1
|
Podsiedlik M, Markowicz-Piasecka M, Sikora J. Erythrocytes as model cells for biocompatibility assessment, cytotoxicity screening of xenobiotics and drug delivery. Chem Biol Interact 2020; 332:109305. [PMID: 33130048 DOI: 10.1016/j.cbi.2020.109305] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Erythrocytes (RBCs) represent the main cell component in circulation and recently have become a topic of intensive scientific interest. The relevance of erythrocytes as a model for cytotoxicity screening of xenobiotics is under the spotlight of this review. Erythrocytes constitute a fundamental cellular model to study potential interactions with blood components of manifold novel polymer or biomaterials. Morphological changes, subsequent disruption of RBC membrane integrity, and hemolysis could be used to determine the cytotoxicity of various compounds. Erythrocytes undergo a programmed death (eryptosis) which could serve as a good model for evaluating certain mechanisms which correspond to apoptosis taking place in nucleated cells. Importantly, erythrocytes can be successfully used as a valuable cellular model in examination of oxidative stress generated by certain diseases or multiple xenobiotics since red cells are subjected to permanent oxidative stress. Additionally, the antioxidant capacity of erythrocytes, and the activity of anti-oxidative enzymes could reflect reactive oxygen species (ROS) generating properties of various substances and allow to determine their effects on tissues. The last part of this review presents the latest findings on the possible application of RBCs as drug delivery systems (DDS). In conclusion, all these findings make erythrocytes highly valuable cells for in vitro biocompatibility assessment, cytotoxicity screening of a wide variety of substances as well as drug delivery.
Collapse
Affiliation(s)
- Maria Podsiedlik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| |
Collapse
|
2
|
Söderström CM, Fagerberg SK, Brogaard MB, Leipziger J, Skals M, Praetorius HA. Loop Diuretics Diminish Hemolysis Induced by α-Hemolysin from Escherichia coli. J Membr Biol 2017; 250:301-313. [DOI: 10.1007/s00232-017-9963-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
3
|
Fang Z, Jiang C, Tang J, He M, Lin X, Chen X, Han L, Zhang Z, Feng Y, Guo Y, Li H, Jiang W. A comprehensive analysis of membrane and morphology of erythrocytes from patients with glucose-6-phosphate dehydrogenase deficiency. J Struct Biol 2016; 194:235-43. [DOI: 10.1016/j.jsb.2015.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
|
4
|
Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:513518. [PMID: 25821808 PMCID: PMC4364016 DOI: 10.1155/2015/513518] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
Collapse
|
5
|
Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol 2015; 39:35-42. [PMID: 25636585 DOI: 10.1016/j.semcdb.2015.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling, is stimulated by Ca(2+) entry through Ca(2+)-permeable, PGE2-activated cation channels, by ceramide, caspases, calpain, complement, hyperosmotic shock, energy depletion, oxidative stress, and deranged activity of several kinases (e.g. AMPK, GK, PAK2, CK1α, JAK3, PKC, p38-MAPK). Eryptosis is triggered by intoxication, malignancy, hepatic failure, diabetes, chronic renal insufficiency, hemolytic uremic syndrome, dehydration, phosphate depletion, fever, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Eryptosis may precede and protect against hemolysis but by the same token result in anemia and deranged microcirculation.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
Alzoubi K, Calabrò S, Egler J, Faggio C, Lang F. Triggering of programmed erythrocyte death by alantolactone. Toxins (Basel) 2014; 6:3596-612. [PMID: 25533522 PMCID: PMC4280550 DOI: 10.3390/toxins6123596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/10/2014] [Accepted: 12/17/2014] [Indexed: 01/08/2023] Open
Abstract
The sesquiterpene alantolactone counteracts malignancy, an effect at least in part due to stimulation of suicidal death or apoptosis of tumor cells. Signaling of alantolactone induced apoptosis involves altered gene expression and mitochondrial depolarization. Erythrocytes lack mitochondria and nuclei but may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Cellular mechanisms involved in triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and oxidative stress. The present study explored, whether alantolactone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine-exposure at the erythrocyte surface from FITC-annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, ceramide abundance from binding of fluorescent antibodies, and oxidative stress from 2',7'-dichlorodihydrofluorescein-diacetate (DCFDA) fluorescence. As a result, a 48 h exposure of human erythrocytes to alantolactone (≥20 μM) significantly decreased erythrocyte forward scatter and increased the percentage of annexin-V-binding cells. Alantolactone significantly increased Fluo3 fluorescence (60 μM), ceramide abundance (60 μM) and DCFDA fluorescence (≥40 μM). The effect of alantolactone (60 μM) on annexin-V-binding was not significantly modified by removal of extracellular Ca2+. In conclusion, alantolactone stimulates suicidal erythrocyte death or eryptosis, an effect paralleled by increase of [Ca2+]i, ceramide abundance and oxidative stress.
Collapse
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Salvatrice Calabrò
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jasmin Egler
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Caterina Faggio
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S. Agata-Messina, Italy.
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
7
|
Calabrò S, Alzoubi K, Bissinger R, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Ellipticine. Basic Clin Pharmacol Toxicol 2014; 116:485-92. [DOI: 10.1111/bcpt.12350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tübingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Rosi Bissinger
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tübingen Germany
| |
Collapse
|
8
|
Calabrò S, Alzoubi K, Bissinger R, Jilani K, Faggio C, Lang F. Enhanced eryptosis following juglone exposure. Basic Clin Pharmacol Toxicol 2014; 116:460-7. [PMID: 25348830 DOI: 10.1111/bcpt.12340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 12/13/2022]
Abstract
Juglone, a quinone isolated from Juglans mandshurica Maxim, has previously been shown to be effective against malignancy. The effect is at least partially due to stimulation of suicidal death or apoptosis of tumour cells. On the other hand, juglone has been shown to counteract apoptosis, for example, of neurons. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and breakdown of phosphatidylserine asymmetry of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Stimulators of eryptosis include increase in cytosolic Ca(2+) activity [(Ca(2+) )i]. This study explored whether juglone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine exposure at the erythrocyte surface from FITC annexin V binding, ceramide abundance from binding of fluorescent antibodies in flow cytometry and cytosolic ATP with a luciferin-luciferase-based assay. As a result, a 24-hr exposure of human erythrocytes to juglone (5 μM) significantly decreased erythrocyte forward scatter. Juglone (1-5 μM) significantly increased the percentage of annexin V binding cells. Juglone (5 μM) significantly increased ceramide abundance at the erythrocyte surface and decreased erythrocyte ATP concentration. The effect of juglone (10 μM) on annexin V binding was slightly but significantly blunted by removal of extracellular Ca(2+) and by addition of protein kinase C (PKC) inhibitor staurosporine (1 μM). In conclusion, juglone stimulates suicidal erythrocyte death or eryptosis at least in part by upregulation of ceramide abundance, energy depletion and activation of PKC.
Collapse
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology, University of Tuebingen, Tuebingen, Germany; Department of Biological and Environmental Sciences, University of Messina, S. Agata-Messina, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Malik A, Bissinger R, Calabrò S, Faggio C, Jilani K, Lang F. Aristolochic acid induced suicidal erythrocyte death. Kidney Blood Press Res 2014; 39:408-19. [PMID: 25412628 DOI: 10.1159/000368454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Aristolochic Acid, a component of Aristolochia plants, has been shown to cause acute kidney injury, renal aristolochic acid nephropathy, Balkan endemic nephropathy, and urothelial carcinoma. Aristolochic acid nephropathy may be associated with severe anemia. The anemia could theoretically be due to stimulation of eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with translocation of phosphatidylserine to the erythrocyte cell membrane surface. Signalling involved in the stimulation of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i) and formation of ceramide. METHODS Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca(2+)]i from Fluo3 fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. RESULTS A 48 hours exposure to Aristolochic Acid (≥ 75 µg/ml) was followed by a significant decrease of forward scatter and increase of annexin-V-binding. The effects were paralleled by a significant increase of [Ca(2+)]i and significantly blunted, but not abrogated by removal of extracellular Ca(2+). Aristolochic Acid further significantly increased ceramide abundance. CONCLUSIONS Aristolochic Acid triggers eryptosis, an effect at least in part due to entry of extracellular Ca(2+) and ceramide formation.
Collapse
Affiliation(s)
- Abaid Malik
- Department of Physiology, University of Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Bissinger R, Malik A, Warsi J, Jilani K, Lang F. Piperlongumine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel) 2014; 6:2975-88. [PMID: 25317837 PMCID: PMC4210880 DOI: 10.3390/toxins6102975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca²⁺-activity ([Ca²⁺]i), formation of ceramide, oxidative stress and activation of p38 kinase. METHODS Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca²⁺]i from Fluo3 fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. RESULTS A 48 h exposure to piperlongumine (30 µM) was followed by significant decrease of forward scatter and increase of annexin-V-binding. Piperlongumine did not significantly modify [Ca²⁺]i and the effect was not dependent on presence of extracellular Ca²⁺. Piperlongumine significantly increased ROS formation and ceramide abundance. CONCLUSIONS Piperlongumine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca²⁺ but at least partially due to ROS and ceramide formation.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Abaid Malik
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jamshed Warsi
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Kashif Jilani
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
11
|
Alzoubi K, Calabrò S, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Sulforaphane. Basic Clin Pharmacol Toxicol 2014; 116:229-35. [DOI: 10.1111/bcpt.12309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/05/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tuebingen Germany
| | - Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tuebingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S.Agata-Messina Italy
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S.Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tuebingen Germany
| |
Collapse
|
12
|
Bissinger R, Malik A, Honisch S, Warsi J, Jilani K, Lang F. In vitro sensitization of erythrocytes to programmed cell death following baicalein treatment. Toxins (Basel) 2014; 6:2771-86. [PMID: 25238045 PMCID: PMC4179159 DOI: 10.3390/toxins6092771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/27/2022] Open
Abstract
The polyphenolic flavonoid Baicalein has been shown to trigger suicidal death or apoptosis of tumor cells and is thus considered for the prevention and treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide. The present study explored whether Baicalein stimulates eryptosis. To this end, forward scatter was taken for measurement of cell volume, annexin-V-binding for phosphatidylserine-exposure, Fluo3 fluorescence for [Ca2+]i and fluorescent antibodies for ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Baicalein was followed by significant decrease of forward scatter (≥10 µM), significant increase of the percentage of annexin-V-binding cells (≥25 µM), significant increase of [Ca2+]i (50 µM) and significant increase of ceramide abundance (50 µM). The effect of Baicalein (50 µM) on annexin-V-binding was significantly blunted but not abrogated by removal of extracellular Ca2+. In conclusion, at the concentrations employed, Baicalein stimulates suicidal erythrocyte death or eryptosis, an effect at least in part due to the combined effects of Ca2+ entry and ceramide formation.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Abaid Malik
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Sabina Honisch
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jamshed Warsi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Kashif Jilani
- Department of Biochemistry, University of Agriculture, 38040 Faisalabad, Pakistan.
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
13
|
Malik A, Bissinger R, Jilani K, Lang F. Stimulation of erythrocyte cell membrane scrambling by nystatin. Basic Clin Pharmacol Toxicol 2014; 116:47-52. [PMID: 24894380 DOI: 10.1111/bcpt.12279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022]
Abstract
The antifungal ionophore nystatin dissipates the Na(+) and K(+) gradients across the cell membrane, leading to cellular gain of Na(+) and cellular loss of K(+) . The increase of cellular Na(+) concentration may result in Ca(2+) accumulation in exchange for Na(+) . Increase of cytosolic Ca(2+) activity ([Ca(2+) ]i ) and loss of cellular K(+) foster apoptosis-like suicidal erythrocyte death or eryptosis, which is characterised by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the erythrocyte surface. The present study explored whether nystatin stimulates eryptosis. Cell volume was estimated from forward scatter (FSC), phosphatidylserine exposure from annexin V binding and [Ca(2+) ]i from Fluo3-fluorescence in flow cytometry. A 48-hr exposure to nystatin (15 μg/ml) was followed by a significant increase of [Ca(2+) ]i , a significant increase of annexin V binding and a significant decrease of FSC. The annexin V binding after nystatin treatment was significantly blunted in the nominal absence of extracellular Ca(2+) . Partial replacement of extracellular Na(+) with extracellular K(+) blunted the nystatin-induced erythrocyte shrinkage but increased [Ca(2+) ]i and annexin V binding. Nystatin triggers cell membrane scrambling, an effect at least partially due to entry of extracellular Ca(2+) .
Collapse
Affiliation(s)
- Abaid Malik
- Department of Physiology, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
14
|
Abstract
SIGNIFICANCE Eryptosis, the suicidal erythrocyte death, is characterized by cell shrinkage, membrane blebbing, and phosphatidylserine translocation to the outer membrane leaflet. Phosphatidylserine at the erythrocyte surface binds endothelial CXCL16/SR-PSOX (CXC-Motiv-Chemokin-16/Scavenger-receptor-for-phosphatidylserine-and-oxidized-low-density-lipoprotein) and fosters engulfment of affected erythrocytes by phagocytosing cells. Eryptosis serves to eliminate infected or defective erythrocytes, but excessive eryptosis may lead to anemia and may interfere with microcirculation. Clinical conditions with excessive eryptosis include diabetes, chronic renal failure, hemolytic uremic syndrome, sepsis, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, glutamate cysteine ligase modulator deficiency, and Wilson's disease. RECENT ADVANCES Eryptosis is triggered by a wide variety of xenobiotics and other injuries such as oxidative stress. Signaling of eryptosis includes prostaglandin E₂ formation with subsequent activation of Ca(2+)-permeable cation channels, Ca(2+) entry, activation of Ca(2+)-sensitive K(+) channels, and cell membrane scrambling, as well as phospholipase A2 stimulation with release of platelet-activating factor, sphingomyelinase activation, and ceramide formation. Eryptosis may involve stimulation of caspases and calpain with subsequent degradation of the cytoskeleton. It is regulated by AMP-activated kinase, cGMP-dependent protein kinase, Janus-activated kinase 3, casein kinase 1α, p38 kinase, and p21-activated kinase 2. It is inhibited by erythropoietin, antioxidants, and further small molecules. CRITICAL ISSUES It remains uncertain for most disorders whether eryptosis is rather beneficial because it precedes and thus prevents hemolysis or whether it is harmful because of induction of anemia and impairment of microcirculation. FUTURE DIRECTIONS This will address the significance of eryptosis, further mechanisms underlying eryptosis, and additional pharmacological tools fostering or inhibiting eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen , Tübingen, Germany
| | | | | | | |
Collapse
|
15
|
Bissinger R, Modicano P, Alzoubi K, Honisch S, Faggio C, Abed M, Lang F. Effect of saponin on erythrocytes. Int J Hematol 2014; 100:51-9. [DOI: 10.1007/s12185-014-1605-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 12/22/2022]
|
16
|
In vitro induction of erythrocyte phosphatidylserine translocation by the natural naphthoquinone shikonin. Toxins (Basel) 2014; 6:1559-74. [PMID: 24828755 PMCID: PMC4052252 DOI: 10.3390/toxins6051559] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 01/10/2023] Open
Abstract
Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation.
Collapse
|
17
|
Bissinger R, Malik A, Jilani K, Lang F. Triggering of erythrocyte cell membrane scrambling by salinomycin. Basic Clin Pharmacol Toxicol 2014; 115:396-402. [PMID: 24717091 DOI: 10.1111/bcpt.12250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
Abstract
Salinomycin, a polyether ionophore antibiotic effective against a variety of pathogens, has been shown to trigger apoptosis of cancer cells and cancer stem cells. The substance is thus considered for the treatment of malignancy. Salinomycin compromises tumour cell survival at least in part by interference with mitochondrial function. Erythrocytes lack mitochondria but may undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by scrambling of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Signalling involved in the triggering of eryptosis includes activation of oxidant-sensitive Ca(2+) permeable cation channels with subsequent increase in cytosolic Ca(2+) activity ([Ca(2+)]i). This study explored whether salinomycin stimulates eryptosis. Phosphatidylserine-exposing erythrocytes were identified by measurement of annexin-V binding, cell volume was estimated from forward scatter, haemolysis determined from haemoglobin release, [Ca(2+)]i quantified utilizing Fluo3-fluorescence and oxidative stress from 2',7' dichlorodihydrofluorescein diacetate (DCFDA) fluorescence in flow cytometry. A 48-hr exposure to salinomycin (5-100 nM) was followed by a significant increase in Fluo3-fluorescence, DCFDA fluorescence and annexin-V binding, as well as a significant decrease in forward scatter (at 5-10 nM, but not at 50 and 100 nM). The annexin-V binding after salinomycin treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca(2+) or in the presence of antioxidant n-acetyl cysteine (1 mM). Salinomycin triggers cell membrane scrambling, an effect at least partially due to oxidative stress and entry of extracellular Ca(2+).
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
18
|
Stimulation of erythrocyte cell membrane scrambling by mushroom tyrosinase. Toxins (Basel) 2014; 6:1096-108. [PMID: 24647148 PMCID: PMC3968379 DOI: 10.3390/toxins6031096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 01/23/2023] Open
Abstract
Background: Mushroom tyrosinase, a copper containing enzyme, modifies growth and survival of tumor cells. Mushroom tyrosinase may foster apoptosis, an effect in part due to interference with mitochondrial function. Erythrocytes lack mitochondria but are able to undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and activation of sphingomyelinase with subsequent formation of ceramide. The present study explored, whether tyrosinase stimulates eryptosis. Methods: Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 24 h exposure to mushroom tyrosinase (7 U/mL) was followed by a significant increase of [Ca2+]i, a significant increase of ceramide abundance, and a significant increase of annexin-V-binding. The annexin-V-binding following tyrosinase treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca2+. Tyrosinase did not significantly modify forward scatter. Conclusions: Tyrosinase triggers cell membrane scrambling, an effect, at least partially, due to entry of extracellular Ca2+ and ceramide formation.
Collapse
|
19
|
Alzoubi K, Alktifan B, Oswald G, Fezai M, Abed M, Lang F. Breakdown of phosphatidylserine asymmetry following treatment of erythrocytes with lumefantrine. Toxins (Basel) 2014; 6:650-64. [PMID: 24561477 PMCID: PMC3942757 DOI: 10.3390/toxins6020650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 01/26/2023] Open
Abstract
Background: Lumefantrine, a commonly used antimalarial drug, inhibits hemozoin formation in parasites. Several other antimalarial substances counteract parasitemia by triggering suicidal death or eryptosis of infected erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i), formation of ceramide, oxidative stress and/or activation of p38 kinase, protein kinase C (PKC), or caspases. The present study explored, whether lumefantrine stimulates eryptosis. Methods: Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, content of reduced glutathione (GSH) from mercury orange fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 48 h exposure to lumefantrine (3 µg/mL) was followed by a significant increase of annexin-V-binding without significantly altering forward scatter, [Ca2+]i, ROS formation, reduced GSH, or ceramide abundance. The annexin-V-binding following lumefantrine treatment was not significantly modified by p38 kinase inhibitors SB203580 (2 μM) and p38 Inh III (1 μM), PKC inhibitor staurosporine (1 µM) or pancaspase inhibitor zVAD (1 or 10 µM). Conclusions: Lumefantrine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca2+, ceramide formation, ROS formation, glutathione content, p38 kinase, PKC or caspases.
Collapse
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Bassel Alktifan
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Gergely Oswald
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Myriam Fezai
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Majed Abed
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Florian Lang
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| |
Collapse
|
20
|
Voelkl J, Alzoubi K, Mamar AK, Ahmed MSE, Abed M, Lang F. Stimulation of suicidal erythrocyte death by increased extracellular phosphate concentrations. Kidney Blood Press Res 2014; 38:42-51. [PMID: 24556698 DOI: 10.1159/000355752] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Anemia in renal insufficiency results in part from impaired erythrocyte formation due to erythropoietin and iron deficiency. Beyond that, renal insufficiency enhances eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be stimulated by increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). Several uremic toxins have previously been shown to stimulate eryptosis. Renal insufficiency is further paralleled by increase of plasma phosphate concentration. The present study thus explored the effect of phosphate on erythrocyte death. METHODS Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, and [Ca(2+)]i from Fluo3-fluorescence. RESULTS Following a 48 hours incubation, the percentage of phosphatidylserine exposing erythrocytes markedly increased as a function of extracellular phosphate concentration (from 0-5 mM). The exposure to 2 mM or 5 mM phosphate was followed by slight but significant hemolysis. [Ca(2+)]i did not change significantly up to 2 mM phosphate but significantly decreased at 5 mM phosphate. The effect of 2 mM phosphate on phosphatidylserine exposure was significantly augmented by increase of extracellular Ca(2+) to 1.7 mM, and significantly blunted by nominal absence of extracellular Ca(2+), by additional presence of pyrophosphate as well as by presence of p38 inhibitor SB203580. CONCLUSION Increasing phosphate concentration stimulates erythrocyte membrane scrambling, an effect depending on extracellular but not intracellular Ca(2+) concentration. It is hypothesized that suicidal erythrocyte death is triggered by complexed CaHPO4.
Collapse
Affiliation(s)
- Jakob Voelkl
- Departments of Physiology, University of Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Arnold M, Lang E, Modicano P, Bissinger R, Faggio C, Abed M, Lang F. Effect of nitazoxanide on erythrocytes. Basic Clin Pharmacol Toxicol 2013; 114:421-6. [PMID: 24215285 DOI: 10.1111/bcpt.12171] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 12/15/2022]
Abstract
Nitazoxanide, a drug effective against a variety of pathogens, triggers apoptosis and is thus considered to be employed against malignancy. Similar to nucleated cells, erythrocytes may undergo an apoptosis-like suicidal cell death or eryptosis. Hallmarks of eryptosis include cell shrinkage and phospholipid scrambling of the cell membrane with translocation of phosphatidylserine to the erythrocyte surface. Stimulators of eryptosis include increase in cytosolic Ca(2+) -activity ([Ca(2+) ]i ). The Ca(2+) -sensitivity of eryptosis is increased by ceramide. This study explored whether nitazoxanide triggers eryptosis. [Ca(2+) ]i was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin-V-binding, ceramide abundance utilizing fluorescent antibodies and haemolysis from haemoglobin release. A 48-hr exposure to nitazoxanide (1-50 μg/ml) did not significantly modify [Ca(2+) ]i but significantly increased ceramide formation, decreased forward scatter (≥10 μg/ml), increased the percentage of annexin-V-binding erythrocytes (≥10 μg/ml) and, at higher concentrations (≥20 μg/ml), stimulated haemolysis. The stimulation of annexin-V-binding was significantly blunted in the absence of calcium. Nitazoxanide thus stimulates eryptosis, an effect in part due to ceramide formation.
Collapse
Affiliation(s)
- Markus Arnold
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Abed M, Feger M, Alzoubi K, Pakladok T, Frauenfeld L, Geiger C, Towhid ST, Lang F. Sensitization of erythrocytes to suicidal erythrocyte death following water deprivation. Kidney Blood Press Res 2013; 37:567-78. [PMID: 24335488 DOI: 10.1159/000355737] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Klotho deficiency results in excessive formation of 1,25(OH)2D3, accelerated ageing and early death. Moreover, klotho deficiency enhances eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine exposure at the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i), glucose depletion, hyperosmotic shock and oxidative stress. Klotho expression is decreased and 1,25(OH)2D3-formation enhanced by dehydration. The present study thus explored whether dehydration influences eryptosis. METHODS Blood was drawn from hydrated or 36h dehydrated mice. Plasma osmolarity was determined by vapour pressure method, plasma 1,25(OH)2D3 and aldosterone concentrations using ELISA, and plasma Ca(2+)-concentration utilizing photometry. Erythrocytes were exposed to Ca(2+)-ionophore ionomycin (1 µM, 30 min), energy depletion (12 h glucose removal), hyperosmotic shock (500 mM sucrose added, 2 h) and oxidative stress (100 µM tert-butyl-hydroperoxide, 30 min) and phosphatidylserine exposure at the erythrocyte surface estimated from annexin V binding. RESULTS Dehydration increased plasma osmolarity and plasma 1,25(OH)2D3 and aldosterone concentrations. Dehydration did not significantly modify phosphatidylserine-exposure of freshly drawn erythrocytes but significantly enhanced the increase of phosphatidylserine-exposure under control conditions and following treatment with ionomycin, glucose-deprivation, hyperosmolarity or tert-butyl-hydroperoxide. CONCLUSIONS Dehydration sensitizes the erythrocytes to spontaneous eryptosis and to the triggering of eryptosis by excessive Ca(2+)-entry, energy depletion, hyperosmotic shock and oxidative stress.
Collapse
Affiliation(s)
- Majed Abed
- Department of Physiology, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Oswald G, Alzoubi K, Abed M, Lang F. Stimulation of suicidal erythrocyte death by ribavirin. Basic Clin Pharmacol Toxicol 2013; 114:311-7. [PMID: 24164926 DOI: 10.1111/bcpt.12165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/21/2013] [Indexed: 12/21/2022]
Abstract
Ribavirin is widely used in the treatment for viral disease such as chronic viral hepatitis. Side effects limiting the use of the drug include haemolytic anaemia. If challenged by stimulators of haemolysis, erythrocytes may enter suicidal death or eryptosis, thus preventing the release of haemoglobin into circulating blood. Eryptosis is characterized by cell shrinkage and by cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Eryptosis may be triggered by increase in cytosolic Ca2+ activity ([Ca2+]i). This study explored whether ribavirin modifies [Ca2+]i and elicits eryptosis. Cell volume has been estimated from forward scatter, phosphatidylserine abundance at the erythrocyte surface from annexin V binding, haemolysis from haemoglobin release and [Ca2+]i from Fluo-3 fluorescence. A 48-hr exposure to ribavirin (≥8 μg/ml) was followed by a significant increase in [Ca2+]i, a significant decrease in forward scatter and a significant increase in annexin V binding. The annexin V binding after ribavirin treatment was significantly blunted but not abolished in the nominal absence of extracellular Ca2+. In conclusion, ribaverin stimulates eryptosis, an effect at least in part due to entry of extracellular Ca2+.
Collapse
Affiliation(s)
- Gergely Oswald
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
24
|
Ahmed MSE, Abed M, Voelkl J, Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol 2013; 14:244. [PMID: 24188099 PMCID: PMC4228285 DOI: 10.1186/1471-2369-14-244] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/25/2013] [Indexed: 11/10/2022] Open
Abstract
Background Anemia in end stage renal disease is attributed to impaired erythrocyte formation due to erythropoietin and iron deficiency. On the other hand, end stage renal disease enhances eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca2+-activity ([Ca2+]i) and by ceramide, which sensitizes erythrocytes to [Ca2+]i. Mechanisms triggering eryptosis in endstage renal disease remained enigmatic. The present study explored the effect of indoxyl sulfate, an uremic toxin accumulated in blood of patients with chronic kidney disease. Methods Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, ceramide abundance by specific antibodies, hemolysis from hemoglobin release, and [Ca2+]i from Fluo3-fluorescence. Results A 48 hours exposure to indoxyl sulfate significantly increased [Ca2+]i (≥ 300 μM), significantly decreased forward scatter (≥ 300 μM) and significantly increased annexin-V-binding (≥ 50 μM). Indoxyl sulfate (150 μM) induced annexin-V-binding was virtually abolished in the nominal absence of extracellular Ca2+. Indoxyl sulfate (150 μM) further enhanced ceramide abundance. Conclusion Indoxyl sulfate stimulates suicidal erythrocyte death or eryptosis, an effect in large part due to stimulation of extracellular Ca2+entry with subsequent stimulation of cell shrinkage and cell membrane scrambling.
Collapse
Affiliation(s)
| | | | | | - Florian Lang
- Department of Physiology, University of Tuebingen, Gmelinstraße 5, 72076 Tuebingen, Germany.
| |
Collapse
|
25
|
Effect of thioridazine on erythrocytes. Toxins (Basel) 2013; 5:1918-31. [PMID: 24152992 PMCID: PMC3813919 DOI: 10.3390/toxins5101918] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Thioridazine, a neuroleptic phenothiazine with antimicrobial efficacy is known to trigger anemia. At least in theory, the anemia could result from stimulation of suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and by phospholipid scrambling of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca²⁺-concentration ([Ca²⁺](i)) and activation of p38 kinase. The present study explored, whether thioridazine elicits eryptosis. METHODS [Ca²⁺](i) has been estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin-V-binding, and hemolysis from hemoglobin release. RESULTS A 48 hours exposure to thioridazine was followed by a significant increase of [Ca²⁺](i) (30 µM), decrease of forward scatter (30 µM), and increase of annexin-V-binding (≥12 µM). Nominal absence of extracellular Ca²⁺ and p38 kinase inhibitor SB203580 (2 µM) significantly blunted but did not abolish annexin-V-binding following thioridazine exposure. CONCLUSIONS Thioridazine stimulates eryptosis, an effect in part due to entry of extracellular Ca²⁺ and activation of p38 kinase.
Collapse
|
26
|
Lupescu A, Bissinger R, Jilani K, Lang F. Triggering of suicidal erythrocyte death by celecoxib. Toxins (Basel) 2013; 5:1543-54. [PMID: 24025609 PMCID: PMC3798872 DOI: 10.3390/toxins5091543] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 01/03/2023] Open
Abstract
The selective cyclooxygenase-2 (COX-2) inhibitor celecoxib triggers apoptosis of tumor cells and is thus effective against malignancy. The substance is at least partially effective through mitochondrial depolarization. Even though lacking mitochondria, erythrocytes may enter apoptosis-like suicidal death or eryptosis, which is characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca2+-activity ([Ca2+]i). The present study explored whether celecoxib stimulates eryptosis. Forward scatter was determined to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to depict hemolysis, and Fluo3-fluorescence to quantify [Ca2+]i. A 48 h exposure of human erythrocytes to celecoxib was followed by significant increase of [Ca2+]i (15 µM), significant decrease of forward scatter (15 µM) and significant increase of annexin-V-binding (10 µM). Celecoxib (15 µM) induced annexin-V-binding was blunted but not abrogated by removal of extracellular Ca2+. In conclusion, celecoxib stimulates suicidal erythrocyte death or eryptosis, an effect partially due to stimulation of Ca2+ entry.
Collapse
Affiliation(s)
- Adrian Lupescu
- Department of Physiology, University of Tuebingen, Gmelinstraße 5, Tuebingen 72076, Germany.
| | | | | | | |
Collapse
|
27
|
Fluoxetine induced suicidal erythrocyte death. Toxins (Basel) 2013; 5:1230-43. [PMID: 23860350 PMCID: PMC3737494 DOI: 10.3390/toxins5071230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/28/2013] [Accepted: 07/04/2013] [Indexed: 12/21/2022] Open
Abstract
The antidepressant fluoxetine inhibits ceramide producing acid sphingomyelinase. Ceramide is in turn known to trigger eryptosis the suicidal death of erythrocytes characterized by cell shrinkage and exposure of phosphatidylserine at the erythrocyte surface. Ceramide is effective through sensitizing the erythrocytes to the pro-eryptotic effect of increased cytosolic Ca2+ activity ([Ca2+]i). In nucleated cells, fluoxetine could either inhibit or stimulate suicidal death or apoptosis. The present study tested whether fluoxetine influences eryptosis. To this end cell volume was estimated from forward scatter, phosphatidylserine exposure from annexin V binding, hemolysis from hemoglobin release and [Ca2+]i from Fluo-3 fluorescence intensity. As a result, a 48 h exposure of erythrocytes to fluoxetine (≥25 µM) significantly decreased forward scatter, increased annexin V binding and enhanced [Ca2+]i. The effect on annexin V binding was significantly blunted, but not abolished, in the absence of extracellular Ca2+. In conclusion, fluoxetine stimulates eryptosis, an effect at least in part due to increase of cytosolic Ca2+ activity.
Collapse
|
28
|
Abed M, Zoubi KAL, Theurer M, Lang F. Effect of dermaseptin on erythrocytes. Basic Clin Pharmacol Toxicol 2013; 113:347-52. [PMID: 23841716 DOI: 10.1111/bcpt.12096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/29/2013] [Indexed: 01/19/2023]
Abstract
Dermaseptin, an antimicrobial peptide participating in the host defence against pathogens, interacts with the membrane of target cells, leading to membrane permeabilization and eventual cell lysis. Dermaseptin has previously been shown to trigger haemolysis. Prior to haemolysis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and by cell membrane scrambling leading to phosphatidylserine exposure at the erythrocyte surface. Triggers of eryptosis include increase in cytosolic Ca²⁺ activity [(Ca²⁺)](i) and formation of ceramide. This study explored whether dermaseptin modifies [Ca²⁺](i) and elicits eryptosis. Cell volume has been estimated from forward scatter, phosphatidylserine exposure from annexin-V binding, haemolysis from haemoglobin release, ceramide formation from binding of fluorescent antibodies and [Ca²⁺](i) from Fluo3-fluorescence. A 48-hr exposure to dermaseptin (50 μM) was followed by a significant increase in [Ca²⁺](i), a significant increase ceramide abundance, a significant decrease in forward scatter and a significant increase in annexin-V binding. The annexin-V binding after dermaseptin treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca²⁺. Dermaseptin triggers eryptosis, an effect at least partially due to entry of extracellular Ca²⁺.
Collapse
Affiliation(s)
- Majed Abed
- Physiologisches Institut, der Universität Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
29
|
Munoz C, Alzoubi K, Jacobi J, Abed M, Lang F. Effect of miltefosine on erythrocytes. Toxicol In Vitro 2013; 27:1913-9. [PMID: 23811261 DOI: 10.1016/j.tiv.2013.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/10/2013] [Accepted: 06/18/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND Miltefosine, an alkylphosphocholine drug with antiparasite, antibacterial, antifungal and antineoplastic potency, is the only oral drug that can be used to treat visceral and cutaneous leishmaniasis. The effect of miltefosine is at least partially due to triggering of apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and by cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be triggered following increase of cytosolic Ca(2+)-level ([Ca(2+)]i). The present study explored, whether miltefosine elicits eryptosis. METHODS Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin-V-binding, hemolysis from hemoglobin release, [Ca(2+)]i from Fluo3-fluorescence. RESULTS A 48 h exposure to miltefosine (≥ 4.9 μM) was followed by significant decrease of forward scatter and significant increase of annexin-V-binding. The effect was paralleled by significant increase of [Ca(2+)]i. The annexin-V-binding following miltefosine treatment was significantly blunted in the nominal absence of extracellular Ca(2+). CONCLUSION Miltefosine stimulates eryptosis, an effect at least partially due to stimulation of Ca(2+) entry.
Collapse
Affiliation(s)
- Carlos Munoz
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany
| | | | | | | | | |
Collapse
|
30
|
Zbidah M, Lupescu A, Herrmann T, Yang W, Foller M, Jilani K, Lang F. Effect of honokiol on erythrocytes. Toxicol In Vitro 2013; 27:1737-45. [PMID: 23673313 DOI: 10.1016/j.tiv.2013.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
Honokiol ((3,5-di-(2-propenyl)-1,1-biphenyl-2,2-diol), a component of Magnolia officinalis, stimulates apoptosis and is thus considered for the treatment of malignancy. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and by breakdown of cell membrane phosphatidylserine asymmetry with phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be triggered following increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). The present study explored, whether honokiol elicits eryptosis. Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, hemolysis from hemoglobin release, [Ca(2+)]i from Fluo3-fluorescence, and ceramide from fluorescent antibodies. As a result, a 48 h exposure to honokiol was followed by a slight but significant increase of [Ca(2+)]i (15 μM), significant decrease of forward scatter (5 μM), significant increase of annexin-V-binding (5 μM) and significant increase of ceramide formation (15 μM). Honokiol further induced slight, but significant hemolysis. Honokiol (15 μM) induced annexin-V-binding was significantly blunted but not abrogated in the nominal absence of extracellular Ca(2+). In conclusion, honokiol triggers suicidal erythrocyte death or eryptosis, an effect at least in part due to stimulation of Ca(2+) entry and ceramide formation.
Collapse
Affiliation(s)
- Mohanad Zbidah
- Department of Physiology, University of Tuebingen, Gmelinstraße 5, 72076 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Jilani K, Lang F. Carmustine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel) 2013; 5:703-16. [PMID: 23604064 PMCID: PMC3705288 DOI: 10.3390/toxins5040703] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 02/07/2023] Open
Abstract
The nitrosourea alkylating agent, carmustine, is used as chemotherapeutic drug in several malignancies. The substance triggers tumor cell apoptosis. Side effects of carmustine include myelotoxicity with anemia. At least in theory, anemia could partly be due to stimulation of eryptosis, the suicidal death of erythrocytes, characterized by cell shrinkage and breakdown of phosphatidylserine asymmetry of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca²⁺ activity ([Ca²⁺]i). The present study tested whether carmustine triggers eryptosis. To this end [Ca²⁺]i was estimated from Fluo3 fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin V binding, and hemolysis from hemoglobin release. As a result a 48 h exposure to carmustine (≥25 µM) significantly increased [Ca²⁺]i, decreased forward scatter and increased annexin V binding. The effect on annexin V binding was significantly blunted in the absence of extracellular Ca²⁺. In conclusion, carmustine stimulates eryptosis at least partially by increasing cytosolic Ca²⁺ activity.
Collapse
Affiliation(s)
- Kashif Jilani
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, Tuebingen D-72076, Germany.
| | | |
Collapse
|
32
|
Ca(2+)-dependent suicidal erythrocyte death following zearalenone exposure. Arch Toxicol 2013; 87:1821-8. [PMID: 23515940 DOI: 10.1007/s00204-013-1037-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/04/2013] [Indexed: 12/11/2022]
Abstract
Zearalenone, a cereal mycotoxin with mycoestrogen activity and effect on fertility, is known to trigger apoptosis of a variety of nucleated cell types including hematopoietic progenitor cells. In analogy to apoptosis of nucleated cells, eryptosis, the suicidal death of erythrocytes, leads to cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. The most important stimulator of eryptosis is an increase in cytosolic Ca(2+) activity ([Ca(2+)]i). The present study explored whether zearalenone triggers eryptosis. Erythrocyte volume was estimated from forward scatter, phosphatidylserine exposure at the erythrocyte surface from annexin-V binding, hemolysis from hemoglobin release, and [Ca(2+)]i from Fluo3 fluorescence. A 48-h exposure to zearalenone (≥25 μM) was followed by a significant increase in [Ca(2+)]i and annexin-V binding, and a significant decrease in forward scatter. The effect on annexin-V binding was significantly blunted in the nominal absence of extracellular Ca(2+). Zearalenone stimulates the suicidal erythrocyte death, an effect at least partially due to stimulation of Ca(2+) entry.
Collapse
|
33
|
Abed M, Towhid ST, Pakladok T, Alesutan I, Götz F, Gulbins E, Lang F. Effect of bacterial peptidoglycan on erythrocyte death and adhesion to endothelial cells. Int J Med Microbiol 2013; 303:182-9. [PMID: 23537625 DOI: 10.1016/j.ijmm.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/16/2013] [Accepted: 01/27/2013] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycans, bacterial wall components, have previously been shown to trigger eryptosis, the suicidal erythrocyte death, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine exposing erythrocytes adhere to the vascular wall at least partially by interaction of erythrocytic phosphatidylserine with endothelial CXC chemokine ligand 16 (CXCL16). The present study explored whether peptidoglycan exposure fosters the adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC). To this end, HUVEC were treated for 48 h with peptidoglycan (10 μg/ml) and CXCL16 abundance determined by confocal microscopy and FACS analysis. Moreover, human erythrocytes were exposed for 48 h to peptidoglycan (10 μg/ml) and phosphatidylserine exposure estimated from binding of fluorescent annexin-V, cell volume from forward scatter in FACS analysis and erythrocyte adhesion to human umbilical vein endothelial cells (HUVEC) from trapping of labeled erythrocytes in a flow chamber. As a result, bacterial peptidoglycan exposure was followed by increased CXCL16 expression in HUVEC as well as erythrocyte shrinkage, phosphatidylserine exposure and adhesion to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly attenuated but not abrogated in the presence of either, erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml) or CXCL16 neutralizing antibody directed against endothelial CXCL16 (4 μg/ml). In conclusion, exposure to peptidoglycan increases endothelial CXCL16 expression and leads to eryptosis followed by phosphatidylserine- and CXCL16-mediated adhesion of eryptotic erythrocytes to vascular endothelial cells.
Collapse
Affiliation(s)
- Majed Abed
- Department of Physiology, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Kucherenko YV, Wagner-Britz L, Bernhardt I, Lang F. Effect of chloride channel inhibitors on cytosolic Ca2+ levels and Ca2+-activated K+ (Gardos) channel activity in human red blood cells. J Membr Biol 2013; 246:315-26. [PMID: 23430221 DOI: 10.1007/s00232-013-9532-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
DIDS, NPPB, tannic acid (TA) and AO1 are widely used inhibitors of Cl(-) channels. Some Cl(-) channel inhibitors (NPPB, DIDS, niflumic acid) were shown to affect phosphatidylserine (PS) scrambling and, thus, the life span of human red blood cells (hRBCs). Since a number of publications suggest Ca(2+) dependence of PS scrambling, we explored whether inhibitors of Cl(-) channels (DIDS, NPPB) or of Ca(2+)-activated Cl(-) channels (DIDS, NPPB, TA, AO1) modified intracellular free Ca(2+) concentration ([Ca(2+)]i) and activity of Ca(2+)-activated K(+) (Gardos) channel in hRBCs. According to Fluo-3 fluorescence in flow cytometry, a short treatment (15 min, +37 °C) with Cl(-) channels inhibitors decreased [Ca(2+)]i in the following order: TA > AO1 > DIDS > NPPB. According to forward scatter, the decrease of [Ca(2+)]i was accompanied by a slight but significant increase in cell volume following DIDS, NPPB and AO1 treatments. TA treatment resulted in cell shrinkage. According to whole-cell patch-clamp experiments, TA activated and NPPB and AO1 inhibited Gardos channels. The Cl(-) channel blockers further modified the alterations of [Ca(2+)]i following ATP depletion (glucose deprivation, iodoacetic acid, 6-inosine), oxidative stress (1 mM t-BHP) and treatment with Ca(2+) ionophore ionomycin (1 μM). The ability of the Cl(-) channel inhibitors to modulate PS scrambling did not correlate with their influence on [Ca(2+)]i as TA and AO1 had a particularly strong decreasing effect on [Ca(2+)]i but at the same time enhanced PS exposure. In conclusion, Cl(-) channel inhibitors affect Gardos channels, influence Ca(2+) homeostasis and induce PS exposure of hRBCs by Ca(2+)-independent mechanisms.
Collapse
Affiliation(s)
- Yuliya V Kucherenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkov, Ukraine
| | | | | | | |
Collapse
|
35
|
Abed M, Balasaheb S, Towhid ST, Daniel C, Amann K, Lang F. Adhesion of annexin 7 deficient erythrocytes to endothelial cells. PLoS One 2013; 8:e56650. [PMID: 23437197 PMCID: PMC3577872 DOI: 10.1371/journal.pone.0056650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
Annexin 7 deficiency has previously been shown to foster suicidal death of erythrocytes or eryptosis, which is triggered by increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) and characterized by cell shrinkage and cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface. Eryptosis following increase of [Ca(2+)](i) by Ca(2+) ionophore ionomycin, osmotic shock or energy depletion was more pronounced in erythrocytes from annexinA7-deficient mice (anxA7(-/-)) than in erythrocytes from wild type mice (anxA7(+/+)). As phosphatidylserine exposure is considered to mediate adhesion of erythrocytes to the vascular wall, the present study explored adhesion of erythrocytes from anx7(-/-) and anx7(+/+)-mice following increase of [Ca(2+)](i) by Ca(2+) ionophore ionomycin (1 µM for 30 min), hyperosmotic shock (addition of 550 mM sucrose for 2 hours) or energy depletion (removal of glucose for 12 hours). Phosphatidylserine exposing erythrocytes were identified by annexin V binding, cell volume estimated from forward scatter in FACS analysis and adhesion to human umbilical vein endothelial cells (HUVEC) utilizing a flow chamber. As a result, ionomycin, sucrose addition and glucose removal all triggered phosphatidylserine-exposure, decreased forward scatter and enhanced adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC), effects significantly more pronounced in anx7(-/-) than in anx7(+/+)-erythrocytes. Following ischemia, morphological renal injury was significantly higher in anx7(-/-) than in anx7(+/+)-mice. The present observations demonstrate that enhanced eryptosis of annexin7 deficient cells is paralleled by increased adhesion of erythrocytes to the vascular wall, an effect, which may impact on microcirculation during ischemia.
Collapse
Affiliation(s)
- Majed Abed
- Department of Physiology, Eberhard-Karls-University, Tuebingen, Germany
- Department of Physiology, Medicine Faculty, Al-Furat University, Deir Ezzor, Syria
| | | | | | - Christoph Daniel
- Institute of Pathology, Friedrich-Alexander-University, Erlangen-Nuernberg, Germany
| | - Kerstin Amann
- Institute of Pathology, Friedrich-Alexander-University, Erlangen-Nuernberg, Germany
| | - Florian Lang
- Department of Physiology, Eberhard-Karls-University, Tuebingen, Germany
| |
Collapse
|
36
|
Ahmed MSE, Langer H, Abed M, Voelkl J, Lang F. The Uremic Toxin Acrolein Promotes Suicidal Erythrocyte Death. ACTA ACUST UNITED AC 2013; 37:158-67. [DOI: 10.1159/000350141] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 11/19/2022]
|