1
|
Latorre Uriza C, Roa NS, Velosa-Porras J, Villamil Poveda JC, Otero L, Ruiz AJ, Escobar Arregoces FM. Relationship between Carotid Intima-Media Thickness, Periodontal Disease, and Systemic Inflammation Biomarkers in an Adult Population. Biomedicines 2024; 12:1425. [PMID: 39062000 PMCID: PMC11274352 DOI: 10.3390/biomedicines12071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 07/28/2024] Open
Abstract
A positive relationship has been reported between advanced periodontitis and carotid intima-media thickness (cIMT) measurement. The aim of this study was to investigate this relationship with parameters for periodontitis, such as PISA and systemic inflammation biomarkers. An observational descriptive cross-sectional study was conducted. A blood sample was collected from 75 subjects to analyze glucose, total cholesterol, HDL, LDL, and cytokine values. Increased cIMT was found in 32% of the patients with fewer teeth. Patients with periodontitis had a larger periodontal inflamed surface area (PISA) (p = 0.000) and had a 1.42-times-higher risk of having increased cIMT values compared to periodontally healthy individuals, though without a statistically significant association. Higher values in the left cIMT, IL-8, and TNF-α were found in men than in women with significant differences. In the multivariate analysis involving cytokines, age continues to be linked to increased cIMT values. INF-γ showed a trend towards a protective effect; as the IMT-M decreases, there is an increase in the expression of INF-γ, and a higher proportion of subjects with elevated INF-γ concentrations demonstrated normal IMT-C. This study did not find a statistically significant association between cIMT and periodontal disease, but the risk of having increased cIMT is 1.42-times higher for individuals with periodontitis.
Collapse
Affiliation(s)
- Catalina Latorre Uriza
- Centro de Investigaciones Odontológicas, Faculty of Dentistry, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.V.-P.); (J.C.V.P.); (L.O.); (F.M.E.A.)
| | - Nelly S. Roa
- Centro de Investigaciones Odontológicas, Faculty of Dentistry, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.V.-P.); (J.C.V.P.); (L.O.); (F.M.E.A.)
| | - Juliana Velosa-Porras
- Centro de Investigaciones Odontológicas, Faculty of Dentistry, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.V.-P.); (J.C.V.P.); (L.O.); (F.M.E.A.)
| | - Jean Carlos Villamil Poveda
- Centro de Investigaciones Odontológicas, Faculty of Dentistry, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.V.-P.); (J.C.V.P.); (L.O.); (F.M.E.A.)
| | - Liliana Otero
- Centro de Investigaciones Odontológicas, Faculty of Dentistry, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.V.-P.); (J.C.V.P.); (L.O.); (F.M.E.A.)
| | - Alvaro J. Ruiz
- Departamento de Medicina Interna, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
- Departamento de Epidemiología Clínica y Bioestadística, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Francina María Escobar Arregoces
- Centro de Investigaciones Odontológicas, Faculty of Dentistry, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (J.V.-P.); (J.C.V.P.); (L.O.); (F.M.E.A.)
| |
Collapse
|
2
|
Alrumaih S, Alshibani N, Alssum L, Alshehri FA, AlMayrifi MA, AlMayouf M, Alrahlah A, Bautista LSJ. The impact of Resolvin E1 on bone regeneration in critical-sized calvarial defects of rat model-A gene expression and micro-CT analysis. J Periodontal Res 2024; 59:195-203. [PMID: 37947141 DOI: 10.1111/jre.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To investigate, in vivo, the effect of local application of Resolvin E1 (RvE1) on the bone regeneration of critical-size defects (CSDs) in Wistar rats utilizing gene expression and micro-computed tomographic (micro-CT) analysis. BACKGROUND The inflammation-resolving actions of RvE1 are well established. The molecular mechanism of its bone-regenerative actions has been of significant interest in recent years; however, there is limited information regarding the same. MATERIALS AND METHODS Thirty Wistar rats with a 5 mm induced critical-size calvarial defect were randomly allocated into four groups: no treatment/negative control (n = 5), treatment using bovine bone grafts/positive control (n = 5), treatment using local delivery of RvE1 (n = 11) and treatment using RvE1 mixed with bovine bone graft (n = 9). After 4 weeks, RNA isolation, complementary DNA synthesis and real-time polymerase chain reaction were used for genetic expression of alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN). The rats were sacrificed after 12 weeks and micro-CT imaging was performed to analyse the characteristics of the newly formed bone (NFB). The data were analysed using ANOVA and the least significant difference tests (α ≤ .05). RESULTS The RvE1 + bovine graft group had statistically highest mean NFB (20.75 ± 2.67 mm3 ) compared to other groups (p < .001). Similarly, RvE1 + bovine graft group also demonstrated statistically highest mean genetic expression of ALP (31.71 ± 2.97; p = .008) and OPN (34.78 ± 3.62; p < .001) compared to negative control and RvE1 groups. CONCLUSION Resolvin E1 with adjunct bovine bone graft demonstrated an enhanced bone regeneration compared to RvE1 or bovine graft alone in the calvarial defect of Wistar rats.
Collapse
Affiliation(s)
- Sara Alrumaih
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
- Hail Health Cluster, Ministry of Health, Hail, Saudi Arabia
| | - Nouf Alshibani
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Lamees Alssum
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A Alshehri
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A AlMayrifi
- Prince Naif bin Abdulaziz Center for Health Research, Experimental Surgery and Animal Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed AlMayouf
- General Director of Medical Services, Al Nakheel Center, Riyadh, Saudi Arabia
| | - Ali Alrahlah
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Leonel S J Bautista
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Kedlaya MN, Puzhankara L, Prasad R, Raj A. Periodontal Disease Pathogens, Pathogenesis, and Therapeutics: The CRISPR-Cas Effect. CRISPR J 2023; 6:90-98. [PMID: 36939849 DOI: 10.1089/crispr.2022.0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Periodontal disease (PD) is an immune-inflammatory disease affecting the supporting structures of the teeth, which results in progressive destruction of the hard and soft tissues surrounding teeth, ultimately resulting in tooth loss. The primary etiological factor for this disease is the presence of pathogenic microorganisms. Pathogenic bacteria face antagonistic conditions and foreign DNA components during the infection stage and depend on defense mechanisms such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas to counter them. Virulence genes regulated by the CRISPR-Cas system are often expressed by bacteria as part of the stress response to the presence of stress conditions and foreign elements. There is ever-growing evidence regarding the role of CRISPR-Cas in virulence of periodontal pathogens. The same CRISPR-Cas system may also be targeted to reduce bacterial virulence and it may also be utilized to develop diagnostic and therapeutic strategies for prevention and control of PD progression. This review article describes the CRISPR-Cas systems in the periodontal dysbiotic microbial communities, their role in the virulence of periodontal pathogens, and their potential role in understanding the pathogenesis of periodontitis and treatment of PD.
Collapse
Affiliation(s)
- Madhurya N Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India; Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, India
| | - Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India; Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, India
| | - Rohit Prasad
- Department of Periodontology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, India
| | - Akshatha Raj
- Department of Periodontology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, India
| |
Collapse
|
4
|
Alshibani N. Resolvins as a Treatment Modality in Experimental Periodontitis: A Systematic Review of Preclinical Studies. Cureus 2022; 14:e21095. [PMID: 35036235 PMCID: PMC8754062 DOI: 10.7759/cureus.21095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
This systematic review aimed to assess scientific data of existing literature to identify the efficacy of resolvins (Rv) in the treatment of periodontitis. The electronic databases, Web of Science (WOS), Medline/PubMed, The Cochrane Library, Scopus, and Saudi digital library (SDL), were searched for eligible studies in the field of periodontics. A thorough analysis of the retrieved literature provided five articles that were assessed and included in this systematic review. The quality of these studies was assessed by updated Essential Animal Research: Reporting of In-Vivo Experiments (ARRIVE) guidelines. The five included studies were published between 2005 and 2018 and investigated resolvins as a treatment approach in experimental periodontitis of animals. Among the study animals employed, New Zealand white rabbits were used in three studies, Wistar rats and Albino mice in two studies, respectively. Four studies have evaluated eicosapentaenoic acid-derived RvE1, and one study evaluated docosahexaenoic acid-derived RvD2. Oral-topical application of Rv was followed in four studies, and intra-peritoneal Rv injection was administered in one study. The study duration in these studies have ranged between 4-12 weeks, and the Rv dose was between 0.1 μg to 0.5 μg. One study evaluated the influence of RvE1 topical application on both the prevention and treatment of experimental periodontitis. Resolvins (RvE1 and RvD2) have been studied in periodontitis-induced animal models to assess their potential role in periodontal inflammation resolution. There are promising preclinical data of using resolvins as a treatment modality in experimental periodontitis. Resolvins have been demonstrated to inhibit the destructive inflammatory process and alveolar bone loss in laboratory-induced periodontitis under controlled experimental conditions.
Collapse
Affiliation(s)
- Nouf Alshibani
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, SAU
| |
Collapse
|
5
|
Abstract
Technological innovations in cellular and molecular aspects of tissue engineering --scaffolds, stem cells and 3D printed tissues --have been dramatically increased in the last decade. However, regenerative treatment still has challenges in translation to clinic. This is partly due to failure of addressing an essential element of wound healing, inflammation. It is now well-recognized that inflammation is an active process. This paradigm shift opened up a new avenue of therapeutic approaches called "host-modulation." Host-modulation therapies capable of modulating inflammatory response at multiple levels and mimicking the natural sequence of wound healing offer a new direction and promising clinical translation.
Collapse
|
6
|
Hasturk H, Hajishengallis G, Lambris JD, Mastellos DC, Yancopoulou D. Phase 2a clinical trial of complement C3 inhibitor AMY-101 in adults with periodontal inflammation. J Clin Invest 2021; 131:152973. [PMID: 34618684 DOI: 10.1172/jci152973] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gingivitis and periodontitis are prevalent inflammatory diseases of the periodontal tissues. Current treatments are often ineffective or do not prevent disease recurrence. Uncontrolled complement activation and resulting chronic gingival inflammation is a hallmark of periodontal diseases. We determined efficacy and safety of a complement 3-targeted therapeutic, AMY-101, locally administered in adults with periodontal inflammation. METHODS Thirty-two patients with gingival inflammation were enrolled into a randomized, placebo-controlled, double-blind, split-mouth design phase 2a trial, after dose-escalation study to select safe and effective dose with additional 8 patients. Half of the mouth was randomly assigned to AMY-101 (0.1mg/site) or placebo injections at sites of inflammation, administered on days 0, 7 and 14 and evaluated for safety and efficacy outcomes at days 28, 60 and 90. The primary efficacy outcome was change in gingival inflammation, measured by modified gingival index (MGI), and secondary outcomes included changes in bleeding-on-probing (BOP), amount of plaque, pocket depth, clinical attachment level, and gingival crevicular fluid levels of matrix metalloproteinases (MMPs) over 90 days. RESULTS A once-per-week intragingival injection of AMY-101 for 3 weeks was safe and well-tolerated in all participants resulting in significant (P<0.001) reductions in clinical indices measuring gingival inflammation (MGI and BOP). AMY-101 significantly (P<0.05) reduced MMP-8 and MMP-9 levels, indicators of inflammatory tissue destruction. These therapeutic effects persisted for at least 3 months post-treatment. CONCLUSION AMY-101 causes significant and sustainable reduction in gingival inflammation without adverse events and merits further investigation for the treatment of periodontitis and other oral or peri-implant inflammatory conditions. TRIAL REGISTRATION ClinicalTrials.gov: NCT03694444. FUNDING Amyndas Pharmaceuticals. Amyndas contributed to the design and conducts of the clinical trial and in the writing of the manuscript.
Collapse
Affiliation(s)
- Hatice Hasturk
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, United States of America
| | - George Hajishengallis
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, United States of America
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, National Center for Scientific Research 'Demokritos', Athens, Greece
| | | |
Collapse
|
7
|
Elashiry M, Morandini AC, Cornelius Timothius CJ, Ghaly M, Cutler CW. Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War". Int J Mol Sci 2021; 22:ijms22126459. [PMID: 34208697 PMCID: PMC8235535 DOI: 10.3390/ijms22126459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial therapies for periodontitis (PD) have long focused on non-selective and direct approaches. Professional cleaning of the subgingival biofilm by instrumentation of dental root surfaces, known as scaling and root planning (SRP), is the mainstay of periodontal therapy and is indisputably effective. Non-physical approaches used as adjuncts to SRP, such as chemical and biological agents, will be the focus of this review. In this regard, traditional agents such as oral antiseptics and antibiotics, delivered either locally or systemically, were briefly reviewed as a backdrop. While generally effective in winning the “battle” against PD in the short term, by reducing its signs and symptoms, patients receiving such therapies are more susceptible to recurrence of PD. Moreover, the long-term consequences of such therapies are still in question. In particular, concern about chronic use of systemic antibiotics and their influence on the oral and gut microbiota is warranted, considering antibiotic resistance plasmids, and potential transfer between oral and non-oral microbes. In the interest of winning the “battle and the war”, new more selective and targeted antimicrobials and biologics for PD are being studied. These are principally indirect, blocking pathways involved in bacterial colonization, nutrient acquisition, inflammation or cellular invasion without directly killing the pathogens. This review will focus on current and prospective antimicrobial therapies for PD, emphasizing therapies that act indirectly on the microbiota, with clearly defined cellular and molecular targets.
Collapse
|
8
|
Dommisch H, Stolte KN, Jager J, Vogel K, Müller R, Hedtrich S, Unbehauen M, Haag R, Danker K. Characterization of an ester-based core-multishell (CMS) nanocarrier for the topical application at the oral mucosa. Clin Oral Investig 2021; 25:5795-5805. [PMID: 33821321 PMCID: PMC8443517 DOI: 10.1007/s00784-021-03884-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/11/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Topical drug administration is commonly applied to control oral inflammation. However, it requires sufficient drug adherence and a high degree of bioavailability. Here, we tested the hypothesis whether an ester-based core-multishell (CMS) nanocarrier is a suitable nontoxic drug-delivery system that penetrates efficiently to oral mucosal tissues, and thereby, increase the bioavailability of topically applied drugs. MATERIAL AND METHODS To evaluate adhesion and penetration, the fluorescence-labeled CMS 10-E-15-350 nanocarrier was applied to ex vivo porcine masticatory and lining mucosa in a Franz cell diffusion assay and to an in vitro 3D model. In gingival epithelial cells, potential cytotoxicity and proliferative effects of the nanocarrier were determined by MTT and sulphorhodamine B assays, respectively. Transepithelial electrical resistance (TEER) was measured in presence and absence of CMS 10-E-15-350 using an Endohm-12 chamber and a volt-ohm-meter. Cellular nanocarrier uptake was analyzed by laser scanning microscopy. Inflammatory responses were determined by monitoring pro-inflammatory cytokines using real-time PCR and ELISA. RESULTS CMS nanocarrier adhered to mucosal tissues within 5 min in an in vitro model and in ex vivo porcine tissues. The CMS nanocarrier exhibited no cytotoxic effects and induced no inflammatory responses. Furthermore, the physical barrier expressed by the TEER remained unaffected by the nanocarrier. CONCLUSIONS CMS 10-E-15-350 adhered to the oral mucosa and adhesion increased over time which is a prerequisite for an efficient drug release. Since TEER is unaffected, CMS nanocarrier may enter the oral mucosa transcellularly. CLINICAL RELEVANCE Nanocarrier technology is a novel and innovative approach for efficient topical drug delivery at the oral mucosa.
Collapse
Affiliation(s)
- H Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 14197, Berlin, Germany. .,Department of Periodontology, University of Washington, Seattle, WA, USA.
| | - K N Stolte
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 14197, Berlin, Germany
| | - J Jager
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - K Vogel
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 14197, Berlin, Germany
| | - R Müller
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 14197, Berlin, Germany
| | - S Hedtrich
- Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany.,Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T1Z3, Canada
| | - M Unbehauen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - R Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - K Danker
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| |
Collapse
|
9
|
Ali M, Yang F, Plachokova AS, Jansen JA, Walboomers XF. Application of specialized pro-resolving mediators in periodontitis and peri-implantitis: a review. Eur J Oral Sci 2021; 129:e12759. [PMID: 33565133 PMCID: PMC7986752 DOI: 10.1111/eos.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Scaling and root planning is a key element in the mechanical therapy used for the eradication of biofilm, which is the major etiological factor for periodontitis and peri‐implantitis. However, periodontitis is also a host mediated disease, therefore, removal of the biofilm without adjunctive therapy may not achieve the desired clinical outcome due to persistent activation of the innate and adaptive immune cells. Most recently, even the resident cells of the periodontium, including periodontal ligament fibroblasts, have been shown to produce several inflammatory factors in response to bacterial challenge. With increased understanding of the pathophysiology of periodontitis, more research is focusing on opposing excessive inflammation with specialized pro‐resolving mediators (SPMs). This review article covers the major limitations of current standards of care for periodontitis and peri‐implantitis, and it highlights recent advances and prospects of SPMs in the context of tissue reconstruction and regeneration. Here, we focus primarily on the role of SPMs in restoring tissue homeostasis after periodontal infection.
Collapse
Affiliation(s)
- Muhanad Ali
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adelina S Plachokova
- Department of Dentistry, Implantology and Periodontology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Cotti E, Ideo F, Pedrazzini A, Bardini G, Musu D, Kantarci A. Proresolving Mediators in Endodontics: A Systematic Review. J Endod 2021; 47:711-720. [PMID: 33548330 DOI: 10.1016/j.joen.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/29/2020] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proresolving lipid mediators are specialized molecules (SPMs) involved in the active resolution of the inflammatory process by regulating tissue homeostasis. The aim of this study was to investigate the scientific literature to assess the potential of SPMs as an adjunct in the treatment of endodontic infection. METHODS Three electronic databases (PubMed, Web of Science, and Scopus) were searched from their inception until February 2020 (PROSPERO CRD42020164743). Supplemental research was performed by screening the references of the relevant studies eligible for inclusion. A quality assessment of animal studies was performed using the Animal Research: Reporting of In Vivo Experiments guidelines, whereas the Systematic Review Centre for Laboratory animal Experimentation Risk of Bias tool was used to assess the risk of bias. RESULTS A total of 3295 records were screened, and 8 articles meeting the criteria were included for this qualitative review. The eligible studies showed a high to moderate overall quality and a low to moderate risk of bias. SPMs positively affected the development of pulpitis and apical periodontitis in experimental animal models. The early treatment of pulpitis with the topical application of SPMs was beneficial to control inflammation within 24 hours from contamination. In addition, SPMs delivered within the root canals after disinfection were found effective in promoting periapical healing. CONCLUSIONS Our findings suggest that SPMs may play a role in the inception and treatment of pulpal-periapical diseases, and they should be considered for future research for developing new therapeutics as an adjunct to endodontic treatment.
Collapse
Affiliation(s)
- Elisabetta Cotti
- Department of Conservative Dentistry and Endodontics, University of Cagliari, Cagliari, Italy.
| | - Francesca Ideo
- Department of Conservative Dentistry and Endodontics, University of Cagliari, Cagliari, Italy
| | - Alessandro Pedrazzini
- Department of Conservative Dentistry and Endodontics, University of Cagliari, Cagliari, Italy
| | - Giulia Bardini
- Department of Conservative Dentistry and Endodontics, University of Cagliari, Cagliari, Italy
| | - Davide Musu
- Department of Conservative Dentistry and Endodontics, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
11
|
Martinon P, Fraticelli L, Giboreau A, Dussart C, Bourgeois D, Carrouel F. Nutrition as a Key Modifiable Factor for Periodontitis and Main Chronic Diseases. J Clin Med 2021; 10:jcm10020197. [PMID: 33430519 PMCID: PMC7827391 DOI: 10.3390/jcm10020197] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Nutrition is recognized as an essential component in the prevention of a number of chronic diseases, including periodontal disease. Based on these considerations, a better understanding is required regarding how the diet, and more particularly the intake of macronutrients and micronutrients, could impact the potential relationship between nutrition and periodontal diseases, periodontal diseases and chronic diseases, nutrition and chronic diseases. To overcome this complexity, an up-to-date literature review on the nutriments related to periodontal and chronic diseases was performed. High-sugar, high-saturated fat, low-polyols, low-fiber and low-polyunsaturated-fat intake causes an increased risk of periodontal diseases. This pattern of nutrients is classically found in the Western diet, which is considered as an ‘unhealthy’ diet that causes cardiovascular diseases, diabetes and cancers. Conversely, low-sugar, high-fiber and high-omega-6-to-omega-3 fatty acid ratio intake reduces the risk of periodontal diseases. The Mediterranean, DASH, vegetarian and Okinawa diets that correspond to these nutritional intakes are considered as ‘healthy’ diets, reducing this risk of cardiovascular diseases, diabetes and cancers. The role of micronutrients, such as vitamin D, E, K and magnesium, remains unclear, while others, such as vitamin A, B, C, calcium, zinc and polyphenols have been shown to prevent PDs. Some evidence suggests that probiotics and prebiotics could promote periodontal health. Periodontal and chronic diseases share, with a time delay, nutrition as a risk factor. Thus, any change in periodontal health should be considered as a warning signal to control the dietary quality of patients and thus reduce the risk of developing chronic diseases later on.
Collapse
Affiliation(s)
- Prescilla Martinon
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Laurie Fraticelli
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Agnes Giboreau
- Institute Paul Bocuse Research Center, 69130 Ecully, France;
| | - Claude Dussart
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Denis Bourgeois
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
| | - Florence Carrouel
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (P.M.); (L.F.); (C.D.); (D.B.)
- Correspondence: ; Tel.: +33-4-78-78-57-44
| |
Collapse
|
12
|
Seidel A, Seidel CL, Weider M, Junker R, Gölz L, Schmetzer H. Influence of Natural Killer Cells and Natural Killer T Cells on Periodontal Disease: A Systematic Review of the Current Literature. Int J Mol Sci 2020; 21:E9766. [PMID: 33371393 PMCID: PMC7767411 DOI: 10.3390/ijms21249766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells, as members of the innate immune system, and natural killer T (NKT) cells, bridging innate and adaptive immunity, play a prominent role in chronic inflammatory diseases and cancerogenesis, yet have scarcely been examined in oral diseases. Therefore, systematic research on the latest literature focusing on NK/NKT cell-mediated mechanisms in periodontal disease, including the time period 1988-2020, was carried out in MEDLINE (PubMed) using a predetermined search strategy, with a final selection of 25 studies. The results showed that NK cells tend to have rather proinflammatory influences via cytokine production, cytotoxic effects, dendritic-cell-crosstalk, and autoimmune reactions, while contrarily, NKT cell-mediated mechanisms were proinflammatory and immunoregulatory, ranging from protective effects via B-cell-regulation, specific antibody production, and the suppression of autoimmunity to destructive effects via cytokine production, dendritic-cell-crosstalk, and T-/B-cell interactions. Since NK cells seem to have a proinflammatory role in periodontitis, further research should focus on the proinflammatory and immunoregulatory properties of NKT cells in order to create, in addition to antibacterial strategies in dental inflammatory disease, novel anti-inflammatory therapeutic approaches modulating host immunity towards dental health.
Collapse
Affiliation(s)
- Andreas Seidel
- Dental Practice, Bahnhofstraße 10, 82223 Eichenau, Germany
| | - Corinna L. Seidel
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054 Erlangen, Germany; (M.W.); (L.G.)
| | - Matthias Weider
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054 Erlangen, Germany; (M.W.); (L.G.)
| | - Rüdiger Junker
- Center for Dental Prosthetics and Biomaterials, Danube Private University Krems, Steiner Landstraße 124, 3500 Krems-Stein, Austria;
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054 Erlangen, Germany; (M.W.); (L.G.)
| | - Helga Schmetzer
- Department of Medical III, University Hospital LMU Munich, Marchioninistraße 15, 81377 Munich, Germany;
| |
Collapse
|
13
|
Vitkov L, Minnich B, Knopf J, Schauer C, Hannig M, Herrmann M. NETs Are Double-Edged Swords with the Potential to Aggravate or Resolve Periodontal Inflammation. Cells 2020; 9:E2614. [PMID: 33291407 PMCID: PMC7762037 DOI: 10.3390/cells9122614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is a general term for diseases characterised by inflammatory destruction of tooth-supporting tissues, gradual destruction of the marginal periodontal ligament and resorption of alveolar bone. Early-onset periodontitis is due to disturbed neutrophil extracellular trap (NET) formation and clearance. Indeed, mutations that inactivate the cysteine proteases cathepsin C result in the massive periodontal damage seen in patients with deficient NET formation. In contrast, exaggerated NET formation due to polymorphonuclear neutrophil (PMN) hyper-responsiveness drives the pathology of late-onset periodontitis by damaging and ulcerating the gingival epithelium and retarding epithelial healing. Despite the gingival regeneration, periodontitis progression ends with almost complete loss of the periodontal ligament and subsequent tooth loss. Thus, NETs help to maintain periodontal health, and their dysregulation, either insufficiency or surplus, causes heavy periodontal pathology and edentulism.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Department of Biosciences, Vascular & Exercise Biology Unit, University of Salzburg, 5020 Salzburg, Austria; (L.V.); (B.M.)
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424 Homburg, Germany
| | - Bernd Minnich
- Department of Biosciences, Vascular & Exercise Biology Unit, University of Salzburg, 5020 Salzburg, Austria; (L.V.); (B.M.)
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (J.K.); (C.S.); (M.H.)
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (J.K.); (C.S.); (M.H.)
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424 Homburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (J.K.); (C.S.); (M.H.)
| |
Collapse
|
14
|
Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000 2020; 84:14-34. [PMID: 32844416 DOI: 10.1111/prd.12331] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances indicate that periodontitis is driven by reciprocally reinforced interactions between a dysbiotic microbiome and dysregulated inflammation. Inflammation is not only a consequence of dysbiosis but, via mediating tissue dysfunction and damage, fuels further growth of selectively dysbiotic communities of bacteria (inflammophiles), thereby generating a self-sustained feed-forward loop that perpetuates the disease. These considerations provide a strong rationale for developing adjunctive host-modulation therapies for the treatment of periodontitis. Such host-modulation approaches aim to inhibit harmful inflammation and promote its resolution or to interfere directly with downstream effectors of connective tissue and bone destruction. This paper reviews diverse strategies targeted to modulate the host periodontal response and discusses their mechanisms of action, perceived safety, and potential for clinical application.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Mohamed Ali H, Mustafa M, Suliman S, Elshazali OH, Ali RW, Berggreen E. Inflammatory mediators in saliva and gingival fluid of children with congenital heart defect. Oral Dis 2020; 26:1053-1061. [DOI: 10.1111/odi.13313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/18/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Hiba Mohamed Ali
- Department of Clinical Dentistry Faculty of Medicine University of Bergen Bergen Norway
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway Bergen Norway
| | - Salwa Suliman
- Department of Clinical Dentistry Faculty of Medicine University of Bergen Bergen Norway
| | - Osama Hafiz Elshazali
- Faculty of Medicine University of Khartoum Ahmed Gasim Hospital Ministry of Health Khartoum Sudan
| | - Raouf Whahab Ali
- Department of Periodontics University of Science and Technology Khartoum Sudan
| | - Ellen Berggreen
- Oral Health Centre of Expertise in Western Norway Bergen Norway
- Department of Biomedicine Faculty of Medicine and Dentistry University of Bergen Bergen Norway
| |
Collapse
|
16
|
Protective effect of hinokitiol against periodontal bone loss in ligature-induced experimental periodontitis in mice. Arch Oral Biol 2020; 112:104679. [PMID: 32062102 DOI: 10.1016/j.archoralbio.2020.104679] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/15/2020] [Accepted: 02/03/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The overall objective of this study was to investigate the effects of hinokitiol on periodontal bone loss in a murine model of experimental periodontitis and evaluate the anti-inflammatory activity of hinokitiol in vitro. DESIGN Periodontitis was induced by tying a silk ligature around the maxillary second molar of mice for 8 days. Hinokitiol was injected once a day for 7 days into the palatal gingiva of the ligated molar. Periodontal bone loss was then assessed morphometrically in the maxillary second molar, and the number of tartrate-resistant acid phosphatase positive multinucleated giant cells around the molar was quantified. The bacterial load of the silk ligature was calculated by counting the number of colony-forming units, while the transcription levels of proinflammatory cytokine-related genes in the palatal gingiva were evaluated by real-time qPCR. The activity of hinokitiol against LPS-induced transcription of proinflammatory genes in RAW 264.7 macrophages was also examined. RESULTS Local treatment with hinokitiol significantly inhibited the alveolar bone loss and osteoclast differentiation induced by tooth ligation. In addition, hinokitiol treatment decreased the oral bacterial load of the silk ligature and downregulated the mRNA levels of inflammatory cytokine-related genes, both in vitro and in vivo. CONCLUSION The results indicated that hinokitiol exhibits antibacterial and anti-inflammatory activity and exerts a protective effect against periodontitis.
Collapse
|
17
|
Hajishengallis G. New developments in neutrophil biology and periodontitis. Periodontol 2000 2019; 82:78-92. [DOI: 10.1111/prd.12313] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- George Hajishengallis
- Department of Microbiology Penn Dental Medicine University of Pennsylvania Philadelphia Pennsylvania, USA
| |
Collapse
|
18
|
PTEN Inhibits Inflammatory Bone Loss in Ligature-Induced Periodontitis via IL1 and TNF- α. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6712591. [PMID: 31886238 PMCID: PMC6914910 DOI: 10.1155/2019/6712591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a critical regulator of tumorigenesis and bone remodeling, which is also found expressed in the periodontal tissues. Periodontitis is one of the most common oral diseases and associated with alveolar bone resorption and tooth loosening in adults. However, the functional relevance of PTEN in periodontitis remains unclear. Here, we report that PTEN plays an essential role in periodontitis. The in vivo results of our study showed a significant decrease of PTEN in the ligature-induced mouse periodontitis model. The function of PTEN in the macrophages was shown to be associated with inflammatory factors interleukin 1 (IL1) and tumor necrosis factor (TNF-α) by using overexpression and silence methods. Further mechanistic studies indicated lack of PTEN-activated IL1 and TNF-α, which increased the number of osteoclasts and led to alveolar bone erosion and loss. Moreover, PTEN nanoparticles could directly inhibit the inflammatory process and bone erosion, suggesting a controlling role of PTEN during bone remodeling. All these data identified the novel function of PTEN as a key factor in periodontitis and bone remodeling.
Collapse
|
19
|
Tobón-Arroyave SI, Isaza-Guzmán DM, Gómez-Ortega J, Flórez-Alzate AA. Salivary levels of specialized pro-resolving lipid mediators as indicators of periodontal health/disease status. J Clin Periodontol 2019; 46:978-990. [PMID: 31339183 DOI: 10.1111/jcpe.13173] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
AIM This cross-sectional case-control study aimed to determine if salivary levels of lipoxin A4 (LXA4), protectin D1 (PD1), resolvin E1 (RvE1) and maresin 1 (MaR1) might constitute a reflection of periodontal health/disease status. MATERIALS AND METHODS One hundred and two periodontitis patients and 61 healthy controls were recruited. Periodontal clinical status was determined by criteria based on full-mouth clinico-radiographical data. Salivary concentration of the analytes was calculated by enzyme-linked immunosorbent assay. The association between the biomarkers with disease status was assessed individually and adjusted for confounding using multivariate binary logistic regression models. RESULTS Significantly decreased LXA4 and increased PD1/MaR1 salivary levels were detected in periodontitis patients in comparison with healthy controls. However, no significant differences were observed for RvE1 levels between clinical groups. Clinical parameters such as probing depth, clinical attachment loss and extent were negatively correlated with LXA4, positively correlated with PD1/MaR1 and not correlated with RvE1 salivary levels. Logistic regression analyses revealed a strong/independent association of LXA4, PD1 and MaR1 salivary levels regarding disease status. Interaction effects between demographic predictor variables and salivary concentration of LXA4, PD1 and MaR1 were also identified. CONCLUSION The results of this study demonstrated a strong/independent association between reduced LXA4 and increased PD1/MaR1 salivary levels with periodontitis suggesting an imbalance in the specialized pro-resolving lipid mediators (SPMs) in periodontal disease.
Collapse
Affiliation(s)
- Sergio Iván Tobón-Arroyave
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Diana María Isaza-Guzmán
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Juliana Gómez-Ortega
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | | |
Collapse
|
20
|
Abstract
The dynamic and polymicrobial oral microbiome is a direct precursor of diseases such as dental caries and periodontitis, two of the most prevalent microbially induced disorders worldwide. Distinct microenvironments at oral barriers harbour unique microbial communities, which are regulated through sophisticated signalling systems and by host and environmental factors. The collective function of microbial communities is a major driver of homeostasis or dysbiosis and ultimately health or disease. Despite different aetiologies, periodontitis and caries are each driven by a feedforward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that favours the emergence and persistence of dysbiosis. In this Review, we discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis that have both enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches for oral diseases.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Akpinar A, Calisir M, Cansın Karakan N, Lektemur Alpan A, Goze F, Poyraz O. Effects of Curcumin on Alveolar Bone Loss in Experimental Periodontitis in Rats: A Morphometric and Histopathologic Study. INT J VITAM NUTR RES 2018; 87:262-270. [PMID: 30272534 DOI: 10.1024/0300-9831/a000243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Curcumin is found in the rhizomes of the turmeric plant that has been showed antioxidant and anti-inflammatory effect. The aim of this study was to evaluate the effects of systemic curcumin therapy on alveolar bone loss in an experimental periodontitis model in rats. Material and Methods: Thirty-two male Wistar rats were randomly divided to 4 groups: 75 mg/kg/daily curcumin (C75; n =8), 150 mg/kg/daily curcumin (C150; n =8), Control (n =8), and Ligated (n =8). Curcumin was administrated using gastric gavage. After 12 days, the rats were sacrificed. Right mandibles samples were histopathologically examined. Alveolar bone loss was measured. Interleukin 1β (IL-1β) and interleukin 10 (IL-10) were evaluated in the serum samples and gingival homogenates. Results: The measurements of alveolar bone loss in the mandibular molars revealed significantly higher bone-loss values in the Ligated group than the Control, C75 and C150 groups. The IL-1β levels in the gingival homogenates were significantly increased in the Ligated group compared to those of the Control, C75 and C150 groups. The serum IL-1β levels in the Ligated group were significantly higher than the Control group. The mean osteoblast numbers in the Ligated group were lower than those of the Control, C75 and C150 groups. The C150 groups showed significantly more osteoblasts than the Control group. The osteoclast numbers in the Ligated group increased significantly compared to the C75, C150 and control groups. Conclusion: This study demonstrates that systemic administration of curcumin at the 75 and 150mg/kg doses reduced alveolar bone loss in the periodontal disease in rats. Keywords: Alveolar bone loss, Antioxidant, Curcumin, Ligature-induced, Histomorphometric, Micronutrition.
Collapse
Affiliation(s)
- Aysun Akpinar
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| | - Metin Calisir
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| | - Nebi Cansın Karakan
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| | - Aysan Lektemur Alpan
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| | - Fahrettin Goze
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| | - Omer Poyraz
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| |
Collapse
|
22
|
Hajishengallis G, Korostoff JM. Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000 2018; 75:116-151. [PMID: 28758305 DOI: 10.1111/prd.12181] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In their classic 1976 paper, Page & Schroeder described the histopathologic events and the types of myeloid cells and lymphocytes involved in the initiation and progression of inflammatory periodontal disease. The staging of periodontal disease pathogenesis as 'initial', 'early', 'established' and 'advanced' lesions productively guided subsequent research in the field and remains fundamentally valid. However, major advances regarding the cellular and molecular mechanisms underlying the induction, regulation and effector functions of immune and inflammatory responses necessitate a reassessment of their work and its integration with emerging new concepts. We now know that each type of leukocyte is actually represented by functionally distinct subsets with different, or even conflicting, roles in immunity and inflammation. Unexpectedly, neutrophils, traditionally regarded as merely antimicrobial effectors in acute conditions and protagonists of the 'initial' lesion, are currently appreciated for their functional versatility and critical roles in chronic inflammation. Moreover, an entirely new field of study, osteoimmunology, has emerged and sheds light on the impact of immunoinflammatory events on the skeletal system. These developments and the molecular dissection of crosstalk interactions between innate and adaptive leukocytes, as well as between the immune system and local homeostatic mechanisms, offer a more nuanced understanding of the host response in periodontitis, with profound implications for treatment. At the same time, deeper insights have generated new questions, many of which remain unanswered. In this review, 40 years after Page & Schroeder proposed their model, we summarize enduring and emerging advances in periodontal disease pathogenesis.
Collapse
|
23
|
|
24
|
Keskiner I, Saygun I, Bal V, Serdar M, Kantarci A. Dietary supplementation with low-dose omega-3 fatty acids reduces salivary tumor necrosis factor-α levels in patients with chronic periodontitis: a randomized controlled clinical study. J Periodontal Res 2017; 52:695-703. [DOI: 10.1111/jre.12434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/28/2022]
Affiliation(s)
- I. Keskiner
- Department of Periodontology; Faculty of Dentistry; Ondokuz Mayis University; Samsun Turkey
| | - I. Saygun
- Department of Periodontology; Gulhane Military Medical Academy; Ankara Turkey
| | - V. Bal
- Department of Periodontology; Gulhane Military Medical Academy; Ankara Turkey
| | - M. Serdar
- Department of Medical Biochemistry; Faculty of Medicine; Acibadem University; Ankara Turkey
| | - A. Kantarci
- Department of Periodontology; The Forsyth Institute; Cambridge MA USA
| |
Collapse
|
25
|
|
26
|
Woelber JP, Bremer K, Vach K, König D, Hellwig E, Ratka-Krüger P, Al-Ahmad A, Tennert C. An oral health optimized diet can reduce gingival and periodontal inflammation in humans - a randomized controlled pilot study. BMC Oral Health 2016; 17:28. [PMID: 27460471 PMCID: PMC4962497 DOI: 10.1186/s12903-016-0257-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/15/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The aim of this pilot study was to investigate the effects of four weeks of an oral health optimized diet on periodontal clinical parameters in a randomized controlled trial. METHODS The experimental group (n = 10) had to change to a diet low in carbohydrates, rich in Omega-3 fatty acids, and rich in vitamins C and D, antioxidants and fiber for four weeks. Participants of the control group (n = 5) did not change their dietary behavior. Plaque index, gingival bleeding, probing depths, and bleeding upon probing were assessed by a dentist with a pressure-sensitive periodontal probe. Measurements were performed after one and two weeks without a dietary change (baseline), followed by a two week transitional period, and finally performed weekly for four weeks. RESULTS Despite constant plaque values in both groups, all inflammatory parameters decreased in the experimental group to approximately half that of the baseline values (GI: 1.10 ± 0.51 to 0.54 ± 0.30; BOP: 53.57 to 24.17 %; PISA: 638 mm(2) to 284 mm(2)). This reduction was significantly different compared to that of the control group. CONCLUSION A diet low in carbohydrates, rich in Omega-3 fatty acids, rich in vitamins C and D, and rich in fibers can significantly reduce gingival and periodontal inflammation. TRIAL REGISTRATION German Clinical Trials Register; https://www.germanctr.de (DRKS00006301). Registered on 2015-02-21.
Collapse
Affiliation(s)
- J. P. Woelber
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| | - K. Bremer
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| | - K. Vach
- Department of Medical Biometry and Statistics, Medical Center – University of Freiburg, Freiburg, Germany
| | - D. König
- Institute of Sports and Sports Science, Medical Center – University of Freiburg, Freiburg, Germany
| | - E. Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| | - P. Ratka-Krüger
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| | - A. Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| | - C. Tennert
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
| |
Collapse
|
27
|
Hajishengallis G, Hajishengallis E, Kajikawa T, Wang B, Yancopoulou D, Ricklin D, Lambris JD. Complement inhibition in pre-clinical models of periodontitis and prospects for clinical application. Semin Immunol 2016; 28:285-91. [PMID: 27021500 DOI: 10.1016/j.smim.2016.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 02/08/2023]
Abstract
Periodontitis is a dysbiotic inflammatory disease leading to the destruction of the tooth-supporting tissues. Current therapies are not always effective and this prevalent oral disease continues to be a significant health and economic burden. Early clinical studies have associated periodontitis with elevated complement activity. Consistently, subsequent genetic and pharmacological studies in rodents have implicated the central complement component C3 and downstream signaling pathways in periodontal host-microbe interactions that promote dysbiosis and inflammatory bone loss. This review discusses these mechanistic advances and moreover focuses on the compstatin family of C3 inhibitors as a novel approach to treat periodontitis. In this regard, local application of the current lead analog Cp40 was recently shown to block both inducible and naturally occurring periodontitis in non-human primates. These promising results from non-human primate studies and the parallel development of Cp40 for clinical use highlight the feasibility for developing an adjunctive, C3-targeted therapy for human periodontitis.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA.
| | - Evlambia Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Preventive and Restorative Sciences, Division of Pediatric Dentistry, Philadelphia, PA 19104, USA
| | - Tetsuhiro Kajikawa
- University of Pennsylvania, Penn Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA
| | - Baomei Wang
- University of Pennsylvania, Penn Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA
| | | | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin Immunol 2016; 28:146-58. [PMID: 26936034 DOI: 10.1016/j.smim.2016.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/06/2016] [Accepted: 02/14/2016] [Indexed: 02/06/2023]
Abstract
Although historically viewed as merely anti-microbial effectors in acute infection or injury, neutrophils are now appreciated to be functionally versatile with critical roles also in chronic inflammation. Periodontitis, a chronic inflammatory disease that destroys the tooth-supporting gums and bone, is particularly affected by alterations in neutrophil numbers or function, as revealed by observations in monogenic disorders and relevant mouse models. Besides being a significant debilitating disease and health burden in its own right, periodontitis is thus an attractive model to dissect uncharted neutrophil-associated (patho)physiological pathways. Here, we summarize recent evidence that neutrophils can contribute to inflammatory bone loss not only through the typical bystander injury dogma but intriguingly also through their absence from the affected tissue, where they normally perform important immunomodulatory functions. Moreover, we discuss recent advances in the interactions of neutrophils with the vascular endothelium and - upon extravasation - with bacteria, and how the dysregulation of these interactions leads to inflammatory tissue damage. Overall, neutrophils have both protective and destructive roles in periodontitis, as they are involved in both the maintenance of periodontal tissue homeostasis and the induction of inflammatory bone loss. This highlights the importance of developing approaches that promote or sustain a fine balance between homeostatic immunity and inflammatory pathology.
Collapse
|
29
|
Ohshima M, Yamaguchi Y, Ambe K, Horie M, Saito A, Nagase T, Nakashima K, Ohki H, Kawai T, Abiko Y, Micke P, Kappert K. Fibroblast VEGF-receptor 1 expression as molecular target in periodontitis. J Clin Periodontol 2016; 43:128-37. [PMID: 26932322 DOI: 10.1111/jcpe.12495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2015] [Indexed: 01/08/2023]
Abstract
AIM Degradation of extracellular matrices is an integral part in periodontitis. For antagonizing this pathophysiological mechanism, we aimed at identifying gene expression profiles in disease progression contributing periodontitis-associated fibroblasts (PAFs) versus normal gingival fibroblasts to determine their molecular repertoire, and exploit it for therapeutic intervention. MATERIALS AND METHODS Applying an exploratory analysis using a small number of microarrays in combination with a three dimensional (3D) in vitro culture model that incorporates some aspects of periodontitis, PAFs were initially characterized by gene-expression analyses, followed by targeted gene down-regulation and pharmacological intervention in vitro. Further, immunohistochemistry was applied for phosphorylation analyses in tissue specimens. RESULTS PAFs were characterized by 42 genes being commonly up-regulated >1.5-fold, and by five genes that were concordantly down-regulated (<0.7-fold). Expression of vascular endothelial growth factor (VEGF)-receptor 1 (Flt-1) was highly enhanced, and was thus further explored in in vitro culture models of periodontal fibroblasts without accounting for the microbiome. Phosphorylation of the VEGF-receptor 1 was enhanced in PAFs. Receptor inhibition by a specific VEGF-receptor inhibitor or intrinsic down-regulation by RNAi of the VEGF-receptor kinase in 3D gel cultures resulted in significant reduction in collagen degradation associated with increased tissue inhibitor of metalloproteinase expression, suggesting that Flt-1 may contribute to periodontitis. CONCLUSION Based on the finding that VEGF-receptor kinase inhibition impaired collagen degradation pathways, Flt-1 may represent a candidate for therapeutic approaches in periodontitis.
Collapse
Affiliation(s)
- Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences, Koriyama, Fukushima, Japan
| | - Yoko Yamaguchi
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Kimiharu Ambe
- Department of Morphological Biology, Ohu University School of Dentistry, Koriyama, Fukushima, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Keisuke Nakashima
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, Fukuoka, Japan
| | - Hidero Ohki
- First Department of Oral Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Toshihisa Kawai
- Department of Immunology, The Forsyth Institute, Cambridge, MA, USA
| | - Yoshimitsu Abiko
- Department of Molecular Biology and Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Hospital, Uppsala, Sweden
| | - Kai Kappert
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
30
|
Xiao W, Li S, Pacios S, Wang Y, Graves DT. Bone Remodeling Under Pathological Conditions. FRONTIERS OF ORAL BIOLOGY 2015; 18:17-27. [PMID: 26599114 PMCID: PMC10757467 DOI: 10.1159/000351896] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Bone is masterfully programmed to repair itself through the coupling of bone formation following bone resorption, a process referred to as coupling. In inflammatory or other conditions, the balance between bone resorption and bone formation shifts so that a net bone loss results. This review focuses on four pathologic conditions in which remodeling leads to net loss of bone, postmenopausal osteoporosis, arthritis, periodontal disease, and disuse bone loss, which is similar to bone loss associated with microgravity. In most of these there is an acceleration of the resorptive process due to increased formation of bone metabolic units. This initially leads to a net bone loss since the time period of resorption is much faster than the time needed for bone formation that follows. In addition, each of these processes is characterized by an uncoupling that leads to net bone loss. Mechanisms responsible for increased rates of bone resorption, i.e. the formation of more bone metabolic units, involve enhanced expression of inflammatory cytokines and increased expression of RANKL. Moreover, the reasons for uncoupling are discussed which range from a decrease in expression of growth factors and bone morphogenetic proteins to increased expression of factors that inhibit Wnt signaling.
Collapse
|
31
|
Marsh PD, Head DA, Devine DA. Dental plaque as a biofilm and a microbial community—Implications for treatment. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Hasturk H, Kantarci A. Activation and resolution of periodontal inflammation and its systemic impact. Periodontol 2000 2015; 69:255-73. [PMID: 26252412 PMCID: PMC4530469 DOI: 10.1111/prd.12105] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2015] [Indexed: 02/06/2023]
Abstract
Inflammation is a highly organized event impacting upon organs, tissues and biological systems. Periodontal diseases are characterized by dysregulation or dysfunction of resolution pathways of inflammation that results in failure to heal and in a dominant chronic, progressive, destructive and predominantly unresolved inflammation. The biological consequences of inflammatory processes may be independent of the etiological agents, such as trauma, microbial organisms and stress. The impact of the inflammatory pathological process depends upon the tissues or organ system affected. Whilst mediators are similar, there is tissue specificity for the inflammatory events. It is plausible that inflammatory processes in one organ could directly lead to pathologies in another organ or tissue. Communication between distant parts of the body and their inflammatory status is also mediated by common signaling mechanisms mediated via cells and soluble mediators. This review focuses on periodontal inflammation, its systemic associations and advances in therapeutic approaches based on mediators acting through orchestration of natural pathways to resolution of inflammation. We also discuss a new treatment concept in which natural pathways of resolution of periodontal inflammation can be used to limit systemic inflammation and promote healing and regeneration.
Collapse
Affiliation(s)
- Hatice Hasturk
- The Forsyth Institute, Department of Applied Oral Sciences, Center for Periodontology, Cambridge, MA 02142, USA. Phone: 617-892-8499; Fax: 617-892-8505
| | - Alpdogan Kantarci
- The Forsyth Institute, Department of Applied Oral Sciences, Center for Periodontology, Cambridge, MA 02142, USA. Phone: 617-892-8530
| |
Collapse
|
33
|
Maekawa T, Hosur K, Abe T, Kantarci A, Ziogas A, Wang B, Van Dyke TE, Chavakis T, Hajishengallis G. Antagonistic effects of IL-17 and D-resolvins on endothelial Del-1 expression through a GSK-3β-C/EBPβ pathway. Nat Commun 2015; 6:8272. [PMID: 26374165 PMCID: PMC4573473 DOI: 10.1038/ncomms9272] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
Del-1 is an endothelial cell-secreted anti-inflammatory protein. In humans and mice, Del-1 expression is inversely related to that of IL-17, which inhibits Del-1 through hitherto unidentified mechanism(s). Here we show that IL-17 downregulates human endothelial cell expression of Del-1 by targeting a critical transcription factor, C/EBPβ. Specifically, IL-17 causes GSK-3β-dependent phosphorylation of C/EBPβ, which is associated with diminished C/EBPβ binding to the Del-1 promoter and suppressed Del-1 expression. This inhibitory action of IL-17 can be reversed at the GSK-3β level by PI3K/Akt signalling induced by D-resolvins. The biological relevance of this regulatory network is confirmed in a mouse model of inflammatory periodontitis. Intriguingly, resolvin-D1 (RvD1) confers protection against IL-17-driven periodontal bone loss in a Del-1-dependent manner, indicating an RvD1-Del-1 axis against IL-17-induced pathological inflammation. The dissection of signalling pathways regulating Del-1 expression provides potential targets to treat inflammatory diseases associated with diminished Del-1 expression, such as periodontitis and multiple sclerosis.
Collapse
Affiliation(s)
- Tomoki Maekawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, Pennsylvania 19104, USA.,Niigata University, Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Kavita Hosur
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, Pennsylvania 19104, USA
| | - Toshiharu Abe
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, Pennsylvania 19104, USA
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts 02142, USA
| | - Athanasios Ziogas
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Baomei Wang
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, Pennsylvania 19104, USA
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts 02142, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
34
|
Slots J. Periodontal herpesviruses: prevalence, pathogenicity, systemic risk. Periodontol 2000 2015; 69:28-45. [DOI: 10.1111/prd.12085] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 12/13/2022]
|
35
|
Kotsakis GA, Thai A, Ioannou AL, Demmer RT, Michalowicz BS. Association between low-dose aspirin and periodontal disease: results from the continuous national health and nutrition examination survey (NHANES) 2011-2012. J Clin Periodontol 2015; 42:333-41. [DOI: 10.1111/jcpe.12380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Georgios A. Kotsakis
- Division of Periodontology; Department of Developmental and Surgical Sciences; University of Minnesota; Minneapolis MN USA
| | - Ashley Thai
- Department of Epidemiology; Mailman School of Public Health; Columbia University; New York NY USA
| | - Andreas L. Ioannou
- Division of Periodontology; Department of Developmental and Surgical Sciences; University of Minnesota; Minneapolis MN USA
| | - Ryan T. Demmer
- Department of Epidemiology; Mailman School of Public Health; Columbia University; New York NY USA
| | - Bryan S. Michalowicz
- Division of Periodontology; Department of Developmental and Surgical Sciences; University of Minnesota; Minneapolis MN USA
| |
Collapse
|
36
|
Marsh PD, Head DA, Devine DA. Ecological approaches to oral biofilms: control without killing. Caries Res 2015; 49 Suppl 1:46-54. [PMID: 25871418 DOI: 10.1159/000377732] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Humans have co-evolved with micro-organisms and have a symbiotic or mutualistic relationship with their resident microbiome. As at other body surfaces, the mouth has a diverse microbiota that grows on oral surfaces as structurally and functionally organised biofilms. The oral microbiota is natural and provides important benefits to the host, including immunological priming, down-regulation of excessive pro-inflammatory responses, regulation of gastrointestinal and cardiovascular systems, and colonisation by exogenous microbes. On occasions, this symbiotic relationship breaks down, and previously minor components of the microbiota outcompete beneficial bacteria, thereby increasing the risk of disease. Antimicrobial agents have been formulated into many oral care products to augment mechanical plaque control. A delicate balance is needed, however, to control the oral microbiota at levels compatible with health, without killing beneficial bacteria and losing the key benefits delivered by these resident microbes. These antimicrobial agents may achieve this by virtue of their recommended twice daily topical use, which results in pharmacokinetic profiles indicating that they are retained in the mouth for relatively long periods at sublethal levels. At these concentrations they are still able to inhibit bacterial traits implicated in disease (e.g. sugar transport/acid production; protease activity) and retard growth without eliminating beneficial species. In silico modelling studies have been performed which support the concept that either reducing the frequency of acid challenge and/or the terminal pH, or by merely slowing bacterial growth, results in maintaining a community of beneficial bacteria under conditions that might otherwise lead to disease (control without killing).
Collapse
Affiliation(s)
- Phil D Marsh
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
37
|
Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:57-74. [PMID: 26306443 DOI: 10.1007/978-3-319-18603-0_4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.
Collapse
|
38
|
Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol 2014; 29:248-57. [PMID: 24976068 DOI: 10.1111/omi.12065] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 01/05/2023]
Abstract
In periodontitis, dysbiotic microbial communities exhibit synergistic interactions for enhanced protection from host defenses, nutrient acquisition, and persistence in an inflammatory environment. This review discusses evidence that periodontitis-associated communities are 'inflammo-philic' (=loving or attracted to inflammation) in that they have evolved to not only endure inflammation but also to take advantage of it. In this regard, inflammation can drive the selection and enrichment of these pathogenic communities by providing a source of nutrients in the form of tissue breakdown products (e.g. degraded collagen peptides and heme-containing compounds). In contrast, those species that cannot benefit from the altered ecological conditions of the inflammatory environment, or for which host inflammation is detrimental, are likely to be outcompeted. Consistent with the concept that inflammation fosters the growth of dysbiotic microbial communities, the bacterial biomass of human periodontitis-associated biofilms was shown to increase with increasing periodontal inflammation. Conversely, anti-inflammatory treatments in animal models of periodontitis were shown to diminish the periodontal bacterial load, in addition to protecting from bone loss. The selective flourishing of inflammophilic bacteria can perpetuate inflammatory tissue destruction by setting off a 'vicious cycle' for disease progression, in which dysbiosis and inflammation reinforce each other. Therefore, the control of inflammation appears to be central to the treatment of periodontitis, as it is likely to control both dysbiosis and disease progression.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
39
|
Maekawa T, Abe T, Hajishengallis E, Hosur KB, DeAngelis RA, Ricklin D, Lambris JD, Hajishengallis G. Genetic and intervention studies implicating complement C3 as a major target for the treatment of periodontitis. THE JOURNAL OF IMMUNOLOGY 2014; 192:6020-7. [PMID: 24808362 DOI: 10.4049/jimmunol.1400569] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic periodontitis is induced by a dysbiotic microbiota and leads to inflammatory destruction of tooth-supporting connective tissue and bone. The third component of complement, C3, is a point of convergence of distinct complement activation mechanisms, but its involvement in periodontitis was not previously addressed. We investigated this question using two animal species models, namely, C3-deficient or wild-type mice and nonhuman primates (NHPs) locally treated with a potent C3 inhibitor (the compstatin analog Cp40) or an inactive peptide control. In mice, C3 was required for maximal periodontal inflammation and bone loss, and for the sustenance of the dysbiotic microbiota. The effect of C3 on the microbiota was therefore different from that reported for the C5a receptor, which is required for the initial induction of dysbiosis. C3-dependent bone loss was demonstrated in distinct models, including Porphyromonas gingivalis-induced periodontitis, ligature-induced periodontitis, and aging-associated periodontitis. Importantly, local treatment of NHPs with Cp40 inhibited ligature-induced periodontal inflammation and bone loss, which correlated with lower gingival crevicular fluid levels of proinflammatory mediators (e.g., IL-17 and RANKL) and decreased osteoclastogenesis in bone biopsy specimens, as compared with control treatment. To our knowledge, this is the first time, for any disease, that complement inhibition in NHPs was shown to inhibit inflammatory processes that lead to osteoclastogenesis and bone loss. These data strongly support the feasibility of C3-targeted intervention for the treatment of human periodontitis.
Collapse
Affiliation(s)
- Tomoki Maekawa
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Toshiharu Abe
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Evlambia Hajishengallis
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Kavita B Hosur
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert A DeAngelis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
40
|
Use of polyphenols in periodontal inflammation. Eur J Pharmacol 2013; 720:77-83. [DOI: 10.1016/j.ejphar.2013.10.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/10/2023]
|
41
|
Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol 2013; 35:3-11. [PMID: 24269668 DOI: 10.1016/j.it.2013.09.001] [Citation(s) in RCA: 663] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
Recent studies have uncovered novel mechanisms underlying the breakdown of periodontal host-microbe homeostasis, which can precipitate dysbiosis and periodontitis in susceptible hosts. Dysbiotic microbial communities of keystone pathogens and pathobionts are thought to exhibit synergistic virulence whereby not only can they endure the host response but can also thrive by exploiting tissue-destructive inflammation, which fuels a self-feeding cycle of escalating dysbiosis and inflammatory bone loss, potentially leading to tooth loss and systemic complications. Here, I discuss new paradigms in our understanding of periodontitis, which may shed light into other polymicrobial inflammatory disorders. In addition, I highlight gaps in knowledge required for an integrated picture of the interplay between microbes and innate and adaptive immune elements that initiate and propagate chronic periodontal inflammation.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Hajishengallis E, Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults. J Dent Res 2013; 93:231-7. [PMID: 24097856 DOI: 10.1177/0022034513507956] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This review summarizes the current state of knowledge on neutrophil basic biology and discusses how the breakdown of neutrophil homeostasis affects periodontal health. The homeostasis of neutrophils is tightly regulated through coordinated bone marrow production, release into the circulation, transmigration to and activation in peripheral tissues, and clearance of senescent neutrophils. Dysregulation of any of these homeostatic mechanisms at any age can cause severe periodontitis in humans and animal models. Accordingly, both impaired and excessive neutrophil activity (in terms of numbers or immune function) can precipitate periodontitis. Neutrophil defects of congenital origin (e.g., congenital neutropenia, leukocyte adhesion deficiency, and Chediak-Higashi syndrome) are associated with cutaneous and systemic infections and early-onset forms of periodontitis affecting both the primary and permanent dentitions of children. However, the strong association between congenital neutrophil disorders and early-onset periodontitis is not currently adequately explained mechanistically. This suggests the operation of as-yet-unknown molecular mechanisms, although the available body of evidence leaves no doubt that neutrophils are integral to periodontal tissue homeostasis and health.
Collapse
Affiliation(s)
- E Hajishengallis
- University of Pennsylvania School of Dental Medicine, Department of Preventive and Restorative Sciences, Division of Pediatric Dentistry, Philadelphia, PA 19104, USA
| | | |
Collapse
|
43
|
Ohshima M, Yamaguchi Y. [Paradigm shift in pharmacological treatment of periodontitis]. Nihon Yakurigaku Zasshi 2013; 141:314-20. [PMID: 23749071 DOI: 10.1254/fpj.141.314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Terheyden H, Stadlinger B, Sanz M, Garbe AI, Meyle J. Inflammatory reaction - communication of cells. Clin Oral Implants Res 2013; 25:399-407. [DOI: 10.1111/clr.12176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Hendrik Terheyden
- Department of Oral & Maxillofacial Surgery; Red Cross Hospital; Kassel Germany
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery; University of Zürich; Zürich Switzerland
| | - Mariano Sanz
- Faculty of Odontology; University Complutense of Madrid; Madrid Spain
| | - Annette I. Garbe
- Institute of Physiological Chemistry; Dresden University of Technology; Dresden Germany
| | - Jörg Meyle
- Department of Periodontology; University Gießen and Marburg; Giessen Germany
| |
Collapse
|
45
|
Tucker SC, Honn KV. Emerging targets in lipid-based therapy. Biochem Pharmacol 2013; 85:673-688. [PMID: 23261527 PMCID: PMC4106802 DOI: 10.1016/j.bcp.2012.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to "biomarkers" does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery.
Collapse
Affiliation(s)
- Stephanie C Tucker
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| | - Kenneth V Honn
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| |
Collapse
|
46
|
Bostanci N, Oztürk VÖ, Emingil G, Belibasakis GN. Elevated oral and systemic levels of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in periodontitis. J Dent Res 2012; 92:161-5. [PMID: 23242230 DOI: 10.1177/0022034512470691] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Triggering Receptor Expressed on Myeloid cells 1 (TREM-1) is a cell-surface receptor of the immunoglobulin superfamily, involved in the propagation of the inflammatory response to bacterial challenge. Soluble (s)TREM-1 is released from the cell surface during the course of infection and is a useful inflammatory biomarker in the early diagnosis of systemic sepsis. The hypothesis of this study was that oral and systemic levels of sTREM-1 are elevated in periodontitis. Therefore, the aim was to investigate, by ELISA, the sTREM-1 concentrations in saliva and serum of individuals without periodontitis (control) and persons with chronic or generalized aggressive periodontitis. In saliva, sTREM-1 concentrations were higher in chronic and aggressive periodontitis than in the control group, by 3.3-fold and 5.6-fold, respectively. In serum, these differences were 1.7-fold and 2-fold, respectively. However, there were no significant differences between the two forms of periodontitis, neither in saliva nor in serum. Salivary and serum sTREM-1 levels positively correlated with full-mouth clinical periodontal parameters. In conclusion, the increased oral and systemic levels of sTREM-1 in periodontitis denote a value for this molecule as a biomarker for the disease and may also have implications in the association between periodontal infections and systemic inflammatory response.
Collapse
Affiliation(s)
- N Bostanci
- Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Switzerland.
| | | | | | | |
Collapse
|
47
|
Andriankaja OM, Galicia J, Dong G, Xiao W, Alawi F, Graves DT. Gene expression dynamics during diabetic periodontitis. J Dent Res 2012; 91:1160-5. [PMID: 23103632 DOI: 10.1177/0022034512465292] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diabetes impairs the resolution of periodontal inflammation. We explored pathways altered by inflammation in the diabetic periodontium by using ligatures to induce periodontitis in type-2 diabetic Goto-Kakizaki rats. Ligatures were removed after 7 days, and rats were then treated with TNF inhibitor (pegsunercept) or vehicle alone and euthanized 4 days later. RNA was extracted from periodontal tissue, examined by mRNA profiling, and further analyzed by functional criteria. We found that 1,754 genes were significantly up-regulated and 1,243 were down-regulated by pegsunercept (p < 0.05). Functional analysis revealed up-regulation of neuron-associated and retina-associated gene clusters as well as those related to cell activity and signaling. Others were down-regulated by TNF inhibition and included genes associated with host defense, apoptosis, cell signaling and activity, and coagulation/hemostasis/complement. For selected genes, findings with microarray and rt-PCR agreed. PPAR-α was investigated further by immunohistochemistry due to its anti-inflammatory function and was found to be up-regulated in the gingiva during the resolution of periodontal inflammation and suppressed by diabetes. The results indicate that diabetes-enhanced inflammation both up- and down-regulates genes involved in cellular activity and cell signaling, while it predominantly up-regulates genes involved in the host response, apoptosis, and coagulation/homeostasis/complement and down-regulates mRNA levels of neuron, retina, and energy/metabolism-associated genes.
Collapse
Affiliation(s)
- O M Andriankaja
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
48
|
Adamowicz K, Wang H, Jotwani R, Zeller I, Potempa J, Scott DA. Inhibition of GSK3 abolishes bacterial-induced periodontal bone loss in mice. Mol Med 2012; 18:1190-6. [PMID: 22847803 DOI: 10.2119/molmed.2012.00180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/26/2012] [Indexed: 11/06/2022] Open
Abstract
The tissue destruction that characterizes periodontitis is driven by the host response to bacterial pathogens. Inhibition of glycogen synthase kinase 3β (GSK3β) in innate cells leads to suppression of Toll-like receptor (TLR)-initiated proinflammatory cytokines under nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 transcriptional control and promotion of cyclic adenosine monophosphate response element-binding (CREB)-dependent gene activation. Therefore, we hypothesized that the cell permeable GSK3-specific inhibitor, SB216763, would protect against alveolar bone loss induced by the key periodontal pathogen, Porphyromonas gingivalis (P. gingivalis), in a murine model. B6129SF2/J mice either were infected orally with P. gingivalis ATCC 33277; or treated with SB216763 and infected with P. gingivalis; sham infected; or exposed to vehicle only (dimethyl sulfoxide [DMSO]); or to GSK3 inhibitor only (SB216763). Alveolar bone loss and local (neutrophil infiltration and interleukin [IL]-17) and systemic (tumor necrosis factor [TNF], IL-6, Il-1β and IL-12/IL-23 p40) inflammatory indices also were monitored. SB216763 unequivocally abrogated mean P. gingivalis-induced bone resorption, measured at 14 predetermined points on the molars of defleshed maxillae as the distance from the cementoenamel junction to the alveolar bone crest (p < 0.05). The systemic cytokine response, the local neutrophil infiltration and the IL-17 expression were suppressed (p < 0.001). These data confirm the relevance of prior in vitro phenomena and establish GSK3 as a novel, efficacious therapeutic preventing periodontal disease progression in a susceptible host. These findings also may have relevance to other chronic inflammatory diseases and the systemic sequelae associated with periodontal infections.
Collapse
Affiliation(s)
- Karina Adamowicz
- Center for Oral Health and Systemic Disease, University of Louisville, Louisville, Kentucky 40292, United States of America
| | | | | | | | | | | |
Collapse
|
49
|
Abe T, Hosur KB, Hajishengallis E, Reis ES, Ricklin D, Lambris JD, Hajishengallis G. Local complement-targeted intervention in periodontitis: proof-of-concept using a C5a receptor (CD88) antagonist. THE JOURNAL OF IMMUNOLOGY 2012; 189:5442-8. [PMID: 23089394 DOI: 10.4049/jimmunol.1202339] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
When excessively activated or deregulated, complement becomes a major link between infection and inflammatory pathology including periodontitis. This oral inflammatory disease is associated with a dysbiotic microbiota, leads to the destruction of bone and other tooth-supporting structures, and exerts an adverse impact on systemic health. We have previously shown that mice deficient either in complement C5a receptor (C5aR; CD88) or TLR2 are highly and similarly resistant to periodontitis, suggesting that a cross-talk between the two receptors may be involved in the disease process. In this paper, we show that C5aR and TLR2 indeed synergize for maximal inflammatory responses in the periodontal tissue and uncover a novel pharmacological target to abrogate periodontitis. Using two different mouse models of periodontitis, we show that local treatments with a C5aR antagonist inhibited periodontal inflammation through downregulation of TNF, IL-1β, IL-6, and IL-17 and further protected against bone loss, regardless of the presence of TLR2. These findings not only reveal a crucial cooperation between C5aR and TLR2 in periodontal inflammation but also provide proof-of-concept for local targeting of C5aR as a powerful candidate for the treatment of human periodontitis.
Collapse
Affiliation(s)
- Toshiharu Abe
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Napimoga MH, da Silva CAT, Carregaro V, Farnesi-de-Assunção TS, Duarte PM, de Melo NFS, Fraceto LF. Exogenous Administration of 15d-PGJ2–Loaded Nanocapsules Inhibits Bone Resorption in a Mouse Periodontitis Model. THE JOURNAL OF IMMUNOLOGY 2012; 189:1043-52. [DOI: 10.4049/jimmunol.1200730] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|