1
|
Ilardi CR, Federico G, La Marra M, Amato R, Iavarone A, Soricelli A, Santangelo G, Chieffi S. Deficits in reaching movements under visual interference as a novel diagnostic marker for mild cognitive impairment. Sci Rep 2025; 15:1901. [PMID: 39805990 PMCID: PMC11730333 DOI: 10.1038/s41598-025-85785-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Patients with Mild Cognitive Impairment (MCI) may exhibit poorer performance in visuomotor tasks than healthy individuals, particularly under conditions with high cognitive load. Few studies have examined reaching movements in MCI and did so without assessing susceptibility to distractor interference. This proof-of-concept study analyzed the kinematics of visually guided reaching movements towards a target dot placed along the participants' midsagittal/reaching axis. Movements were performed with and without a visual distractor (flanker) at various distances from the reaching axis. Participants were instructed to avoid "touching" the flanker during movement execution. The whole sample included 11 patients with MCI due to Alzheimer's disease, 10 healthy older adults, and 12 healthy young adults, all right-handed. Patients with MCI performed reaching movements whose trajectories deviated significantly away from the flanker, especially when it was 1 mm away, with less consistent trajectories than controls. Also, our results suggest that trajectory curvature may discriminate between patients with MCI and healthy older adults. The analysis of reaching movements under conditions of visual interference may enhance the diagnosis of MCI, underscoring the need for multidimensional assessments incorporating both cognitive and motor domains.
Collapse
Affiliation(s)
| | | | - Marco La Marra
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Santa Maria Di Costantinopoli 16, 80138, Naples, Italy
| | - Raffaella Amato
- Neurological Unit, CTO Hospital, AORN 'Ospedali Dei Colli', Viale Colli Aminei 21, 80131, Naples, Italy
| | - Alessandro Iavarone
- Neurological Unit, CTO Hospital, AORN 'Ospedali Dei Colli', Viale Colli Aminei 21, 80131, Naples, Italy
| | - Andrea Soricelli
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy
| | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Santa Maria Di Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
2
|
Chimsuwan P, Aniwattanapong D, Petchlorlian A, Suriyaamarit D. Biomechanics of sit-to-stand with dual tasks in older adults with and without mild cognitive impairment. Gait Posture 2024; 111:169-175. [PMID: 38705034 DOI: 10.1016/j.gaitpost.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The decline in cognitive function in older adults with mild cognitive impairment (MCI) may contribute to a change in movement pattern during sit-to-stand transitions (STS). However, when comparing older adults with MCI to older adults without MCI, there is a lack of evidence of kinematic and kinetic data during STS. Furthermore, while significant cognitive dual-task interference has been demonstrated in older adults with MCI, studies on the effects of dual motor tasks in MCI, particularly during STS, have not been reported. RESEARCH QUESTION Are there any differences in the movement time, joint angles, and maximum joint moments while performing STS under single- and dual-task conditions in older adults with and without MCI? METHODS In a cross-sectional study, 70 participants were divided into two groups: older adults with MCI and without MCI. Motion analysis and a force plate system were used to collect and analyze the STS movement. All participants were asked to do the STS movement alone and the STS with a dual motor task with the self-selected pattern on an adjustable bench. RESULTS Older adults with MCI had greater maximum trunk flexion during STS with a dual task than older adults without MCI and greater than STS alone. Furthermore, older adults with MCI had a greater ankle plantar flexion moment during STS with a dual task than during STS alone. SIGNIFICANCE Even though the STS task is one of the simplest functional activities, different strategies to achieve the STS action with dual tasks were found among older adults with and without MCI in terms of joint angle and joint moments.
Collapse
Affiliation(s)
- Perayut Chimsuwan
- Human Movement Performance Enhancement Research Unit, Department of Physical Therapy, Faculty of Allied Health Sciences, Chulalongkorn University, Thailand
| | - Daruj Aniwattanapong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Thailand; Chulalongkorn Cognitive, Clinical & Computational Neuroscience Lab, Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thailand
| | - Aisawan Petchlorlian
- Geriatric Excellence Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Duangporn Suriyaamarit
- Human Movement Performance Enhancement Research Unit, Department of Physical Therapy, Faculty of Allied Health Sciences, Chulalongkorn University, Thailand.
| |
Collapse
|
3
|
Ahuja H, Badhwar S, Edgell H, Litoiu M, Sergio LE. Machine learning algorithms for detection of visuomotor neural control differences in individuals with PASC and ME. Front Hum Neurosci 2024; 18:1359162. [PMID: 38638805 PMCID: PMC11024369 DOI: 10.3389/fnhum.2024.1359162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The COVID-19 pandemic has affected millions worldwide, giving rise to long-term symptoms known as post-acute sequelae of SARS-CoV-2 (PASC) infection, colloquially referred to as long COVID. With an increasing number of people experiencing these symptoms, early intervention is crucial. In this study, we introduce a novel method to detect the likelihood of PASC or Myalgic Encephalomyelitis (ME) using a wearable four-channel headband that collects Electroencephalogram (EEG) data. The raw EEG signals are processed using Continuous Wavelet Transform (CWT) to form a spectrogram-like matrix, which serves as input for various machine learning and deep learning models. We employ models such as CONVLSTM (Convolutional Long Short-Term Memory), CNN-LSTM, and Bi-LSTM (Bidirectional Long short-term memory). Additionally, we test the dataset on traditional machine learning models for comparative analysis. Our results show that the best-performing model, CNN-LSTM, achieved an accuracy of 83%. In addition to the original spectrogram data, we generated synthetic spectrograms using Wasserstein Generative Adversarial Networks (WGANs) to augment our dataset. These synthetic spectrograms contributed to the training phase, addressing challenges such as limited data volume and patient privacy. Impressively, the model trained on synthetic data achieved an average accuracy of 93%, significantly outperforming the original model. These results demonstrate the feasibility and effectiveness of our proposed method in detecting the effects of PASC and ME, paving the way for early identification and management of the condition. The proposed approach holds significant potential for various practical applications, particularly in the clinical domain. It can be utilized for evaluating the current condition of individuals with PASC or ME, and monitoring the recovery process of those with PASC, or the efficacy of any interventions in the PASC and ME populations. By implementing this technique, healthcare professionals can facilitate more effective management of chronic PASC or ME effects, ensuring timely intervention and improving the quality of life for those experiencing these conditions.
Collapse
Affiliation(s)
- Harit Ahuja
- School of Information Technology, York University, Toronto, ON, Canada
| | - Smriti Badhwar
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Heather Edgell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Marin Litoiu
- School of Information Technology, York University, Toronto, ON, Canada
- Lassonde School of Engineering, York University, Toronto, ON, Canada
| | - Lauren E. Sergio
- School of Information Technology, York University, Toronto, ON, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
4
|
Wee Y, Lee O. 4D dynamic system for visual-motor integration analysis. Comput Methods Biomech Biomed Engin 2023; 26:1635-1652. [PMID: 36239055 DOI: 10.1080/10255842.2022.2131400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/05/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
It is very important to evaluate visual-motor integration (VMI), as it is used as an index to evaluate cognitive abilities. However, it is difficult to use the existing paper-based tests to evaluate the dynamic process, including spatial and depth perception abilities. Therefore, this study aims to extract kinematic and dynamic features for dynamic assessment for VMI. We propose a 4D dynamic analysis system that implements a VMI test in a virtual space using Leap motion controller and Unity3D and acquires the time-series data of hand joints and traces. We selected three categories of features: postural control ability, spatial and depth perception ability, and 4D analysis. The degree and patterns of postural maintenance differed between subjects in the VMI and MC tests. In addition, the personal patterns were identified with dynamic features, including their fluency and hesitation in relation to the task figures of the VMI test tool. As such, this system enables dynamic feature extraction and analysis which were previously impossible and presents performance results for healthy adults.
Collapse
Affiliation(s)
- Yejin Wee
- Department of Software Convergence, Graduate School, Soonchunhyang University, Asan City, Republic of Korea
| | - Onseok Lee
- Department of Software Convergence, Graduate School, Soonchunhyang University, Asan City, Republic of Korea
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, Asan City, Republic of Korea
| |
Collapse
|
5
|
Rogojin A, Gorbet DJ, Hawkins KM, Sergio LE. Differences in structural MRI and diffusion tensor imaging underlie visuomotor performance declines in older adults with an increased risk for Alzheimer's disease. Front Aging Neurosci 2023; 14:1054516. [PMID: 36711200 PMCID: PMC9877535 DOI: 10.3389/fnagi.2022.1054516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Visuomotor impairments have been demonstrated in preclinical AD in individuals with a positive family history of dementia and APOE e4 carriers. Previous behavioral findings have also reported sex-differences in performance of visuomotor tasks involving a visual feedback reversal. The current study investigated the relationship between grey and white matter changes and non-standard visuomotor performance, as well as the effects of APOE status, family history of dementia, and sex on these brain-behavior relationships. Methods Older adults (n = 49) with no cognitive impairments completed non-standard visuomotor tasks involving a visual feedback reversal, plane-change, or combination of the two. Participants with a family history of dementia or who were APOE e4 carriers were considered at an increased risk for AD. T1-weighted anatomical scans were used to quantify grey matter volume and thickness, and diffusion tensor imaging measures were used to quantify white matter integrity. Results In APOE e4 carriers, grey and white matter structural measures were associated with visuomotor performance. Regression analyses showed that visuomotor deficits were predicted by lower grey matter thickness and volume in areas of the medial temporal lobe previously implicated in visuomotor control (entorhinal and parahippocampal cortices). This finding was replicated in the diffusion data, where regression analyses revealed that lower white matter integrity (lower FA, higher MD, higher RD, higher AxD) was a significant predictor of worse visuomotor performance in the forceps minor, forceps major, cingulum, inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinate fasciculus (UF). Some of these tracts overlap with those important for visuomotor integration, namely the forceps minor, forceps major, SLF, IFOF, and ILF. Conclusion These findings suggest that measuring the dysfunction of brain networks underlying visuomotor control in early-stage AD may provide a novel behavioral target for dementia risk detection that is easily accessible, non-invasive, and cost-effective. The results also provide insight into the structural differences in inferior parietal lobule that may underlie previously reported sex-differences in performance of the visual feedback reversal task.
Collapse
Affiliation(s)
- Alica Rogojin
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada,Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Diana J. Gorbet
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada
| | - Kara M. Hawkins
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Lauren E. Sergio
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada,*Correspondence: Lauren E. Sergio, ✉
| |
Collapse
|
6
|
Rogojin A, Gorbet DJ, Hawkins KM, Sergio LE. Differences in resting state functional connectivity underlie visuomotor performance declines in older adults with a genetic risk (APOE ε4) for Alzheimer’s disease. Front Aging Neurosci 2022; 14:1054523. [DOI: 10.3389/fnagi.2022.1054523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
IntroductionNon-standard visuomotor integration requires the interaction of large networks in the brain. Previous findings have shown that non-standard visuomotor performance is impaired in individuals with specific dementia risk factors (family history of dementia and presence of the APOE ε4 allele) in advance of any cognitive impairments. These findings suggest that visuomotor impairments are associated with early dementia-related brain changes. The current study examined the underlying resting state functional connectivity (RSFC) associated with impaired non-standard visuomotor performance, as well as the impacts of dementia family history, sex, and APOE status.MethodsCognitively healthy older adults (n = 48) were tested on four visuomotor tasks where reach and gaze were increasingly spatially dissociated. Participants who had a family history of dementia or the APOE ε4 allele were considered to be at an increased risk for AD. To quantify RSFC within networks of interest, an EPI sequence sensitive to BOLD contrast was collected. The networks of interest were the default mode network (DMN), somatomotor network (SMN), dorsal attention network (DAN), ventral attention network (VAN), and frontoparietal control network (FPN).ResultsIndividuals with the ε4 allele showed abnormalities in RSFC between posterior DMN nodes that predicted poorer non-standard visuomotor performance. Specifically, multiple linear regression analyses revealed lower RSFC between the precuneus/posterior cingulate cortex and the left inferior parietal lobule as well as the left parahippocampal cortex. Presence of the APOE ε4 allele also modified the relationship between mean DAN RSFC and visuomotor control, where lower mean RSFC in the DAN predicted worse non-standard visuomotor performance only in APOE ε4 carriers. There were otherwise no effects of family history, APOE ε4 status, or sex on the relationship between RSFC and visuomotor performance for any of the other resting networks.ConclusionThe preliminary findings provide insight into the impact of APOE ε4-related genetic risk on neural networks underlying complex visuomotor transformations, and demonstrate that the non-standard visuomotor task paradigm discussed in this study may be used as a non-invasive, easily accessible assessment tool for dementia risk.
Collapse
|
7
|
Ikegami T, Flanagan JR, Wolpert DM. Reach adaption to a visuomotor gain with terminal error feedback involves reinforcement learning. PLoS One 2022; 17:e0269297. [PMID: 35648778 PMCID: PMC9159621 DOI: 10.1371/journal.pone.0269297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Motor adaptation can be achieved through error-based learning, driven by sensory prediction errors, or reinforcement learning, driven by reward prediction errors. Recent work on visuomotor adaptation has shown that reinforcement learning leads to more persistent adaptation when visual feedback is removed, compared to error-based learning in which continuous visual feedback of the movement is provided. However, there is evidence that error-based learning with terminal visual feedback of the movement (provided at the end of movement) may be driven by both sensory and reward prediction errors. Here we examined the influence of feedback on learning using a visuomotor adaptation task in which participants moved a cursor to a single target while the gain between hand and cursor movement displacement was gradually altered. Different groups received either continuous error feedback (EC), terminal error feedback (ET), or binary reinforcement feedback (success/fail) at the end of the movement (R). Following adaptation we tested generalization to targets located in different directions and found that generalization in the ET group was intermediate between the EC and R groups. We then examined the persistence of adaptation in the EC and ET groups when the cursor was extinguished and only binary reward feedback was provided. Whereas performance was maintained in the ET group, it quickly deteriorated in the EC group. These results suggest that terminal error feedback leads to a more robust form of learning than continuous error feedback. In addition our findings are consistent with the view that error-based learning with terminal feedback involves both error-based and reinforcement learning.
Collapse
Affiliation(s)
- Tsuyoshi Ikegami
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States of America
- Department of Neuroscience, Columbia University, New York, NY, United States of America
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Suita City, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - J. Randall Flanagan
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Daniel M. Wolpert
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States of America
- Department of Neuroscience, Columbia University, New York, NY, United States of America
| |
Collapse
|
8
|
Lowrey CR, Dukelow SP, Bagg SD, Ritsma B, Scott SH. Impairments in Cognitive Control Using a Reverse Visually Guided Reaching Task Following Stroke. Neurorehabil Neural Repair 2022; 36:449-460. [PMID: 35576434 PMCID: PMC9198399 DOI: 10.1177/15459683221100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cognitive and motor function must work together quickly and seamlessly to allow us to interact with a complex world, but their integration is difficult to assess directly. Interactive technology provides opportunities to assess motor actions requiring cognitive control. OBJECTIVE To adapt a reverse reaching task to an interactive robotic platform to quantify impairments in cognitive-motor integration following stroke. METHODS Participants with subacute stroke (N=59) performed two tasks using the Kinarm: Reverse Visually Guided Reaching (RVGR) and Visually Guided Reaching (VGR). Tasks required subjects move a cursor "quickly and accurately" to virtual targets. In RVGR, cursor motion was reversed compared to finger motion (i.e., hand moves left, cursor moves right). Task parameters and Task Scores were calculated based on models developed from healthy controls, and accounted for the influence of age, sex, and handedness. RESULTS Many stroke participants (86%) were impaired in RVGR with their affected arm (Task Score > 95% of controls). The most common impairment was increased movement time. Seventy-three percent were also impaired with their less affected arm. The most common impairment was larger initial direction angles of reach. Impairments in RVGR improved over time, but 71% of participants tested longitudinally were still impaired with the affected arm ∼6 months post-stroke. Importantly, although 57% were impaired with the less affected arm at 6 months, these individuals were not impaired in VGR. CONCLUSIONS Individuals with stroke were impaired in a reverse reaching task but many did not show similar impairments in a standard reaching task, highlighting selective impairment in cognitive-motor integration.
Collapse
Affiliation(s)
- Catherine R Lowrey
- Centre for Neuroscience Studies, 4257Queen's University, Kingston, ON, Canada
| | - Sean P Dukelow
- Hotchkiss Brain Institute, 2129University of Calgary, Calgary, AB, Canada
| | - Stephen D Bagg
- Department of Physical Medicine and Rehabilitation, 4257Queen's University, Kingston, ON, Canada.,School of Medicine, 4257Queen's University, Kingston, ON, Canada
| | - Benjamin Ritsma
- Department of Physical Medicine and Rehabilitation, 4257Queen's University, Kingston, ON, Canada.,School of Medicine, 4257Queen's University, Kingston, ON, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, 4257Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, 4257Queen's University, Kingston, ON, Canada.,Department of Medicine, 4257Queen's University, Kingston, ON, Canada
| |
Collapse
|
9
|
Neuropsychology of posteromedial parietal cortex and conversion factors from Mild Cognitive Impairment to Alzheimer's disease: systematic search and state-of-the-art review. Aging Clin Exp Res 2022; 34:289-307. [PMID: 34232485 PMCID: PMC8847304 DOI: 10.1007/s40520-021-01930-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
In the present review, we discuss the rationale and the clinical implications of assessing visuospatial working memory (VSWM), awareness of memory deficits, and visuomotor control in patients with mild cognitive impairment (MCI). These three domains are related to neural activity in the posteromedial parietal cortex (PMC) whose hypoactivation seems to be a significant predictor of conversion from MCI to Alzheimer’s disease (AD) as indicated by recent neuroimaging evidence. A systematic literature search was performed up to May 2021. Forty-eight studies were included: 42 studies provided analytical cross-sectional data and 6 studies longitudinal data on conversion rates. Overall, these studies showed that patients with MCI performed worse than healthy controls in tasks assessing VSWM, awareness of memory deficits, and visuomotor control; in some cases, MCI patients’ performance was comparable to that of patients with overt dementia. Deficits in VSWM and metamemory appear to be significant predictors of conversion. No study explored the relationship between visuomotor control and conversion. Nevertheless, it has been speculated that the assessment of visuomotor abilities in subjects at high AD risk might be useful to discriminate patients who are likely to convert from those who are not. Being able to indirectly estimate PMC functioning through quick and easy neuropsychological tasks in outpatient settings may improve diagnostic and prognostic accuracy, and therefore, the quality of the MCI patient’s management.
Collapse
|
10
|
Mitchell AG, Rossit S, Pal S, Hornberger M, Warman A, Kenning E, Williamson L, Shapland R, McIntosh RD. Peripheral reaching in Alzheimer's disease and mild cognitive impairment. Cortex 2022; 149:29-43. [PMID: 35184013 PMCID: PMC9007170 DOI: 10.1016/j.cortex.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Recent evidence has implicated areas within the posterior parietal cortex (PPC) as among the first to show pathophysiological changes in Alzheimer's disease (AD). Focal brain damage to the PPC can cause optic ataxia, a specific deficit in reaching to peripheral targets. The present study describes a novel investigation of peripheral reaching ability in AD and mild cognitive impairment (MCI), to assess whether this deficit is common among these patient groups. Individuals with a diagnosis of mild-to-moderate AD, or MCI, and healthy older adult controls were required to reach to targets presented in central vision or in peripheral vision using two reaching tasks; one in the lateral plane and another presented in radial depth. Pre-registered case–control comparisons identified 1/10 MCI and 3/17 AD patients with significant peripheral reaching deficits at the individual level, but group-level comparisons did not find significantly higher peripheral reaching error in either AD or MCI by comparison to controls. Exploratory analyses showed significantly increased reach duration in both AD and MCI groups relative to controls, accounted for by an extended Deceleration Time of the reach movement. These findings suggest that peripheral reaching deficits like those observed in optic ataxia are not a common feature of AD. However, we show that cognitive decline is associated with a generalised slowing of movement which may indicate a visuomotor deficit in reach planning or online guidance.
Collapse
Affiliation(s)
- Alexandra G Mitchell
- Department of Psychology, University of Edinburgh, Edinburgh, UK; Center for Functionally Integrative Neuroscience, Aarhus University, Denmark.
| | - Stephanie Rossit
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK.
| | - Suvankar Pal
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
| | | | - Annie Warman
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK.
| | - Elise Kenning
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK
| | - Laura Williamson
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK
| | - Rebecca Shapland
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK
| | | |
Collapse
|
11
|
Fernández G, Parra MA. Oculomotor Behaviors and Integrative Memory Functions in the Alzheimer's Clinical Syndrome. J Alzheimers Dis 2021; 82:1033-1044. [PMID: 34151787 DOI: 10.3233/jad-201189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Biological information drawn from eye-tracking metrics is providing evidence regarding drivers of cognitive decline in Alzheimer's disease. In particular, pupil size has proved useful to investigate cognitive performance during online activities. OBJECTIVE To investigate the oculomotor correlates of impaired performance of patients with mild Alzheimer's Clinical Syndrome (ACS) on a recently developed memory paradigm, namely the Short-Term Memory Binding Test (STMBT). METHODS We assessed a sample of eighteen healthy controls (HC) and eighteen patients with a diagnosis of mild ACS with the STMBT while we recorded their oculomotor behaviors using pupillometry and eye-tracking. RESULTS As expected, a group (healthy controls versus ACS) by condition (Unbound Colours versus Bound Colours) interaction was found whereby behavioral group differences were paramount in the Bound Colours condition. Healthy controls' pupils dilated significantly more in the Bound Colours than in the Unbound Colours condition, a discrepancy not observed in ACS patients. Furthermore, ROC analysis revealed the abnormal pupil behaviors distinguished ACS patients from healthy controls with values of sensitivity and specify of 100%, thus outperforming both recognition scores and gaze duration. CONCLUSION The biological correlates of Short-Term Memory Binding impairments appear to involve a network much wider than we have thought to date, which expands across cortical and subcortical structures. We discuss these findings focusing on their implications for our understanding of neurocognitive phenotypes in the preclinical stages of Alzheimer's disease and potential development of cognitive biomarkers that can support ongoing initiatives to prevent dementia.
Collapse
Affiliation(s)
- Gerardo Fernández
- Chief Scientific Officer, ViewMind Inc., New York, NY, USA.,Axis Neurociencias, Bahía Blanca, Argentina.,Instituto de Investigaciones en Ingeniería Eléctrica (IIIE) (UNS-CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| |
Collapse
|
12
|
Staal J, Mattace-Raso F, Daniels HAM, van der Steen J, Pel JJM. To Explore the Predictive Power of Visuomotor Network Dysfunctions in Mild Cognitive Impairment and Alzheimer's Disease. Front Neurosci 2021; 15:654003. [PMID: 34262424 PMCID: PMC8273577 DOI: 10.3389/fnins.2021.654003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Background Research into Alzheimer’s disease has shifted toward the identification of minimally invasive and less time-consuming modalities to define preclinical stages of Alzheimer’s disease. Method Here, we propose visuomotor network dysfunctions as a potential biomarker in AD and its prodromal stage, mild cognitive impairment with underlying the Alzheimer’s disease pathology. The functionality of this network was tested in terms of timing, accuracy, and speed with goal-directed eye-hand tasks. The predictive power was determined by comparing the classification performance of a zero-rule algorithm (baseline), a decision tree, a support vector machine, and a neural network using functional parameters to classify controls without cognitive disorders, mild cognitive impaired patients, and Alzheimer’s disease patients. Results Fair to good classification was achieved between controls and patients, controls and mild cognitive impaired patients, and between controls and Alzheimer’s disease patients with the support vector machine (77–82% accuracy, 57–93% sensitivity, 63–90% specificity, 0.74–0.78 area under the curve). Classification between mild cognitive impaired patients and Alzheimer’s disease patients was poor, as no algorithm outperformed the baseline (63% accuracy, 0% sensitivity, 100% specificity, 0.50 area under the curve). Comparison with Existing Method(s) The classification performance found in the present study is comparable to that of the existing CSF and MRI biomarkers. Conclusion The data suggest that visuomotor network dysfunctions have potential in biomarker research and the proposed eye-hand tasks could add to existing tests to form a clear definition of the preclinical phenotype of AD.
Collapse
Affiliation(s)
- Justine Staal
- Vestibular and Ocular Motor Research Group, Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Section of Geriatric Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Francesco Mattace-Raso
- Section of Geriatric Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Hennie A M Daniels
- Center for Economic Research, Tilburg University, Tilburg, Netherlands.,Department of Technology and Operations Management, Rotterdam School of Management, Erasmus University, Rotterdam, Netherlands
| | - Johannes van der Steen
- Vestibular and Ocular Motor Research Group, Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Royal Dutch Visio, Huizen, Netherlands
| | - Johan J M Pel
- Vestibular and Ocular Motor Research Group, Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
13
|
Yeomans MA, Phillips B, Dalecki M, Hondzinski JM. Eye movement influences on coupled and decoupled eye-hand coordination tasks. Exp Brain Res 2021; 239:2477-2488. [PMID: 34115166 DOI: 10.1007/s00221-021-06138-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/13/2021] [Indexed: 11/25/2022]
Abstract
Visually guided reaching precision and accuracy depend on the level of coupling between movements of the eyes and hand. In the present study, participants performed central fixations and either saccadic or smooth pursuit eye movements during fast and accurate reaching tasks involving eye-hand coupling and decoupling to better understand type of eye movement influence over upper limb control. Some eye-hand coupling and decoupling tasks also included hand reversals, where the hand moves away from the target to direct a cursor toward the target to account for various levels of hand-cursor and eye-cursor coupling. Regardless of eye-movement type, eye-hand-cursor coupling produced an endpoint accuracy advantage over decoupling. Use of hand reversal decreased peak speed and increased response time of the hand, whether considering fixation or a given eye movement. Use of smooth pursuit slowed hand movements relative to saccades, yet improved endpoint accuracy. Compared to central fixations, using smooth pursuit also slowed hand movements, while using saccades decreased, thus improved, hand reaction times. Data suggest an advantage, when using smooth pursuit to track the hand movement for the greatest endpoint accuracy, an advantage when using saccades for the fastest movements, and an eye-hand coupling advantage when using saccades for the shortest reactions. Researchers should provide clear eye-movement instructions for participants and/or monitor the eyes when assessing similar upper limb control to account for possible differences in eye movements used. Moreover, the type of eye movement chosen for participants should correspond to the primary goal of the task.
Collapse
Affiliation(s)
- Matthew A Yeomans
- School of Kinesiology, Louisiana State University, 1246 Pleasant Hall, Baton Rouge, LA, 70803, USA
- Department of Health and Human Performance, University of Tennessee at Martin, Elam Center, Martin, TN, 38237, USA
| | - Brandon Phillips
- School of Kinesiology, Louisiana State University, 1246 Pleasant Hall, Baton Rouge, LA, 70803, USA
| | - Marc Dalecki
- School of Kinesiology, Louisiana State University, 1246 Pleasant Hall, Baton Rouge, LA, 70803, USA
| | - Jan M Hondzinski
- School of Kinesiology, Louisiana State University, 1246 Pleasant Hall, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
14
|
Yeomans M, Yan S, Hondzinski JM, Dalecki M. Eye-hand decoupling decreases visually guided reaching independently of posture but reduces sway while standing: Evidence for supra-postural control. Neurosci Lett 2021; 752:135833. [PMID: 33746007 DOI: 10.1016/j.neulet.2021.135833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022]
Abstract
We investigated whether visually guided reaching differs for sitting and standing postures while the eyes and hand are coupled to move in the same direction or decoupled to move in opposite directions. We also investigated how coupled and decoupled reaching tasks influenced standing postural control. Eighteen healthy young adults (M = 21 years) moved a cursor using finger movements along a vertical touchscreen while sitting or standing. In an eye-hand coupling (EH) task, participants moved their finger/cursor from a central target to a peripheral target located either up, down, left, or right. In an eye-hand decoupling (EHD) task, participant's finger movement moved the cursor in the opposite direction. Sway measures during the standing condition and kinematic variables for the cursor offered insight into whole-body control. Performances in EH revealed smaller errors and faster movements than EHD regardless of postural condition. Similar hand movements existed between sitting and standing when accounting for task, while greater variability in absolute endpoint errors existed for standing than sitting when task was ignored. Less postural sway existed for EHD than EH when standing. These data provide evidence that when participants decoupled the eyes and hand movement direction while standing, they attenuated sway to support control of this complex, cognitively demanding, visuomotor task.
Collapse
Affiliation(s)
- Matthew Yeomans
- School of Kinesiology, Louisiana State University, Baton Rouge, United States; Department of Health and Human Performance, University of Tennessee at Martin, United States
| | - Shijun Yan
- School of Kinesiology, Louisiana State University, Baton Rouge, United States; Shirley Ryan AbilityLab, Northwestern University, Chicago, United States
| | - Jan M Hondzinski
- School of Kinesiology, Louisiana State University, Baton Rouge, United States
| | - Marc Dalecki
- School of Kinesiology, Louisiana State University, Baton Rouge, United States.
| |
Collapse
|
15
|
A Cross-sectional Study of Attention Bias for Facial Expression Stimulation in Patients with Stroke at the Convalescence Stage. Int J Behav Med 2020; 28:511-522. [PMID: 33263171 DOI: 10.1007/s12529-020-09940-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Post-stroke depression increases the likelihood of adverse physical symptoms. Attentional bias (AB) for negative stimuli is important in depression onset, maintenance, and remission. Stroke is more likely in older adults, who can have reduced cognitive function. Individuals with mild cognitive impairment (MCI) can have delayed reaction times (RTs). We hypothesized that RT to select neutral facial expression is affected by depressive symptoms and cognitive function in patients with stroke. METHODS This study analyzed 61 patients with stroke. Beck Depression Inventory-Second Edition (BDI-II) and Profile of Mood States (short version) scores were determined. Task stimuli comprised eight pairs of facial expressions containing affective (angry) and neutral faces. AB was measured as the RT to select the neutral face in two simultaneously presented images using attention bias modification (ABM) software. Patients were grouped according to depressive symptoms using BDI-II scores. Between-subject factors of depressive symptoms and cognitive function were determined by ANCOVA. RESULTS No significant interaction was found between depressive symptoms and cognitive function on RT. There was a main effect of cognitive function, but not depressive symptoms. In patients with hemiparesis and depressive symptoms, RT was significantly shorter in patients without MCI compared with patients with MCI. CONCLUSIONS People with stroke and elevated depression symptoms with hemiparesis but without MCI quickly selected neutral facial expressions from neutral and aversive expressions, and thus do not need ABM to escape aversive stimuli. ABM in response to aversive stimuli may be useful in evaluating negative emotions in individuals with post-stroke depression without MCI.
Collapse
|
16
|
Test-retest repeatability reveals a temporal kinematic signature for an upper limb precision grasping task in adults. Hum Mov Sci 2020; 75:102721. [PMID: 33271492 DOI: 10.1016/j.humov.2020.102721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022]
Abstract
Hand-eye coordination skills, such as reaching and grasping, are fundamentally important for the performance of most daily activities. Upper limb kinematics recorded by motion tracking systems provide detailed insight into the central nervous system control of movement planning and execution. For example, kinematic metrics can reveal deficits in control, and compensatory neuromotor strategies in individuals with neuropathologies. However, the clinical utility of kinematic metrics is currently limited because their psychometric properties, such as test-retest repeatability, have not been well characterized. Therefore, the purpose of this study was to examine the degree of repeatability of spatiotemporal kinematic metrics and determine which, if any, measures form a kinematic signature for a precision grasping task. Healthy adults (n = 40) were tested on two occasions separated by 5-10 days on a bead threading task consisting of reaching and precision grasping. Results showed good test-retest repeatability for reach peak velocity, reach and grasp durations, whereas poor to moderate reliability was observed for measures of spatial precision and maximum grip aperture. In addition, analysis showed that reliable estimates of kinematic metrics can be obtained using 10 trials. Overall, our results indicate that reach peak velocity and temporal metrics form a stable characteristic, or a kinematic signature, of individual performance on a standardized bead threading task. These findings suggest potential utility in applying kinematic metrics for clinical assessment of upper limb reaching tasks.
Collapse
|
17
|
Jones BD, Van Gemmert AWA, Dalecki M. Does Hand-Dominance Matter in Non-Standard Visuomotor Transformations? J Mot Behav 2020; 53:622-631. [PMID: 32933401 DOI: 10.1080/00222895.2020.1817840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Previous nonstandard visuomotor transformation studies using variations of eye-hand coupling and decoupling tasks focused on dominant hand use. The present study expanded this work by including the non-dominant hand. Twenty-four right-hand dominant adults (M = 21 yrs.; 12 females) slid their index finger along a vertical or horizontal touchscreen to move a cursor that was always displayed in the vertical plane. In four different action-perception conditions, the finger and cursor moved either in the same plane and direction or in the other plane and/or opposite direction. Performance differed between the hands only for movement trajectory related variables but not for endpoint related measures. Across conditions the initial direction error was larger when performing with the non-dominant hand (p < 0.001). A significant hand × cursor direction × cursor plane interaction for path length (p < 0.05) revealed longer movement trajectories for the non-dominant hand compared to the dominant hand in conditions with none or one level of eye-hand decoupling, and similar hand performance when movements were made in the horizontal plane with reversed cursor direction, i.e., two eye-hand decoupling levels. Our findings suggest a non-dominant hand overall eye-hand coordination deficit for spatial planning and an inversely related deficit to the eye-hand decoupling level for trajectory execution.
Collapse
Affiliation(s)
- Briasha D Jones
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | | | - Marc Dalecki
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
18
|
Themistocleous C, Eckerström M, Kokkinakis D. Voice quality and speech fluency distinguish individuals with Mild Cognitive Impairment from Healthy Controls. PLoS One 2020; 15:e0236009. [PMID: 32658934 PMCID: PMC7357785 DOI: 10.1371/journal.pone.0236009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/27/2020] [Indexed: 11/19/2022] Open
Abstract
Mild Cognitive Impairment (MCI) is a syndrome characterized by cognitive decline greater than expected for an individual's age and education level. This study aims to determine whether voice quality and speech fluency distinguish patients with MCI from healthy individuals to improve diagnosis of patients with MCI. We analyzed recordings of the Cookie Theft picture description task produced by 26 patients with MCI and 29 healthy controls from Sweden and calculated measures of voice quality and speech fluency. The results show that patients with MCI differ significantly from HC with respect to acoustic aspects of voice quality, namely H1-A3, cepstral peak prominence, center of gravity, and shimmer; and speech fluency, namely articulation rate and averaged speaking time. The method proposed along with the obtainability of connected speech productions can enable quick and easy analysis of speech fluency and voice quality, providing accessible and objective diagnostic markers of patients with MCI.
Collapse
Affiliation(s)
| | - Marie Eckerström
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Dimitrios Kokkinakis
- Department of Swedish, University of Gothenburg, Gothenburg, Sweden
- Center of Ageing and Health—AgeCap, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Echlin HV, Gorbet DJ, Sergio LE. Assessment of a Cognitive-Motor Training Program in Adults at Risk for Developing Dementia. Can Geriatr J 2020; 23:190-198. [PMID: 32494335 PMCID: PMC7259920 DOI: 10.5770/cgj.23.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background With the prevalence of dementia increasing each year, pre-clinically implemented therapeutic interventions are needed. It has been suggested that cascading neural network failures may bring on behavioural deficits associated with Alzheimer’s disease. Methods Previously we have shown that cognitive-motor integration (CMI) training in adults with cognitive impairments generalized to improved global cognitive and activities of daily living scores. Here we employ a novel movement control–based training approach involving CMI rather than traditional cognition-only brain training. We hypothesized that such training would stimulate widespread neural networks and enhance rule-based visuomotor ability in at-risk individuals. Results We observed a significant improvement in bimanual coordination in the at-risk training group. We also observed significant decreases in movement variability for the most complex CMI condition in the at-risk and healthy training groups. Conclusions These data suggest that integrating cognition into action in a training intervention may be effective at strengthening vulnerable brain networks in asymptomatic adults at risk for developing dementia.
Collapse
Affiliation(s)
- Holly V Echlin
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
20
|
Rogojin A, Gorbet DJ, Hawkins KM, Sergio LE. Cognitive-Motor Integration Performance Is Affected by Sex, APOE Status, and Family History of Dementia. J Alzheimers Dis 2019; 71:685-701. [DOI: 10.3233/jad-190403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alica Rogojin
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Diana J. Gorbet
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Kara M. Hawkins
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Lauren E. Sergio
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Dalecki M, Gorbet DJ, Sergio LE. Development of rule-based eye-hand-decoupling in children and adolescents. Child Neuropsychol 2019; 25:1098-1115. [DOI: 10.1080/09297049.2019.1578342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marc Dalecki
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Diana J. Gorbet
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
| | - Lauren E. Sergio
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
| |
Collapse
|
22
|
Carment L, Abdellatif A, Lafuente-Lafuente C, Pariel S, Maier MA, Belmin J, Lindberg PG. Manual Dexterity and Aging: A Pilot Study Disentangling Sensorimotor From Cognitive Decline. Front Neurol 2018; 9:910. [PMID: 30420830 PMCID: PMC6215834 DOI: 10.3389/fneur.2018.00910] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
Manual dexterity measures can be useful for early detection of age-related functional decline and for prediction of cognitive decline. However, what aspects of sensorimotor function to assess remains unclear. Manual dexterity markers should be able to separate impairments related to cognitive decline from those related to healthy aging. In this pilot study, we aimed to compare manual dexterity components in patients diagnosed with cognitive decline (mean age: 84 years, N = 11) and in age comparable cognitively intact elderly subjects (mean age: 78 years, N = 11). In order to separate impairments due to healthy aging from deficits due to cognitive decline we also included two groups of healthy young adults (mean age: 26 years, N = 10) and middle-aged adults (mean age: 41 years, N = 8). A comprehensive quantitative evaluation of manual dexterity was performed using three tasks: (i) visuomotor force tracking, (ii) isochronous single finger tapping with auditory cues, and (iii) visuomotor multi-finger tapping. Results showed a highly significant increase in force tracking error with increasing age. Subjects with cognitive decline had increased finger tapping variability and reduced ability to select the correct tapping fingers in the multi-finger tapping task compared to cognitively intact elderly subjects. Cognitively intact elderly subjects and those with cognitive decline had prolonged force release and reduced independence of finger movements compared to young adults and middle-aged adults. The findings suggest two different patterns of impaired manual dexterity: one related to cognitive decline and another related to healthy aging. Manual dexterity tasks requiring updating of performance, in accordance with (temporal or spatial) task rules maintained in short-term memory, are particularly affected in cognitive decline. Conversely, tasks requiring online matching of motor output to sensory cues were affected by age, not by cognitive status. Remarkably, no motor impairments were detected in patients with cognitive decline using clinical scales of hand function. The findings may have consequences for the development of manual dexterity markers of cognitive decline.
Collapse
Affiliation(s)
- Loic Carment
- Inserm U894, Université Paris Descartes, Paris, France
| | - Abir Abdellatif
- Plateforme de Recherche Clinique en Gériatrie, Hôpitaux universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | - Carmelo Lafuente-Lafuente
- Service de Gériatrie à orientation Cardiologique et Neurologique, Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | - Sylvie Pariel
- Département de soins ambulatoires, Hôpitaux universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | - Marc A Maier
- FR3636 CNRS, Université Paris Descartes, Paris, France.,Department of Life Sciences, Université Paris Diderot, Paris, France
| | - Joël Belmin
- Service de Gériatrie à orientation Cardiologique et Neurologique, Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | | |
Collapse
|
23
|
Gorbet DJ, Sergio LE. Looking up while reaching out: the neural correlates of making eye and arm movements in different spatial planes. Exp Brain Res 2018; 237:57-70. [DOI: 10.1007/s00221-018-5395-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
24
|
Sayegh PF, Gorbet DJ, Hawkins KM, Hoffman KL, Sergio LE. The Contribution of Different Cortical Regions to the Control of Spatially Decoupled Eye-Hand Coordination. J Cogn Neurosci 2017; 29:1194-1211. [PMID: 28253075 DOI: 10.1162/jocn_a_01111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our brain's ability to flexibly control the communication between the eyes and the hand allows for our successful interaction with the objects located within our environment. This flexibility has been observed in the pattern of neural responses within key regions of the frontoparietal reach network. More specifically, our group has shown how single-unit and oscillatory activity within the dorsal premotor cortex (PMd) and the superior parietal lobule (SPL) change contingent on the level of visuomotor compatibility between the eyes and hand. Reaches that involve a coupling between the eyes and hand toward a common spatial target display a pattern of neural responses that differ from reaches that require eye-hand decoupling. Although previous work examined the altered spiking and oscillatory activity that occurs during different types of eye-hand compatibilities, they did not address how each of these measures of neurological activity interacts with one another. Thus, in an effort to fully characterize the relationship between oscillatory and single-unit activity during different types of eye-hand coordination, we measured the spike-field coherence (SFC) within regions of macaque SPL and PMd. We observed stronger SFC within PMdr and superficial regions of SPL (areas 5/PEc) during decoupled reaches, whereas PMdc and regions within SPL surrounding medial intrapareital sulcus had stronger SFC during coupled reaches. These results were supported by meta-analysis on human fMRI data. Our results support the proposal of altered cortical control during complex eye-hand coordination and highlight the necessity to account for the different eye-hand compatibilities in motor control research.
Collapse
Affiliation(s)
| | - Diana J Gorbet
- 1 York University, Toronto, Ontario, Canada.,2 Canadian Action and Perception Network, Toronto, Ontario, Canada
| | | | - Kari L Hoffman
- 1 York University, Toronto, Ontario, Canada.,2 Canadian Action and Perception Network, Toronto, Ontario, Canada
| | - Lauren E Sergio
- 1 York University, Toronto, Ontario, Canada.,2 Canadian Action and Perception Network, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Hurtubise J, Gorbet D, Hamandi Y, Macpherson A, Sergio L. The effect of concussion history on cognitive-motor integration in elite hockey players. Concussion 2016; 1:CNC17. [PMID: 30202559 PMCID: PMC6093836 DOI: 10.2217/cnc-2016-0006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/03/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To observe the effects of concussion history on cognitive-motor integration in elite-level athletes. METHODS The study included 102 National Hockey League draft prospects (n = 51 concussion history [CH]; n = 51 no history [NC]). Participants completed two computer-based visuomotor tasks, one involved 'standard' visuomotor mapping and one involved 'nonstandard' mapping in which vision and action were decoupled. RESULTS We observed a significant effect of group on reaction time (CH slower) and accuracy (CH worse), but a group by condition interaction only for reaction time (p < 0.05). There were no other deficits found. We discussed these findings in comparison to our previous work with non-elite athletes. CONCLUSION Previously concussed elite-level athletes may have lingering neurological deficits that are not detected using standard clinical assessments.
Collapse
Affiliation(s)
- Johanna Hurtubise
- School of Kinesiology & Health Science, York University, Toronto, ON, M3J 1P3, Canada
- York University Sports Medicine Team, York University Department of Athletics and Recreation, York University, Toronto, ON, M3J 1P3, Canada
| | - Diana Gorbet
- School of Kinesiology & Health Science, York University, Toronto, ON, M3J 1P3, Canada
- Center for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Yehyah Hamandi
- School of Kinesiology & Health Science, York University, Toronto, ON, M3J 1P3, Canada
| | - Alison Macpherson
- School of Kinesiology & Health Science, York University, Toronto, ON, M3J 1P3, Canada
- York University Sports Medicine Team, York University Department of Athletics and Recreation, York University, Toronto, ON, M3J 1P3, Canada
| | - Lauren Sergio
- School of Kinesiology & Health Science, York University, Toronto, ON, M3J 1P3, Canada
- York University Sports Medicine Team, York University Department of Athletics and Recreation, York University, Toronto, ON, M3J 1P3, Canada
- Center for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
26
|
Bourke TC, Lowrey CR, Dukelow SP, Bagg SD, Norman KE, Scott SH. A robot-based behavioural task to quantify impairments in rapid motor decisions and actions after stroke. J Neuroeng Rehabil 2016; 13:91. [PMID: 27724945 PMCID: PMC5057404 DOI: 10.1186/s12984-016-0201-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/04/2016] [Indexed: 01/09/2023] Open
Abstract
Background Stroke can affect our ability to perform daily activities, although it can be difficult to identify the underlying functional impairment(s). Recent theories highlight the importance of sensory feedback in selecting future motor actions. This selection process can involve multiple processes to achieve a behavioural goal, including selective attention, feature/object recognition, and movement inhibition. These functions are often impaired after stroke, but existing clinical measures tend to explore these processes in isolation and without time constraints. We sought to characterize patterns of post-stroke impairments in a dynamic situation where individuals must identify and select spatial targets rapidly in a motor task engaging both arms. Impairments in generating rapid motor decisions and actions could guide functional rehabilitation targets, and identify potential of individuals to perform daily activities such as driving. Methods Subjects were assessed in a robotic exoskeleton. Subjects used virtual paddles attached to their hands to hit away 200 virtual target objects falling towards them while avoiding 100 virtual distractors. The inclusion of distractor objects required subjects to rapidly assess objects located across the workspace and make motor decisions about which objects to hit. Results As many as 78 % of the 157 subjects with subacute stroke had impairments in individual global, spatial, temporal, or hand-specific task parameters relative to the 95 % performance bounds for 309 non-disabled control subjects. Subjects with stroke and neglect (Behavioural Inattention Test score <130; n = 28) were more often impaired in task parameters than other subjects with stroke. Approximately half of subjects with stroke hit proportionally more distractor objects than 95 % of controls, suggesting they had difficulty in attending to and selecting appropriate objects. This impairment was observed for affected and unaffected limbs including some whose motor performance was comparable to controls. The proportion of distractors hit also significantly correlated with the Montreal Cognitive Assessment scores for subjects with stroke (rs < = − 0.48, P < 10−9). Conclusions A simple robot-based task identified that many subjects with stroke have impairments in the rapid selection and generation of motor responses to task specific spatial goals in the workspace.
Collapse
Affiliation(s)
- Teige C Bourke
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| | - Catherine R Lowrey
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Stephen D Bagg
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada
| | - Kathleen E Norman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,School of Rehabilitation Therapy, Queen's University, Kingston, ON, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
27
|
Pupillary responses and memory-guided visual search reveal age-related and Alzheimer's-related memory decline. Behav Brain Res 2016; 322:351-361. [PMID: 27616343 DOI: 10.1016/j.bbr.2016.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022]
Abstract
Episodic memory - composed of memory for unique spatiotemporal experiences - is known to decline with aging, and even more severely in Alzheimer 's disease (AD). Memory for trial-unique objects in spatial scenes depends on the integrity of the hippocampus and interconnected structures that are among the first areas affected in AD. We reasoned that memory for objects-in-scenes would be impaired with aging, and that further impairments would be observed in AD. We asked younger adults, healthy older adults, older adults at-risk for developing cognitive impairments, and older adults with probable early AD to find changing items ('targets') within images of natural scenes, measuring repeated-trial changes in search efficiency and pupil diameter. Compared to younger adults, older adults took longer to detect target objects in repeated scenes, they required more fixations and those fixations were more dispersed. Whereas individuals with AD showed some benefit of memory in this task, they had substantially longer detection times, and more numerous, dispersed fixations on repeated scenes compared to age-matched older adults. Correspondingly, pupillary responses to novel and repeated scenes were diminished with aging and further in AD, and the memory-related changes were weaker with aging and absent in AD. Our results suggest that several nonverbal measures from memory-guided visual search tasks can index aging and Alzheimer's disease status, including pupillary dynamics. The task measurements are sensitive to the integrity of brain structures that are associated with Alzheimer's-related neurodegeneration, the task is well tolerated across a range of abilities, and thus, it may prove useful in early diagnostics and longitudinal tracking of memory decline.
Collapse
|
28
|
Hawkins KM, Sergio LE. Adults at Increased Alzheimer's Disease Risk Display Cognitive-Motor Integration Impairment Associated with Changes in Resting-State Functional Connectivity: A Preliminary Study. J Alzheimers Dis 2016; 53:1161-72. [PMID: 27340846 DOI: 10.3233/jad-151137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Many neuroimaging parameters have demonstrated utility as biomarkers in preclinical AD, including resting-state functional connectivity in the default mode network. However, neuroimaging is not a practical, cost effective screening instrument. OBJECTIVE Here we investigate the relationship between performance on a cognitive-motor integration assessment and alterations in resting-state functional connectivity in an at-risk population. METHODS Three groups of ten adults (young: mean age = 26.6 ± 2.7, low AD risk: mean age = 58.7 ± 5.6, and high AD risk: mean age = 58.5 ± 6.9) performed a simple cognitive-motor integration task using a dual-touchscreen laptop and also underwent functional magnetic resonance imaging at rest. RESULTS We found poorer cognitive-motor integration performance in high AD risk participants, as well as an association with lower resting-state functional connectivity in this group. CONCLUSION These findings provide novel insight into underlying AD-related brain alterations associated with a behavioral assessment that can be easily administered clinically.
Collapse
|
29
|
Dalecki M, Albines D, Macpherson A, Sergio LE. Prolonged cognitive-motor impairments in children and adolescents with a history of concussion. Concussion 2016; 1:CNC14. [PMID: 30202556 PMCID: PMC6094154 DOI: 10.2217/cnc-2016-0001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/26/2016] [Indexed: 01/01/2023] Open
Abstract
Aim: We investigated whether children and adolescents with concussion history show cognitive–motor integration (CMI) deficits. Method: Asymptomatic children and adolescents with concussion history (n = 50; mean 12.84 years) and no history (n = 49; mean: 11.63 years) slid a cursor to targets using their finger on a dual-touch-screen laptop; target location and motor action were not aligned in the CMI task. Results: Children and adolescents with concussion history showed prolonged CMI deficits, in that their performance did not match that of no history controls until nearly 2 years postevent. Conclusion: These CMI deficits may be due to disruptions in fronto-parietal networks, contributing to an increased vulnerability to further injury. Current return-to-play assessments that do not test CMI may not fully capture functional abilities postconcussion.
Collapse
Affiliation(s)
- Marc Dalecki
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - David Albines
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada
| | - Alison Macpherson
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada
| | - Lauren E Sergio
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Wu Q, Chan JS, Yan JH. Mild cognitive impairment affects motor control and skill learning. Rev Neurosci 2016; 27:197-217. [DOI: 10.1515/revneuro-2015-0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022]
Abstract
AbstractMild cognitive impairment (MCI) is a transitional phase between normal cognitive aging and dementia. As the world population is aging rapidly, more MCI patients will be identified, posing significant problems to society. Normal aging is associated with cognitive and motor decline, and MCI brings additional impairments. Compared to healthy older adults, MCI patients show poorer motor control in a variety of tasks. Efficient motor control and skill learning are essential for occupational and leisure purposes; degradation of motor behaviors in MCI patients often adversely affects their health and quality of life. In this article, we first define MCI and describe its pathology and neural correlates. After this, we review cognitive changes and motor control and skill learning in normal aging. This section is followed by a discussion of MCI-related degradation of motor behaviors. Finally, we propose that multicomponent interventions targeting both cognitive and motor domains can improve MCI patients’ motor functions. Future research directions are also raised.
Collapse
Affiliation(s)
| | | | - Jin H. Yan
- 2Center for Brain Disorders and Cognitive Neuroscience, Shenzhen University, 3688 Nan Hai Ave., Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
31
|
Gorbet DJ, Sergio LE. Don't watch where you're going: The neural correlates of decoupling eye and arm movements. Behav Brain Res 2015; 298:229-40. [PMID: 26589804 DOI: 10.1016/j.bbr.2015.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
"Standard" visually-guided reaching movements consist of a saccade and an arm movement to the same target location. In the current study, functional magnetic resonance imaging was used to contrast brain activity during standard visually-guided reaches with activity during a "non-standard" visuomotor mapping where the targets of the saccade and arm movement were spatially decoupled. Multi-voxel pattern analysis approaches showed discrimination of standard versus non-standard visuomotor mapping in the cuneus and medial premotor regions without accompanying task-related differences in MRI signal amplitude in these areas. Contrasts of signal amplitude did reveal greater activity associated with the non-standard task relative to the standard task in the right inferior parietal lobule and a portion of the left superior posterior cerebellum. The findings of this study shed light on brain regions involved in overcoming our default tendency to spatially couple eye and arm movements during visually-guided reaching. Further, the results suggest that the regions reported here may be important in neurological disorders such as optic ataxia, Alzheimer's disease, and mild cognitive impairment, which are associated with deficits in producing non-standard visuomotor mappings while leaving standard visuomotor mapping relatively intact.
Collapse
Affiliation(s)
- D J Gorbet
- School of Kinesiology and Health Science, Centre for Vision Research, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada.
| | - L E Sergio
- School of Kinesiology and Health Science, Centre for Vision Research, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
32
|
Brown JA, Dalecki M, Hughes C, Macpherson AK, Sergio LE. Cognitive-motor integration deficits in young adult athletes following concussion. BMC Sports Sci Med Rehabil 2015; 7:25. [PMID: 26491541 PMCID: PMC4612424 DOI: 10.1186/s13102-015-0019-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate the information for an appropriate motor response. Here, we look at how performance on such tasks is affected in young adult athletes with concussion history. METHODS Participants displaced a cursor from a central to peripheral targets on a vertical display by sliding their finger along a touch sensitive screen in one of two spatial planes. The addition of a memory component, along with variations in cursor feedback increased task complexity across conditions. RESULTS Significant main effects between participants with concussion history and healthy controls without concussion history were observed in timing and accuracy measures. Importantly, the deficits were distinctly more pronounced for participants with concussion history compared to healthy controls, especially when the brain had to control movements having two levels of decoupling between vision and action. A discriminant analysis correctly classified athletes with a history of concussion based on task performance with an accuracy of 94 %, despite the majority of these athletes being rated asymptomatic by current standards. CONCLUSIONS These findings correspond to our previous work with adults at risk of developing dementia, and support the use of cognitive motor integration as an enhanced assessment tool for those who may have mild brain dysfunction. Such a task may provide a more sensitive metric of performance relevant to daily function than what is currently in use, to assist in return to play/work/learn decisions.
Collapse
Affiliation(s)
- Jeffrey A Brown
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada
| | - Marc Dalecki
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; Centre for Vision Research, York University, Toronto, Canada
| | - Cindy Hughes
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; York University Sport Medicine Team, York University, Toronto, Canada
| | - Alison K Macpherson
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; York University Sport Medicine Team, York University, Toronto, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; Centre for Vision Research, York University, Toronto, Canada ; York University Sport Medicine Team, York University, Toronto, Canada ; Southlake Regional Health Centre, Newmarket, ON Canada
| |
Collapse
|
33
|
Seligman SC, Giovannetti T. The Potential Utility of Eye Movements in the Detection and Characterization of Everyday Functional Difficulties in Mild Cognitive Impairment. Neuropsychol Rev 2015; 25:199-215. [PMID: 25851239 DOI: 10.1007/s11065-015-9283-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Mild cognitive impairment (MCI) refers to the intermediate period between the typical cognitive decline of normal aging and more severe decline associated with dementia, and it is associated with greater risk for progression to dementia. Research has suggested that functional abilities are compromised in MCI, but the degree of impairment and underlying mechanisms remain poorly understood. The development of sensitive measures to assess subtle functional decline poses a major challenge for characterizing functional limitations in MCI. Eye-tracking methodology has been used to describe visual processes in everyday, naturalistic action among healthy older adults as well as several case studies of severely impaired individuals, and it has successfully differentiated healthy older adults from those with MCI on specific visual tasks. These studies highlight the promise of eye-tracking technology as a method to characterize subtle functional decline in MCI. However, to date no studies have examined visual behaviors during completion of naturalistic tasks in MCI. This review describes the current understanding of functional ability in MCI, summarizes findings of eye-tracking studies in healthy individuals, severe impairment, and MCI, and presents future research directions to aid with early identification and prevention of functional decline in disorders of aging.
Collapse
Affiliation(s)
- Sarah C Seligman
- Department of Psychology, Temple University, 1701 N. 13th Street, 6th Floor Weiss Hall, Philadelphia, PA, 19122, USA
| | | |
Collapse
|
34
|
Effects of age and cognitive load on response reprogramming. Exp Brain Res 2014; 233:937-46. [DOI: 10.1007/s00221-014-4169-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
|
35
|
Hawkins KM, Sayegh P, Yan X, Crawford JD, Sergio LE. Neural activity in superior parietal cortex during rule-based visual-motor transformations. J Cogn Neurosci 2012; 25:436-54. [PMID: 23092356 DOI: 10.1162/jocn_a_00318] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cognition allows for the use of different rule-based sensorimotor strategies, but the neural underpinnings of such strategies are poorly understood. The purpose of this study was to compare neural activity in the superior parietal lobule during a standard (direct interaction) reaching task, with two nonstandard (gaze and reach spatially incongruent) reaching tasks requiring the integration of rule-based information. Specifically, these nonstandard tasks involved dissociating the planes of reach and vision or rotating visual feedback by 180°. Single unit activity, gaze, and reach trajectories were recorded from two female Macaca mulattas. In all three conditions, we observed a temporal discharge pattern at the population level reflecting early reach planning and on-line reach monitoring. In the plane-dissociated task, we found a significant overall attenuation in the discharge rate of cells from deep recording sites, relative to standard reaching. We also found that cells modulated by reach direction tended to be significantly tuned either during the standard or the plane-dissociated task but rarely during both. In the standard versus feedback reversal comparison, we observed some cells that shifted their preferred direction by 180° between conditions, reflecting maintenance of directional tuning with respect to the reach goal. Our findings suggest that the superior parietal lobule plays an important role in processing information about the nonstandard nature of a task, which, through reciprocal connections with precentral motor areas, contributes to the accurate transformation of incongruent sensory inputs into an appropriate motor output. Such processing is crucial for the integration of rule-based information into a motor act.
Collapse
|