1
|
Maria Correa L, Moreno RD, Luis Riveros J. Hypothalamic-pituitary-gonadal axis response to photoperiod changes in female guanacos (Lama guanicoe). Gen Comp Endocrinol 2024; 347:114427. [PMID: 38141858 DOI: 10.1016/j.ygcen.2023.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The guanaco, a wild South American camelid, is renowned for its remarkable resilience to extreme conditions. Despite this, little is known about how reproductive hormones in female camelids are influenced during their seasonal breeding period, which occurs during long photoperiod. To explore this, the study investigated the response of the hypothalamic-pituitary-gonadal axis in female guanacos during short days (10L:14D; July) and long days (16L:8D; December) in the Mediterranean ecosystem (33°38'28″S, 70°34'27″W). Blood samples from 14 adult animals were collected, and measurements of melatonin, 17β-estradiol, FSH, and LH concentrations were taken. The results showed that melatonin concentration was lower (P < 0.05) during long days than short days, whereas 17β-estradiol, FSH, and LH concentrations were higher (P < 0.05) during long days compared to short days. Furthermore, the study detected the expression of the melatonin receptor 1A and kisspeptin in the hypothalamus and pituitary, suggesting that the pineal gland of female guanacos is sensitive to seasonal changes in day length. These findings also indicate a seasonal variation in the concentration of reproductive hormones, likely linked to the distinct modulation of the hypothalamic-pituitary-gonadal axis of female guanacos during short and long days.
Collapse
Affiliation(s)
- Lina Maria Correa
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Carlos Schorr 255, Maule, Talca 3460000, Chile; Centro de Innovación de ovinos para el secano-OVISNOVA, Universidad Santo Tomás, Carlos Schorr 255, Maule, Talca 3460000, Chile; Escuela de postgrado, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 8940000, Chile.
| | - Ricardo D Moreno
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Marcoleta 49, Santiago 8320000, Chile.
| | - José Luis Riveros
- Escuela de postgrado, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 8940000, Chile; Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 8940000, Chile.
| |
Collapse
|
2
|
Uenoyama Y, Tsukamura H. KNDy neurones and GnRH/LH pulse generation: Current understanding and future aspects. J Neuroendocrinol 2023; 35:e13285. [PMID: 37232103 DOI: 10.1111/jne.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Uncovering the central mechanism underlying mammalian reproduction is warranted to develop new therapeutic approaches for reproductive disorders in humans and domestic animals. The present study focused on the role of arcuate kisspeptin neurones (also known as KNDy neurones) as an intrinsic gonadotropin-releasing hormone (GnRH) pulse generator, which plays a fundamental role in mammalian reproduction via the stimulation of pituitary gonadotropin synthesis and release and thereby in gametogenesis and steroidogenesis in the gonads of mammals. We also discuss the mechanism that inhibits pulsatile GnRH/gonadotropin release under a negative energy balance, considering that reproductive disorders often occur during malnutrition in humans and livestock.
Collapse
Affiliation(s)
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Prashar V, Arora T, Singh R, Sharma A, Parkash J. Hypothalamic Kisspeptin Neurons: Integral Elements of the GnRH System. Reprod Sci 2023; 30:802-822. [PMID: 35799018 DOI: 10.1007/s43032-022-01027-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
Highly sophisticated and synchronized interactions of various cells and hormonal signals are required to make organisms competent for reproduction. GnRH neurons act as a common pathway for multiple cues for the onset of puberty and attaining reproductive function. GnRH is not directly receptive to most of the signals required for the GnRH secretion during the various phases of the ovarian cycle. Kisspeptin neurons of the hypothalamus convey these signals required for the synchronized release of the GnRH. The steroid-sensitive anteroventral periventricular nucleus (AVPV) kisspeptin and arcuate nucleus (ARC) KNDy neurons convey steroid feedback during the reproductive cycle necessary for GnRH surge and pulse, respectively. AVPV region kisspeptin neurons also communicate with nNOS synthesizing neurons and suprachiasmatic nucleus (SCN) neurons to coordinate the process of the ovarian cycle. Neurokinin B (NKB) and dynorphin play roles in the GnRH pulse stimulation and inhibition, respectively. The loss of NKB and kisspeptin function results in the development of neuroendocrine disorders such as hypogonadotropic hypogonadism (HH) and infertility. Ca2+ signaling is essential for GnRH pulse generation, which is propagated through gap junctions between astrocytes-KNDy and KNDy-KNDy neurons. Impaired functioning of KNDy neurons could develop the characteristics associated with polycystic ovarian syndrome (PCOS) in rodents. Kisspeptin-increased synthesis led to excessive secretion of the LH associated with PCOS. This review provides the latest insights and understanding into the role of the KNDy and AVPV/POA kisspeptin neurons in GnRH secretion and PCOS.
Collapse
Affiliation(s)
- Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
4
|
Goodman RL, Herbison AE, Lehman MN, Navarro VM. Neuroendocrine control of gonadotropin-releasing hormone: Pulsatile and surge modes of secretion. J Neuroendocrinol 2022; 34:e13094. [PMID: 35107859 PMCID: PMC9948945 DOI: 10.1111/jne.13094] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Abstract
The concept that different systems control episodic and surge secretion of gonadotropin-releasing hormone (GnRH) was well established by the time that GnRH was identified and formed the framework for studies of the physiological roles of GnRH, and later kisspeptin. Here, we focus on recent studies identifying the neural mechanisms underlying these two modes of secretion, with an emphasis on their core components. There is now compelling data that kisspeptin neurons in the arcuate nucleus that also contain neurokinin B (NKB) and dynorphin (i.e., KNDy cells) and their projections to GnRH dendrons constitute the GnRH pulse generator in mice and rats. There is also strong evidence for a similar role for KNDy neurons in sheep and goats, and weaker data in monkeys and humans. However, whether KNDy neurons act on GnRH dendrons and/or GnRH soma and dendrites that are found in the mediobasal hypothalamus (MBH) of these species remains unclear. The core components of the GnRH/luteinising hormone surge consist of an endocrine signal that initiates the process and a neural trigger that drives GnRH secretion during the surge. In all spontaneous ovulators, the core endocrine signal is a rise in estradiol secretion from the maturing follicle(s), with the site of estrogen positive feedback being the rostral periventricular kisspeptin neurons in rodents and neurons in the MBH of sheep and primates. There is considerable species variations in the neural trigger, with three major classes. First, in reflex ovulators, this trigger is initiated by coitus and carried to the hypothalamus by neural or vascular pathways. Second, in rodents, there is a time of day signal that originates in the suprachiasmatic nucleus and activates rostral periventricular kisspeptin neurons and GnRH soma and dendrites. Finally, in sheep nitric oxide-producing neurons in the ventromedial nucleus, KNDy neurons and rostral kisspeptin neurons all appear to participate in driving GnRH release during the surge.
Collapse
Affiliation(s)
- Robert L. Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Allan E. Herbison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael N. Lehman
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Victor M. Navarro
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School and Department of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Duittoz A, Cayla X, Fleurot R, Lehnert J, Khadra A. Gonadotrophin-releasing hormone and kisspeptin: It takes two to tango. J Neuroendocrinol 2021; 33:e13037. [PMID: 34533248 DOI: 10.1111/jne.13037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023]
Abstract
Kisspeptin (Kp), a family of peptides comprising products of the Kiss1 gene, was discovered 20 years ago; it is recognised as the major factor controlling the activity of the gonadotrophin-releasing hormone (GnRH) neurones and thus the activation of the reproductive axis in mammals. It has been widely documented that the effects of Kp on reproduction through its action on GnRH neurones are mediated by the GPR54 receptor. Kp controls the activation of the reproductive axis at puberty, maintains reproductive axis activity in adults and is involved in triggering ovulation in some species. Although there is ample evidence coming from both conditional knockout models and conditional-induced Kp neurone death implicating the Kp/GPR54 pathway in the control of reproduction, the mechanism(s) underlying this process may be more complex than a sole direct control of GnRH neuronal activity by Kp. In this review, we provide an overview of the recent advances made in elucidating the interplay between Kp- and GnRH- neuronal networks with respect to regulating the reproductive axis. We highlight the existence of a possible mutual regulation between GnRH and Kp neurones, as well as the implication of Kp-dependent volume transmission in this process. We also discuss the capacity of heterodimerisation between GPR54 and GnRH receptor (GnRH-R) and its consequences on signalling. Finally, we illustrate the role of mathematical modelling that accounts for the synergy between GnRH-R and GPR54 in explaining the role of these two receptors when defining GnRH neuronal activity and GnRH pulsatile release.
Collapse
Affiliation(s)
- Anne Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAe Val de Loire, Université de Tours, IFCE, Nouzilly, France
| | - Xavier Cayla
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAe Val de Loire, Université de Tours, IFCE, Nouzilly, France
| | - Renaud Fleurot
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAe Val de Loire, Université de Tours, IFCE, Nouzilly, France
| | - Jonas Lehnert
- Department of Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Anmar Khadra
- Department of Quantitative Life Sciences, McGill University, Montreal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| |
Collapse
|
6
|
Herbison AE. The dendron and episodic neuropeptide release. J Neuroendocrinol 2021; 33:e13024. [PMID: 34427000 DOI: 10.1111/jne.13024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
The unexpected observation that the long processes of gonadotrophin-releasing hormone (GnRH) neurons not only conducted action potentials, but also operated to integrate afferent information at their distal-most extent gave rise to the concept of a blended dendritic-axonal process termed the "dendron". The proximal dendrites of the GnRH neuron function in a conventional manner, receiving synaptic inputs and initiating action potentials that are critical for the surge mode of GnRH secretion. The distal dendrons are regulated by both classical synapses and volume transmission and likely operate using subthreshold electrotonic propagation into the nearby axon terminals in the median eminence. Evidence indicates that neural processing at the distal dendron is responsible for the pulsatile patterning of GnRH secretion. Although the dendron remains unique to the GnRH neuron, data show that it exists in both mice and rats and may be a common feature of mammalian species in which GnRH neuron cell bodies do not migrate into the basal hypothalamus. This review outlines the discovery and function of the dendron as a unique neuronal structure optimised to generate episodic neuronal output.
Collapse
Affiliation(s)
- Allan E Herbison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Berland M, Paiva L, Santander LA, Ratto MH. Distribution of GnRH and Kisspeptin Immunoreactivity in the Female Llama Hypothalamus. Front Vet Sci 2021; 7:597921. [PMID: 33604362 PMCID: PMC7884347 DOI: 10.3389/fvets.2020.597921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/05/2022] Open
Abstract
Llamas are induced non-reflex ovulators, which ovulate in response to the hormonal stimulus of the male protein beta-nerve growth factor (β-NGF) that is present in the seminal plasma; this response is dependent on the preovulatory gonadotrophin-releasing hormone (GnRH) release from the hypothalamus. GnRH neurones are vital for reproduction, as these provide the input that controls the release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary gland. However, in spontaneous ovulators, the activity of GnRH cells is regulated by kisspeptin neurones that relay the oestrogen signal arising from the periphery. Here, we investigated the organisation of GnRH and kisspeptin systems in the hypothalamus of receptive adult female llamas. We found that GnRH cells exhibiting different shapes were distributed throughout the ventral forebrain and some of these were located in proximity to blood vessels; sections of the mediobasal hypothalamus (MBH) displayed the highest number of cells. GnRH fibres were observed in both the organum vasculosum laminae terminalis (OVLT) and median eminence (ME). We also detected abundant kisspeptin fibres in the MBH and ME; kisspeptin cells were found in the arcuate nucleus (ARC), but not in rostral areas of the hypothalamus. Quantitative analysis of GnRH and kisspeptin fibres in the ME revealed a higher innervation density of kisspeptin than of GnRH fibres. The physiological significance of the anatomical findings reported here for the ovulatory mechanism in llamas is still to be determined.
Collapse
Affiliation(s)
- Marco Berland
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Luis Paiva
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Lig Alondra Santander
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Marcelo Héctor Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
8
|
Uenoyama Y, Nagae M, Tsuchida H, Inoue N, Tsukamura H. Role of KNDy Neurons Expressing Kisspeptin, Neurokinin B, and Dynorphin A as a GnRH Pulse Generator Controlling Mammalian Reproduction. Front Endocrinol (Lausanne) 2021; 12:724632. [PMID: 34566891 PMCID: PMC8458932 DOI: 10.3389/fendo.2021.724632] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence accumulated during the past two decades has demonstrated that the then-novel kisspeptin, which was discovered in 2001, the known neuropeptides neurokinin B and dynorphin A, which were discovered in 1983 and 1979, respectively, and their G-protein-coupled receptors, serve as key molecules that control reproduction in mammals. The present review provides a brief historical background and a summary of our recent understanding of the roles of hypothalamic neurons expressing kisspeptin, neurokinin B, and dynorphin A, referred to as KNDy neurons, in the central mechanism underlying gonadotropin-releasing hormone (GnRH) pulse generation and subsequent tonic gonadotropin release that controls mammalian reproduction.
Collapse
|
9
|
Hrabovszky E, Takács S, Rumpler É, Skrapits K. The human hypothalamic kisspeptin system: Functional neuroanatomy and clinical perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:275-296. [PMID: 34225935 DOI: 10.1016/b978-0-12-820107-7.00017-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, kisspeptin neurons are the key components of the hypothalamic neuronal networks that regulate the onset of puberty, account for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and mediate negative and positive estrogen feedback signals to GnRH neurons. Being directly connected anatomically and functionally to the hypophysiotropic GnRH system, the major kisspeptin cell groups of the preoptic area/rostral hypothalamus and the arcuate (or infundibular) nucleus, respectively, are ideally positioned to serve as key nodes which integrate various types of environmental, endocrine, and metabolic signals that can influence fertility. This chapter provides an overview of the current state of knowledge on the anatomy, functions, and plasticity of brain kisspeptin systems based on the wide literature available from different laboratory and domestic species. Then, the species-specific features of human hypothalamic kisspeptin neurons are described, covering their topography, morphology, unique neuropeptide content, plasticity, and connectivity to hypophysiotropic GnRH neurons. Some newly emerging roles of central kisspeptin signaling in behavior and finally, clinical perspectives, are discussed.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
10
|
Rumpler É, Takács S, Göcz B, Baska F, Szenci O, Horváth A, Ciofi P, Hrabovszky E, Skrapits K. Kisspeptin Neurons in the Infundibular Nucleus of Ovariectomized Cats and Dogs Exhibit Unique Anatomical and Neurochemical Characteristics. Front Neurosci 2020; 14:598707. [PMID: 33343288 PMCID: PMC7738562 DOI: 10.3389/fnins.2020.598707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons co-synthesizing kisspeptin (KP), neurokinin B (NKB), and dynorphin (“KNDy neurons”) in the hypothalamic arcuate/infundibular nucleus (INF) form a crucial component of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) “pulse generator.” The goal of our study was to characterize KP neuron distribution, neuropeptide phenotype and connectivity to GnRH cells in ovariectomized (OVX) dogs and cats with immunohistochemistry on formalin-fixed hypothalamic tissue sections. In both species, KP and NKB neurons occurred in the INF and the two cell populations overlapped substantially. Dynorphin was detected in large subsets of canine KP (56%) and NKB (37%) cells and feline KP (64%) and NKB (57%) cells; triple-labeled (“KNDy”) somata formed ∼25% of all immunolabeled neurons. Substance P (SP) was present in 20% of KP and 29% of NKB neurons in OVX cats but not dogs, although 26% of KP and 24% of NKB neurons in a gonadally intact male dog also contained SP signal. Only in cats, cocaine- and amphetamine regulated transcript was also colocalized with KP (23%) and NKB (7%). In contrast with reports from mice, KP neurons did not express galanin in either carnivore. KP neurons innervated virtually all GnRH neurons in both species. Results of this anatomical study on OVX animals reveal species-specific features of canine and feline mediobasal hypothalamic KP neurons. Anatomical and neurochemical similarities to and differences from the homologous KP cells of more extensively studied rodent, domestic and primate species will enhance our understanding of obligate and facultative players in the molecular mechanisms underlying pulsatile GnRH/LH secretion.
Collapse
Affiliation(s)
- Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ferenc Baska
- Department of Exotic Animal and Wildlife Medicine, University of Veterinary Medicine, Budapest, Hungary
| | - Ottó Szenci
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, Üllõ, Hungary.,MTA-SZIE Large Animal Clinical Research Group, University of Veterinary Medicine, Üllõ, Hungary
| | - András Horváth
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, Üllõ, Hungary
| | - Philippe Ciofi
- INSERM U1215, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
11
|
Beltramo M, Robert V, Decourt C. The kisspeptin system in domestic animals: what we know and what we still need to understand of its role in reproduction. Domest Anim Endocrinol 2020; 73:106466. [PMID: 32247617 DOI: 10.1016/j.domaniend.2020.106466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023]
Abstract
The discovery of the kisspeptin (Kp) system stirred a burst of research in the field of reproductive neuroendocrinology. In the last 15 yr, the organization and activity of the system, including its neuroanatomical structure, its major physiological functions, and its main pharmacological properties, were outlined. To this endeavor, the use of genetic tools to delete and to restore Kp system functionality in a specific tissue was essential. At present, there is no question as to the key role of the Kp system in mammalian reproduction. However, easily applicable genetic manipulations are unavailable for domestic animals. Hence, many essential details on the physiological mechanisms underlying its action on domestic animals require further investigation. The potentially different effects of the various Kp isoforms, the precise anatomical localization of the Kp receptor, and the respective role played by the 2 main populations of Kp cells in different species are only few of the questions that remain unanswered and that will be illustrated in this review. Furthermore, the application of synthetic pharmacologic tools to manipulate the Kp system is still in its infancy but has produced some interesting results, suggesting the possibility of developing new methods to manage reproduction in domestic animals. In spite of a decade and a half of intense research effort, much work is still required to achieve a comprehensive understanding of the influence of the Kp system on reproduction. Furthermore, Kp system ramifications in other physiological functions are emerging and open new research perspectives.
Collapse
Affiliation(s)
- M Beltramo
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | - V Robert
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - C Decourt
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
12
|
Lehman MN, Coolen LM, Goodman RL. Importance of neuroanatomical data from domestic animals to the development and testing of the KNDy hypothesis for GnRH pulse generation. Domest Anim Endocrinol 2020; 73:106441. [PMID: 32113801 PMCID: PMC7377956 DOI: 10.1016/j.domaniend.2020.106441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
Work during the last decade has led to a novel hypothesis for a question that is half a century old: how is the secretory activity of GnRH neurons synchronized to produce episodic GnRH secretion. This hypothesis posits that a group of neurons in the arcuate nucleus (ARC) that contain kisspeptin, neurokinin B (NKB), and dynorphin (known as KNDy neurons) fire simultaneously to drive each GnRH pulse. Kisspeptin is proposed to be the output signal to GnRH neurons with NKB and dynorphin acting within the KNDy network to initiate and terminate each pulse, respectively. This review will focus on the importance of neuroanatomical studies in general and, more specifically, on the work of Dr Marcel Amstalden during his postdoctoral fellowship with the authors, to the development and testing of this hypothesis. Critical studies in sheep that laid the foundation for much of the KNDy hypothesis included the report that a group of neurons in the ARC contain both NKB and dynorphin and appear to form an interconnected network capable of firing synchronously, and Marcel's observations that the NKB receptor is found in most KNDy neurons, but not in any GnRH neurons. Moreover, reports that almost all dynorphin-NKB neurons and kisspeptin neurons in the ARC contained steroid receptors led directly to their common identification as "KNDy" neurons. Subsequent anatomical work demonstrating that KNDy neurons project to GnRH somas and terminals, and that kisspeptin receptors are found in GnRH, but not KNDy neurons, provided important tests of this hypothesis. Recent work has explored the time course of dynorphin release onto KNDy neurons and has begun to apply new approaches to the issue, such as RNAscope in situ hybridization and the use of whole tissue optical clearing with light-sheet microscopy. Together with other approaches, these anatomical techniques will allow continued exploration of the functions of the KNDy population and the possible role of other ARC neurons in generation of GnRH pulses.
Collapse
Affiliation(s)
- M N Lehman
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - L M Coolen
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - R L Goodman
- Departments of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
13
|
Etzion T, Zmora N, Zohar Y, Levavi-Sivan B, Golan M, Gothilf Y. Ectopic over expression of kiss1 may compensate for the loss of kiss2. Gen Comp Endocrinol 2020; 295:113523. [PMID: 32470472 DOI: 10.1016/j.ygcen.2020.113523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Kisspeptin (KISS) is a neuropeptide which plays a central role in the regulation of the hypothalamic-pituitary-gonadal axis, and is essential for sexual maturation and fertility in mammals. Unlike mammals, which possess only one KISS gene, two paralogous genes, kiss1 and kiss2, have been identified in zebrafish and other non-mammalian vertebrates. Previous studies suggest that Kiss2, but not Kiss1, is the reproduction relevant form amongst the two. To better understand the role of each of these isoforms in reproduction, a loss of function approach was applied. Two genetic manipulation techniques-clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector nucleases (TALEN)-were used to generate kiss1 and kiss2 knockout (KO) zebrafish lines, respectively. Examination of these KO lines showed that reproductive capability was not impaired, confirming earlier observations. Further analysis revealed that KO of kiss2 caused a significant increase in expression levels of kiss1, kiss2r and tac3a, while KO of kiss1 had no effect on the expression of any of the examined genes. In situ hybridization analysis revealed that kiss1 mRNA is expressed only in the habenula in wild type brains, while in kiss2 KO fish, kiss1 mRNA-expressing cells were identified also in the ventral telencephalon, the ventral part of the entopeduncular nucleus, and the dorsal and ventral hypothalamus. Interestingly, these regions are known to express kiss2r, and the ventral hypothalamus normally expresses kiss2. These results suggest that a compensatory mechanism, involving ectopic kiss1 expression, takes place in the kiss2 KO fish, which may substitute for Kiss2 activity.
Collapse
Affiliation(s)
- Talya Etzion
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv 69978, Israel
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Yonatan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Matan Golan
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Letziyon 7505101, Israel
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
14
|
Navarro VM. Metabolic regulation of kisspeptin - the link between energy balance and reproduction. Nat Rev Endocrinol 2020; 16:407-420. [PMID: 32427949 PMCID: PMC8852368 DOI: 10.1038/s41574-020-0363-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Hypothalamic kisspeptin neurons serve as the nodal regulatory centre of reproductive function. These neurons are subjected to a plethora of regulatory factors that ultimately affect the release of kisspeptin, which modulates gonadotropin-releasing hormone (GnRH) release from GnRH neurons to control the reproductive axis. The presence of sufficient energy reserves is critical to achieve successful reproduction. Consequently, metabolic factors impose a very tight control over kisspeptin synthesis and release. This Review offers a synoptic overview of the different steps in which kisspeptin neurons are subjected to metabolic regulation, from early developmental stages to adulthood. We cover an ample array of known mechanisms that underlie the metabolic regulation of KISS1 expression and kisspeptin release. Furthermore, the novel role of kisspeptin neurons as active players within the neuronal circuits that govern energy balance is discussed, offering evidence of a bidirectional role of these neurons as a nexus between metabolism and reproduction.
Collapse
Affiliation(s)
- Víctor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Graduate Program in Neuroscience, Boston, MA, USA.
| |
Collapse
|
15
|
Bhardwaj S, Kumar P, Jerome A, Ravesh S, Patil C, Singh P, Lailer PC. Serum kisspeptin: New possible biomarker for sexual behaviour and sperm concentration in buffalo bulls. Reprod Domest Anim 2020; 55:1190-1201. [PMID: 32602182 DOI: 10.1111/rda.13761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/23/2020] [Indexed: 11/26/2022]
Abstract
The study was designed to decipher the inter-relationship between peripheral hormones (kisspeptin and testosterone), sexual behaviour and seminal variables of Murrah buffalo bulls (n = 134). In this study, we recorded that 13%, 37%, 40%, 6% and 4% Murrah buffalo bulls had reaction time of <30, 31-60, 61-180, 181-300 and >300 s, respectively. Further, it was observed that 4%, 85% and 10% buffalo bulls were sexually aggressive, active and dull, respectively, during semen collection. The courtship behaviour was not found to be desirable for the bulls used for the semen collection. Mean of ejaculate volume, sperm concentration and mass motility (0-5 scale) were 3.57 ml, 977.11 million/ml, 2.7, respectively. Correlation studies revealed that the reaction time was positively correlated with courtship behaviour and body weight, and negatively correlated with sexual aggressiveness and sperm concentration. Serum kisspeptin in buffalo bulls, measured for the first time, was found to 3.8 ± 0.7 ng/ml. Serum kisspeptin and testosterone level are negatively correlated to each other and kisspeptin level influenced the sexual behaviour (reaction time, sexual aggressiveness and penile erection) of study bulls. Serum kisspeptin was higher in the buffalo bulls with higher sperm concentration indicating its role in spermatogenesis. In conclusion, for the first time basic information related to sexual behaviour of Murrah buffalo bulls in large population along with its inter-relationship with peripheral hormones (kisspeptin and testosterone) has been documented.
Collapse
Affiliation(s)
- Sonam Bhardwaj
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, India.,Livestock Production and Management Section, ICAR- National Dairy Research Institute, Karnal, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, India
| | - Andonissamy Jerome
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, India
| | - Suman Ravesh
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, India
| | - Chandrashekhar Patil
- Department of Animal Breeding and Genetics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Pawan Singh
- Livestock Production and Management Section, ICAR- National Dairy Research Institute, Karnal, India
| | - Puran Chand Lailer
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
16
|
Gotlieb N, Baker CN, Moeller J, Kriegsfeld LJ. Time-of-day-dependent sensitivity of the reproductive axis to RFamide-related peptide-3 inhibition in female Syrian hamsters. J Neuroendocrinol 2019; 31:e12798. [PMID: 31550401 PMCID: PMC6991702 DOI: 10.1111/jne.12798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/15/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
In spontaneously ovulating rodent species, the timing of the luteinising hormone (LH) surge is controlled by the master circadian pacemaker in the suprachiasmatic nucleus (SCN). The SCN initiates the LH surge via the coordinated control of two opposing neuropeptidergic systems that lie upstream of the gonadotrophin-releasing hormone (GnRH) neuronal system: the stimulatory peptide, kisspeptin, and the inhibitory peptide, RFamide-related peptide-3 (RFRP-3; the mammalian orthologue of avian gonadotrophin-inhibitory hormone [GnIH]). We have previously shown that the GnRH system exhibits time-dependent sensitivity to kisspeptin stimulation, further contributing to the precise timing of the LH surge. To examine whether this time-dependent sensitivity of the GnRH system is unique to kisspeptin or a more common mechanism of regulatory control, we explored daily changes in the response of the GnRH system to RFRP-3 inhibition. Female Syrian hamsters were ovariectomised to eliminate oestradiol (E2 )-negative-feedback and RFRP-3 or saline was centrally administered in the morning or late afternoon. LH concentrations and Lhβ mRNA expression did not differ between morning RFRP-3-and saline-treated groups, although they were markedly suppressed by RFRP-3 administration in the afternoon. However, RFRP-3 inhibition of circulating LH at the time of the surge does not appear to act via the GnRH system because no differences in medial preoptic area Gnrh or RFRP-3 receptor Gpr147 mRNA expression were observed. Rather, RFRP-3 suppressed arcuate nucleus Kiss1 mRNA expression and potentially impacted pituitary gonadotrophs directly. Taken together, these findings reveal time-dependent responsiveness of the reproductive axis to RFRP-3 inhibition, possibly via variation in the sensitivity of arcuate nucleus kisspeptin neurones to this neuropeptide.
Collapse
Affiliation(s)
- Neta Gotlieb
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
| | - Cydni N. Baker
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
| | - Jacob Moeller
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Graduate Group in Endocrinology, University of California Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
17
|
Polkowska J, Wójcik-G Adysz A, Chmielewska N, Wa Kowska M. Expression of kisspeptin protein in hypothalamus and LH profile of growing female lambs. Reprod Fertil Dev 2019; 30:609-618. [PMID: 28917264 DOI: 10.1071/rd17018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
Kisspeptin (kp) is considered to be one of the major regulators of the induction of pubertal events via the activation of the gonadotrophin-releasing hormone-LH system. The aim of the present study was to analyse expression of immunoreactive (ir) kp in the hypothalamic neurons of female lambs from the neonatal to the peripubertal period (5 days to 32 weeks) in relation to the plasma LH pattern using immunohistochemistry and image analysis. Hypothalami were collected from female lambs (n=33) from the infantile, juvenile, prepubertal and peripubertal periods. The population of kp-ir perikarya was detected mainly in the arcuate nucleus and their number increased gradually from 5 to 16 weeks of age and was maintained at a high level up to the peripubertal stage. This was reflected by the significant (P<0.05) gradual increase in the percentage of hypothalamic area occupied by kp-ir neurons and increase in the number of kp-ir perikarya within the arcuate nucleus. The same pattern of kp immunoreactivity was observed in the median eminence. Plasma LH concentration increased from Week 5 to Weeks 12-16 and further increased at Week 32. LH pulse frequency increased from Week 5 to 32 (P<0.05). Thus, changes in kp expression reflected changes in the LH pattern during lamb growth. The data obtained provide evidence about the participation of kp in the mechanisms of ontogenic development of ovine reproductive processes.
Collapse
Affiliation(s)
- Jolanta Polkowska
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| | - Anna Wójcik-G Adysz
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| | - Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Marta Wa Kowska
- Department of Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jab?onna, Poland
| |
Collapse
|
18
|
Salehi MS, Khazali H, Mahmoudi F, Janahmadi M. The effects of supraphysiological levels of testosterone on neural networks upstream of gonadotropin-releasing hormone neurons. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1065-1072. [PMID: 31807251 PMCID: PMC6880527 DOI: 10.22038/ijbms.2019.36127.8605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/12/2019] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Several pathological conditions are associated with hyper-production of testosterone; however, its impacts are not well understood. Hence, we evaluated the effects of supraphysiological levels of testosterone on gonadotropin-releasing hormone (GnRH) system in the hypothalamus of male rats. Also, we assessed the expression of two excitatory (kisspeptin and neurokinin-B) and two inhibitory (dynorphin and RFamide-related-peptide) neuropeptides upstream of GnRH neurons as possible routes to relay androgen information. MATERIALS AND METHODS Gonadectomized (GDX) male rats received single injection of 100, 250 or 500 mg/kg testosterone undecanoate and three weeks later, posterior (PH) and anterior (AH) hypothalamus was dissected for evaluation of target genes using quantitative RT-PCR. RESULTS We found that GnRH mRNA in the PH was high in GDX rats and 500 mg/kg testosterone reduced GnRH level expression. Finding revealed extremely high level of Kiss1 mRNA in the PH of GDX rats. However, in GDX rats treated with different levels of testosterone, Kiss1 expression was not significantly different than control. We also found that testosterone replacement increased the Kiss1 mRNA level in the AH. Moreover, neurokinin-B mRNA level in PH of GDX rats was similar to control. However, excess testosterone levels were effective in significantly inducing the down-regulation of neurokinin-B expression. The basal level of dynorphin mRNA was increased following testosterone treatments in the AH, where we found no significant difference in the level of RFamide-related-peptide mRNA between the experimental groups. CONCLUSION Excess levels of testosterone could act differently from its physiological concentration to regulate hypothalamic androgen sensitive neurons to control GnRH cell.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Animal Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fariba Mahmoudi
- Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Costa HC, Da-Silva JM, Diniz GB, Motta-Teixeira LC, Da-Silva RJ, Battagello DS, Sita LV, de-Moraes Machado C, Horta-Júnior JAC, Bittencourt JC. Characterisation and origins of melanin-concentrating hormone immunoreactive fibres of the posterior lobe of the pituitary and median eminence during lactation in the Long-Evans rat. J Neuroendocrinol 2019; 31:e12723. [PMID: 31034718 DOI: 10.1111/jne.12723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/30/2022]
Abstract
Although the melanin-concentrating hormone (MCH) and its coding mRNA are predominantly found in the tuberal hypothalamus, there is detectable synthesis of MCH in the preoptic hypothalamus exclusively in lactating dams, suggesting a participation of MCH in the alterations that take place after parturition. Also implicated in the dam physiology is oxytocin, a neurohormone released from the posterior pituitary that is necessary for milk ejection. Because the projection fields from oxytocin-immunoreactive (-IR) neurones and the mediobasal preoptic hypothalamus overlap and MCH-IR neurones are found in proximity to oxytocin neurones, we investigated the spatial relationship between MCH and oxytocin fibres. Accordingly, we employed multiple immunohistochemistry labelling for MCH and oxytocin for light and electron microscopy techniques, in addition to i.v. tracer injection combined with in situ hybridisation to identify MCH neurones that project to neurosecretory areas. As described for other strains, lactating Long-Evans dams also display immunoreactivity for MCH in the preoptic hypothalamus on days 12 and 19 of lactation. The appearance of these neurones is contemporaneous with an increase in MCH-IR fibres in both the internal layer of the median eminence and the posterior pituitary. In both regions, MCH- and oxytocin-IR fibres were found in great proximity, although there was no evidence for synaptic interaction between these two populations at the ultrastructural level. The tracer injection revealed that only mediobasal preoptic MCH neurones project to the posterior pituitary, suggesting a neuroendocrine-modulatory role for this population. When taken together, the results obtained in the present study indicate that neuroplasticity events at the mediobasal preoptic hypothalamus that occur during late lactation may be part of a neuroendocrinology control loop involving both MCH and oxytocin.
Collapse
Affiliation(s)
- Helder C Costa
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Joelcimar M Da-Silva
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Giovanne B Diniz
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Livia C Motta-Teixeira
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renata J Da-Silva
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniella S Battagello
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Center for Neuroscience and Behavior, Institute of Psychology, University of São Paulo (USP), São Paulo, Brazil
| | - Luciane V Sita
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Carla de-Moraes Machado
- Department of Anatomy, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - José A C Horta-Júnior
- Department of Anatomy, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
- Electron Microscopy Center, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Jackson C Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Center for Neuroscience and Behavior, Institute of Psychology, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
20
|
Amelkina O, Tanyapanyachon P, Thongphakdee A, Chatdarong K. Identification of feline Kiss1 and distribution of immunoreactive kisspeptin in the hypothalamus of the domestic cat. J Reprod Dev 2019; 65:335-343. [PMID: 31142694 PMCID: PMC6708855 DOI: 10.1262/jrd.2018-101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, the Kiss1 gene has been reported in a number of vertebrate species, and a substantial dataset has been acquired to demonstrate the critical role of
kisspeptins in the reproductive system; yet limited information is available for carnivores. In the present study, we identified and characterized feline Kiss1 by isolating
and cloning its full-length cDNA in the domestic cat hypothalamus and caracal testis, using the method of rapid amplification of cDNA ends. Additionally, we isolated and cloned the 3′ end of
Kiss1 cDNA, containing kisspeptin-10 (Kp10), from the ovaries of a clouded leopard and Siberian tiger. Nucleotide sequencing revealed that domestic cat
Kiss1 cDNA is of 711 base pairs and caracal Kiss1 cDNA is of 792 base pairs, both having an open reading frame of 450 base pairs, encoding a precursor
protein Kiss1 of 149 amino acids. The core sequence of the feline kisspeptin Kp10 was found to be identical in all species analyzed here and is highly conserved in other
vertebrate species. Using an anti-Kp10 antibody, we found the immunoreactive kisspeptin to be localized in the periventricular and infundibular nuclei of the cat hypothalamus. The results
show that kisspeptin is highly conserved among different feline families, and its immunoreactive distribution in the hypothalamus may indicate its physiological function in the domestic
cat.
Collapse
Affiliation(s)
- Olga Amelkina
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand.,Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Prattana Tanyapanyachon
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ampika Thongphakdee
- Wildlife Reproductive Innovation Center, Bureau of Conservation and Research, Zoological Park Organization under the Royal Patronage of H.M. the King, Bangkok, Thailand
| | - Kaywalee Chatdarong
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
21
|
Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Central Mechanism Controlling Pubertal Onset in Mammals: A Triggering Role of Kisspeptin. Front Endocrinol (Lausanne) 2019; 10:312. [PMID: 31164866 PMCID: PMC6536648 DOI: 10.3389/fendo.2019.00312] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/30/2019] [Indexed: 01/29/2023] Open
Abstract
Pubertal onset is thought to be timed by an increase in pulsatile gonadotropin-releasing hormone (GnRH)/gonadotropin secretion in mammals. The underlying mechanism of pubertal onset in mammals is still an open question. Evidence accumulated in the last 15 years suggests that kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus play a key role in pubertal onset by triggering pulsatile GnRH/gonadotropin secretin in mammals. Specifically, KNDy neurons are now considered a part of GnRH pulse generator, in which neurokinin B facilitates and dynorphin A inhibits, the synchronized discharge of KNDy neurons in autocrine and/or paracrine manners. Kisspeptin serves as a potent secretagogue of GnRH secretion and thus its release is fundamental to pubertal increase in GnRH/gonadotropin secretion in mammals. Proposed mechanisms inhibiting Kiss1 (kisspeptin gene) expression during childhood to juvenile varies from species to species: we envisage that negative feedback action of estrogen plays a key role in the inhibition of Kiss1 expression in KNDy neurons in rodents and sheep, whereas estrogen-independent inhibition of kisspeptin secretion by γ-amino butyric acid or neuropeptide Y are suggested to be responsible for the pre-pubertal suppression of GnRH/gonadotropin secretion in primates. Taken together, the timing of pubertal onset is postulated to be controlled by upstream regulators for kisspeptin biosynthesis and secretion in mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- *Correspondence: Yoshihisa Uenoyama
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
Uenoyama Y, Inoue N, Maeda KI, Tsukamura H. The roles of kisspeptin in the mechanism underlying reproductive functions in mammals. J Reprod Dev 2018; 64:469-476. [PMID: 30298825 PMCID: PMC6305848 DOI: 10.1262/jrd.2018-110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kisspeptin, identified as a natural ligand of GPR54 in 2001, is now considered as a master regulator of puberty and subsequent reproductive functions in mammals. Our previous studies using
Kiss1 knockout (KO) rats clearly demonstrated the indispensable role of kisspeptin in gonadotropin-releasing hormone (GnRH)/gonadotropin secretion. In addition, behavioral
analyses of Kiss1 KO rats revealed an organizational effect of kisspeptin on neural circuits controlling sexual behaviors. Our studies using transgenic mice carrying a
region-specific Kiss1 enhancer-driven reporter gene provided a clue as to the mechanism by which estrogen regulates Kiss1 expression in hypothalamic
kisspeptin neurons. Analyses of Kiss1 expression and gonadotropin secretion during the pubertal transition shed light on the mechanism triggering GnRH/gonadotropin secretion
at the onset of puberty in rats. Here, we summarize data obtained from the aforementioned studies and revisit the physiological roles of kisspeptin in the mechanism underlying reproductive
functions in mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
23
|
Scott CJ, Rose JL, Gunn AJ, McGrath BM. Kisspeptin and the regulation of the reproductive axis in domestic animals. J Endocrinol 2018; 240:JOE-18-0485.R1. [PMID: 30400056 DOI: 10.1530/joe-18-0485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/09/2018] [Indexed: 11/08/2022]
Abstract
The control of reproductive processes involves the integration of a number of factors from the internal and external environment, with the final output signal of these processes being the pulsatile secretion of gonadotrophin releasing hormone (GnRH) from the hypothalamus. These factors include the feedback actions of sex steroids, feed intake and nutritional status, season/photoperiod, pheromones, age and stress. Understanding these factors and how they influence GnRH secretion and hence reproduction is important for the management of farm animals. There is evidence that the RF-amide neuropeptide, kisspeptin, may be involved in relaying the effects of these factors to the GnRH neurons. This paper will review the evidence from the common domestic animals (sheep, goats, cattle, horses and pigs), that kisspeptin neurons are i) regulated by the factors listed above, ii) contact GnRH neurons, and iii) involved in the regulation of GnRH/gonadotrophin secretion.
Collapse
Affiliation(s)
- Christopher J Scott
- C Scott, School of Biomedical Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| | - Jessica L Rose
- J Rose, School of Biomedical Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| | - Allan J Gunn
- A Gunn, School of Animal and Veterinary Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| | - Briony M McGrath
- B McGrath, School of Biomedical Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| |
Collapse
|
24
|
Okamura H, Yamamura T, Wakabayashi Y. Mapping of KNDy neurons and immunohistochemical analysis of the interaction between KNDy and substance P neural systems in goat. J Reprod Dev 2017; 63:571-580. [PMID: 29109352 PMCID: PMC5735268 DOI: 10.1262/jrd.2017-103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A population of neurons in the arcuate nucleus (ARC) coexpresses kisspeptin, neurokinin B (NKB), and dynorphin, and therefore they are referred to as KNDy neurons. It has been suggested that KNDy neurons participate in several brain functions, including the control of reproduction. The present study aimed to advance our understanding of the anatomy of the KNDy neural system. We first produced an antiserum against goat kisspeptin. After confirming its specificity, the antiserum was used to histochemically detect kisspeptin-positive signals. Using the colocalization of kisspeptin and NKB immunoreactivity as a marker for KNDy neurons, we mapped distributions of their cell somata and fibers in the whole brain (except the cerebellum) of ovariectomized (OVX) goats. KNDy neuronal somata were distributed throughout the ARC, and were particularly abundant in its caudal aspect. KNDy neuronal fibers projected into several areas within the septo-preoptic-hypothalamic continuum, such as the ARC, median eminence, medial preoptic nucleus, and bed nucleus of the stria terminalis. Kisspeptin immunoreactivity was not found outside of the continuum. We then addressed to the hypothesis that substance P (SP) is also involved in the KNDy neural system. Double-labeling immunohistochemistry for kisspeptin and SP revealed that KNDy neurons did not coexpress SP, but nearly all of the KNDy neuronal somata were surrounded by fibers containing SP in the OVX goats. The present results demonstrate anatomical evidence for a robust association between the KNDy and SP neural systems.
Collapse
Affiliation(s)
- Hiroaki Okamura
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Takashi Yamamura
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Yoshihiro Wakabayashi
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| |
Collapse
|
25
|
Garcia JP, Guerriero KA, Keen KL, Kenealy BP, Seminara SB, Terasawa E. Kisspeptin and Neurokinin B Signaling Network Underlies the Pubertal Increase in GnRH Release in Female Rhesus Monkeys. Endocrinology 2017; 158:3269-3280. [PMID: 28977601 PMCID: PMC5659687 DOI: 10.1210/en.2017-00500] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/20/2017] [Indexed: 11/19/2022]
Abstract
Loss-of-function or inactivating mutations in the genes coding for kisspeptin and its receptor (KISS1R) or neurokinin B (NKB) and the NKB receptor (NK3R) in humans result in a delay in or the absence of puberty. However, precise mechanisms of kisspeptin and NKB signaling in the regulation of the pubertal increase in gonadotropin-releasing hormone (GnRH) release in primates are unknown. In this study, we conducted a series of experiments infusing agonists and antagonists of kisspeptin and NKB into the stalk-median eminence, where GnRH, kisspeptin, and NKB neuroterminal fibers are concentrated, and measuring GnRH release in prepubertal and pubertal female rhesus monkeys. Results indicate that (1) similar to those previously reported for GnRH stimulation by the KISS1R agonist (i.e., human kisspeptin-10), the NK3R agonist senktide stimulated GnRH release in a dose-responsive manner in both prepubertal and pubertal monkeys; (2) the senktide-induced GnRH release was blocked in the presence of the KISS1R antagonist peptide 234 in pubertal but not prepubertal monkeys; and (3) the kisspeptin-induced GnRH release was blocked in the presence of the NK3R antagonist SB222200 in the pubertal but not prepubertal monkeys. These results are interpreted to mean that although, in prepubertal female monkeys, kisspeptin and NKB signaling to GnRH release is independent, in pubertal female monkeys, a reciprocal signaling mechanism between kisspeptin and NKB neurons is established. We speculate that this cooperative mechanism by the kisspeptin and NKB network underlies the pubertal increase in GnRH release in female monkeys.
Collapse
Affiliation(s)
- James P Garcia
- Wisconsin National Primate Research Center, Madison, Wisconsin 53715
| | | | - Kim L Keen
- Wisconsin National Primate Research Center, Madison, Wisconsin 53715
| | - Brian P Kenealy
- Wisconsin National Primate Research Center, Madison, Wisconsin 53715
| | - Stephanie B Seminara
- Reproductive Endocrine Unit and the Harvard Reproductive Sciences Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Ei Terasawa
- Wisconsin National Primate Research Center, Madison, Wisconsin 53715
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
26
|
El Allali K, El Bousmaki N, Ainani H, Simonneaux V. Effect of the Camelid's Seminal Plasma Ovulation-Inducing Factor/β-NGF: A Kisspeptin Target Hypothesis. Front Vet Sci 2017; 4:99. [PMID: 28713816 PMCID: PMC5491598 DOI: 10.3389/fvets.2017.00099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/12/2017] [Indexed: 01/09/2023] Open
Abstract
Female mammals are classified into spontaneous and induced ovulators based on the mechanism eliciting ovulation. Ovulation in spontaneous species (e.g., human, sheep, cattle, horse, pigs, and most rodents) occurs at regular intervals and depends upon the circulating estradiol. However, in induced ovulators (e.g., rabbits, ferrets, cats, and camelids), ovulation is associated with coitus. In the later, various factors have been proposed to trigger ovulation, including auditory, visual, olfactory, and mechanic stimuli. However, other studies have identified a biochemical component in the semen of induced ovulators responsible for the induction of ovulation and named accordingly ovulation-inducing factor (OIF). In camelids, intramuscular or intrauterine administration of seminal plasma (SP) was shown to induce the preovulatory luteinizing hormone (LH) surge followed by ovulation and subsequent formation of corpus luteum. Recently, this OIF has been identified from SP as a neurotrophin, the β subunit of nerve growth factor (β-NGF). β-NGF is well known as promoting neuron survival and growth, but in this case, it appears to induce ovulation through an endocrine mode of action. Indeed, β-NGF may be absorbed through the endometrium to be conveyed, via the blood stream, to the central structures regulating the LH preovulatory surge. In this review, we provide a summary of the most relevant results obtained in the field, and we propose a working hypothesis for the central action of β-NGF based on our recent demonstration of the presence of neurons expressing kisspeptin, a potent stimulator of GnRH/LH, in the camel hypothalamus.
Collapse
Affiliation(s)
- Khalid El Allali
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Najlae El Bousmaki
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Hassan Ainani
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Valérie Simonneaux
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Uenoyama Y, Pheng V, Tsukamura H, Maeda KI. The roles of kisspeptin revisited: inside and outside the hypothalamus. J Reprod Dev 2016; 62:537-545. [PMID: 27478063 PMCID: PMC5177970 DOI: 10.1262/jrd.2016-083] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Kisspeptin, encoded by KISS1/Kiss1 gene, is now considered a master regulator of reproductive functions in mammals owing to
its involvement in the direct activation of gonadotropin-releasing hormone (GnRH) neurons after binding to its cognate receptor, GPR54. Ever since the discovery
of kisspeptin, intensive studies on hypothalamic expression of KISS1/Kiss1 and on physiological roles of hypothalamic
kisspeptin neurons have provided clues as to how the brain controls sexual maturation at the onset of puberty and subsequent reproductive performance in
mammals. Additionally, emerging evidence indicates the potential involvement of extra-hypothalamic kisspeptin in reproductive functions. Here, we summarize data
regarding kisspeptin inside and outside the hypothalamus and revisit the physiological roles of central and peripheral kisspeptins in the reproductive functions
of mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
28
|
Hassaneen A, Naniwa Y, Suetomi Y, Matsuyama S, Kimura K, Ieda N, Inoue N, Uenoyama Y, Tsukamura H, Maeda KI, Matsuda F, Ohkura S. Immunohistochemical characterization of the arcuate kisspeptin/neurokinin B/dynorphin (KNDy) and preoptic kisspeptin neuronal populations in the hypothalamus during the estrous cycle in heifers. J Reprod Dev 2016; 62:471-477. [PMID: 27349533 PMCID: PMC5081734 DOI: 10.1262/jrd.2016-075] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elucidating the physiological mechanisms that control reproduction is an obvious strategy for improving the fertility of cattle and developing new agents to
control reproductive functions. The present study aimed to identify kisspeptin neurons in the bovine hypothalamus, clarifying that a central mechanism is also
present in the cattle brain, as kisspeptin is known to play an important role in the stimulation of gonadotropin-releasing hormone (GnRH)/gonadotropin secretion
in other mammals. To characterize kisspeptin neurons in the bovine hypothalamus, the co-localizations of kisspeptin and neurokinin B (NKB) or kisspeptin and
dynorphin A (Dyn) were examined. Hypothalamic tissue was collected from Japanese Black or Japanese Black × Holstein crossbred cows during the follicular and
luteal phases. Brain sections, including the arcuate nucleus (ARC) and the preoptic area (POA), were dual immunostained with kisspeptin and either NKB or Dyn.
In the ARC, both NKB and Dyn were co-localized in kisspeptin neurons during both the follicular and luteal phases, demonstrating the presence of
kisspeptin/NKB/Dyn-containing neurons, referred to as KNDy neurons, in cows. In the POA, no co-localization of kisspeptin with either NKB or Dyn was detected.
Kisspeptin expression in the follicular phase was higher than that in the luteal phase, suggesting that kisspeptin expression in the POA is positively
controlled by estrogen in cows. The kisspeptin neuronal populations in the ARC and POA likely play important roles in regulating the GnRH pulse and surge,
respectively, in cows.
Collapse
Affiliation(s)
- A Hassaneen
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tanco VM, Whitlock BK, Jones MA, Wilborn RR, Brandebourg TD, Foradori CD. Distribution and regulation of gonadotropin-releasing hormone, kisspeptin, RF-amide related peptide-3, and dynorphin in the bovine hypothalamus. PeerJ 2016; 4:e1833. [PMID: 27014517 PMCID: PMC4806599 DOI: 10.7717/peerj.1833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/01/2016] [Indexed: 01/06/2023] Open
Abstract
Recent work has led to the hypothesis that kisspeptin/neurokinin B/dynorphin (KNDy) neurons in the arcuate nucleus (ARC) play a key role in gonadotropin-releasing hormone (GnRH) pulse generation and gonadal steroid feedback, with kisspeptin driving GnRH release and neurokinin B and dynorphin acting as pulse start and stop signals, respectively. A separate cell group, expressing RFamide-related peptide-3 (RFRP-3) has been shown to be a primary inhibitor of GnRH release. Very little is known regarding these cell groups in the bovine. In this study, we examined the relative immunoreactivity of kisspeptin, dynorphin, and RFRP-3 and their possible connectivity to GnRH neurons in the hypothalami of periestrus and diestrus bovine. While GnRH and RFRP-3 immunoreactivity were unchanged, kisspeptin and dynorphin immunoreactivity levels varied in relation to plasma progesterone concentrations and estrous status. Animals with higher plasma progesterone concentrations in diestrus had lower kisspeptin and increased dynorphin immunoreactivity in the ARC. The percentage of GnRH cells with kisspeptin or RFRP-3 fibers in close apposition did not differ between estrous stages. However, the proportions of GnRH cells with kisspeptin or RFRP-3 contacts (∼49.8% and ∼31.3%, respectively) suggest direct communication between kisspeptin and RFRP-3 cells to GnRH cells in the bovine. The data produced in this work support roles for kisspeptin and dynorphin, within the KNDy neural network, in controlling GnRH release over the ovarian cycle and conveying progesterone-negative feedback onto GnRH neurons in the bovine.
Collapse
Affiliation(s)
- Valeria M Tanco
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee-Knoxville , Knoxville, TN , United States
| | - Brian K Whitlock
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee-Knoxville , Knoxville, TN , United States
| | - Melaney A Jones
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, AL , United States
| | - Robyn R Wilborn
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University , Auburn, AL , United States
| | - Terry D Brandebourg
- Department of Animal Sciences, College of Agriculture, Auburn University , Auburn, AL , United States
| | - Chad D Foradori
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, AL , United States
| |
Collapse
|
30
|
Murakawa H, Iwata K, Takeshita T, Ozawa H. Immunoelectron microscopic observation of the subcellular localization of kisspeptin, neurokinin B and dynorphin A in KNDy neurons in the arcuate nucleus of the female rat. Neurosci Lett 2015; 612:161-166. [PMID: 26679227 DOI: 10.1016/j.neulet.2015.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/25/2015] [Accepted: 12/04/2015] [Indexed: 01/31/2023]
Abstract
KNDy neurons are named for their co-expression of three neuropeptides, kisspeptin, neurokinin B (NKB) and dynorphin A (DynA). These cells, located in the hypothalamic arcuate nucleus (ARC), are associated with generation of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) pulses to control follicular growth and steroidogenesis. However, subcellular sorting mechanisms for secretory vesicles containing these neuropeptides have not been elucidated. In this study, we analyzed the localization pattern of kisspeptin, NKB and DynA in the ARC of the ovariectomized rat immediately treated with estrogen using immunoelectron microscopy. First, we identified neuropeptides by dual-labeled fluorescence immunohistochemistry, with results indicating all three neuropeptides co-express within individual ARC cells in female rats. Next, we investigated the subcellular localization pattern of kisspeptin, NKB, and/or DynA using post-embedding double immunoelectron microscopy, indicating that each type of neuropeptide is contained within separate and individual neurosecretory vesicles. This suggests sorting and packaging of kisspeptin, NKB and DynA is differentially regulated within KNDy neurons. Our findings facilitate understanding of regulatory mechanisms underlying kisspeptin secretion in KNDy neurons, and generation of GnRH/LH pulses induced by kisspeptin in the ARC.
Collapse
Affiliation(s)
- Hiroko Murakawa
- Department of Anatomy and Neurology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan; Department of Reproductive Medicine, Perinatology and Gynecologic Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Kinuyo Iwata
- Department of Anatomy and Neurology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Toshiyuki Takeshita
- Department of Reproductive Medicine, Perinatology and Gynecologic Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
31
|
Yin W, Sun Z, Mendenhall JM, Walker DM, Riha PD, Bezner KS, Gore AC. Expression of Vesicular Glutamate Transporter 2 (vGluT2) on Large Dense-Core Vesicles within GnRH Neuroterminals of Aging Female Rats. PLoS One 2015; 10:e0129633. [PMID: 26053743 PMCID: PMC4459826 DOI: 10.1371/journal.pone.0129633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/10/2015] [Indexed: 11/20/2022] Open
Abstract
The pulsatile release of GnRH is crucial for normal reproductive physiology across the life cycle, a process that is regulated by hypothalamic neurotransmitters. GnRH terminals co-express the vesicular glutamate transporter 2 (vGluT2) as a marker of a glutamatergic phenotype. The current study sought to elucidate the relationship between glutamate and GnRH nerve terminals in the median eminence—the site of GnRH release into the portal capillary vasculature. We also determined whether this co-expression may change during reproductive senescence, and if steroid hormones, which affect responsiveness of GnRH neurons to glutamate, may alter the co-expression pattern. Female Sprague-Dawley rats were ovariectomized at young adult, middle-aged and old ages (~4, 11, and 22 months, respectively) and treated four weeks later with sequential vehicle + vehicle (VEH + VEH), estradiol + vehicle (E2 + VEH), or estradiol + progesterone (E2+P4). Rats were perfused 24 hours after the second hormone treatment. Confocal microscopy was used to determine colocalization of GnRH and vGluT2 immunofluorescence in the median eminence. Post-embedding immunogold labeling of GnRH and vGluT2, and a serial electron microscopy (EM) technique were used to determine the cellular interaction between GnRH terminals and glutamate signaling. Confocal analysis showed that GnRH and vGluT2 immunofluorescent puncta were extensively colocalized in the median eminence and that their density declined with age but was unaffected by short-term hormone treatment. EM results showed that vGluT2 immunoreactivity was extensively associated with large dense-core vesicles, suggesting a unique glutamatergic signaling pathway in GnRH terminals. Our results provide novel subcellular information about the intimate relationship between GnRH terminals and glutamate in the median eminence.
Collapse
Affiliation(s)
- Weiling Yin
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Zengrong Sun
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - John M. Mendenhall
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Deena M. Walker
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Penny D. Riha
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Kelsey S. Bezner
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Clarke H, Dhillo WS, Jayasena CN. Comprehensive Review on Kisspeptin and Its Role in Reproductive Disorders. Endocrinol Metab (Seoul) 2015; 30:124-41. [PMID: 26194072 PMCID: PMC4508256 DOI: 10.3803/enm.2015.30.2.124] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
Kisspeptin has recently emerged as a key regulator of the mammalian reproductive axis. It is known that kisspeptin, acting centrally via the kisspeptin receptor, stimulates secretion of gonadotrophin releasing hormone (GnRH). Loss of kisspeptin signaling causes hypogonadotrophic hypogonadism in humans and other mammals. Kisspeptin interacts with other neuropeptides such as neurokinin B and dynorphin, to regulate GnRH pulse generation. In addition, a growing body of evidence suggests that kisspeptin signaling be regulated by nutritional status and stress. Kisspeptin may also represent a novel potential therapeutic target in the treatment of fertility disorders. Early human studies suggest that peripheral exogenous kisspeptin administration stimulates gonadotrophin release in healthy adults and in patients with certain forms of infertility. This review aims to concisely summarize what is known about kisspeptin as a regulator of reproductive function, and provide an update on recent advances within this field.
Collapse
Affiliation(s)
- Holly Clarke
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Waljit S Dhillo
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Channa N Jayasena
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
33
|
Ezzat A, Pereira A, Clarke IJ. Kisspeptin is a component of the pulse generator for GnRH secretion in female sheep but not the pulse generator. Endocrinology 2015; 156:1828-37. [PMID: 25710282 DOI: 10.1210/en.2014-1756] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We tested the hypothesis that kisspeptin cells constitute the "pulse generator" for GnRH secretion. In ewes, we determined whether iv administered kisspeptin elicits a secretory pulse of LH in anaesthetized, sex-steroid suppressed ovariectomized ewes. A response was seen in both anaesthetized and conscious animals, which was not associated with induction of c-Fos labeling in GnRH cells, supporting the notion that kisspeptin acts on the neurosecretory GnRH terminals. Response was lower in the anaesthetized animals, suggesting that some nonkisspeptin elements may be involved in GnRH responses. Microinjection of kisspeptin (100 nmol) into the median eminence of conscious ewes elicited a pulse of LH, indicating that kisspeptin acts at this level to cause GnRH secretion. To determine which cells are activated at the time of GnRH secretion, we blood sampled 18 ewes during the luteal phase of the estrous cycle and harvested brains after 3 hours. Three of these ewes displayed a pulse of LH within 30 minutes of euthanasia. An increase in c-Fos labeling was seen in kisspeptin and glutamate cells of the arcuate nucleus but not in GnRH neurons, preoptic kisspeptin neurons, or preoptic glutamate neurons. Immunohistochemistry in 4 hypothalami showed that 72% of arcuate kisspeptin cells receive glutamatergic input. These data support the concept that the kisspeptin cells of the arcuate nucleus drive pulsatile secretion of GnRH at the level of the median eminence, but this may involve "upstream" input from glutamate cells. We conclude that the pulse generator for GnRH secretion involves more than 1 element.
Collapse
Affiliation(s)
- Ahmed Ezzat
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
34
|
Piet R, de Croft S, Liu X, Herbison AE. Electrical properties of kisspeptin neurons and their regulation of GnRH neurons. Front Neuroendocrinol 2015; 36:15-27. [PMID: 24907402 DOI: 10.1016/j.yfrne.2014.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/01/2014] [Accepted: 05/27/2014] [Indexed: 01/19/2023]
Abstract
Kisspeptin neurons are critical components of the neuronal network controlling the activity of the gonadotropin-releasing hormone (GnRH) neurons. A variety of genetically-manipulated mouse models have recently facilitated the study of the electrical activity of the two principal kisspeptin neuron populations located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARN) in acute brain slices. We discuss here the mechanisms and pathways through which kisspeptin neurons regulate GnRH neuron activity. We then examine the different kisspeptin-green fluorescent protein mouse models being used for kisspeptin electrophysiology and the data obtained to date for RP3V and ARN kisspeptin neurons. In light of these new observations on the spontaneous firing rates, intrinsic membrane properties, and neurotransmitter regulation of kisspeptin neurons, we speculate on the physiological roles of the different kisspeptin populations.
Collapse
Affiliation(s)
- Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon de Croft
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Xinhuai Liu
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
35
|
Romero-Fernandez W, Borroto-Escuela DO, Vargas-Barroso V, Narváez M, Di Palma M, Agnati LF, Larriva Sahd J, Fuxe K. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons. Eur J Histochem 2014; 58:2400. [PMID: 25308843 PMCID: PMC4194391 DOI: 10.4081/ejh.2014.2400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 11/23/2022] Open
Abstract
Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tuberoinfundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region. Dopamine D1 and D2 receptors may therefore directly and differentially modulate the activity and/or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region.
Collapse
|
36
|
Uenoyama Y, Tsukamura H, Maeda KI. KNDy neuron as a gatekeeper of puberty onset. J Obstet Gynaecol Res 2014; 40:1518-26. [DOI: 10.1111/jog.12398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya
| | - Kei-ichiro Maeda
- Department of Veterinary; Medical Sciences; The University of Tokyo; Tokyo Japan
| |
Collapse
|
37
|
Jayasena CN, Abbara A, Veldhuis JD, Comninos AN, Ratnasabapathy R, De Silva A, Nijher GMK, Ganiyu-Dada Z, Mehta A, Todd C, Ghatei MA, Bloom SR, Dhillo WS. Increasing LH pulsatility in women with hypothalamic amenorrhoea using intravenous infusion of Kisspeptin-54. J Clin Endocrinol Metab 2014; 99:E953-61. [PMID: 24517142 PMCID: PMC4207927 DOI: 10.1210/jc.2013-1569] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypothalamic amenorrhea (HA) is the one of the most common causes of period loss in women of reproductive age and is associated with deficient LH pulsatility. High-dose kisspeptin-54 acutely stimulates LH secretion in women with HA, but chronic administration causes desensitization. GnRH has paradoxical effects on reproductive activity; we therefore hypothesized that a dose-dependent therapeutic window exists within which kisspeptin treatment restores the GnRH/LH pulsatility in women with HA. AIM The aim of the study was to determine whether constant iv infusion of kisspeptin-54 temporarily increases pulsatile LH secretion in women with HA. METHODS Five patients with HA each underwent six assessments of LH pulsatility. Single-blinded continuous iv infusion of vehicle or kisspeptin-54 (0.01, 0.03, 0.10, 0.30, or 1.00 nmol/kg/h) was administered. The LH pulses were detected using blinded deconvolution. RESULTS Kisspeptin increased LH pulsatility in all patients with HA, with peak responses observed at different doses in each patient. The mean peak number of pulses during infusion of kisspeptin-54 was 3-fold higher when compared with vehicle (number of LH pulses per 8 h: 1.6 ± 0.4, vehicle; 5.0 ± 0.5, kisspeptin-54, P < .01 vs vehicle). The mean peak LH pulse secretory mass during kisspeptin-54 was 6-fold higher when compared with vehicle (LH pulse secretory mass in international units per liter: 3.92 ± 2.31, vehicle; 23.44 ± 12.59, kisspeptin-54; P < .05 vs vehicle). CONCLUSIONS Kisspeptin-54 infusion temporarily increases LH pulsatility in women with HA. Furthermore, we have determined the dose range within which kisspeptin-54 treatment increases basal and pulsatile LH secretion in women with HA. This work provides a basis for studying the potential of kisspeptin-based therapies to treat women with HA.
Collapse
Affiliation(s)
- Channa N Jayasena
- Section of Investigative Medicine (C.N.J., A.A., A.N.C., R.R., A.D.S., G.M.K.N., Z.G.-D., M.A.G., S.R.B., W.S.D.), Imperial College London, Hammersmith Hospital, London W12 ONN, United Kingdom; and Endocrine Research Unit (J.D.V.), Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905; and Department of Imaging (A.M., C.T.), Imperial College Healthcare National Health Service Trust, Charing Cross Hospital, London W6 8RF, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Beltramo M, Dardente H, Cayla X, Caraty A. Cellular mechanisms and integrative timing of neuroendocrine control of GnRH secretion by kisspeptin. Mol Cell Endocrinol 2014; 382:387-399. [PMID: 24145132 DOI: 10.1016/j.mce.2013.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 01/11/2023]
Abstract
The hypothalamus integrates endogenous and exogenous inputs to control the pituitary-gonadal axis. The ultimate hypothalamic influence on reproductive activity is mediated through timely secretion of GnRH in the portal blood, which modulates the release of gonadotropins from the pituitary. In this context neurons expressing the RF-amide neuropeptide kisspeptin present required features to fulfill the role of the long sought-after hypothalamic integrative centre governing the stimulation of GnRH neurons. Here we focus on the intracellular signaling pathways triggered by kisspeptin through its cognate receptor KISS1R and on the potential role of proteins interacting with this receptor. We then review evidence implicating both kisspeptin and RFRP3--another RF-amide neuropeptide--in the temporal orchestration of both the pre-ovulatory LH surge in female rodents and the organization of seasonal breeding in photoperiodic species.
Collapse
Affiliation(s)
- Massimiliano Beltramo
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France.
| | - Hugues Dardente
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France
| | - Xavier Cayla
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France
| | - Alain Caraty
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France
| |
Collapse
|
39
|
Yamamura T, Wakabayashi Y, Sakamoto K, Matsui H, Kusaka M, Tanaka T, Ohkura S, Okamura H. The effects of chronic subcutaneous administration of an investigational kisspeptin analog, TAK-683, on gonadotropin-releasing hormone pulse generator activity in goats. Neuroendocrinology 2014; 100:250-64. [PMID: 25428554 DOI: 10.1159/000369819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022]
Abstract
The continuous activation of the kisspeptin receptor by its agonists causes the abrogation of kisspeptin signaling, leading to decreased pulsatile luteinizing hormone (LH) secretion. Employing this phenomenon as a tool for probing kisspeptin action, this study aimed to clarify the role of kisspeptin in gonadotropin-releasing hormone (GnRH) pulse generation in goats. We examined the effects of chronic administration of TAK-683, an investigational kisspeptin analog, on LH secretion, GnRH immunostaining, pituitary responses to exogenous GnRH, and GnRH pulse generator activity, reflected by a characteristic increase in multiple-unit activity (MUA volley). An osmotic pump containing TAK-683 was subcutaneously implanted on day 0. TAK-683 treatment dose-dependently suppressed pulsatile LH secretion on day 1. Higher doses of chronic TAK-683 profoundly suppressed pulsatile LH secretion but had little effect on GnRH immunostaining patterns and pituitary responses to GnRH on day 5. In ovariectomized goats, MUA volleys occurred at approximately every 30 min on day -1. On day 5 of chronic TAK-683 administration, pulsatile LH secretion was markedly suppressed, whereas MUA volleys were similar to those observed on day -1. Male pheromones and senktide (neurokinin B receptor agonist) induced an MUA volley but had no effect on LH secretion during chronic TAK-683 administration. The results indicate that the chronic administration of a kisspeptin analog profoundly suppresses pulsatile LH secretion without affecting GnRH content, pituitary function or GnRH pulse generator activity, and they suggest an indispensable role for kisspeptin signaling in the cascade driving GnRH/LH pulses by the GnRH pulse generator.
Collapse
Affiliation(s)
- Takashi Yamamura
- Animal Physiology Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hrabovszky E. Neuroanatomy of the human hypothalamic kisspeptin system. Neuroendocrinology 2014; 99:33-48. [PMID: 24401651 DOI: 10.1159/000356903] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022]
Abstract
Hypothalamic kisspeptin (KP) neurons are key players in the neuronal network that regulates the onset of puberty and the pulsatile secretion of gonadotropin-releasing hormone (GnRH). In various mammalian species, the majority of KP-synthesizing neurons are concentrated in two distinct cell populations in the preoptic region and the arcuate nucleus (ARC). While studies of female rodents have provided evidence that preoptic KP neurons play a critical sex-specific role in positive estrogen feedback, KP neurons of the ARC have been implicated in negative sex steroid feedback and they have also been hypothesized to contribute to the pulse generator network which regulates episodic GnRH secretion in both females and males. Except for relatively few morphological studies available in monkeys and humans, our neuroanatomical knowledge of the hypothalamic KP systems is predominantly based on observations of laboratory species which are phylogenetically distant from the human. This review article discusses the currently available literature on the topographic distribution, network connectivity, neurochemistry, sexual dimorphism, and aging-dependent morphological plasticity of the human hypothalamic KP neuronal system.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
41
|
Borsay BÁ, Skrapits K, Herczeg L, Ciofi P, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z, Hrabovszky E. Hypophysiotropic gonadotropin-releasing hormone projections are exposed to dense plexuses of kisspeptin, neurokinin B and substance p immunoreactive fibers in the human: a study on tissues from postmenopausal women. Neuroendocrinology 2014; 100:141-52. [PMID: 25247878 DOI: 10.1159/000368362] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022]
Abstract
Neuronal populations that synthesize kisspeptin (KP), neurokinin B (NKB) and substance P (SP) in the hypothalamic infundibular nucleus of humans are partly overlapping. These cells are important upstream regulators of gonadotropin-releasing hormone (GnRH) neurosecretion. Homologous neurons in laboratory animals are thought to modulate episodic GnRH secretion primarily via influencing KP receptors on the hypophysiotropic fiber projections of GnRH neurons. To explore the structural basis of this putative axo-axonal communication in humans, we analyzed the anatomical relationship of KP-immunoreactive (IR), NKB-IR and SP-IR axon plexuses with hypophysiotropic GnRH fiber projections. Immunohistochemical studies were carried out on histological samples from postmenopausal women. The neuropeptide-IR axons innervated densely the portal capillary network in the postinfundibular eminence. Subsets of the fibers formed descending tracts in the infundibular stalk, some reaching the neurohypophysis. KP-IR, NKB-IR and SP-IR plexuses intermingled, and established occasional contacts, with hypophysiotropic GnRH fibers in the postinfundibular eminence and through their lengthy course while descending within the infundibular stalk. Triple-immunofluorescent studies also revealed considerable overlap between the KP, NKB and SP signals in individual fibers, providing evidence that these peptidergic projections arise from neurons of the mediobasal hypothalamus. These neuroanatomical observations indicate that the hypophysiotropic projections of human GnRH neurons in the postinfundibular eminence and the descending GnRH tract coursing through the infundibular stalk to the neurohypophysis are exposed to neurotransmitters/neuropeptides released by dense KP-IR, NKB-IR and SP-IR fiber plexuses. Localization and characterization of axonal neuropeptide receptors will be required to clarify the putative autocrine and paracrine interactions in these anatomical regions.
Collapse
Affiliation(s)
- Beáta Á Borsay
- Department of Forensic Medicine, Faculty of Medicine of the University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Grachev P, Millar RP, O'Byrne KT. The role of neurokinin B signalling in reproductive neuroendocrinology. Neuroendocrinology 2014; 99:7-17. [PMID: 24356581 DOI: 10.1159/000357734] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022]
Abstract
The KNDy neuropeptides, kisspeptin, neurokinin B (NKB) and dynorphin A (Dyn), have been implicated in regulating pulsatile luteinising hormone (LH) secretion. Studies of the interactions between KNDy signalling systems, however, are currently few. Although the stimulatory effect of kisspeptin and the inhibitory effect of Dyn on the gonadotropin-releasing hormone pulse generator are widely accepted, the effects of NKB in rodents are variable and sometimes controversial. Literature describing increased LH secretion in response to NKB receptor agonism predominates and is in line with human physiology, as well as the pathophysiology of pubertal failure associated with disruption of NKB signalling. However, the robust suppression of the LH pulse, induced by the same treatment under hypoestrogenic conditions, may hold clues as to the mechanisms of reproductive inhibition under pathological conditions. This review discusses the recent evidence for this paradox and outlines a revised working model incorporating the mechanisms by which KNDy neuropeptides modulate the reproductive axis.
Collapse
Affiliation(s)
- P Grachev
- Division of Women's Health, School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
43
|
Naniwa Y, Nakatsukasa K, Setsuda S, Oishi S, Fujii N, Matsuda F, Uenoyama Y, Tsukamura H, Maeda KI, Ohkura S. Effects of full-length kisspeptin administration on follicular development in Japanese Black beef cows. J Reprod Dev 2013; 59:588-94. [PMID: 24107742 PMCID: PMC3934150 DOI: 10.1262/jrd.2013-064] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kisspeptin is a key molecule that stimulates gonadotropin secretion via release of gonadotropin-releasing hormone (GnRH). In the present study, our aim was to investigate whether kisspeptin has stimulatory effects on follicular development via GnRH/gonadotropin secretion in cows. Japanese Black beef cows were intravenously injected with full-length bovine kisspeptin [Kp-53 (0.2 or 2 nmol/kg)] or vehicle 5 days after they exhibited standing estrus (Day 0). In cows injected with Kp-53 at 2 nmol/kg, the follicular sizes of the first dominant follicles increased on Day 6 and thereafter. Ovulation of the first dominant follicle occurred in 1 out of 4 cows treated with Kp-53 at 2 nmol/kg. Injection of Kp-53 at 2 nmol/kg increased the concentration of plasma luteinizing hormone (LH) but not follicle-stimulating hormone, over a 4-h period following injection in all cows. The present study suggests that administration of full-length kisspeptin causes LH secretion, which is sustained for a few hours, and it is capable of stimulating follicular development and/or ovulation.
Collapse
Affiliation(s)
- Yousuke Naniwa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hrabovszky E, Liposits Z. Afferent neuronal control of type-I gonadotropin releasing hormone neurons in the human. Front Endocrinol (Lausanne) 2013; 4:130. [PMID: 24062728 PMCID: PMC3778916 DOI: 10.3389/fendo.2013.00130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/03/2013] [Indexed: 12/30/2022] Open
Abstract
Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH) synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. Under various physiological and pathological conditions, hormonal and metabolic signals either regulate GnRH neurons directly or act on upstream neuronal circuitries to influence the pattern of pulsatile GnRH secretion into the hypophysial portal circulation. Neuronal afferents to GnRH cells convey important metabolic-, stress-, sex steroid-, lactational-, and circadian signals to the reproductive axis, among other effects. This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic, and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B (NKB) play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes, and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and NKB systems.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: Erik Hrabovszky, Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary e-mail:
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
45
|
Okamura H, Tsukamura H, Ohkura S, Uenoyama Y, Wakabayashi Y, Maeda KI. Kisspeptin and GnRH pulse generation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:297-323. [PMID: 23550012 DOI: 10.1007/978-1-4614-6199-9_14] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The reproductive neuropeptide gonadotropin-releasing hormone (GnRH) has two modes of secretion. Besides the surge mode, which induces ovulation in females, the pulse mode of GnRH release is essential to cause various reproductive events in both sexes, such as spermatogenesis, follicular development, and sex steroid synthesis. Some environmental cues control gonadal activities through modulating GnRH pulse frequency. Researchers have looked for the anatomical location of the mechanism generating GnRH pulses, the GnRH pulse generator, in the brain, because an artificial manipulation of GnRH pulse frequency is of therapeutic importance to stimulate or suppress gonadal activity. Discoveries of kisspeptin and, consequently, KNDy (kisspeptin/neurokinin B/dynorphin) neurons in the hypothalamus have provided a clue to the possible location of the GnRH pulse generator. Our analyses of hypothalamic multiple-unit activity revealed that KNDy neurons located in the hypothalamic arcuate nucleus might play a central role in the generation of GnRH pulses in goats, and perhaps other mammalian species. This chapter further discusses the possible mechanisms for GnRH pulse generation.
Collapse
Affiliation(s)
- Hiroaki Okamura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Clarkson J. Effects of estradiol on kisspeptin neurons during puberty. Front Neuroendocrinol 2013; 34:120-31. [PMID: 23500175 DOI: 10.1016/j.yfrne.2013.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 11/24/2022]
Abstract
The activation of the gonadotropin-releasing hormone (GnRH) neurons from a state of relative quiescence is critical for initiating puberty in mammals. Kisspeptin and its G-protein coupled receptor Gpr54 are essential for puberty, with disruption to either resulting in failed puberty in humans and mice. Robust data from several species indicate that Kiss1 mRNA and/or kisspeptin peptide expression within the hypothalamus increases during pubertal development. Kisspeptin fiber innervation of GnRH neurons and kisspeptin release within the hypothalamus also increase during pubertal development, indicating that there is increased kisspeptinergic drive to GnRH neurons during pubertal development. It is becoming increasingly apparent that gonadal steroids play important roles in the regulation of kisspeptin expression during pubertal development, and in particular, estradiol signaling through estrogen receptor alpha appears to be necessary for these changes to occur. This review focuses on the role that estradiol plays in the regulation of kisspeptin expression during pubertal development.
Collapse
Affiliation(s)
- Jenny Clarkson
- Centre for Neuroendocrinology, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
47
|
Okamura H, Yamamura T, Wakabayashi Y. Kisspeptin as a master player in the central control of reproduction in mammals: an overview of kisspeptin research in domestic animals. Anim Sci J 2013; 84:369-381. [PMID: 23607315 DOI: 10.1111/asj.12056] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/16/2013] [Indexed: 11/30/2022]
Abstract
The hypothalamo-pituitary-gonadal (HPG) axis is the regulatory system for reproduction in mammals. Because secretion of gonadotropin-releasing hormone (GnRH) into the portal vessels is the final step at which the brain controls gonadal activities, the GnRH neuronal system had been thought to be central to the HPG axis. A newly discovered neural peptide, kisspeptin, has opened a new era in reproductive neuroendocrinology. As shown in a variety of mammals, kisspeptin is a potent endogenous secretagogue of GnRH, and the kisspeptin neuronal system governs both the pulsatile GnRH secretion that drives folliculogenesis, spermatogenesis and steroidogenesis, and the GnRH surge that triggers ovulation in females. The kisspeptin neuronal system is therefore considered a master player in the central control of mammalian reproduction, and kisspeptin and related substances could therefore be valuable for the development of novel strategies for the management of fertility in farm animals. To this end, the present review aimed to summarize the current research on kisspeptin signaling with a focus on domestic animals such as sheep, goats, cattle, pigs and horses.
Collapse
Affiliation(s)
- Hiroaki Okamura
- Animal Physiology Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takashi Yamamura
- Animal Physiology Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yoshihiro Wakabayashi
- Animal Physiology Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
48
|
Lehman MN, Hileman SM, Goodman RL. Neuroanatomy of the kisspeptin signaling system in mammals: comparative and developmental aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:27-62. [PMID: 23550001 DOI: 10.1007/978-1-4614-6199-9_3] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our understanding of kisspeptin and its actions depends, in part, on a detailed knowledge of the neuroanatomy of the kisspeptin signaling system in the brain. In this chapter, we will review our current knowledge of the distribution of kisspeptin cells, fibers, and receptors in the mammalian brain, including the development, phenotype, and projections of different kisspeptin subpopulations. A fairly consistent picture emerges from this analysis. There are two major groups of kisspeptin cell bodies: a large number in the arcuate nucleus (ARC) and a smaller collection in the rostral periventricular area of the third ventricle (RP3V) of rodents and preoptic area (POA) of non-rodents. Both sets of neurons project to GnRH cell bodies, which contain Kiss1r, and the ARC kisspeptin population also projects to GnRH axons in the median eminence. ARC kisspeptin neurons contain neurokinin B and dynorphin, while a variable percentage of those cells in the RP3V of rodents contain galanin and/or dopamine. Neurokinin B and dynorphin have been postulated to contribute to the control of GnRH pulses and sex steroid negative feedback, while the role of galanin and dopamine in rostral kisspeptin neurons is not entirely clear. Kisspeptin neurons, fibers, and Kiss1r are found in other areas, including widespread areas outside the hypothalamus, but their physiological role(s) in these regions remains to be determined.
Collapse
Affiliation(s)
- Michael N Lehman
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| | | | | |
Collapse
|
49
|
Navarro VM. Interactions between kisspeptins and neurokinin B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:325-47. [PMID: 23550013 PMCID: PMC3858905 DOI: 10.1007/978-1-4614-6199-9_15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reproductive function is tightly regulated by an intricate network of central and peripheral factors; however, the precise mechanism triggering critical reproductive events, such as puberty onset, remains largely unknown. Recently, the neuropeptides kisspeptin (encoded by Kiss1) and neurokinin B (NKB, encoded by TAC3 in humans and Tac2 in rodents) have been placed as essential gatekeepers of puberty. Studies in humans and rodents have revealed that loss-of-function mutations in the genes encoding either kisspeptin and NKB or their receptors, Kiss1r and neurokinin 3 receptor (NK3R), lead to impaired sexual maturation and infertility. Kisspeptin, NKB, and dynorphin A are co-expressed in neurons of the arcuate nucleus (ARC), so-called Kisspeptin/NKB/Dyn (KNDy) neurons. Importantly, these neurons also co-express NK3R. Compelling evidence suggests a stimulatory role of NKB (or the NK3R agonist, senktide) on LH release in a number of species. This effect is likely mediated by autosynaptic inputs of NKB on KNDy neurons to induce the secretion of gonadotropin-releasing hormone (GnRH) in a kisspeptin--dependent manner, with the coordinated actions of other neuroendocrine factors, such as dynorphin, glutamate, or GABA. Thus, we have proposed a model in which NKB feeds back to the KNDy neuron to shape the pulsatile release of kisspeptin, and hence GnRH, in a mechanism also dependent on the sex steroid level. Additionally, NKB may contribute to the regulation of the reproductive function by metabolic cues. Investigating how NKB and kisspeptin interact to regulate the gonadotropic axis will offer new insights into the control of GnRH release during puberty onset and the maintenance of the reproductive function in adulthood, offering a platform for the understanding and treatment of a number of reproductive disorders.
Collapse
|
50
|
Abstract
The discovery that kisspeptin was critical for normal fertility in humans ushered in a new chapter in our understanding of the control of GnRH secretion. In this paper, we will review recent data on the similarities and differences across several mammalian species in the role of kisspeptin in reproductive neuroendocrinology. In all mammals examined to date, there is strong evidence that kisspeptin plays a key role in the onset of puberty and is necessary for both tonic and surge secretion of GnRH in adults, although kisspeptin-independent systems are also apparent in these studies. Similarly, two groups of kisspeptin neurons, one in the arcuate nucleus (ARC) and the other more rostrally, have been identified in all mammals, although the latter is concentrated in a limited area in rodents and more scattered in other species. Estrogen has divergent actions on kisspeptin expression in these two regions across these species, stimulating it the latter and inhibiting expression in the former. There is also strong evidence that the rostral population participates in the GnRH surge, whereas the ARC population contributes to steroid-negative feedback. There may be species differences in the role of these two populations in puberty, with the ARC cells important in rats, sheep, and monkeys, whereas both have been implicated in mice. ARC kisspeptin neurons also appear to participate in the GnRH surge in sheep and guinea pigs, whereas the data on this possibility in rodents are contradictory. Similarly, both populations are sexually dimorphic in sheep and humans, whereas most data in rodents indicate that this occurs only in the rostral population. The functional consequences of these species differences remain to be fully elucidated but are likely to have significance for understanding normal neuroendocrine control of reproduction as well as for use of kisspeptin agonists/antagonists as a therapeutic tool.
Collapse
Affiliation(s)
- Robert L Goodman
- Department of Physiology, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|