are increased whereas expression of DA receptors is reduced. In contrast, in the late akinetic stage, DA levels are significantly decreased and resemble those of a Parkinsonian state. Time-dependent changes in DA transmission parallel biphasic changes in glutamate synaptic transmission and may enhance alterations in glutamate receptor-mediated synaptic activity. In this review, we focus on neuronal electrophysiological mechanisms that may lead to some of the motor and cognitive symptoms of HD and how they relate to dysfunction in DA neurotransmission. Based on clinical and experimental findings, we propose that some of the behavioral alterations in HD, including reduced behavioral flexibility, may be caused by altered DA modulatory function. Thus, restoring DA balance alone or in conjunction with glutamate receptor antagonists could be a viable therapeutic approach.
Collapse
Affiliation(s)
- Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles Los Angeles, CA, USA
| | | | | | | |
Collapse
|
24
|
Iscru E, Goddyn H, Ahmed T, Callaerts-Vegh Z, D'Hooge R, Balschun D. Improved spatial learning is associated with increased hippocampal but not prefrontal long-term potentiation in mGluR4 knockout mice. GENES BRAIN AND BEHAVIOR 2013; 12:615-25. [PMID: 23714430 DOI: 10.1111/gbb.12052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/13/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023]
Abstract
Although much information about metabotropic glutamate receptors (mGluRs) and their role in normal and pathologic brain function has been accumulated during the last decades, the role of group III mGluRs is still scarcely documented. Here, we examined mGluR4 knockout mice for types of behavior and synaptic plasticity that depend on either the hippocampus or the prefrontal cortex (PFC). We found improved spatial short- and long-term memory in the radial arm maze, which was accompanied by enhanced long-term potentiation (LTP) in hippocampal CA1 region. In contrast, LTP in the PFC was unchanged when compared with wild-type controls. Changes in paired-pulse facilitation that became overt in the presence of the GABAA antagonist picrotoxin indicated a function of mGluR4 in maintaining the excitation/inhibition balance, which is of crucial importance for information processing in the brain and the deterioration of these processes in neuropsychological disorders such as autism, epilepsy and schizophrenia.
Collapse
Affiliation(s)
- E Iscru
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Gronier B, Waters S, Ponten H. The dopaminergic stabilizer pridopidine increases neuronal activity of pyramidal neurons in the prefrontal cortex. J Neural Transm (Vienna) 2013; 120:1281-94. [DOI: 10.1007/s00702-013-1002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/17/2013] [Indexed: 12/29/2022]
|
26
|
Estrada-Sánchez AM, Rebec GV. Role of cerebral cortex in the neuropathology of Huntington's disease. Front Neural Circuits 2013; 7:19. [PMID: 23423362 PMCID: PMC3575072 DOI: 10.3389/fncir.2013.00019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/28/2013] [Indexed: 11/13/2022] Open
Abstract
An expansion of glutamine repeats in the N-terminal domain of the huntingtin protein leads to Huntington's disease (HD), a neurodegenerative condition characterized by the presence of involuntary movements, dementia, and psychiatric disturbances. Evaluation of postmortem HD tissue indicates that the most prominent cell loss occurs in cerebral cortex and striatum, forebrain regions in which cortical pyramidal neurons (CPNs) and striatal medium spiny neurons (MSNs) are the most affected. Subsequent evidence obtained from HD patients and especially from transgenic mouse models of HD indicates that long before neuronal death, patterns of communication between CPNs and MSNs become dysfunctional. In fact, electrophysiological signaling in transgenic HD mice is altered even before the appearance of the HD behavioral phenotype, suggesting that dysfunctional cortical input to the striatum sets the stage for the emergence of HD neurological signs. Striatal MSNs, moreover, project back to cortex via multi-synaptic connections, allowing for even further disruptions in cortical processing. An effective therapeutic strategy for HD, therefore, may lie in understanding the synaptic mechanisms by which it dysregulates the corticostriatal system. Here, we review literature evaluating the molecular, morphological, and physiological alterations in the cerebral cortex, a key component of brain circuitry controlling motor behavior, as they occur in both patients and transgenic HD models.
Collapse
Affiliation(s)
- Ana M Estrada-Sánchez
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
27
|
“Ectopic” theta oscillations and interictal activity during slow-wave state in the R6/1 mouse model of Huntington's disease. Neurobiol Dis 2012; 48:409-17. [DOI: 10.1016/j.nbd.2012.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 01/29/2023] Open
|
28
|
Höhn S, Dallérac G, Faure A, Urbach YK, Nguyen HP, Riess O, von Hörsten S, Le Blanc P, Desvignes N, El Massioui N, Brown BL, Doyère V. Behavioral and in vivo electrophysiological evidence for presymptomatic alteration of prefrontostriatal processing in the transgenic rat model for huntington disease. J Neurosci 2011; 31:8986-97. [PMID: 21677182 PMCID: PMC6622938 DOI: 10.1523/jneurosci.1238-11.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 04/22/2011] [Indexed: 11/21/2022] Open
Abstract
Cognitive decline precedes motor symptoms in Huntington disease (HD). A transgenic rat model for HD carrying only 51 CAG repeats recapitulates the late-onset HD phenotype. Here, we assessed prefrontostriatal function in this model through both behavioral and electrophysiological assays. Behavioral examination consisted in a temporal bisection task within a supra-second range (2 vs.8 s), which is thought to involve prefrontostriatal networks. In two independent experiments, the behavioral analysis revealed poorer temporal sensitivity as early as 4 months of age, well before detection of overt motor deficits. At a later symptomatic age, animals were impaired in their temporal discriminative behavior. In vivo recording of field potentials in the dorsomedial striatum evoked by stimulation of the prelimbic cortex were studied in 4- to 5-month-old rats. Input/output curves, paired-pulse function, and plasticity induced by theta-burst stimulation (TBS) were assessed. Results showed an altered plasticity, with higher paired-pulse facilitation, enhanced short-term depression, as well as stronger long-term potentiation after TBS in homozygous transgenic rats. Results from the heterozygous animals mostly fell between wild-type and homozygous transgenic rats. Our results suggest that normal plasticity in prefrontostriatal circuits may be necessary for reliable and precise timing behavior. Furthermore, the present study provides the first behavioral and electrophysiological evidence of a presymptomatic alteration of prefrontostriatal processing in an animal model for Huntington disease and suggests that supra-second timing may be the earliest cognitive dysfunction in HD.
Collapse
Affiliation(s)
- Sophie Höhn
- Université Paris-Sud, Centre de Neurosciences Paris-Sud, Unité Mixte de Recherche 8195, F-91405 Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|