1
|
Wurbs A, Karner C, Vejzovic D, Singer G, Pichler M, Liegl-Atzwanger B, Rinner B. A human ex vivo skin model breaking boundaries. Sci Rep 2024; 14:24054. [PMID: 39402181 PMCID: PMC11473684 DOI: 10.1038/s41598-024-75291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/03/2024] [Indexed: 10/17/2024] Open
Abstract
Ex vivo human skin models are valuable tools in skin research due to their physiological relevance. Traditionally, standard cultivation is performed in a cell culture incubator with a defined temperature of 37 °C and a specific atmosphere enriched with CO2 to ensure media stability. Maintaining the model under these specific conditions limits its flexibility in assessing exposures to which the skin is exposed to in daily life, for example changes in atmospheric compositions. In this study we demonstrated that the foreskin-derived skin model can be successfully cultured at room temperature outside a CO2 incubator using a CO2-independent, serum-free media. Over a cultivation period of three days, the integrity of the tissue and the preservation of immune cells is well maintained, indicating the model's stability and resilience under the given conditions. Exposing our Medical University of Graz - human Organotypic Skin Explant Culture (MUG-hOSEC) model to cytotoxic and inflammatory stimuli results in responses analyzable within the supernatant. Besides the common analysis of released proteins upon treatment, such as cytokines and enzymes, we have included extracellular vesicle to obtain a more comprehensive picture of cell communication.
Collapse
Affiliation(s)
- Astrid Wurbs
- Division of Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Roseggerweg 48, 8036, Graz, Austria
| | - Christina Karner
- Division of Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Roseggerweg 48, 8036, Graz, Austria
| | - Djenana Vejzovic
- Division of Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Roseggerweg 48, 8036, Graz, Austria
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Markus Pichler
- Prototyping and Construction, Medical University of Graz, Graz, Austria
| | | | - Beate Rinner
- Division of Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Roseggerweg 48, 8036, Graz, Austria.
| |
Collapse
|
2
|
Yang I, Jeong NH, Choi YA, Kwon TK, Lee S, Khang D, Kim SH. Monotropein mitigates atopic dermatitis-like skin inflammation through JAK/STAT signaling pathway inhibition. Biomed Pharmacother 2024; 176:116911. [PMID: 38861857 DOI: 10.1016/j.biopha.2024.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Atopic dermatitis (AD) is a globally increasing chronic inflammatory skin disease with limited and potentially side-effect-prone treatment options. Monotropein is the predominant iridoid glycoside in Morinda officinalis How roots, which has previously shown promise in alleviating AD symptoms. This study aimed to systematically investigate the pharmacological effects of monotropein on AD using a 2, 4-dinitrochlorobenzene (DNCB)/Dermatophagoides farinae extract (DFE)-induced AD mice and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated keratinocytes. Oral administration of monotropein demonstrated a significant reduction in AD phenotypes, including scaling, erythema, and increased skin thickness in AD-induced mice. Histological analysis revealed a marked decrease in immune cell infiltration in skin lesions. Additionally, monotropein effectively downregulated inflammatory markers, encompassing pro-inflammatory cytokines, T helper (Th)1 and Th2 cytokines, and pro-inflammatory chemokines in skin tissues. Notably, monotropein also led to a considerable decrease in serum immunoglobulin (Ig)E and IgG2a levels. At a mechanistic level, monotropein exerted its anti-inflammatory effects by suppressing the phosphorylation of Janus kinase / signal transducer and activator of transcription proteins in both skin tissues of AD-induced mice and TNF-α/IFN-γ-stimulated keratinocytes. In conclusion, monotropein exhibited a pronounced alleviation of AD symptoms in the experimental models used. These findings underscore the potential application of monotropein as a therapeutic agent in the context of AD, providing a scientific basis for further exploration and development.
Collapse
Affiliation(s)
- Inyoung Yang
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Na-Hee Jeong
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Ae Choi
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Soyoung Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea.
| | - Dongwoo Khang
- Department of Physiology, School of Medicine, Gachon University, Incheon, South Korea.
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
3
|
Yi MH, Kim M, Yong TS, Kim JY. Investigating the microbiome of house dust mites in South Korea. FRONTIERS IN ALLERGY 2023; 4:1240727. [PMID: 37655177 PMCID: PMC10466795 DOI: 10.3389/falgy.2023.1240727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Understanding the house dust mites (HDMs) microbiome is crucial due to its potential effects on the development of allergic diseases. In 1998, our laboratory collected Dermatophagoides farinae and D. pteronyssinus from beds in a Korean household and began cultivating these HDMs. Our laboratory has been actively investigating several topics about HDMs in recent years, including the bacterial and fungal microbiome and their interactions, as well as the impact of the HDM microbiome on airway inflammation. To study the D. farinae microbiome, we employed high-throughput sequencing of the 16S rDNA amplicons. The results revealed that the two most abundant bacteria were Enterococcus faecalis and Bartonella spp. In contrast, we found almost no bacteria in D. pteronyssinus. By inoculating bacteria to HDMs, we found that D. farinae is more susceptible to bacteria than D. pteronyssinus. This susceptibility was associated with the presence of certain fungal species in D. pteronyssinus. Additionally, we have recently made efforts to produce HDMs with reduced levels of symbiotic bacteria. We believe that standardizing and controlling the microbiome in HDMs are crucial steps for the future development and improvement of allergic immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
A Simple Method for the Production of Human Skin Equivalent in 3D, Multi-Cell Culture. Int J Mol Sci 2020; 21:ijms21134644. [PMID: 32629914 PMCID: PMC7369873 DOI: 10.3390/ijms21134644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 01/01/2023] Open
Abstract
An important problem for researchers working in the field of dermatology is the preparation of the human skin equivalent (HSE). Here, we describe a simple and reliable protocol for preparing a skin model from the commercially available cell lines: keratinocytes, fibroblasts, and melanocytes. Importantly, in our 3D model, the keratinocytes are diverse that brings this model closer to the natural skin. For the production of HSE, we used available primary PCS-200-010, PCS-201-010, PCS-200-013, and immortalized CRL-4048 and CRL-4001 cell lines. We used genipin, which is necessary for collagen cross-linking and studied its cytotoxicity for keratinocytes and fibroblasts. The addition of 20 μM genipin reduced the shrinkage of the collagen in the constructs from 59% to 24% on day 12 of the culture of the construct. A higher concentration (80-200 µM) of genipin reduced shrinkage by 14% on average. Genipin in concentration 10 μM and below was not cytotoxic to the keratinocytes, and 150 μM and below to the fibroblasts. Hematoxylin and eosin staining showed that the morphology of HSEs was identical to that of native human skin. The immunohistochemical staining of the constructs showed the presence of vimentin-positive fibroblasts in the skin layer, while the melanocytes were in the epidermis and in the basal layer. We observed that the longer differentiation of constructs led to the higher secretion of GM-CSF, IL-10, IL-15, IL-1α, IL-6, IL-7, IL-8, and MCP-1. We also observed that the longer time of differentiation led to a more stable secretion of all analytes, which was reflected in the coefficient of variation. We described here a simple, reliable, and cost-effective production of the full-thickness human skin equivalents that can be used in the research and industry. With the global trend to decrease animal use for the research and testing, our HSE could be a useful testing tool and an alternative research model.
Collapse
|
5
|
Pelst MP, Höbart C, Wallaeys C, De Rooster H, Gansemans Y, Van Nieuwerburgh F, Devriendt B, Cox E. Adjuvanting Allergen Extracts for Sublingual Immunotherapy: Calcitriol Downregulates CXCL8 Production in Primary Sublingual Epithelial Cells. Front Immunol 2020; 11:1033. [PMID: 32582164 PMCID: PMC7295906 DOI: 10.3389/fimmu.2020.01033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
Application of allergens onto the sublingual epithelium is used to desensitize allergic individuals, a treatment known as sublingual immunotherapy. However, the response of sublingual epithelial cells to house dust mite allergen and potential tolerance-promoting adjuvants such as Toll-like receptor (TLR) ligands and calcitriol has not been investigated. In order to study this, primary sublingual epithelial cells were isolated from dogs and cultured in vitro. After 24-h incubation with a Dermatophagoides farinae extract, a Dermatophagoides pteronyssinus extract, TLR2 ligands (FSL-1, heat-killed Listeria monocytogenes, Pam3CSK4), a TLR3 ligand (poly I:C), a TLR4 ligand [lipopolysaccharide (LPS)], and calcitriol (1,25-dihydroxyvitamin D3), viability of the cells was analyzed using an MTT test, and their secretion of interleukin 6 (IL-6), IL-10, CXCL8, and transforming growth factor β1 (TGF-β1) was measured by enzyme-linked immunosorbent assay. Additionally, to evaluate its potential effect as an adjuvant, sublingual epithelial cells were incubated with calcitriol in combination with a D. farinae extract followed by measurement of CXCL8 secretion. Furthermore, the effect of D. farinae and calcitriol on the transcriptome was assessed by RNA sequencing. The viability of the sublingual epithelial cells was significantly decreased by poly I:C, but not by the other stimuli. CXCL8 secretion was significantly increased by D. farinae extract and all TLR ligands apart from LPS. Calcitriol significantly decreased CXCL8 secretion, and coadministration with D. farinae extract reduced CXCL8 concentrations to levels seen in unstimulated sublingual epithelial cells. Although detectable, TGF-β1 secretion could not be modulated by any of the stimuli. Interleukin 6 and IL-10 could not be detected at the protein or at the mRNA level. It can be concluded that a D. farinae extract and TLR ligands augment the secretion of the proinflammatory chemokine CXCL8, which might interfere with sublingual desensitization. On the other hand, CXCL8 secretion was reduced by coapplication of calcitriol and a D. farinae extract. Calcitriol therefore seems to be a suitable candidate to be used as adjuvant during sublingual immunotherapy.
Collapse
Affiliation(s)
- Michael P Pelst
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Clara Höbart
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Charlotte Wallaeys
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hilde De Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yannick Gansemans
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
6
|
Abstract
House dust mites are an unsurpassed cause of atopic sensitization and allergic illness throughout the world. The major allergenic dust mites Dermatophagoides pteronyssinus, Dermatophagoides farinae, Euroglyphus maynei, and Blomia tropicalis are eight-legged members of the Arachnid class. Their approximately 3-month lifespan comprises egg, larval, protonymph, tritonymph, and adult stages, with adults, about one fourth to one third of a millimeter in size, being at the threshold of visibility. The geographic and seasonal distributions of dust mites are determined by their need for adequate humidity, while their distribution within substrates is further determined by their avoidance of light. By contacting the epithelium of the eyes, nose, lower airways, skin, and gut, the allergen-containing particles of dust mites can induce sensitization and atopic symptoms in those organs. Various mite allergens, contained primarily in mite fecal particles but also in shed mite exoskeletons and decaying mite body fragments, have properties that include proteolytic activity, homology with the lipopolysaccharide-binding component of Toll-like receptor 4, homology with other invertebrate tropomyosins, and chitin-cleaving and chitin-binding activity. Mite proteases have direct epithelial effects including the breaching of tight junctions and the stimulation of protease-activated receptors, the latter inducing pruritus, epithelial dysfunction, and cytokine release. Other components, including chitin, unmethylated mite and bacterial DNA, and endotoxin, activate pattern recognition receptors of the innate immune system and act as adjuvants promoting sensitization to mite and other allergens. Clinical conditions resulting from mite sensitization and exposure include rhinitis, sinusitis, conjunctivitis, asthma, and atopic dermatitis. Systemic allergy symptoms can also occur from the ingestion of cross-reacting invertebrates, such as shrimp or snail, or from the accidental ingestion of mite-contaminated foods. Beyond their direct importance as a major allergen source, an understanding of dust mites leads to insights into the nature of atopy and of allergic sensitization in general.
Collapse
|
7
|
Zhang J, Chen J, Robinson C. Cellular and Molecular Events in the Airway Epithelium Defining the Interaction Between House Dust Mite Group 1 Allergens and Innate Defences. Int J Mol Sci 2018; 19:E3549. [PMID: 30423826 PMCID: PMC6274810 DOI: 10.3390/ijms19113549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
Serodominant group 1 allergens of house dust mites (HDMs) are cysteine protease digestive enzymes. By increasing the detection of any allergen by dendritic antigen presenting cells, upregulating inflammatory signalling molecules, and activating cells crucial to the transition from innate to acquired immune responses, the proteolytic activity of these HDM allergens also underlies their behaviour as inhalant allergens. The significance of this property is underlined by the attenuation of allergic responses to HDMs by novel inhibitors in experimental models. The group 1 HDM allergens act as prothrombinases, enabling them to operate the canonical stimulation of protease activated receptors 1 and 4. This leads to the ligation of Toll-like receptor 4, which is an indispensable component in HDM allergy development, and reactive oxidant-regulated gene expression. Intermediate steps involve epidermal growth factor receptor ligation, activation of a disintegrin and metalloproteases, and the opening of pannexons. Elements of this transduction pathway are shared with downstream signalling from biosensors which bind viral RNA, suggesting a mechanistic linkage between allergens and respiratory viruses in disease exacerbations. This review describes recent progress in the characterisation of an arterial route which links innate responses to inhaled allergens to events underpinning the progression of allergy to unrelated allergens.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Chen
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| | - Clive Robinson
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| |
Collapse
|
8
|
Zhang J, Chen J, Newton GK, Perrior TR, Robinson C. Allergen Delivery Inhibitors: A Rationale for Targeting Sentinel Innate Immune Signaling of Group 1 House Dust Mite Allergens through Structure-Based Protease Inhibitor Design. Mol Pharmacol 2018; 94:1007-1030. [PMID: 29976563 PMCID: PMC6064784 DOI: 10.1124/mol.118.112730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022] Open
Abstract
Diverse evidence from epidemiologic surveys and investigations into the molecular basis of allergenicity have revealed that a small cadre of "initiator" allergens promote the development of allergic diseases, such as asthma, allergic rhinitis, and atopic dermatitis. Pre-eminent among these initiators are the group 1 allergens from house dust mites (HDM). In mites, group 1 allergens function as cysteine peptidase digestive enzymes to which humans are exposed by inhalation of HDM fecal pellets. Their protease nature confers the ability to activate high gain signaling mechanisms which promote innate immune responses, leading to the persistence of allergic sensitization. An important feature of this process is that the initiator drives responses both to itself and to unrelated allergens lacking these properties through a process of collateral priming. The clinical significance of group 1 HDM allergens in disease, their serodominance as allergens, and their IgE-independent bioactivities in innate immunity make these allergens interesting therapeutic targets in the design of new small-molecule interventions in allergic disease. The attraction of this new approach is that it offers a powerful, root-cause-level intervention from which beneficial effects can be anticipated by interference in a wide range of effector pathways associated with these complex diseases. This review addresses the general background to HDM allergens and the validation of group 1 as putative targets. We then discuss structure-based drug design of the first-in-class representatives of allergen delivery inhibitors aimed at neutralizing the proteolytic effects of HDM group 1 allergens, which are essential to the development and maintenance of allergic diseases.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Jie Chen
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Gary K Newton
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Trevor R Perrior
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Clive Robinson
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| |
Collapse
|
9
|
Noske K. Secreted immunoregulatory proteins in the skin. J Dermatol Sci 2017; 89:3-10. [PMID: 29111181 DOI: 10.1016/j.jdermsci.2017.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
Abstract
The skin, thought initially to protect the body passively from pathogenic organisms and other environmental insults, is now recognised additionally as a sophisticated immune organ that actively regulates local immunity. Studies linking local innate and adaptive immunity to skin health and disease have revealed a complex network of cell communication and cytokine signalling. Here, we review the last 10 years of literature on this topic, and its relevance to skin immunity.
Collapse
Affiliation(s)
- Katharina Noske
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba 4102, QLD, Australia.
| |
Collapse
|
10
|
Randall TA, London RE, Fitzgerald MC, Mueller GA. Proteases of Dermatophagoides pteronyssinus. Int J Mol Sci 2017; 18:ijms18061204. [PMID: 28587273 PMCID: PMC5486027 DOI: 10.3390/ijms18061204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 02/03/2023] Open
Abstract
Since the discovery that Der p 1 is a cysteine protease, the role of proteolytic activity in allergic sensitization has been explored. There are many allergens with proteolytic activity; however, exposure from dust mites is not limited to allergens. In this paper, genomic, transcriptomic and proteomic data on Dermatophagoides pteronyssinus (DP) was mined for information regarding the complete degradome of this house dust mite. D. pteronyssinus has more proteases than the closely related Acari, Dermatophagoides farinae (DF) and Sarcoptes scabiei (SS). The group of proteases in D. pteronyssinus is found to be more highly transcribed than the norm for this species. The distribution of protease types is dominated by the cysteine proteases like Der p 1 that account for about half of protease transcription by abundance, and Der p 1 in particular accounts for 22% of the total protease transcripts. In an analysis of protease stability, the group of allergens (Der p 1, Der p 3, Der p 6, and Der p 9) is found to be more stable than the mean. It is also statistically demonstrated that the protease allergens are simultaneously more highly expressed and more stable than the group of D. pteronyssinus proteases being examined, consistent with common assumptions about allergens in general. There are several significant non-allergen outliers from the normal group of proteases with high expression and high stability that should be examined for IgE binding. This paper compiles the first holistic picture of the D. pteronyssinus degradome to which humans may be exposed.
Collapse
Affiliation(s)
- Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| | | | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| |
Collapse
|
11
|
Ogburn RN, Randall TA, Xu Y, Roberts JH, Mebrahtu B, Karnuta JM, Rider SD, Kissling GE, London RE, Pomés A, Arlian L, Fitzgerald MC, Mueller GA. Are dust mite allergens more abundant and/or more stable than other Dermatophagoides pteronyssinus proteins? J Allergy Clin Immunol 2016; 139:1030-1032.e1. [PMID: 27771129 DOI: 10.1016/j.jaci.2016.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022]
Affiliation(s)
| | - Thomas A Randall
- Intramural Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Yingrong Xu
- Chemistry Department, Duke University, Durham, NC
| | | | | | | | | | - Grace E Kissling
- Intramural Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Robert E London
- Intramural Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Anna Pomés
- Indoor Biotechnologies, Charlottesville, Va
| | | | | | - Geoffrey A Mueller
- Intramural Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC.
| |
Collapse
|
12
|
Rider SD, Morgan MS, Arlian LG. Draft genome of the scabies mite. Parasit Vectors 2015; 8:585. [PMID: 26555130 PMCID: PMC4641413 DOI: 10.1186/s13071-015-1198-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Background The disease scabies, caused by the ectoparasitic mite, Sarcoptes scabiei, causes significant morbidity in humans and other mammals worldwide. However, there is limited data available regarding the molecular basis of host specificity and host-parasite interactions. Therefore, we sought to produce a draft genome for S. scabiei and use this to identify molecular markers that will be useful for phylogenetic population studies and to identify candidate protein-coding genes that are critical to the unique biology of the parasite. Methods S. scabiei var. canis DNA was isolated from living mites and sequenced to ultra-deep coverage using paired-end technology. Sequence reads were assembled into gapped contigs using de Bruijn graph based algorithms. The assembled genome was examined for repetitive elements and gene annotation was performed using ab initio, and homology-based methods. Results The draft genome assembly was about 56.2 Mb and included a mitochondrial genome contig. The predicted proteome contained 10,644 proteins, ~67 % of which appear to have clear orthologs in other species. The genome also contained more than 140,000 simple sequence repeat loci that may be useful for population-level studies. The mitochondrial genome contained 13 protein coding loci and 20 transfer RNAs. Hundreds of candidate salivary gland protein genes were identified by comparing the scabies mite predicted proteome with sialoproteins and transcripts identified in ticks and other hematophagous arthropods. These include serpins, ferritins, reprolysins, apyrases and new members of the macrophage migration inhibitory factor (MIF) gene family. Numerous other genes coding for salivary proteins, metabolic enzymes, structural proteins, proteins that are potentially immune modulating, and vaccine candidates were identified. The genes encoding cysteine and serine protease paralogs as well as mu-type glutathione S-transferases are represented by gene clusters. S. scabiei possessed homologs for most of the 33 dust mite allergens. Conclusion The draft genome is useful for advancing our understanding of the host-parasite interaction, the biology of the mite and its phylogenetic relationship to other Acari. The identification of antigen-producing genes, candidate immune modulating proteins and pathways, and genes responsible for acaricide resistance offers opportunities for developing new methods for diagnosing, treating and preventing this disease. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1198-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Dean Rider
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Marjorie S Morgan
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Larry G Arlian
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| |
Collapse
|
13
|
Ko E, Choi H, Park KN, Park JY, Lee TR, Shin DW, Bae YS. Dual oxidase 2 is essential for house dust mite-induced pro-inflammatory cytokine production in human keratinocytes. Exp Dermatol 2015; 24:936-41. [PMID: 26174504 DOI: 10.1111/exd.12808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 12/13/2022]
Abstract
House dust mites (HDMs) are known to trigger chronic inflammation through Toll-like receptors (TLRs) and their signalling cascades. In this study, we found that TLR2 ligation by HDMs induced the activation of dual oxidase 2 (Duox2) and nuclear factor-κB (NF-κB), leading to the production of pro-inflammatory cytokines in human keratinocytes. Stimulation of human keratinocytes with HDMs resulted in increases in interleukin-8 (IL-8) and chemokine (C-C motif) ligand 20 (CCL20) levels. However, pro-inflammatory cytokine production was abolished in keratinocytes transfected with TLR2 siRNA, indicating that HDM-induced cytokine production was mediated via TLR2 signalling. We also examined the function of Duox1/2 isozymes, which are primarily expressed in keratinocytes, in HDM-mediated pro-inflammatory cytokine production. Human keratinocytes transfected with control siRNA or Duox1 siRNA showed no inhibition of IL-8 or CCL20 production in response to HDMs, whereas the silencing of Duox2 expression resulted in a failure to induce cytokine production. Moreover, the phosphorylation and nuclear localization of RelA/p65, a component of NF-κB, were induced by HDMs in human keratinocytes. Transfection of human keratinocytes with TLR2 siRNA or Duox2 siRNA resulted in the complete abolishment of RelA/p65 nuclear localization in response to HDMs. Taken together, these results indicate that the HDM-dependent TLR2-Duox2 signalling axis indeed promotes NF-κB activation, which induces IL-8 and CCL20 production and mediates epidermal keratinocyte inflammation.
Collapse
Affiliation(s)
- Eunbi Ko
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Hyun Choi
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Kkot-Nara Park
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Ju-Yearl Park
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
14
|
Kopecky J, Nesvorna M, Mareckova-Sagova M, Hubert J. The effect of antibiotics on associated bacterial community of stored product mites. PLoS One 2014; 9:e112919. [PMID: 25387104 PMCID: PMC4227874 DOI: 10.1371/journal.pone.0112919] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/21/2014] [Indexed: 01/22/2023] Open
Abstract
Background Bacteria are associated with the gut, fat bodies and reproductive organs of stored product mites (Acari: Astigmata). The mites are pests due to the production of allergens. Addition of antibiotics to diets can help to characterize the association between mites and bacteria. Methodology and Principal Findings Ampicillin, neomycin and streptomycin were added to the diets of mites and the effects on mite population growth (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae) and associated bacterial community structure were assessed. Mites were treated by antibiotic supplementation (1 mgg−1 of diet) for 21 days and numbers of mites and bacterial communities were analyzed and compared to the untreated control. Bacterial quantities, determined by real-time PCR, significantly decreased in antibiotic treated specimens from 5 to 30 times in A. siro and T. putrescentiae, while no decline was observed in L. destructor. Streptomycin treatment eliminated Bartonella-like bacteria in the both A. siro and T. putrescentiae and Cardinium in T. putrescentiae. Solitalea-like bacteria proportion increased in the communities of neomycin and streptomycin treated A. siro specimens. Kocuria proportion increased in the bacterial communities of ampicillin and streptomycin treated A. siro and neomycin and streptomycin treated L. destructor. Conclusions/Significance The work demonstrated the changes of mite associated bacterial community under antibiotic pressure in pests of medical importance. Pre-treatment of mites by 1 mgg−1 antibiotic diets improved mite fitness as indicated accelerated population growth of A. siro pretreated streptomycin and neomycin and L. destructor pretreated by neomycin. All tested antibiotics supplemented to diets caused the decrease of mite growth rate in comparison to the control diet.
Collapse
Affiliation(s)
- Jan Kopecky
- Epidemiology and Ecology of Microorganisms, Crop Research Institute, Prague, Czechia
| | - Marta Nesvorna
- Biologically Active Substances in Crop Protection, Crop Research Institute, Prague, Czechia
| | | | - Jan Hubert
- Biologically Active Substances in Crop Protection, Crop Research Institute, Prague, Czechia
- * E-mail:
| |
Collapse
|
15
|
Portnoy J, Miller JD, Williams PB, Chew GL, Miller JD, Zaitoun F, Phipatanakul W, Kennedy K, Barnes C, Grimes C, Larenas-Linnemann D, Sublett J, Bernstein D, Blessing-Moore J, Khan D, Lang D, Nicklas R, Oppenheimer J, Randolph C, Schuller D, Spector S, Tilles SA, Wallace D. Environmental assessment and exposure control of dust mites: a practice parameter. Ann Allergy Asthma Immunol 2013; 111:465-507. [PMID: 24267359 PMCID: PMC5156485 DOI: 10.1016/j.anai.2013.09.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/20/2013] [Indexed: 12/15/2022]
|
16
|
Kutlu A, Karabacak E, Aydin E, Ozturk S, Taskapan O, Aydinoz S, Bozkurt B. Relationship between skin prick and atopic patch test reactivity to aeroallergens and disease severity in children with atopic dermatitis. Allergol Immunopathol (Madr) 2013; 41:369-73. [PMID: 24094443 DOI: 10.1016/j.aller.2013.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/10/2013] [Accepted: 02/18/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The immunological mechanism in aetiology of atopic dermatitis (AD) shows significant differences from other allergic diseases. Allergen inhalation exacerbates AD lesions and AD patients' complaints decrease in house dust mite (HDM) low level environments, which reveals the importance of inhalant allergens. OBJECTIVE We evaluated the skin prick test (SPT) and atopy patch test (APT) positivity rates with aeroallergens and studied the effect of test results, and aimed to determine the value of allergic test reactivity on the clinical characteristics of children with AD. METHODS Forty-five children aged 2-15 years with AD were included to study between May 2006 and May 2007 in GATA Haydarpasa Teaching Hospital, Allergy Department. The reactivity to inhalant allergens using SPT and APT was evaluated. The severity of AD, which was assessed with SCORAD, was compared with aeroallergen hypersensitivity. RESULTS The highest positivity of APT was seen against HDM (48.9%). HDM SPT positivity and subjective symptoms score were statistically correlated (P<0.05). Patients with strong SPT positivity to HDM had a higher total SCORAD score (P<0.05). Although there was no statistical correlation between HDM APT and SCORAD parameters, APT positive patients had generally higher SCORAD parameters. The statistical significance was only shown between the extent of the disease and strong APT positive reactions to Dermatophagoides pteronyssinus. CONCLUSION HDM allergens play an important role in determining the clinical severity of AD and strong APT positivity could be more meaningful clinically.
Collapse
Affiliation(s)
- A Kutlu
- GATA Haydarpasa Training Hospital, Department of Allergy, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
17
|
Rockwood J, Morgan MS, Arlian LG. Proteins and endotoxin in house dust mite extracts modulate cytokine secretion and gene expression by dermal fibroblasts. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 61:311-25. [PMID: 23640713 PMCID: PMC3762948 DOI: 10.1007/s10493-013-9703-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/23/2013] [Indexed: 05/24/2023]
Abstract
House dust mite extracts used for diagnostic tests and immunotherapy contain bioreactive molecules including proteins and endotoxin. These extracts can influence the cytokine secretion and adhesion molecule expression by cells in the skin and lung airways. The aim of this study was to determine the role of proteins and endotoxin in mite extracts in modulating gene expression and cytokine secretion by human dermal fibroblasts. Cultured normal human dermal fibroblasts were stimulated with whole mite extracts, mite extracts boiled to denature proteins, or mite extracts treated with polymyxin B to inactivate lipopolysaccharide. Gene expression and secretion of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein-1 (MCP-1) were determined after 6 h of stimulation. Whole Dermatophagoides farinae, D. pteronyssinus and Euroglyphus maynei extracts induced dose-dependent IL-6 and IL-8 secretion. In addition, D. farinae and E. maynei induced secretion of MCP-1. Dermatophagoides farinae and E. maynei also induced parallel cytokine gene expression. Cells stimulated with boiled D. farinae extract showed moderate to marked reductions in IL-6 and IL-8 secretion. In contrast, boiled D. pteronyssinus and E. maynei extracts induced equal or greater cytokine secretions than untreated extracts. The stimulating properties were reduced for all three extracts following treatment with polymyxin B. Our data suggest that both endotoxin and proteins in mite extracts modulate the secretion of cytokines by dermal fibroblasts. The biological activities of D. farinae, D. pteronyssinus, and E. maynei extracts are not equivalent. There appears to be a lipopolysaccharide-binding protein in some mite extracts.
Collapse
Affiliation(s)
- Jananie Rockwood
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | | | | |
Collapse
|
18
|
Ito I, Osaki T, Ifuku S, Saimoto H, Takamori Y, Kurozumi S, Imagawa T, Azuma K, Tsuka T, Okamoto Y, Minami S. Evaluation of the effects of chitin nanofibrils on skin function using skin models. Carbohydr Polym 2013; 101:464-70. [PMID: 24299799 DOI: 10.1016/j.carbpol.2013.09.074] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 01/15/2023]
Abstract
Chitins are highly crystalline structures that are predominantly found in crustacean shells. Alpha-chitin is composed of microfibers, which are made up of nanofibrils that are 2-5 nm in diameter and 30 nm in length and embedded in a protein matrix. Crystalline nanofibrils can also be prepared by acid treatment. We verified the effect of chitin nanofibrils (NF) and nanocrystals (NC) on skin using a three-dimensional skin culture model and Franz cells. The application of NF and NC to skin improved the epithelial granular layer and increased granular density. Furthermore, NF and NC application to the skin resulted in a lower production of TGF-β compared to that of the control group. NF and NC might have protective effects to skin. Therefore, their potential use as components of skin-protective formulations merits consideration.
Collapse
Affiliation(s)
- Ikuko Ito
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Innate immune responses in house dust mite allergy. ISRN ALLERGY 2013; 2013:735031. [PMID: 23724247 PMCID: PMC3658386 DOI: 10.1155/2013/735031] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 11/22/2012] [Indexed: 12/20/2022]
Abstract
Sensitizations to house dust mites (HDM) trigger strong exacerbated allergen-induced inflammation of the skin and airways mucosa from atopic subjects resulting in atopic dermatitis as well as allergic rhinitis and asthma. Initially, the Th2-biased HDM allergic response was considered to be mediated only by allergen B- and T-cell epitopes to promote allergen-specific IgE production as well as IL-4, IL-5, and IL-13 to recruit inflammatory cells. But this general molecular model of HDM allergenicity must be revisited as a growing literature suggests that stimulations of innate immune activation pathways by HDM allergens offer new answers to the following question: what makes an HDM allergen an allergen? Indeed, HDM is a carrier not only for allergenic proteins but also microbial adjuvant compounds, both of which are able to stimulate innate signaling pathways leading to allergy. This paper will describe the multiple ways used by HDM allergens together with microbial compounds to control the initiation of the allergic response through engagement of innate immunity.
Collapse
|
20
|
Klimov PB, OConnor B. Is permanent parasitism reversible?--critical evidence from early evolution of house dust mites. Syst Biol 2013; 62:411-23. [PMID: 23417682 DOI: 10.1093/sysbio/syt008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-term specialization may limit the ability of a species to respond to new environmental conditions and lead to a higher likelihood of extinction. For permanent parasites and other symbionts, the most intriguing question is whether these organisms can return to a free-living lifestyle and, thus, escape an evolutionary "dead end." This question is directly related to Dollo's law, which stipulates that a complex trait (such as being free living vs. parasitic) cannot re-evolve again in the same form. Here, we present conclusive evidence that house dust mites, a group of medically important free-living organisms, evolved from permanent parasites of warm-blooded vertebrates. A robust, multigene topology (315 taxa, 8942 nt), ancestral character state reconstruction, and a test for irreversible evolution (Dollo's law) demonstrate that house dust mites have abandoned a parasitic lifestyle, secondarily becoming free living, and then speciated in several habitats. Hence, as exemplified by this model system, highly specialized permanent parasites may drastically de-specialize to the extent of becoming free living and, thus escape from dead-end evolution. Our phylogenetic and historical ecological framework explains the limited cross-reactivity between allergens from the house dust mites and "storage" mites and the ability of the dust mites to inhibit host immune responses. It also provides insights into how ancestral features related to parasitism (frequent ancestral shifts to unrelated hosts, tolerance to lower humidity, and pre-existing enzymes targeting skin and keratinous materials) played a major role in reversal to the free-living state. We propose that parasitic ancestors of pyroglyphids shifted to nests of vertebrates. Later the nest-inhabiting pyroglyphids expanded into human dwellings to become a major source of allergens.
Collapse
Affiliation(s)
- Pavel B Klimov
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1079, USA.
| | | |
Collapse
|
21
|
Avula-Poola S, Morgan MS, Arlian LG. Diet Influences Growth Rates and Allergen and Endotoxin Contents of Cultured Dermatophagoides farinae and Dermatophagoides pteronyssinus House Dust Mites. Int Arch Allergy Immunol 2012; 159:226-34. [DOI: 10.1159/000336026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
|