1
|
Cham TC, Ibtisham F, Al-Dissi A, Honaramooz A. An in vitro testicular organoid model for the study of testis morphogenesis, somatic cell maturation, endocrine function, and toxicological assessment of endocrine disruptors. Reprod Toxicol 2024; 128:108645. [PMID: 38897308 DOI: 10.1016/j.reprotox.2024.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Male reproductive capacity has fallen considerably in recent decades; in addition, the incidence of testicular cancer has increased in many developed countries. The cause of this phenomenon is unknown, but environmental toxicants are considered a major contributing factor. To study potential reproductive toxicants, robust in vitro testis models are needed. We have recently established a porcine testis organoid system with a high resemblance to the architectures of innate testis tissue. Here, we further investigated the testis morphogenesis, cell maturation, and endocrine function of the testis organoids. We also challenged this system with abiraterone, a steroidogenic inhibitor, to validate its suitability as an in vitro platform for endocrine toxicology tests. Our results showed that the testis cells in the organoids reorganize into testis cordal structures, and the cordal relative areas increase in the organoids over time of culture. Moreover, the diameters and cell numbers per cross-section of the cordal structures increased over time. Interestingly, Sertoli cells in the organoids gradually underwent maturational changes by showing increased expression of androgen receptors, decreased expression of the anti-müllerian hormone, and formation of the blood-testis barrier. Next, we confirmed that the organoids respond to hormonal stimulation and release multiple sex hormones, including testosterone, estradiol, and progesterone. Finally, we showed that the production of testosterone and estradiol in this system can be inhibited in response to the steroidogenic inhibitor. Taken together, our organoid system provides a promising in vitro platform for male reproductive toxicology studies on testis morphogenesis, somatic cell maturation, and endocrine production.
Collapse
Affiliation(s)
- Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Fahar Ibtisham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Ahmad Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
2
|
Silveira JM, Cesar Dos Santos A, Calado de Brito DC, de Oliveira MF, Conley AJ, de Assis Neto AC. Morphohistometric and steroidogenic parameters during testicular and epididymal differentiation in cavy (Galea spixii) fetuses. Reprod Biol 2024; 24:100829. [PMID: 38039944 DOI: 10.1016/j.repbio.2023.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Sexual differentiation and steroidogenic mechanisms have an important impact on postnatal gonadal phenotypic development. Thus, establishing the activities that lead to male phenotypic development can provide a better understanding of this process. This study examined the prenatal development of cavies to establish morphological and histometric development patterns and protein and enzyme immunolocalization processes that are responsible for androgen synthesis in the testes and epididymis. Histological and histometric analyses of the diameter of the seminiferous cords and epididymal ducts of male fetuses on Days 25, 30, 40, and 50 were performed, as well as immunohistochemistry of the steroidogenic enzymes 5α-reductase and 17β-HSD, the androgen receptor, and the anti-Müllerian hormone (AMH). Our findings showed a cellular grouping of gonocytes from Day 30 onward that was characteristic of the seminiferous cord, which was not present in the lumen at any of the studied dates. From Day 50 onward, the differentiation of the three anatomical regions of the epididymis was evident, the head (caput), body (corpus), and tail (cauda), with tissue distinctions. Furthermore, the diameters of the seminiferous cords and epididymal ducts significantly increased with age. On Day 50, the tail showed the greatest diameter of the three regions. The Sertoli and Leydig cells exhibited AMH immunoreactivity at all dates. In addition, the Leydig cells and epididymal epithelial tissue were immunopositive for 5α-reductase, 17β-HSD, and the androgen receptor; therefore, these factors influenced the development and maintenance of the testis and epididymis during cavy prenatal development.
Collapse
Affiliation(s)
- Júlia Moreira Silveira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Amilton Cesar Dos Santos
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Alan James Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, UC, Davis, CA, USA
| | - Antonio Chaves de Assis Neto
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Dube R, Kar SS, Jhancy M, George BT. Molecular Basis of Müllerian Agenesis Causing Congenital Uterine Factor Infertility-A Systematic Review. Int J Mol Sci 2023; 25:120. [PMID: 38203291 PMCID: PMC10778982 DOI: 10.3390/ijms25010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Infertility affects around 1 in 5 couples in the world. Congenital absence of the uterus results in absolute infertility in females. Müllerian agenesis is the nondevelopment of the uterus. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a condition of uterovaginal agenesis in the presence of normal ovaries and the 46 XX Karyotype. With advancements in reproductive techniques, women with MA having biological offspring is possible. The exact etiology of MA is unknown, although several genes and mechanisms affect the development of Müllerian ducts. Through this systematic review of the available literature, we searched for the genetic basis of MA. The aims included identification of the genes, chromosomal locations, changes responsible for MA, and fertility options, in order to offer proper management and counseling to these women with MA. A total of 85 studies were identified through searches. Most of the studies identified multiple genes at various locations, although the commonest involved chromosomes 1, 17, and 22. There is also conflicting evidence of the involvement of various candidate genes in the studies. The etiology of MA seems to be multifactorial and complex, involving multiple genes and mechanisms including various mutations and mosaicism.
Collapse
Affiliation(s)
- Rajani Dube
- Department of Obstetrics and Gynaecology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates
| | - Subhranshu Sekhar Kar
- Department of Paediatrics and Neonatology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (S.S.K.); (M.J.)
| | - Malay Jhancy
- Department of Paediatrics and Neonatology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (S.S.K.); (M.J.)
| | - Biji Thomas George
- Department of General Surgery, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
4
|
Philibert P, Déjardin S, Girard M, Durix Q, Gonzalez AA, Mialhe X, Tardat M, Poulat F, Boizet-Bonhoure B. Cocktails of NSAIDs and 17α Ethinylestradiol at Environmentally Relevant Doses in Drinking Water Alter Puberty Onset in Mice Intergenerationally. Int J Mol Sci 2023; 24:ijms24065890. [PMID: 36982971 PMCID: PMC10099742 DOI: 10.3390/ijms24065890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinyl-estradiol (EE2) are among the most relevant endocrine-disrupting pharmaceuticals found in the environment, particularly in surface and drinking water due to their incomplete removal via wastewater treatment plants. Exposure of pregnant mice to NSAID therapeutic doses during the sex determination period has a negative impact on gonadal development and fertility in adults; however, the effects of their chronic exposure at lower doses are unknown. In this study, we investigated the impact of chronic exposure to a mixture containing ibuprofen, 2hydroxy-ibuprofen, diclofenac, and EE2 at two environmentally relevant doses (added to the drinking water from fetal life until puberty) on the reproductive tract in F1 exposed mice and their F2 offspring. In F1 animals, exposure delayed male puberty and accelerated female puberty. In post-pubertal F1 testes and ovaries, differentiation/maturation of the different gonad cell types was altered, and some of these modifications were observed also in the non-exposed F2 generation. Transcriptomic analysis of post-pubertal testes and ovaries of F1 (exposed) and F2 animals revealed significant changes in gene expression profiles and enriched pathways, particularly the inflammasome, metabolism and extracellular matrix pathways, compared with controls (non-exposed). This suggested that exposure to these drug cocktails has an intergenerational impact. The identified Adverse Outcome Pathway (AOP) networks for NSAIDs and EE2, at doses that are relevant to everyday human exposure, will improve the AOP network of the human reproductive system development concerning endocrine disruptor chemicals. It may serve to identify other putative endocrine disruptors for mammalian species based on the expression of biomarkers.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, 30900 Nîmes, France
| | - Stéphanie Déjardin
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Mélissa Girard
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Université de Montpellier and Institut National de la Santé Et de la Recherche Médicale (INSERM), 34090 Montpellier, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Xavier Mialhe
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Mathieu Tardat
- Biologie des Séquences Répétées, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, 34090 Montpellier, France
| | - Francis Poulat
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
5
|
Arkoun B, Moison P, Guerquin MJ, Messiaen S, Moison D, Tourpin S, Monville C, Livera G. Sorting and Manipulation of Human PGC-LC Using PDPN and Hanging Drop Cultures. Cells 2022; 11:3832. [PMID: 36497094 PMCID: PMC9736549 DOI: 10.3390/cells11233832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The generation of oocytes from induced pluripotent stem cells (iPSCs) was proven efficient with mouse cells. However, no human iPSCs have yet been reported to generate cells able to complete oogenesis. Additionally, efficient sorting of human Primordial Germ Cell-like Cells (hPGC-LCs) without genomic integration of fluorescent reporter for their downstream manipulation is still lacking. Here, we aimed to develop a model that allows human germ cell differentiation in vitro in order to study the developing human germline. The hPGC-LCs specified from two iPS cell lines were sorted and manipulated using the PDPN surface marker without genetic modification. hPGC-LCs obtained remain arrested at early stages of maturation and no further differentiation nor meiotic onset occurred when these were cultured with human or mouse fetal ovarian somatic cells. However, when cultured independently of somatic ovarian cells, using BMP4 and the hanging drop-transferred EBs system, early hPGC-LCs further differentiate efficiently and express late PGC (DDX4) and meiotic gene markers, although no SYCP3 protein was detected. Altogether, we characterized a tool to sort hPGC-LCs and an efficient in vitro differentiation system to obtain pre-meiotic germ cell-like cells without using a gonadal niche.
Collapse
Affiliation(s)
- Brahim Arkoun
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Pauline Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Marie-Justine Guerquin
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Sébastien Messiaen
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Delphine Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Sophie Tourpin
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
- Paris-Saclay Evry, U861, 91100 Corbeil-Essonnes, France
| | - Gabriel Livera
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Abe SI. Behavior and Functional Roles of CD34 + Mesenchymal Cells in Mammalian Testes. Int J Mol Sci 2022; 23:9585. [PMID: 36076981 PMCID: PMC9455925 DOI: 10.3390/ijms23179585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022] Open
Abstract
Mammalian testes consist of seminiferous tubules within which Sertoli cells line up at the periphery and nurse germ cells, and of interstitia that harbor various cells such as peritubular myoid cells (PMCs), Leydig cells (LCs), vascular endothelial cells, immune cells such as macrophages, and mesenchymal (stromal) cells. Morphological studies have recently reported the presence of telocytes with telopodes in the interstitium of adult mouse, rat, and human testes. CD34+PDGFRα+ telocytes with long and moniliform telopodes form reticular networks with various cell types such as LCs, PMCs, and vessels, indicating their potential functions in cell-cell communications and tissue homeostasis. Functional studies have recently been performed on testicular interstitial cells and CD34+ cells, using 3D re-aggregate cultures of dissociated testicular cells, and cell cultures. Direct observation of CD34+ cells and adult LCs (ALCs) revealed that CD34+ cells extend thin cytoplasmic processes (telopodes), move toward the LC-CD34+ cell-re-aggregates, and finally enter into the re-aggregates, indicating the chemotactic behavior of CD34+ telocytes toward ALCs. In mammalian testes, important roles of mesenchymal interstitial cells as stem/progenitors in the differentiation and regeneration of LCs have been reported. Here, reports on testicular telocytes so far obtained are reviewed, and future perspectives on the studies of testicular telocytes are noted.
Collapse
Affiliation(s)
- Shin-Ichi Abe
- Faculty of Health Science, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| |
Collapse
|
7
|
Rodriguez KF, Brown PR, Amato CM, Nicol B, Liu CF, Xu X, Yao HHC. Somatic cell fate maintenance in mouse fetal testes via autocrine/paracrine action of AMH and activin B. Nat Commun 2022; 13:4130. [PMID: 35840551 PMCID: PMC9287316 DOI: 10.1038/s41467-022-31486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Fate determination and maintenance of fetal testes in most mammals occur cell autonomously as a result of the action of key transcription factors in Sertoli cells. However, the cases of freemartin, where an XX twin develops testis structures under the influence of an XY twin, imply that hormonal factor(s) from the XY embryo contribute to sex reversal of the XX twin. Here we show that in mouse XY embryos, Sertoli cell-derived anti-Mullerian hormone (AMH) and activin B together maintain Sertoli cell identity. Sertoli cells in the gonadal poles of XY embryos lacking both AMH and activin B transdifferentiate into their female counterpart granulosa cells, leading to ovotestis formation. The ovotestes remain to adulthood and produce both sperm and oocytes, although there are few of the former and the latter fail to mature. Finally, the ability of XY mice to masculinize ovaries is lost in the absence of these two factors. These results provide insight into fate maintenance of fetal testes through the action of putative freemartin factors.
Collapse
Affiliation(s)
- Karina F Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Paula R Brown
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Ciro M Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Chia-Feng Liu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
8
|
Zhao T, Xiao T, Cao D, Xia W, Gao L, Cheng L, Zang M, Li X, Xu EY. Sertoli cell PUMILIO proteins modulate mouse testis size through translational control of cell cycle regulators. Biol Reprod 2022; 107:135-147. [PMID: 35678316 DOI: 10.1093/biolre/ioac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Testis size determination is an important question of reproductive biology. Sertoli cells are known to be a key determinant of mammalian testis size but the underlying molecular mechanisms remain incompletely understood. Previously we showed that highly conserved germ cell RNA binding proteins, PUMILIO1(PUM1) and PUMILIO2 (PUM2), control mouse organ and body size through translational regulation, but how different cell types of the organs contribute to their organ size regulation has not been established. Here we report a somatic role of PUM in gonad size determination. PUM1 is highly expressed in the Sertoli cells of the developing testis from embryonic and postnatal mice as well as in germ cells. Removal of Sertoli cell, but not germ cell, Pum1 gene, led to reduced testis size without significantly affecting sperm number or fertility. Knockout of PUM1 target, Cdkn1b, rescued the phenotype of reduced testis size, supporting a key role of Sertoli cell PUM1 mediated Cdkn1b repression in the testis size control. Furthermore, removal of Pum2 or both Pum1 and Pum2 in the Sertoli cells also only affected the testis size, not sperm development, with the biggest size reduction in Pum1/2 double knockout mice. We propose that PUM1 and PUM2 modulate the testis size through their synergistic translational regulation of cell cycle regulators in the Sertoli cell. Further investigation of the ovary or other organs could reveal if PUM-mediated translational control of cell proliferation of the supporting cell represents a general mechanism for organ size modulation.
Collapse
Affiliation(s)
- Tingting Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Tianheng Xiao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dandan Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wenjuan Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liuze Gao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liping Cheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Min Zang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Neurology, and Center for Reproductive Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| |
Collapse
|
9
|
Singh N, Singh D, Bhide A, Sharma R, Sahoo S, Jolly MK, Modi D. Lhx2 in germ cells suppresses endothelial cell migration in the developing ovary. Exp Cell Res 2022; 415:113108. [PMID: 35337816 DOI: 10.1016/j.yexcr.2022.113108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022]
Abstract
LIM-homeobox genes play multiple roles in developmental processes, but their roles in gonad development are not completely understood. Herein, we report that Lhx2, Ils2, Lmx1a, and Lmx1b are expressed in a sexually dimorphic manner in mouse, rat, and human gonads during sex determination. Amongst these, Lhx2 has female biased expression in the developing gonads of species with environmental and genetic modes of sex determination. Single-cell RNAseq analysis revealed that Lhx2 is exclusively expressed in the germ cells of the developing mouse ovaries. To elucidate the roles of Lhx2 in the germ cells, we analyzed the phenotypes of Lhx2 knockout XX gonads. While the gonads developed appropriately in Lhx2 knockout mice and the somatic cells were correctly specified in the developing ovaries, transcriptome analysis revealed enrichment of genes in the angiogenesis pathway. There was an elevated expression of several pro-angiogenic factors in the Lhx2 knockout ovaries. The elevated expression of pro-angiogenic factors was associated with an increase in numbers of endothelial cells in the Lhx2-/- ovaries at E13.5. Gonad recombination assays revealed that the increased numbers of endothelial cells in the XX gonads in absence of Lhx2 was due to ectopic migration of endothelial cells in a cell non-autonomous manner. We also found that, there was increased expression of several endothelial cell-enriched male-biased genes in Lhx2 knockout ovaries. Also, in absence of Lhx2, the migrated endothelial cells formed an angiogenic network similar to that of the wild type testis, although the coelomic blood vessel did not form. Together, our results suggest that Lhx2 in the germ cells is required to suppress vascularization in the developing ovary. These results suggest a need to explore the roles of germ cells in the control of vascularization in developing gonads. Preprint version of the article is available on BioRxiv at https://doi.org/10.1101/2022.03.07.483280.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Anshul Bhide
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Sarthak Sahoo
- Center for BioSystems Science and Engineering, Indian Institute of Science, CV Raman Rd, Bangalore, 560012, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, CV Raman Rd, Bangalore, 560012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
10
|
Zhu Y. Metalloproteases in gonad formation and ovulation. Gen Comp Endocrinol 2021; 314:113924. [PMID: 34606745 PMCID: PMC8576836 DOI: 10.1016/j.ygcen.2021.113924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023]
Abstract
Changes in expression or activation of various metalloproteases including matrix metalloproteases (Mmp), a disintegrin and metalloprotease (Adam) and a disintegrin and metalloprotease with thrombospondin motif (Adamts), and their endogenous inhibitors (tissue inhibitors of metalloproteases, Timp), have been shown to be critical for ovulation in various species from studies in past decades. Some of these metalloproteases such as Adamts1, Adamts9, Mmp2, and Mmp9 have also been shown to be regulated by luteinizing hormone (LH) and/or progestin, which are essential triggers for ovulation in all vertebrate species. Most of these metalloproteases also express broadly in various tissues and cells including germ cells and somatic gonad cells. Thus, metalloproteases likely play roles in gonad formation processes comprising primordial germ cell (PGC) migration, development of germ and somatic cells, and sex determination. However, our knowledge on the functions and mechanisms of metalloproteases in these processes in vertebrates is still lacking. This review will summarize our current knowledge on the metalloproteases in ovulation and gonad formation with emphasis on PGC migration and germ cell development.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
11
|
Abe K, Kon S, Kameyama H, Zhang J, Morohashi KI, Shimamura K, Abe SI. VCAM1-α4β1 integrin interaction mediates interstitial tissue reconstruction in 3-D re-aggregate culture of dissociated prepubertal mouse testicular cells. Sci Rep 2021; 11:18332. [PMID: 34526555 PMCID: PMC8443749 DOI: 10.1038/s41598-021-97729-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Roles of interstitial tissue in morphogenesis of testicular structures remain less well understood. To analyze the roles of CD34+ cells in the reconstruction of interstitial tissue containing Leydig cells (LCs), and testicular structures, we used 3D-reaggregate culture of dissociated testicular cells from prepubertal mouse. After a week of culture, adult Leydig cells (ALCs) were preferentially incorporated within CD34+ cell-aggregates, but fetal LCs (FLCs) were not. Immunofluorescence studies showed that integrins α4, α9 and β1, and VCAM1, one of the ligands for integrins α4β1 and α9β1, are expressed mainly in CD34+ cells and ALCs, but not in FLCs. Addition of function-blocking antibodies against each integrin and VCAM1 to the culture disturbed the reconstruction of testicular structures. Antibodies against α4 and β1 integrins and VCAM1 robustly inhibited cell-to-cell adhesion between testicular cells and between CD34+ cells. Cell-adhesion assays indicated that CD34+ cells adhere to VCAM1 through the interaction with α4β1 integrin. Live cell imaging showed that CD34+ cells adhered around ALC-aggregates. CD34+ cells on the dish moved toward the aggregates, extending filopodia, and entered into them, which was disturbed by VCAM1 antibody. These results indicate that VCAM1-α4β1 integrin interaction plays pivotal roles in formation of testicular interstitial tissues in vitro and also in vivo.
Collapse
Affiliation(s)
- Kazuko Abe
- Faculty of Health Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Hiroki Kameyama
- Faculty of Health Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - JiDong Zhang
- School of Basic Medical Sciences, ZunYi Medical University, Zunyi, Guizhou Province, China
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Shimamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shin-Ichi Abe
- Faculty of Health Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan.
| |
Collapse
|
12
|
Bunce C, McKey J, Capel B. Concerted morphogenesis of genital ridges and nephric ducts in the mouse captured through whole-embryo imaging. Development 2021; 148:dev199208. [PMID: 33795229 PMCID: PMC8242465 DOI: 10.1242/dev.199208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022]
Abstract
During development of the mouse urogenital complex, the gonads undergo changes in three-dimensional structure, body position and spatial relationship with the mesonephric ducts, kidneys and adrenals. The complexity of genital ridge development obscures potential connections between morphogenesis and gonadal sex determination. To characterize the morphogenic processes implicated in regulating gonad shape and fate, we used whole-embryo tissue clearing and light sheet microscopy to assemble a time course of gonad development in native form and context. Analysis revealed that gonad morphology is determined through anterior-to-posterior patterns as well as increased rates of growth, rotation and separation in the central domain that may contribute to regionalization of the gonad. We report a close alignment of gonad and mesonephric duct movements as well as delayed duct development in a gonad dysgenesis mutant, which together support a mechanical dependency linking gonad and mesonephric duct morphogenesis.
Collapse
Affiliation(s)
| | | | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
13
|
Repouskou A, Stamatakis A, Kitraki E. In utero exposure to phthalates and reproductive toxicity in rodents. Best Pract Res Clin Endocrinol Metab 2021; 35:101512. [PMID: 34266749 DOI: 10.1016/j.beem.2021.101512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phthalates, widely used as plasticizers, are contained in many everyday products. Human biomonitoring studies detect their presence in biological fluids of a large part of the population worldwide. Maternal exposure during pregnancy has been related with aberrations in the reproductive growth of male infants. Rodent studies show that gestational exposure to single phthalates elicits reproductive toxicity in both sexes. Early aberrations include inhibition of gonadal sex determining gene expression and steroidogenesis, histopathology, and disturbed gametogenesis, leading later in life to dysfunctions in sperm production and oocyte reserves. Animal studies of in utero exposure to mixtures of phthalates, better mimicking human exposures, revealed analogous reproductive dysfunctions with the single compounds, but also indicated the combined actions and cumulative effects exerted by these chemicals. Further understanding the underlying mechanisms and the species differences in phthalate-induced reproductive toxicity will help to improve the risk assessment for human exposure to these toxicants.
Collapse
Affiliation(s)
- Anastasia Repouskou
- Basic Sciences Lab, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| | - Antonios Stamatakis
- Biology- Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| | - Efthymia Kitraki
- Basic Sciences Lab, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
14
|
Scarlet D, Handschuh S, Reichart U, Podico G, Ellerbrock RE, Demyda-Peyrás S, Canisso IF, Walter I, Aurich C. Sexual Differentiation and Primordial Germ Cell Distribution in the Early Horse Fetus. Animals (Basel) 2021; 11:2422. [PMID: 34438878 PMCID: PMC8388682 DOI: 10.3390/ani11082422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
It was the aim of this study to characterize the development of the gonads and genital ducts in the equine fetus around the time of sexual differentiation. This included the identification and localization of the primordial germ cell population. Equine fetuses between 45 and 60 days of gestation were evaluated using a combination of micro-computed tomography scanning, immunohistochemistry, and multiplex immunofluorescence. Fetal gonads increased in size 23-fold from 45 to 60 days of gestation, and an even greater increase was observed in the metanephros volume. Signs of mesonephros atrophy were detected during this time. Tubular structures of the fetal testes were present from day 50 onwards, whereas cell clusters dominated in the fetal ovary. The genital ducts were well-differentiated and presented a lumen in all samples. No sign of mesonephric or paramesonephric duct degeneration was detected. Expression of AMH was strong in the fetal testes but absent in ovaries. Irrespective of sex, primordial germ cells selectively expressed LIN28. Migration of primordial germ cells from the mesonephros to the gonad was detected at 45 days, but not at 60 days of development. Their number and distribution within the gonad were influenced (p < 0.05) by fetal sex. Most primordial germ cells (86.8 ± 3.2% in females and 84.6 ± 4.7% in males) were characterized as pluripotent according to co-localization with CD117. However, only a very small percentage of primordial germ cells were proliferating (7.5 ± 1.7% in females and 3.2 ± 1.2% in males) based on co-localization with Ki67. It can be concluded that gonadal sexual differentiation in the horse occurs asynchronously with regard to sex but already before 45 days of gestation.
Collapse
Affiliation(s)
- Dragos Scarlet
- Obstetrics, Gynecology and Andrology, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
- Institute of Veterinary Anatomy and Clinic of Reproductive Medicine, Vetsuisse Faculty Zürich, Winterthurerstrasse 260, 8057 Zürich, Switzerland
| | - Stephan Handschuh
- Vetcore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (S.H.); (U.R.); (I.W.)
| | - Ursula Reichart
- Vetcore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (S.H.); (U.R.); (I.W.)
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA; (G.P.); (R.E.E.); (I.F.C.)
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Robyn E. Ellerbrock
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA; (G.P.); (R.E.E.); (I.F.C.)
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Sebastián Demyda-Peyrás
- Department of Animal Production, School of Veterinary Sciences, National University of La Plata and CONICET CCT-La Plata, Calle 60 and 118 S/N, 1900 La Plata, Argentina;
| | - Igor F. Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA; (G.P.); (R.E.E.); (I.F.C.)
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ingrid Walter
- Vetcore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (S.H.); (U.R.); (I.W.)
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Christine Aurich
- Center for Artificial Insemination and Embryo Transfer, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| |
Collapse
|
15
|
Alkhzouz C, Bucerzan S, Miclaus M, Mirea AM, Miclea D. 46,XX DSD: Developmental, Clinical and Genetic Aspects. Diagnostics (Basel) 2021; 11:1379. [PMID: 34441313 PMCID: PMC8392837 DOI: 10.3390/diagnostics11081379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Differences in sex development (DSD) in patients with 46,XX karyotype occur by foetal or postnatal exposure to an increased amount of androgens. These disorders are usually diagnosed at birth, in newborns with abnormal genitalia, or later, due to postnatal virilization, usually at puberty. Proper diagnosis and therapy are mostly based on the knowledge of normal development and molecular etiopathogenesis of the gonadal and adrenal structures. This review aims to describe the most relevant data that are correlated with the normal and abnormal development of adrenal and gonadal structures in direct correlation with their utility in clinical practice, mainly in patients with 46,XX karyotype. We described the prenatal development of structures together with the main molecules and pathways that are involved in sex development. The second part of the review described the physical, imaging, hormonal and genetic evaluation in a patient with a disorder of sex development, insisting more on patients with 46,XX karyotype. Further, 95% of the etiology in 46,XX patients with disorders of sex development is due to congenital adrenal hyperplasia, by enzyme deficiencies that are involved in the hormonal synthesis pathway. The other cases are explained by genetic abnormalities that are involved in the development of the genital system. The phenotypic variability is very important in 46,XX disorders of sex development and the knowledge of each sign, even the most discreet, which could reveal such disorders, mainly in the neonatal period, could influence the evolution, prognosis and life quality long term.
Collapse
Affiliation(s)
- Camelia Alkhzouz
- Mother and Child Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.A.); (S.B.)
- Genetic Department, Clinical Emergency Hospital for Children Cluj-Napoca, 400370 Cluj-Napoca, Romania; (M.M.); (A.-M.M.)
| | - Simona Bucerzan
- Mother and Child Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.A.); (S.B.)
- Genetic Department, Clinical Emergency Hospital for Children Cluj-Napoca, 400370 Cluj-Napoca, Romania; (M.M.); (A.-M.M.)
| | - Maria Miclaus
- Genetic Department, Clinical Emergency Hospital for Children Cluj-Napoca, 400370 Cluj-Napoca, Romania; (M.M.); (A.-M.M.)
| | - Andreea-Manuela Mirea
- Genetic Department, Clinical Emergency Hospital for Children Cluj-Napoca, 400370 Cluj-Napoca, Romania; (M.M.); (A.-M.M.)
| | - Diana Miclea
- Mother and Child Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.A.); (S.B.)
- Molecular Science Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Nakata H, Omotehara T, Itoh M, Iseki S, Mizokami A. Three-dimensional structure of testis cords in mice and rats. Andrology 2021; 9:1911-1922. [PMID: 34128333 DOI: 10.1111/andr.13069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Testis cord elongation and coiling, which occur in the final stage of testis formation, have been attributed to Sertoli cell proliferation; however, the underlying mechanisms remain unclear. OBJECTIVE The aim of the present study was to clarify the precise three-dimensional structure of testis cords in the final stage of testis formation in mice and rats. MATERIALS AND METHODS We reconstructed whole testis cords in the final stage of testis formation in mice (on embryonic days 15.5 and 18.5) and rats (on embryonic days 16.5 and 19.5) using serial paraffin sections and high-performance three-dimensional reconstruction software. RESULTS Detailed morphometric parameters were calculated for three-dimensionally reconstructed testis cords in six mouse and rat testes each. The mean numbers of testis cords in mice and rats were 12.7 and 27.8, respectively. The mean number of branching points per testis cord was 1.52 in mice, whereas it was only 0.30 in rats. In contrast, the mean ratio of the inner cords, that is, cords not in contact with the tunica albuginea, was 23.0% in rats, whereas it was only 6.5% in mice. In both species, the cords on the cranial side coiled more strongly than those on the caudal side, consistent with the greater expansion of the testis volume on the caudal side. All cords formed right-handed helices from the rete testis side. DISCUSSION AND CONCLUSIONS The present results suggest that testis cords undergo anastomosis at a higher frequency in mice than in rats and that the coiling of testis cords proceeds from the cranial to caudal side of the testis in both species.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shoichi Iseki
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
17
|
Casas L, Saborido-Rey F. Environmental Cues and Mechanisms Underpinning Sex Change in Fish. Sex Dev 2021; 15:108-121. [PMID: 34111868 DOI: 10.1159/000515274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Fishes are the only vertebrates that undergo sex change during their lifetime, but even within this group, a unique reproductive strategy is displayed by only 1.5% of the teleosts. This lability in alternating sexual fate is the result of the simultaneous suppression and activation of opposing male and female networks. Here, we provide a brief review summarizing recent advances in our understanding of the environmental cues that trigger sex change and their perception, integration, and translation into molecular cascades that convert the sex of an individual. We particularly focus on molecular events underpinning the complex behavioral and morphological transformation involved in sex change, dissecting the main molecular players and regulatory networks that shape the transformation of one sex into the opposite. We show that histological changes and molecular pathways governing gonadal reorganization are better described than the neuroendocrine basis of sex change and that, despite important advances, information is lacking for the majority of hermaphrodite species. We highlight significant gaps in our knowledge of how sex change takes place and suggest future research directions.
Collapse
Affiliation(s)
- Laura Casas
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Fran Saborido-Rey
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| |
Collapse
|
18
|
Vining B, Ming Z, Bagheri-Fam S, Harley V. Diverse Regulation but Conserved Function: SOX9 in Vertebrate Sex Determination. Genes (Basel) 2021; 12:genes12040486. [PMID: 33810596 PMCID: PMC8066042 DOI: 10.3390/genes12040486] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Sex determination occurs early during embryogenesis among vertebrates. It involves the differentiation of the bipotential gonad to ovaries or testes by a fascinating diversity of molecular switches. In most mammals, the switch is SRY (sex determining region Y); in other vertebrates it could be one of a variety of genes including Dmrt1 or dmy. Downstream of the switch gene, SOX9 upregulation is a central event in testes development, controlled by gonad-specific enhancers across the 2 Mb SOX9 locus. SOX9 is a ‘hub’ gene of gonadal development, regulated positively in males and negatively in females. Despite this diversity, SOX9 protein sequence and function among vertebrates remains highly conserved. This article explores the cellular, morphological, and genetic mechanisms initiated by SOX9 for male gonad differentiation.
Collapse
Affiliation(s)
- Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
- Correspondence: ; Tel.: +61-3-8572-2527
| |
Collapse
|
19
|
Cham TC, Chen X, Honaramooz A. Current progress, challenges, and future prospects of testis organoids†. Biol Reprod 2021; 104:942-961. [PMID: 33550399 DOI: 10.1093/biolre/ioab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Spermatogenic failure is believed to be a major cause of male infertility. The establishment of a testis organoid model would facilitate the study of such pathological mechanisms and open the possibility of male fertility preservation. Because of the complex structures and cellular events occurring within the testis, the establishment of a compartmentalized testis organoid with a complete spermatogenic cycle remains a challenge in all species. Since the late 20th century, a great variety of scaffold-based and scaffold-free testis cell culture systems have been established to recapitulate de novo testis organogenesis and in vitro spermatogenesis. The utilization of the hydrogel scaffolds provides a 3D microenvironment for testis cell growth and development, facilitating the reconstruction of de novo testis tissue-like structures and spermatogenic differentiation. Using a combination of different strategies, including the use of various scaffolding biomaterials, the incorporation of the living cells with high self-assembling capacity, and the integration of the advanced fabrication techniques, a scaffold-based testis organoid with a compartmentalized structure that supports in vitro spermatogenesis may be achieved. This article briefly reviews the current progress in the development of scaffold-based testis organoids while focusing on the scaffolding biomaterials (hydrogels), cell sources, and scaffolding approaches. Key challenges in current organoid studies are also discussed along with recommendations for future research.
Collapse
Affiliation(s)
- Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
20
|
Eyni H, Ghorbani S, Nazari H, Hajialyani M, Razavi Bazaz S, Mohaqiq M, Ebrahimi Warkiani M, Sutherland DS. Advanced bioengineering of male germ stem cells to preserve fertility. J Tissue Eng 2021; 12:20417314211060590. [PMID: 34868541 PMCID: PMC8638075 DOI: 10.1177/20417314211060590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
In modern life, several factors such as genetics, exposure to toxins, and aging have resulted in significant levels of male infertility, estimated to be approximately 18% worldwide. In response, substantial progress has been made to improve in vitro fertilization treatments (e.g. microsurgical testicular sperm extraction (m-TESE), intra-cytoplasmic sperm injection (ICSI), and round spermatid injection (ROSI)). Mimicking the structure of testicular natural extracellular matrices (ECM) outside of the body is one clear route toward complete in vitro spermatogenesis and male fertility preservation. Here, a new wave of technological innovations is underway applying regenerative medicine strategies to cell-tissue culture on natural or synthetic scaffolds supplemented with bioactive factors. The emergence of advanced bioengineered systems suggests new hope for male fertility preservation through development of functional male germ cells. To date, few studies aimed at in vitro spermatogenesis have resulted in relevant numbers of mature gametes. However, a substantial body of knowledge on conditions that are required to maintain and mature male germ cells in vitro is now in place. This review focuses on advanced bioengineering methods such as microfluidic systems, bio-fabricated scaffolds, and 3D organ culture applied to the germline for fertility preservation through in vitro spermatogenesis.
Collapse
Affiliation(s)
- Hossein Eyni
- Department of Anatomical Sciences,
School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center
(iNANO), Aarhus University, Aarhus, Denmark
| | - Hojjatollah Nazari
- Research Center for Advanced
Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of
Medical Sciences, Tehran, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research
Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah,
Iran
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering,
University of Technology Sydney, Sydney, NSW, Australia
| | - Mahdi Mohaqiq
- Institute of Regenerative Medicine,
School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | | | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center
(iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Yildirim E, Yaba A. Determination of c-Abl tyrosine kinase and mTERT catalytic subunit of telomerase expression level during prenatal-postnatal mouse ovary-testis development. Reprod Biol 2020; 20:555-567. [PMID: 33191142 DOI: 10.1016/j.repbio.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 11/26/2022]
Abstract
Expression levels of genes involved in the development of germ cells vary throughout the process from bipotential gonadal period to adult gonadal formation. In mice, developments of female and male reproductive system are regulated by germ cell-specific factors and hormones, and determinative days in this regulation are very important. c-Abl is a non-receptor tyrosine kinase with cellular functions including cell proliferation, growth and development. mTERT is involved in maintaining telomerase activity and proliferation of surviving cells. We suggested that c-Abl and mTERT might be important for the healthy development of prenatal and postnatal mouse ovary and testis. We aim to demonstrate localization and expressions of c-Abl and mTERT in crucial days of ovary and testis development in prenatal and postnatal period in mouse by immunofluorescence staining and qRT-PCR, respectively. The importance of c-Abl and mTERT expressions during the healthy gonadal development is indicated in the prenatal and postnatal gonadal development. Also, protein expression levels were detected by Western Blot in only postnatal ovary and testis. Determining the functions of the c-Abl and mTERT throughout the process will be important in terms of understanding the infertility cases in the female and male with future studies.
Collapse
Affiliation(s)
- Ecem Yildirim
- Yeditepe University School of Medicine, Department of Histology and Embryology, 34755, Istanbul, Turkey
| | - Aylin Yaba
- Yeditepe University School of Medicine, Department of Histology and Embryology, 34755, Istanbul, Turkey.
| |
Collapse
|
22
|
Lobo IKC, Nascimento ÁRD, Yamagishi MEB, Guiguen Y, Silva GFD, Severac D, Amaral ADC, Reis VR, Almeida FLD. Transcriptome of tambaqui Colossoma macropomum during gonad differentiation: Different molecular signals leading to sex identity. Genomics 2020; 112:2478-2488. [PMID: 32027957 DOI: 10.1016/j.ygeno.2020.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Tambaqui (Colossoma macropomum) is the major native species in Brazilian aquaculture, and we have shown that females exhibit a higher growth compared to males, opening up the possibility for the production of all-female population. To date, there is no information on the sex determination and differentiation molecular mechanisms of tambaqui. In the present study, transcriptome sequencing of juvenile trunks was performed to understand the molecular network involved in the gonadal sex differentiation. The results showed that before differentiation, components of the Wnt/β-catenin pathway, fox and fst genes imprint female sex development, whereas antagonistic pathways (gsk3b, wt1 and fgfr2), sox9 and genes for androgen synthesis indicate male differentiation. Hence, in undifferentiated tambaqui, the Wnt/β-catenin exerts a role on sex differentiation, either upregulated in female-like individuals, or antagonized in male-like individuals.
Collapse
Affiliation(s)
| | | | | | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France.
| | | | - Dany Severac
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Aldessandro da Costa Amaral
- Programa de Pós-graduação em Ciências Pesqueiras nos Trópicos, Universidade Federal do Amazonas, Manaus, Brazil
| | - Vanessa Ribeiro Reis
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas, Manaus, Brazil
| | | |
Collapse
|
23
|
Grinspon RP, Rey RA. Molecular Characterization of XX Maleness. Int J Mol Sci 2019; 20:ijms20236089. [PMID: 31816857 PMCID: PMC6928850 DOI: 10.3390/ijms20236089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Androgens and anti-Müllerian hormone (AMH), secreted by the foetal testis, are responsible for the development of male reproductive organs and the regression of female anlagen. Virilization of the reproductive tract in association with the absence of Müllerian derivatives in the XX foetus implies the existence of testicular tissue, which can occur in the presence or absence of SRY. Recent advancement in the knowledge of the opposing gene cascades driving to the differentiation of the gonadal ridge into testes or ovaries during early foetal development has provided insight into the molecular explanation of XX maleness.
Collapse
Affiliation(s)
- Romina P. Grinspon
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
- Correspondence: (R.P.G.); (R.A.R.); Tel.: +54-11-49635931 (R.P.G.)
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
- Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
- Correspondence: (R.P.G.); (R.A.R.); Tel.: +54-11-49635931 (R.P.G.)
| |
Collapse
|
24
|
Rotgers E, Cisneros-Montalvo S, Nurmio M, Toppari J. Retinoblastoma protein represses E2F3 to maintain Sertoli cell quiescence in mouse testis. J Cell Sci 2019; 132:132/14/jcs229849. [PMID: 31308245 DOI: 10.1242/jcs.229849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023] Open
Abstract
Maintenance of the differentiated state and cell cycle exit in adult Sertoli cells depends on tumor suppressor retinoblastoma protein (RB, also known as RB1). We have previously shown that RB interacts with transcription factor E2F3 in the mouse testis. Here, we investigated how E2f3 contributes to adult Sertoli cell proliferation in a mouse model of Sertoli cell-specific knockout of Rb by crossing these mice with an E2f3 knockout mouse line. In the presence of intact RB, E2f3 was redundant in Sertoli cells. However, in the absence of RB, E2f3 is a key driver for cell cycle re-entry and loss of function in adult Sertoli cells. Knockout of E2f3 in Sertoli cells rescued the breakdown of Sertoli cell function associated with Rb loss, prevented proliferation of adult Sertoli cells and restored fertility of the mice. In summary, our results show that RB-mediated repression of E2F3 is critical for the maintenance of cell cycle exit and terminal differentiation in adult mouse Sertoli cells.
Collapse
Affiliation(s)
- Emmi Rotgers
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku 20520, Finland.,Department of Pediatrics, Turku University Hospital, Turku 20520, Finland
| | - Sheyla Cisneros-Montalvo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku 20520, Finland.,Department of Pediatrics, Turku University Hospital, Turku 20520, Finland
| | - Mirja Nurmio
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku 20520, Finland.,Department of Pediatrics, Turku University Hospital, Turku 20520, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku 20520, Finland .,Department of Pediatrics, Turku University Hospital, Turku 20520, Finland
| |
Collapse
|
25
|
Cardoso-Moreira M, Halbert J, Valloton D, Velten B, Chen C, Shao Y, Liechti A, Ascenção K, Rummel C, Ovchinnikova S, Mazin PV, Xenarios I, Harshman K, Mort M, Cooper DN, Sandi C, Soares MJ, Ferreira PG, Afonso S, Carneiro M, Turner JMA, VandeBerg JL, Fallahshahroudi A, Jensen P, Behr R, Lisgo S, Lindsay S, Khaitovich P, Huber W, Baker J, Anders S, Zhang YE, Kaessmann H. Gene expression across mammalian organ development. Nature 2019; 571:505-509. [PMID: 31243369 PMCID: PMC6658352 DOI: 10.1038/s41586-019-1338-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
The evolution of gene expression in mammalian organ development remains largely uncharacterized. Here we report the transcriptomes of seven organs (cerebrum, cerebellum, heart, kidney, liver, ovary and testis) across developmental time points from early organogenesis to adulthood for human, rhesus macaque, mouse, rat, rabbit, opossum and chicken. Comparisons of gene expression patterns identified correspondences of developmental stages across species, and differences in the timing of key events during the development of the gonads. We found that the breadth of gene expression and the extent of purifying selection gradually decrease during development, whereas the amount of positive selection and expression of new genes increase. We identified differences in the temporal trajectories of expression of individual genes across species, with brain tissues showing the smallest percentage of trajectory changes, and the liver and testis showing the largest. Our work provides a resource of developmental transcriptomes of seven organs across seven species, and comparative analyses that characterize the development and evolution of mammalian organs.
Collapse
Affiliation(s)
- Margarida Cardoso-Moreira
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Jean Halbert
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Delphine Valloton
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Britta Velten
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chunyan Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Shao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Angélica Liechti
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Kelly Ascenção
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Coralie Rummel
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Pavel V Mazin
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia
- Faculty of Computer Science, HSE University, Moscow, Russia
| | - Ioannis Xenarios
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Keith Harshman
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Matthew Mort
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, Departments of Pathology and Laboratory Medicine and Pediatrics, University of Kansas Medical Center, Kansas City, MO, USA
- Center for Perinatal Research, Children's Research Institute, Children's Mercy, Kansas City, MO, USA
| | - Paula G Ferreira
- Departamento de Anatomia, Universidade do Porto, Porto, Portugal
- ICBAS (Instituto de Ciências Biomédicas Abel Salazar), UMIB (Unidade Multidisciplinar de Investigação Biomédica), Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO/InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - John L VandeBerg
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Harlingen and Edinburg, TX, USA
- The Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Harlingen and Edinburg, TX, USA
| | - Amir Fallahshahroudi
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research (DPZ), Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Steven Lisgo
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Susan Lindsay
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Philipp Khaitovich
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julie Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
| |
Collapse
|
26
|
Todd EV, Ortega-Recalde O, Liu H, Lamm MS, Rutherford KM, Cross H, Black MA, Kardailsky O, Marshall Graves JA, Hore TA, Godwin JR, Gemmell NJ. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. SCIENCE ADVANCES 2019; 5:eaaw7006. [PMID: 31309157 PMCID: PMC6620101 DOI: 10.1126/sciadv.aaw7006] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 05/15/2023]
Abstract
Bluehead wrasses undergo dramatic, socially cued female-to-male sex change. We apply transcriptomic and methylome approaches in this wild coral reef fish to identify the primary trigger and subsequent molecular cascade of gonadal metamorphosis. Our data suggest that the environmental stimulus is exerted via the stress axis and that repression of the aromatase gene (encoding the enzyme converting androgens to estrogens) triggers a cascaded collapse of feminizing gene expression and identifies notable sex-specific gene neofunctionalization. Furthermore, sex change involves distinct epigenetic reprogramming and an intermediate state with altered epigenetic machinery expression akin to the early developmental cells of mammals. These findings reveal at a molecular level how a normally committed developmental process remains plastic and is reversed to completely alter organ structures.
Collapse
Affiliation(s)
- Erica V. Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Corresponding author. (E.V.T.); (O.O.-R.); (N.J.G.)
| | - Oscar Ortega-Recalde
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Corresponding author. (E.V.T.); (O.O.-R.); (N.J.G.)
| | - Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Melissa S. Lamm
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | | | - Hugh Cross
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - John R. Godwin
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Corresponding author. (E.V.T.); (O.O.-R.); (N.J.G.)
| |
Collapse
|
27
|
Baetens D, Verdin H, De Baere E, Cools M. Update on the genetics of differences of sex development (DSD). Best Pract Res Clin Endocrinol Metab 2019; 33:101271. [PMID: 31005504 DOI: 10.1016/j.beem.2019.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human gonadal development is regulated by the temporospatial expression of many different genes with critical dosage effects. Subsequent sex steroid hormone production requires several consecutive enzymatic steps and functional hormone receptors. Disruption of this complex process can result in atypical sex development and lead to conditions referred to as differences (disorders) of sex development (DSD). With the advent of massively parallel sequencing technologies, in silico protein modeling and innovative tools for the generation of animal models, new genes and pathways have been implicated in the pathogenesis of these conditions. Here, we provide an overview of the currently known DSD genes and mechanisms involved in the process of gonadal and phenotypical sex development and highlight phenotypic findings that may trigger further diagnostic investigations.
Collapse
Affiliation(s)
- Dorien Baetens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium; Division of Pediatric Endocrinology, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Hannah Verdin
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Martine Cools
- Division of Pediatric Endocrinology, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, Ghent, Belgium.
| |
Collapse
|
28
|
Abstract
Sexual fate can no longer be considered an irreversible deterministic process that once established during early embryonic development, plays out unchanged across an organism's life. Rather, it appears to be a dynamic process, with sexual phenotype determined through an ongoing battle for supremacy between antagonistic male and female developmental pathways. That sexual fate is not final and is actively regulated via the suppression or activation of opposing genetic networks creates the potential for flexibility in sexual phenotype in adulthood. Such flexibility is seen in many fish, where sex change is a usual and adaptive part of the life cycle. Many fish are sequential hermaphrodites, beginning life as one sex and changing sometime later to the other. Sequential hermaphrodites include species capable of female-to-male (protogynous), male-to-female (protandrous), or bidirectional (serial) sex change. These natural forms of sex change involve coordinated transformations across multiple biological systems, including behavioral, anatomical, neuroendocrine and molecular axes. Here we review the biological processes underlying this amazing transformation, focusing particularly on the molecular aspects, where new genomic technologies are beginning to help us understand how sex change is initiated and regulated at the molecular level.
Collapse
Affiliation(s)
- Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
29
|
Liu W, Zhang H, Xiang Y, Jia K, Luo M, Yi M. Molecular characterization of vasa homologue in marbled goby, Oxyeleotris marmorata: Transcription and localization analysis during gametogenesis and embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 2018; 229:42-50. [PMID: 30590176 DOI: 10.1016/j.cbpb.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
Identification of germ cell markers is important for investigating reproduction biology in fish. Vasa is one of the most studied germ cell markers in mammals and lower vertebrates including fish. Here, we characterized a vasa homologue from the fish marbled goby (Oxyeleotris marmorata), termed omvasa. The full length of omvasa cDNA is 2344 bp and encodes 658 amino acids, sharing high identities with Vasa homologues of other vertebrates. OmVasa protein contains 15 RG/RGG repeats at N-terminus, 2 ATPase motifs, as well as RNA unwinding and RNA binding domains at C-terminus. Phylogenetic tree showed that omVasa had the closest relationship with the Vasa homologue from the fish Boleophthalmus pectinirostris, the great blue-spotted mudskipper. qRT-PCR analysis indicated that omvasa was specifically transcribed in gonads, and the transcription level was gradually increased during oocyte development. The germ cell-specific distribution of omvasa mRNA was revealed by fluorescent in situ hybridization. In ovary, the signal of omvasa RNA displayed strong-weak-strong dynamics from oogonia over pre-vitellogenic oocytes to vitellogenic oocytes. In testis, omvasa signal was strong in spermatogonia, modest in spermatocytes but undetectable in spermatids and somatic cells. During embryogenesis, the transcription of omvasa mRNA was high at blastula stage, gradually decreased from gastrula stage and maintained at a low level in later developmental stages. Whole mount in situ hybridization indicated that omvasa mRNA was specific to primordial germ cells (PGCs). In summary, marbled goby vasa is a germ cell-specific transcript during gametogenesis, and can be used as an ideal marker for tracing PGC formation and migration, which is pivotal to germ cell manipulation in this species.
Collapse
Affiliation(s)
- Wei Liu
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Hong Zhang
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Yangxi Xiang
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Kuntong Jia
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Mingfei Luo
- Zhuhai Modern Agriculture Development Center, Guangdong, China.
| | - Meisheng Yi
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
30
|
Zhao L, Wang C, Lehman ML, He M, An J, Svingen T, Spiller CM, Ng ET, Nelson CC, Koopman P. Transcriptomic analysis of mRNA expression and alternative splicing during mouse sex determination. Mol Cell Endocrinol 2018; 478:84-96. [PMID: 30053582 DOI: 10.1016/j.mce.2018.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Mammalian sex determination hinges on sexually dimorphic transcriptional programs in developing fetal gonads. A comprehensive view of these programs is crucial for understanding the normal development of fetal testes and ovaries and the etiology of human disorders of sex development (DSDs), many of which remain unexplained. Using strand-specific RNA-sequencing, we characterized the mouse fetal gonadal transcriptome from 10.5 to 13.5 days post coitum, a key time window in sex determination and gonad development. Our dataset benefits from a greater sensitivity, accuracy and dynamic range compared to microarray studies, allows global dynamics and sex-specificity of gene expression to be assessed, and provides a window to non-transcriptional events such as alternative splicing. Spliceomic analysis uncovered female-specific regulation of Lef1 splicing, which may contribute to the enhanced WNT signaling activity in XX gonads. We provide a user-friendly visualization tool for the complete transcriptomic and spliceomic dataset as a resource for the field.
Collapse
Affiliation(s)
- Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chenwei Wang
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Melanie L Lehman
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Mingyu He
- Longsoft, Brisbane, Queensland, 4109, Australia
| | - Jiyuan An
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Terje Svingen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Cassy M Spiller
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ee Ting Ng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
31
|
Kojima K, Nakamura H, Komeya M, Yamanaka H, Makino Y, Okada Y, Akiyama H, Torikai N, Sato T, Fujii T, Kimura H, Ogawa T. Neonatal testis growth recreated in vitro by two-dimensional organ spreading. Biotechnol Bioeng 2018; 115:3030-3041. [PMID: 30144353 PMCID: PMC6283240 DOI: 10.1002/bit.26822] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 07/27/2018] [Accepted: 08/23/2018] [Indexed: 01/15/2023]
Abstract
Organ culture experiments can be hampered by central degeneration or necrosis due to the inadequate permeation of oxygen and nutrients, which deteriorates the function and growth of cultured tissues. In the current study, we aimed to overcome this limitation of organ culture through spreading the tissue two dimensionally on an agarose gel stand and molding into a disc shape by placing a ceiling of polydimethylsiloxane (PDMS) chip, which is highly oxygen permeable. By this, every part of the tissue can receive a sufficient supply of oxygen through PDMS as well as nutrients through the agarose gel below. This method not only prevented central necrosis of tissues, but also supported the tissue growth over time. In addition, such growth, as volume enlargement, could be easily measured. Under these conditions, we examined the effect of several factors on the growth of neonatal mouse testis, and found that follicle stimulating hormone (FSH) and insulin significantly promoted the growth. These results are in good agreement with previous in vivo reports. Notably, the growth achieved over 7 days in our in vitro system is almost comparable to, about 80% of, that observed in vivo. Thus, we successfully monitored the promotion of tissue growth beyond the limits of the conventional organ culture method. This extremely simple method could offer a unique platform to evaluate the growth as well as functional properties of organs, not only the testis but also others as well.
Collapse
Affiliation(s)
- Kazuaki Kojima
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Association of Medical Science, Yokohama City University, Yokohama, Japan
| | - Hiroko Nakamura
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Japan
| | - Mitsuru Komeya
- Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Yamanaka
- Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yoshinori Makino
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Nobuhito Torikai
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Association of Medical Science, Yokohama City University, Yokohama, Japan
| | - Takuya Sato
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Association of Medical Science, Yokohama City University, Yokohama, Japan
| | - Teruo Fujii
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Japan
| | - Takehiko Ogawa
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Association of Medical Science, Yokohama City University, Yokohama, Japan.,Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
32
|
Frydman N, Poulain M, Arkoun B, Duquenne C, Tourpin S, Messiaen S, Habert R, Rouiller-Fabre V, Benachi A, Livera G. Human foetal ovary shares meiotic preventing factors with the developing testis. Hum Reprod 2018; 32:631-642. [PMID: 28073973 DOI: 10.1093/humrep/dew343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/14/2016] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION How can pre-meiotic germ cells persist in the human foetal ovary? SUMMARY ANSWER Numerous oogonia escaping meiotic entry were retrieved throughout human ovarian development simultaneously with the expression of signalling pathways preventing meiosis, typically described in the rodent embryonic testis. WHAT IS KNOWN ALREADY The transition from mitosis to meiosis is a key event in female germ cells that remains poorly documented in research on the human ovary. Previous reports described a strikingly asynchronous differentiation in the human female germ line during development, with the persistence of oogonia among oocytes and follicles during the second and third trimesters. The possible mechanisms allowing some cells to escape meiosis remain elusive. STUDY DESIGN SIZE, DURATION In order to document the extent of this phenomenon, we detailed the expression profile of germ cell differentiation markers using 73 ovaries ranging from 6.4 to 35 weeks post-fertilization. PARTICIPANTS/MATERIALS SETTING, METHODS Pre-meiotic markers were detected by immunohistochemistry or qRT-PCR. The expression of the main meiosis-preventing factors identified in mice was analysed, and their functionality assessed using organ cultures. MAIN RESULTS AND THE ROLE OF CHANCE Oogonia stained for AP2γ could be traced from the first trimester until the end of the third trimester. Female germ cell differentiation is organized both in time and space in a centripetal manner in the foetal human ovary. Unexpectedly, some features usually ascribed to rodent pre-spermatogonia could be observed in human foetal ovaries, such as NANOS2 expression and quiescence in some germ cells. The two main somatic signals known to inhibit meiosis in the mouse embryonic testis, CYP26B1 and FGF9, were detected in the human ovary and act simultaneously to repress STRA8 and meiosis in human foetal female germ cells. LARGE SCALE DATA N/A. LIMITATIONS REASON FOR CAUTION Our conclusions relied partly on in vitro experiments. Germ cells were not systematically identified with immunostaining and some may have thus escaped analysis. WIDER IMPLICATIONS OF THE FINDINGS We found evidence that a robust repression of meiotic entry is taking place in the human foetal ovary, possibly explaining the exceptional long-lasting presence of pre-meiotic germ cells until late gestational age. This result calls for a redefinition of the markers known as classical male markers, which may in fact characterize mammalian developing gonads irrespectively of their sex. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the Université Paris Diderot-Paris 7 and Université Paris-Sud, CEA, INSERM, and Agence de la Biomédecine. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Nelly Frydman
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux Roses F-92265, France.,AP-HP, Reproductive Biology Unit, Univ. Paris-Sud, Université Paris-Saclay, Hôpital Antoine Béclère, Clamart F-92140, France
| | - Marine Poulain
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Brahim Arkoun
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Clotilde Duquenne
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Sophie Tourpin
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Sébastien Messiaen
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - René Habert
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Virginie Rouiller-Fabre
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Alexandra Benachi
- AP-HP, Department of Obstetrics and Gynaecology, Univ. Paris-Sud, Université Paris-Saclay, Hôpital Antoine Béclère, ClamartF-92140, France
| | - Gabriel Livera
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| |
Collapse
|
33
|
Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ 2018; 25:749-766. [PMID: 29305586 PMCID: PMC5864226 DOI: 10.1038/s41418-017-0015-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022] Open
Abstract
Generation of functional spermatids from human spermatogonial stem cells (SSCs) in vitro is of utmost importance for uncovering mechanisms underlying human germ cell development and treating infertility. Here we report a three-dimensional-induced (3D-I) system by which human SSCs were efficiently differentiated into functional haploid spermatids. Human SSCs were isolated and identified phenotypically. Meiotic chromatin spreads and DNA content assays revealed that spermatocytes and haploid cells were effectively generated from human SSCs by 3D-I system. Haploid cells derived from human SSCs harbored normal chromosomes and excluded Y chromosome microdeletions. RNA sequencing and bisulfite sequencing analyses reflected similarities in global gene profiles and DNA methylation in human SSCs-derived spermatids and normal round spermatids. Significantly, haploid spermatids generated from human SSCs via 3D-I system were capable of fertilizing mouse oocytes, which subsequently enabled the development of hybrid embryos. This study thus provides invaluable human male gametes for treating male infertility.
Collapse
|
34
|
Martinez-Pinto J, Piquer B, Tiszavari M, Lara H. Neonatal exposure to estradiol valerate reprograms the rat ovary androgen receptor and anti-Müllerian hormone to a polycystic ovary phenotype. Reprod Toxicol 2018; 75:127-135. [DOI: 10.1016/j.reprotox.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/14/2017] [Accepted: 10/17/2017] [Indexed: 01/29/2023]
|
35
|
Roles of CD34+ cells and ALK5 signaling in the reconstruction of seminiferous tubule-like structures in 3-D re-aggregate culture of dissociated cells from neonatal mouse testes. PLoS One 2017; 12:e0188705. [PMID: 29190781 PMCID: PMC5708723 DOI: 10.1371/journal.pone.0188705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/10/2017] [Indexed: 11/19/2022] Open
Abstract
Tissue reconstruction in vitro can provide, if successful, a refined and simple system to analyze the underlying mechanisms that drive the morphogenesis and maintain the ordered structure. We have recently succeeded in reconstruction of seminiferous cord-like and tubule-like structures using 3-D re-aggregate culture of dissociated testicular cells. In testis formation, endothelial cells that migrated from mesonephroi to embryonic gonads have been shown to be critical for development of testis cords, but how endothelial cells contribute to testis cord formation remains unknown. To decipher the roles of endothelial and peritubular cells in the reconstruction of cord-like and tubule-like structures, we investigated the behavior of CD34+ endothelial and p75+ cells, and peritubular myoid cells (PTMCs) in 3-D re-aggregate cultures of testicular cells. The results showed that these 3 types of cells had the capacity of re-aggregation on their own and with each other, and of segregation into 3 layers in a re-aggregate, which were very similar to interstitial and peritubular tissues in vivo. Observation of behaviors of fluorescent Sertoli cells and other non-fluorescent types of cells using testes from Sox9-EGFP transgenic mice showed dynamic cell movement and segregation in re-aggregate cultures. Cultures of testicular cells deprived of interstitial and peritubular cells resulted in dysmorphic structures, but re-addition of them restored tubule-like structures. Purified CD34+ cells in culture differentiated into p75+ cells and PTMCs. These results indicate that CD34+ cells differentiate into p75+ cells, which then differentiate into PTMCs. TGFβ signaling inhibitors, SB431542 and ALK5i, disturbed the reconstruction of cord-like and tubule-like structures, and the latter compromised re-construction of interstitial-like and peritubular-like structures, as well as the proliferation of CD34+, p75+, PTMCs, and Sertoli cells, and their movement and differentiation. These results indicate that CD34+ cells and signaling through ALK5 play pivotal roles in the morphogenesis of interstitial-like, peritubular-like and cord-like structures.
Collapse
|
36
|
Ungewitter E, Rotgers E, Bantukul T, Kawakami Y, Kissling GE, Yao HHC. From the Cover: Teratogenic Effects of in Utero Exposure to Di-(2-Ethylhexyl)-Phthalate (DEHP) in B6:129S4 Mice. Toxicol Sci 2017; 157:8-19. [PMID: 28123099 PMCID: PMC6074946 DOI: 10.1093/toxsci/kfx019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intrauterine exposure to phthalates is known to cause disorders of male reproductive function including androgen insufficiency, decreased fertility, and germ cell defects in rodents. In this study, we set out to investigate the effects of intrauterine exposure to di-(2-ethylhexyl)-phthalate (DEHP) on fetal development of the B6:129S4 mouse strain. Time-mated pregnant C57BL/6 dams were exposed to 0, 5, 250, or 500 mg/kg DEHP with corn oil as the vehicle via oral gavage from embryonic days (E)7 to 16. Survival and gross morphology of the pups were analyzed one day after the last treatment. Anogenital distance (AGD) and testicular cell functions were examined in male embryos to confirm the known effects of phthalate exposure. DEHP exposure significantly reduced the survival rate of fetuses in the 250 and 500 mg/kg dosage groups compared with the control and 5 mg/kg groups. Exposure to 250 and 500 mg/kg DEHP was teratogenic and induced exencephaly and limb malformations such as polydactyly in the B6:126S4 embryos. No gross malformations were observed in control or 5 mg/kg DEHP groups. In male embryos, exposure to both 5 and 250 mg/kg DEHP in utero was sufficient to induce the formation of multinucleated germ cells in the testes and widespread changes in mRNA expression of germ cell, interstitium and Sertoli cell-associated genes. These findings reveal that intrauterine DEHP exposure has a strong teratogenic, and lethal impact on the fetuses of B6:129S4 mouse strain.
Collapse
Affiliation(s)
| | | | | | - Yasuhiko Kawakami
- Gennetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Grace E. Kissling
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
37
|
Zhao L, Arsenault M, Ng ET, Longmuss E, Chau TCY, Hartwig S, Koopman P. SOX4 regulates gonad morphogenesis and promotes male germ cell differentiation in mice. Dev Biol 2017; 423:46-56. [PMID: 28118982 DOI: 10.1016/j.ydbio.2017.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
The group C SOX transcription factors SOX4, -11 and -12 play important and mutually overlapping roles in development of a number of organs. Here, we examined the role of SoxC genes during gonadal development in mice. All three genes were expressed in developing gonads of both sexes, predominantly in somatic cells, with Sox4 being most strongly expressed. Sox4 deficiency resulted in elongation of both ovaries and testes, and an increased number of testis cords. While female germ cells entered meiosis normally, male germ cells showed reduced levels of differentiation markers Nanos2 and Dnmt3l and increased levels of pluripotency genes Cripto and Nanog, suggesting that SOX4 may normally act to restrict the pluripotency period of male germ cells and ensure their proper differentiation. Finally, our data reveal that SOX4 (and, to a lesser extent, SOX11 and -12) repressed transcription of the sex-determining gene Sox9 via an upstream testis-specific enhancer core (TESCO) element in fetal gonads, raising the possibility that SOXC proteins may function as transcriptional repressors in a context-dependent manner.
Collapse
Affiliation(s)
- Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michel Arsenault
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island,550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Ee Ting Ng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Enya Longmuss
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tevin Chui-Ying Chau
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sunny Hartwig
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island,550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
38
|
Wen Q, Wang Y, Tang J, Cheng CY, Liu YX. Sertoli Cell Wt1 Regulates Peritubular Myoid Cell and Fetal Leydig Cell Differentiation during Fetal Testis Development. PLoS One 2016; 11:e0167920. [PMID: 28036337 PMCID: PMC5201236 DOI: 10.1371/journal.pone.0167920] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Sertoli cells play a significant role in regulating fetal testis compartmentalization to generate testis cords and interstitium during development. The Sertoli cell Wilms’ tumor 1 (Wt1) gene, which encodes ~24 zinc finger-containing transcription factors, is known to play a crucial role in fetal testis cord assembly and maintenance. However, whether Wt1 regulates fetal testis compartmentalization by modulating the development of peritubular myoid cells (PMCs) and/or fetal Leydig cells (FLCs) remains unknown. Using a Wt1-/flox; Amh-Cre mouse model by deleting Wt1 in Sertoli cells (Wt1SC-cKO) at embryonic day 14.5 (E14.5), Wt1 was found to regulate PMC and FLC development. Wt1 deletion in fetal testis Sertoli cells caused aberrant differentiation and proliferation of PMCs, FLCs and interstitial progenitor cells from embryo to newborn, leading to abnormal fetal testis interstitial development. Specifically, the expression of PMC marker genes α-Sma, Myh11 and Des, and interstitial progenitor cell marker gene Vcam1 were down-regulated, whereas FLC marker genes StAR, Cyp11a1, Cyp17a1 and Hsd3b1 were up-regulated, in neonatal Wt1SC-cKO testes. The ratio of PMC:FLC were also reduced in Wt1SC-cKO testes, concomitant with a down-regulation of Notch signaling molecules Jag 1, Notch 2, Notch 3, and Hes1 in neonatal Wt1SC-cKO testes, illustrating changes in the differentiation status of FLC from their interstitial progenitor cells during fetal testis development. In summary, Wt1 regulates the development of FLC and interstitial progenitor cell lineages through Notch signaling, and it also plays a role in PMC development. Collectively, these effects confer fetal testis compartmentalization.
Collapse
Affiliation(s)
- Qing Wen
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Yuqian Wang
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jixin Tang
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, United States of America
- * E-mail: (YXL); (CYC)
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (YXL); (CYC)
| |
Collapse
|
39
|
Liu H, Todd EV, Lokman PM, Lamm MS, Godwin JR, Gemmell NJ. Sexual plasticity: A fishy tale. Mol Reprod Dev 2016; 84:171-194. [PMID: 27543780 DOI: 10.1002/mrd.22691] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/16/2016] [Indexed: 01/08/2023]
Abstract
Teleost fish exhibit remarkably diverse and plastic patterns of sexual development. One of the most fascinating modes of plasticity is functional sex change, which is widespread in marine fish including species of commercial importance; however, the regulatory mechanisms remain elusive. In this review, we explore such sexual plasticity in fish, using the bluehead wrasse (Thalassoma bifasciatum) as the primary model. Synthesizing current knowledge, we propose that cortisol and key neurochemicals modulate gonadotropin releasing hormone and luteinizing hormone signaling to promote socially controlled sex change in protogynous fish. Future large-scale genomic analyses and systematic comparisons among species, combined with manipulation studies, will likely uncover the common and unique pathways governing this astonishing transformation. Revealing the molecular and neuroendocrine mechanisms underlying sex change in fish will greatly enhance our understanding of vertebrate sex determination and differentiation as well as phenotypic plasticity in response to environmental influences. Mol. Reprod. Dev. 84: 171-194, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - P Mark Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Wang Y, Yang Q, Liu W, Yu M, Zhang Z, Cui X. Di(2-Ethylhexyl) Phthalate Exposure In Utero Damages Sertoli Cell Differentiation Via Disturbance of Sex Determination Pathway in Fetal and Postnatal Mice. Toxicol Sci 2016; 152:53-61. [PMID: 27060630 DOI: 10.1093/toxsci/kfw063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mice may share similar mechanism with human underlying reproductive toxicity induced by di(2-ethylhexyl) phthalate (DEHP), which is not supposed to be associated with decreased testicular testosterone. Pregnant mice were exposed to DEHP by gavage, with the dosage regime beginning at human relevant exposure level. After in utero DEHP exposure, loss of Sertoli cells and germ cells were observed in the male pups at postnatal days 21. And SRY-related HMG box 9 (SOX9), Fibroblast growth factor-9 (FGF9), and Double-sex and Mab-3 related transcripttion factor 1 (DMRT1) proteins were significantly downregulated by DEHP at 2 mg/kg/d and above, suggesting the depression of Sertoli cell differentiation. The repression of Sox9 genes expression was supported by whole-mount in situ hybridization and real-time real-time-quantitative PCR. The expressions of Cyp11α1 and Star were not significantly affected by in utero DEHP exposure, indicating the absence of effects on testosterone biosynthesis. Furthermore, the testosterone-independent pathway regulating Sertoli cells differentiation was disturbed in fetus by DEHP at 2 mg/kg/d and above during the critical time window of sex determination, involving Gadd45g → Gata4/Fog2 → Sry → Sox9 → Fgf9 The results suggest that in utero DEHP exposure damaged Sertoli cells in the postnatal life of mice offspring via disturbance of the differentiation regulating pathway, potentially inducing declines in spermatogenesis.
Collapse
Affiliation(s)
- Yongan Wang
- *Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
| | - Qing Yang
- School of Environmental Science and Technology
| | - Wei Liu
- *Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
| | - Mingxi Yu
- *Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
| | - Zhou Zhang
- *Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
| | - Xiaoyu Cui
- *Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
| |
Collapse
|
41
|
Zama AM, Bhurke A, Uzumcu M. Effects of Endocrine-disrupting Chemicals on Female Reproductive Health. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are increasingly prevalent in the environment and the evidence demonstrates that they affect reproductive health, has been accumulating for the last few decades. In this review of recent literature, we present evidence of the effects of estrogen-mimicking EDCs on female reproductive health especially the ovaries and uteri. As representative EDCs, data from studies with a pharmaceutical estrogen, diethylstilbestrol (DES), an organochlorine pesticide methoxychlor (MXC), a phytoestrogen (genistein), and a chemical used in plastics, bisphenol a (BPA) have been presented. We also discuss the effects of a commonly found plasticizer in the environment, a phthalate (DEHP), even though it is not a typical estrogenic EDC. Collectively, these studies show that exposures during fetal and neonatal periods cause developmental reprogramming leading to adult reproductive disease. Puberty, estrous cyclicity, ovarian follicular development, and uterine functions are all affected by exposure to these EDCs. Evidence that epigenetic modifications are involved in the progression to adult disease is also presented.
Collapse
|
42
|
Rios-Rojas C, Spiller C, Bowles J, Koopman P. Germ cells influence cord formation and leydig cell gene expression during mouse testis development. Dev Dyn 2016; 245:433-44. [DOI: 10.1002/dvdy.24371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/15/2015] [Accepted: 11/18/2015] [Indexed: 11/07/2022] Open
Affiliation(s)
- Clarissa Rios-Rojas
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Australia
| | - Cassy Spiller
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Australia
| | - Josephine Bowles
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Australia
| | - Peter Koopman
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Australia
| |
Collapse
|
43
|
Grossman H, Shalgi R. A Role of MicroRNAs in Cell Differentiation During Gonad Development. Results Probl Cell Differ 2016; 58:309-36. [PMID: 27300184 DOI: 10.1007/978-3-319-31973-5_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. Widely explored in the ovary, miRNAs were suggested to play a fundamental role in follicles' assembly, growth, differentiation, and ovulation. In this chapter, we focus on data obtained from mice in which distinct proteins that participate in the biosynthesis of miRNAs were conditionally knocked out from germ cells (spermatogonial cells or oocytes) or gonadal somatic cells (Sertoli or granulosa cells). We detail recent advances in identification of particular miRNAs and their significance in the development and function of male and female gonads. miRNAs can serve as biomarkers and therapeutic agents of pathological conditions; thus, elucidating the branched and complex network of reproduction-related miRNAs will aid understanding of gonads' physiology and managing reproduction disorders.
Collapse
Affiliation(s)
- Hadas Grossman
- Department of Cell Biology and Development, Tel Aviv University, Ramat Aviv, Israel
| | - Ruth Shalgi
- Department of Cell Biology and Development, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
44
|
Romereim SM, Cupp AS. Mesonephric Cell Migration into the Gonads and Vascularization Are Processes Crucial for Testis Development. Results Probl Cell Differ 2016; 58:67-100. [PMID: 27300176 DOI: 10.1007/978-3-319-31973-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Testis morphogenesis requires the integration and reorganization of multiple cell types from several sources, one of the more notable being the mesonephric-derived cell population. One of the earliest sex-specific morphogenetic events in the gonad is a wave of endothelial cell migration from the mesonephros that is crucial for (1) partitioning the gonad into domains for testis cords, (2) providing the vasculature of the testis, and (3) signaling to cells both within the gonad and beyond it to coordinately regulate testis development. In addition to endothelial cell migration, there is evidence that precursors of peritubular myoid cells migrate from the mesonephros, an event which is also important for testis cord architecture. Investigation of the mesonephric cell migration event has utilized histology, lineage tracing with mouse genetic markers, and many studies of the signaling molecules/pathways involved. Some of the more well-studied signaling molecules involved include vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and neurotrophins. In this chapter, the morphogenetic events, relevant signaling pathways, mechanisms underlying the migration, and the role of the migratory cells within the testis will be discussed. Overall, the migration of mesonephric cells into the early testis is indispensable for its development and future functionality.
Collapse
|
45
|
Liu H, Lamm MS, Rutherford K, Black MA, Godwin JR, Gemmell NJ. Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol Sex Differ 2015; 6:26. [PMID: 26613014 PMCID: PMC4660848 DOI: 10.1186/s13293-015-0044-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Background Teleost fishes exhibit remarkably diverse and plastic sexual developmental patterns. One of the most astonishing is the rapid socially controlled female-to-male (protogynous) sex change observed in bluehead wrasses (Thalassoma bifasciatum). Such functional sex change is widespread in marine fishes, including species of commercial importance, yet its underlying molecular basis remains poorly explored. Methods RNA sequencing was performed to characterize the transcriptomic profiles and identify genes exhibiting sex-biased expression in the brain (forebrain and midbrain) and gonads of bluehead wrasses. Functional annotation and enrichment analysis were carried out for the sex-biased genes in the gonad to detect global differences in gene products and genetic pathways between males and females. Results Here we report the first transcriptomic analysis for a protogynous fish. Expression comparison between males and females reveals a large set of genes with sex-biased expression in the gonad, but relatively few such sex-biased genes in the brain. Functional annotation and enrichment analysis suggested that ovaries are mainly enriched for metabolic processes and testes for signal transduction, particularly receptors of neurotransmitters and steroid hormones. When compared to other species, many genes previously implicated in male sex determination and differentiation pathways showed conservation in their gonadal expression patterns in bluehead wrasses. However, some critical female-pathway genes (e.g., rspo1 and wnt4b) exhibited unanticipated expression patterns. In the brain, gene expression patterns suggest that local neurosteroid production and signaling likely contribute to the sex differences observed. Conclusions Expression patterns of key sex-related genes suggest that sex-changing fish predominantly use an evolutionarily conserved genetic toolkit, but that subtle variability in the standard sex-determination regulatory network likely contributes to sexual plasticity in these fish. This study not only provides the first molecular data on a system ideally suited to explore the molecular basis of sexual plasticity and tissue re-engineering, but also sheds some light on the evolution of diverse sex determination and differentiation systems. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
46
|
Ríos O, Frias S, Rodríguez A, Kofman S, Merchant H, Torres L, Mendoza L. A Boolean network model of human gonadal sex determination. Theor Biol Med Model 2015; 12:26. [PMID: 26573569 PMCID: PMC4647291 DOI: 10.1186/s12976-015-0023-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Gonadal sex determination (GSD) in humans is a complex biological process that takes place in early stages of embryonic development when the bipotential gonadal primordium (BGP) differentiates towards testes or ovaries. This decision is directed by one of two distinct pathways embedded in a GSD network activated in a population of coelomic epithelial cells, the Sertoli progenitor cells (SPC) and the granulosa progenitor cells (GPC). In males, the pathway is activated when the Sex-Determining Region Y (SRY) gene starts to be expressed, whereas in females the WNT4/ β-catenin pathway promotes the differentiation of the GPCs towards ovaries. The interactions and dynamics of the elements that constitute the GSD network are poorly understood, thus our group is interested in inferring the general architecture of this network as well as modeling the dynamic behavior of a set of genes associated to this process under wild-type and mutant conditions. METHODS We reconstructed the regulatory network of GSD with a set of genes directly associated with the process of differentiation from SPC and GPC towards Sertoli and granulosa cells, respectively. These genes are experimentally well-characterized and the effects of their deficiency have been clinically reported. We modeled this GSD network as a synchronous Boolean network model (BNM) and characterized its attractors under wild-type and mutant conditions. RESULTS Three attractors with a clear biological meaning were found; one of them corresponding to the currently known gene expression pattern of Sertoli cells, the second correlating to the granulosa cells and, the third resembling a disgenetic gonad. CONCLUSIONS The BNM of GSD that we present summarizes the experimental data on the pathways for Sertoli and granulosa establishment and sheds light on the overall behavior of a population of cells that differentiate within the developing gonad. With this model we propose a set of regulatory interactions needed to activate either the SRY or the WNT4/ β-catenin pathway as well as their downstream targets, which are critical for further sex differentiation. In addition, we observed a pattern of altered regulatory interactions and their dynamics that lead to some disorders of sex development (DSD).
Collapse
Affiliation(s)
- Osiris Ríos
- Instituto Nacional de Pediatría, Laboratorio de Citogenética, Av. Insurgentes Sur 3700 C, México City, 04530, México. .,Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, México.
| | - Sara Frias
- Instituto Nacional de Pediatría, Laboratorio de Citogenética, Av. Insurgentes Sur 3700 C, México City, 04530, México. .,Instituto de Investigaciones Biomédicas, UNAM, Mexico City, 04510, México.
| | - Alfredo Rodríguez
- Instituto Nacional de Pediatría, Laboratorio de Citogenética, Av. Insurgentes Sur 3700 C, México City, 04530, México. .,Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, México.
| | - Susana Kofman
- Facultad de Medicina/Hospital General de Mexico, Mexico City, México
| | - Horacio Merchant
- Instituto de Investigaciones Biomédicas, UNAM, Mexico City, 04510, México.
| | - Leda Torres
- Instituto Nacional de Pediatría, Laboratorio de Citogenética, Av. Insurgentes Sur 3700 C, México City, 04530, México.
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, UNAM, Mexico City, 04510, México. .,C3, Centro de Ciencias de la Complejidad, UNAM, Mexico City, 04510, México.
| |
Collapse
|
47
|
Wang Y, Liu W, Yang Q, Yu M, Zhang Z. Di (2-ethylhexyl) phthalate exposure during pregnancy disturbs temporal sex determination regulation in mice offspring. Toxicology 2015. [DOI: 10.1016/j.tox.2015.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Rios-Rojas C, Bowles J, Koopman P. On the role of germ cells in mammalian gonad development: quiet passengers or back-seat drivers? Reproduction 2015; 149:R181-91. [PMID: 25628441 DOI: 10.1530/rep-14-0663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In addition to their role as endocrine organs, the gonads nurture and protect germ cells, and regulate the formation of gametes competent to convey the genome to the following generation. After sex determination, gonadal somatic cells use several known signalling pathways to direct germ cell development. However, the extent to which germ cells communicate back to the soma, the molecular signals they use to do so and the significance of any such signalling remain as open questions. Herein, we review findings arising from the study of gonadal development and function in the absence of germ cells in a range of organisms. Most published studies support the view that germ cells are unimportant for foetal gonadal development in mammals, but later become critical for stabilisation of gonadal function and somatic cell phenotype. However, the lack of consistency in the data, and clear differences between mammals and other vertebrates and invertebrates, suggests that the story may not be so simple and would benefit from more careful analysis using contemporary molecular, cell biology and imaging tools.
Collapse
Affiliation(s)
- Clarissa Rios-Rojas
- Institute for Molecular BioscienceThe University of Queensland, Brisbane, Queensland 4072, Australia
| | - Josephine Bowles
- Institute for Molecular BioscienceThe University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter Koopman
- Institute for Molecular BioscienceThe University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
49
|
Zhang J, Hatakeyama J, Eto K, Abe SI. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix. Gen Comp Endocrinol 2014; 205:121-32. [PMID: 24717811 DOI: 10.1016/j.ygcen.2014.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 11/20/2022]
Abstract
Male gonad development is initiated by the aggregation of pre-Sertoli cells (SCs), which surround germ cells to form cords. Several attempts to reconstruct testes from dissociated testicular cells have been made; however, only very limited morphogenesis beyond seminiferous cord formation has been achieved. Therefore, we aimed to reconstruct seminiferous tubules using a 3-dimensional (D) re-aggregate culture of testicular cells, which were dissociated from 6-dpp neonatal mice, inside a collagen matrix. We performed a short-term culture (for 3 days) and a long-term culture (up to 3 wks). The addition of KnockOut Serum Replacement (KSR) promoted (1) the enlargement of SC re-aggregates; (2) the attachment of peritubular myoid (PTM) cells around the SC re-aggregates; (3) the sorting of germ cells inside, and Leydig cells outside, seminiferous cord-like structures; (4) the alignment of SC polarity inside a seminiferous cord-like structure relative to the basement membrane; (5) the differentiation of SCs (the expression of the androgen receptor); (6) the formation of a blood-testis-barrier between the SCs; (7) SC elongation and lumen formation; and (8) the proliferation of SCs and spermatogonia, as well as the differentiation of spermatogonia into primary spermatocytes. Eventually, KSR promoted the formation of seminiferous tubule-like structures, which accompanied germ cell differentiation. However, these morphogenetic events did not occur in the absence of KSR. This in vitro system presents an excellent model with which to identify the possible factors that induce these events and to analyze the mechanisms that underlie cellular interactions during testicular morphogenesis and germ cell differentiation.
Collapse
Affiliation(s)
- Jidong Zhang
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Jun Hatakeyama
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| | - Ko Eto
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Shin-Ichi Abe
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
50
|
Cruz G, Foster W, Paredes A, Yi KD, Uzumcu M. Long-term effects of early-life exposure to environmental oestrogens on ovarian function: role of epigenetics. J Neuroendocrinol 2014; 26:613-24. [PMID: 25040227 PMCID: PMC4297924 DOI: 10.1111/jne.12181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/22/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Oestrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is considered that developmental exposure to environmental oestrogens can disrupt neural and reproductive tract development, potentially resulting in long-term alterations in neurobehaviour and reproductive function. Many chemicals have been shown to have oestrogenic activity, whereas others affect oestrogen production and turnover, resulting in the disruption of oestrogen signalling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on oestrogen-sensitive target tissues. Hence, alternative mechanisms are assumed to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including oestrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying the disruption of ovarian follicular development. In addition, we discuss how exposure to environmental oestrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology.
Collapse
Affiliation(s)
- Gonzalo Cruz
- Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Correspondence to: Gonzalo Cruz, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile. 2360102, Tel. 56 32 2508015,
| | - Warren Foster
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Alfonso Paredes
- Laboratorio de Neurobioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - Kun Don Yi
- Syngenta Crop Protection, LLC. Greensboro, NC
| | - Mehmet Uzumcu
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|