1
|
Lin YL, Lin SH, Wang HH, Hsu WC, Hung SY, Chiou YY, Liou HH, Chang MY, Ho LC, Wu CF, Lee YC. Role of Metformin in Preventing New-Onset Chronic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Pharmaceuticals (Basel) 2025; 18:95. [PMID: 39861157 PMCID: PMC11768160 DOI: 10.3390/ph18010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Recent evidence supports the protective role of metformin on kidney function in patients with type 2 diabetes mellitus. However, its potential to prevent new-onset chronic kidney disease (CKD) in patients with type 2 diabetes mellitus with normal renal function remains unclear. Therefore, this study aimed to investigate whether metformin could prevent the development of new-onset CKD in such patients. Methods: This retrospective, observational, multicenter cohort study included 316,693 patients with type 2 diabetes mellitus. After matching using the inverse probability of treatment weighting, 9109 metformin users and 1221 nonusers were analyzed. The primary outcomes were an estimated glomerular filtration rate (eGFR) of <60 mL/min/1.73 m2, urinary albumin-to-creatinine ratio of ≥30 mg/g, and a composite outcome defined as new-onset CKD. Results: The multivariable Cox survival model showed that metformin users had significantly better renal outcomes, with a notably lower risk of sustained eGFR of <60 mL/min/1.73 m2 (hazard ratio (HR), 0.71; 95% confidence interval (CI), 0.56-0.90) and new CKD onset (HR, 0.78; 95% CI, 0.65-0.94). Conclusions: Metformin plays a key role in delaying renal events in individuals with type 2 diabetes mellitus and in those with initially normal renal function.
Collapse
Affiliation(s)
- Yu-Ling Lin
- Division of Nephrology, Department of Internal Medicine, Hsinchu Cathay General Hospital, Hsinchu 300, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Cathay General Hospital, Taipei 106, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (S.-H.L.); (Y.-Y.C.)
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsi-Hao Wang
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Wan-Chia Hsu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Yuan Hung
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Yuan-Yow Chiou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (S.-H.L.); (Y.-Y.C.)
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Internal Medicine, Hsin-Jen Hospital, New Taipei City 242, Taiwan;
| | - Min-Yu Chang
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Li-Chun Ho
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Ching-Fang Wu
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Yi-Che Lee
- Taiwan School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; (H.-H.W.); (S.-Y.H.); (M.-Y.C.); (L.-C.H.); (C.-F.W.)
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| |
Collapse
|
2
|
Lu B, Xing L, Zhu XY, Tang H, Lu B, Yuan F, Almasry Y, Krueger A, Barsom SH, Krier JD, Jordan KL, Lerman A, Eirin A, Lerman LO. Tumor necrosis factor-stimulated gene-6 inhibits endoplasmic reticulum stress in the ischemic mouse kidney. iScience 2024; 27:111454. [PMID: 39717095 PMCID: PMC11664141 DOI: 10.1016/j.isci.2024.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/20/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Kidney tissue injury in renal artery stenosis (RAS) involves inflammation, endoplasmic reticulum stress (ERS), and mitochondria damage. Tumor necrosis factor-stimulated gene-6 (TSG-6), an endogenous reparative molecule, may decrease ERS and improve renal function. To assess its impact on the stenotic murine kidney, we injected TSG-6 or vehicle for two weeks in mice with RAS. At completion, we assessed stenotic kidney function and oxygenation, inflammation, and expression of ERS-related genes. TSG-6 treatment reduced renal hypoxia, urinary protein and plasma creatinine levels, renal fibrosis, and apoptosis. TSG-6 also exhibited an anti-inflammatory effect, reflected in the downregulated expression of the Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) pathway in murine kidneys in vivo and HK-2 cells in vitro. Moreover, ERS-related molecules were downregulated after TSG-6 treatment, while most indicators of mitochondrial unfolded protein response remained unaltered. Therefore, TSG-6 alleviates inflammation, ERS, apoptosis, and fibrosis in the post-stenotic mouse kidney. These observations position TSG-6 as a potential therapeutic tool in RAS.
Collapse
Affiliation(s)
- Bo Lu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai 200437, China
| | - Li Xing
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Brandon Lu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Fei Yuan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Urology, National Children’s Medical Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yazan Almasry
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Alexander Krueger
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Samer H. Barsom
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - James D. Krier
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Wu D, Huang LF, Chen XC, Huang XR, Li HY, An N, Tang JX, Liu HF, Yang C. Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis 2023; 14:473. [PMID: 37500613 PMCID: PMC10374544 DOI: 10.1038/s41419-023-05905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The endoplasmic reticulum (ER) plays important roles in biosynthetic and metabolic processes, including protein and lipid synthesis, Ca2+ homeostasis regulation, and subcellular organelle crosstalk. Dysregulation of ER homeostasis can cause toxic protein accumulation, lipid accumulation, and Ca2+ homeostasis disturbance, leading to cell injury and even death. Accumulating evidence indicates that the dysregulation of ER homeostasis promotes the onset and progression of kidney diseases. However, maintaining ER homeostasis through unfolded protein response, ER-associated protein degradation, autophagy or ER-phagy, and crosstalk with other organelles may be potential therapeutic strategies for kidney disorders. In this review, we summarize the recent research progress on the relationship and molecular mechanisms of ER dysfunction in kidney pathologies. In addition, the endogenous protective strategies for ER homeostasis and their potential application for kidney diseases have been discussed.
Collapse
Affiliation(s)
- Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| |
Collapse
|
4
|
Eleftheriadis T, Pissas G, Golfinopoulos S, Efthymiadi M, Poulianiti C, Polyzou Konsta MA, Liakopoulos V, Stefanidis I. Routes of Albumin Overload Toxicity in Renal Tubular Epithelial Cells. Int J Mol Sci 2023; 24:ijms24119640. [PMID: 37298591 DOI: 10.3390/ijms24119640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Besides being a marker of kidney disease severity, albuminuria exerts a toxic effect on renal proximal tubular epithelial cells (RPTECs). We evaluated whether an unfolded protein response (UPR) or DNA damage response (DDR) is elicited in RPTECs exposed to high albumin concentration. The deleterious outcomes of the above pathways, apoptosis, senescence, or epithelial-to-mesenchymal transition (EMT) were evaluated. Albumin caused reactive oxygen species (ROS) overproduction and protein modification, and a UPR assessed the level of crucial molecules involved in this pathway. ROS also induced a DDR evaluated by critical molecules involved in this pathway. Apoptosis ensued through the extrinsic pathway. Senescence also occurred, and the RPTECs acquired a senescence-associated secretory phenotype since they overproduced IL-1β and TGF-β1. The latter may contribute to the observed EMT. Agents against endoplasmic reticulum stress (ERS) only partially alleviated the above changes, while the inhibition of ROS upregulation prevented both UPR and DDR and all the subsequent harmful effects. Briefly, albumin overload causes cellular apoptosis, senescence, and EMT in RPTECs by triggering UPR and DDR. Promising anti-ERS factors are beneficial but cannot eliminate the albumin-induced deleterious effects because DDR also occurs. Factors that suppress ROS overproduction may be more effective since they could halt UPR and DDR.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Spyridon Golfinopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Maria Efthymiadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Christina Poulianiti
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Maria Anna Polyzou Konsta
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| |
Collapse
|
5
|
Curran CS, Kopp JB. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front Med (Lausanne) 2022; 9:970423. [PMID: 36017003 PMCID: PMC9395689 DOI: 10.3389/fmed.2022.970423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
The multi-ligand receptor for advanced glycation end-products (RAGE) and its ligands are contributing factors in autoimmunity, cancers, and infectious disease. RAGE activation is increased in chronic kidney disease (CKD) and coronavirus disease 2019 (COVID-19). CKD may increase the risk of COVID-19 severity and may also develop in the form of long COVID. RAGE is expressed in essentially all kidney cell types. Increased production of RAGE isoforms and RAGE ligands during CKD and COVID-19 promotes RAGE activity. The downstream effects include cellular dysfunction, tissue injury, fibrosis, and inflammation, which in turn contribute to a decline in kidney function, hypertension, thrombotic disorders, and cognitive impairment. In this review, we discuss the forms and mechanisms of RAGE and RAGE ligands in the kidney and COVID-19. Because various small molecules antagonize RAGE activity in animal models, targeting RAGE, its co-receptors, or its ligands may offer novel therapeutic approaches to slowing or halting progressive kidney disease, for which current therapies are often inadequate.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Xie Y, E J, Cai H, Zhong F, Xiao W, Gordon RE, Wang L, Zheng YL, Zhang A, Lee K, He JC. Reticulon-1A mediates diabetic kidney disease progression through endoplasmic reticulum-mitochondrial contacts in tubular epithelial cells. Kidney Int 2022; 102:293-306. [PMID: 35469894 PMCID: PMC9329239 DOI: 10.1016/j.kint.2022.02.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
Recent epidemiological studies suggest that some patients with diabetes progress to kidney failure without significant albuminuria and glomerular injury, suggesting a critical role of kidney tubular epithelial cell (TEC) injury in diabetic kidney disease (DKD) progression. However, the major risk factors contributing to TEC injury and progression in DKD remain unclear. We previously showed that expression of endoplasmic reticulum-resident protein Reticulon-1A (RTN1A) increased in human DKD, and the increased RTN1A expression promoted TEC injury through endoplasmic reticulum (ER) stress response. Here, we show that TEC-specific RTN1A overexpression worsened DKD in mice, evidenced by enhanced tubular injury, tubulointerstitial fibrosis, and kidney function decline. But RTN1A overexpression did not exacerbate diabetes-induced glomerular injury or albuminuria. Notably, RTN1A overexpression worsened both ER stress and mitochondrial dysfunction in TECs under diabetic conditions by regulation of ER-mitochondria contacts. Mechanistically, ER-bound RTN1A interacted with mitochondrial hexokinase-1 and the voltage-dependent anion channel-1 (VDAC1), interfering with their association. This disengagement of VDAC1 from hexokinase-1 resulted in activation of apoptotic and inflammasome pathways, leading to TEC injury and loss. Thus, our observations highlight the importance of ER-mitochondrial crosstalk in TEC injury and the salient role of RTN1A-mediated ER-mitochondrial contact regulation in DKD progression.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing E
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, Ningxia People's Hospital, Ningxia, China
| | - Hong Cai
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Zhong
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wenzhen Xiao
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lois Wang
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ya-Li Zheng
- Department of Nephrology, Ningxia People's Hospital, Ningxia, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - John Cijiang He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York, USA.
| |
Collapse
|
7
|
PGC-1α inhibits the NLRP3 inflammasome via preserving mitochondrial viability to protect kidney fibrosis. Cell Death Dis 2022; 13:31. [PMID: 35013155 PMCID: PMC8748677 DOI: 10.1038/s41419-021-04480-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
The NLRP3 inflammasome is activated by mitochondrial damage and contributes to kidney fibrosis. However, it is unknown whether PGC-1α, a key mitochondrial biogenesis regulator, modulates NLRP3 inflammasome in kidney injury. Primary renal tubular epithelial cells (RTECs) were isolated from C57BL/6 mice. The NLRP3 inflammasome, mitochondrial dynamics and morphology, oxidative stress, and cell injury markers were examined in RTECs treated by TGF-β1 with or without Ppargc1a plasmid, PGC-1α activator (metformin), and siPGC-1α. In vivo, adenine-fed and unilateral ureteral obstruction (UUO) mice were treated with metformin. In vitro, TGF-β1 treatment to RTECs suppressed the expressions of PGC-1α and mitochondrial dynamic-related genes. The NLRP3 inflammasome was also activated and the expression of fibrotic and cell injury markers was increased. PGC-1α induction with the plasmid and metformin improved mitochondrial dynamics and morphology and attenuated the NLRP3 inflammasome and cell injury. The opposite changes were observed by siPGC-1α. The oxidative stress levels, which are inducers of the NLRP3 inflammasome, were increased and the expression of TNFAIP3, a negative regulator of NLRP3 inflammasome regulated by PGC-1α, was decreased by TGF-β1 and siPGC-1α. However, PGC-1α restoration reversed these alterations. In vivo, adenine-fed and UUO mice models showed suppression of PGC-1α and TNFAIP3 and dysregulated mitochondrial dynamics. Moreover, the activation of oxidative stress and NLRP3 inflammasome, and kidney fibrosis were increased in these mice. However, these changes were significantly reversed by metformin. This study demonstrated that kidney injury was ameliorated by PGC-1α-induced inactivation of the NLRP3 inflammasome via modulation of mitochondrial viability and dynamics.
Collapse
|
8
|
Chen JH, Wu CH, Chiang CK. Therapeutic Approaches Targeting Proteostasis in Kidney Disease and Fibrosis. Int J Mol Sci 2021; 22:ijms22168674. [PMID: 34445377 PMCID: PMC8395452 DOI: 10.3390/ijms22168674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pathological insults usually disturb the folding capacity of cellular proteins and lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which leads to so-called “ER stress”. Increasing evidence indicates that ER stress acts as a trigger factor for the development and progression of many kidney diseases. The unfolded protein responses (UPRs), a set of molecular signals that resume proteostasis under ER stress, are thought to restore the adaptive process in chronic kidney disease (CKD) and renal fibrosis. Furthermore, the idea of targeting UPRs for CKD treatment has been well discussed in the past decade. This review summarizes the up-to-date literature regarding studies on the relationship between the UPRs, systemic fibrosis, and renal diseases. We also address the potential therapeutic possibilities of renal diseases based on the modulation of UPRs and ER proteostasis. Finally, we list some of the current UPR modulators and their therapeutic potentials.
Collapse
Affiliation(s)
- Jia-Huang Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
| | - Chia-Hsien Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100225, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 88347)
| |
Collapse
|
9
|
Hasan HF, Rashed LA, El Bakary NM. Concerted outcome of metformin and low dose of radiation in modulation of cisplatin induced uremic encephalopathy via renal and neural preservation. Life Sci 2021; 276:119429. [PMID: 33785333 DOI: 10.1016/j.lfs.2021.119429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
AIM The therapeutic expediency of cisplatin was limited due to its nephrotoxic side effects, so this study planned to assess the nephrotic and neuroprotective impact of metformin (MET) and low-dose radiation (LDR) in cisplatin-prompted kidney injury and uremic encephalopathy (UE). METHODS The effect of the 10-day MET treatment (200 mg/kg, orally) and/or fractionated LDR (0.25 Gy, of the total dose of 0.5 Gy, 1st and 7th day, respectively) on (5 mg/kg, intraperitoneally) cisplatin as a single dose was administered at the 5th day. Serum urea, creatinine and renal kidney injury molecule-1 were measured for the assessment of kidney function. Furthermore, the antioxidant potential in the renal and brain tissues was evaluated through, malondialdehyde and reduced glutathione estimation. Moreover, renal apoptotic markers: AMP-activated protein kinase, lipocalin, B-cell lymphoma 2 associated X protein, B-cell lymphoma 2, P53 and beclin 1 were estimated. UE was evaluated through the determination of serum inflammatory markers: nuclear factor kappa B, tumor-necrosis factor-α and interleukin 1 beta likewise, the cognitive deficits were assessed via forced swimming test, gamma-aminobutyric acid, n-methyl-d-aspartate and neuronal nitric oxide synthases besides AMP-activated protein kinase, light chain 3 and caspase3 levels in rats' cerebella. KEY FINDINGS The obtained results revealed a noticeable improvement in the previously mentioned biochemical factors and behavioral tasks that was reinforced by histopathological examination when using the present remedy. SIGNIFICANCE metformin and low doses of radiation afforded renoprotection and neuroprotection against cisplatin-induced acute uremic encephalopathy.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen M El Bakary
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
10
|
Li F, Sun A, Cheng G, Liu D, Xiao J, Zhao Z, Dong Z. Compound C Protects Against Cisplatin-Induced Nephrotoxicity Through Pleiotropic Effects. Front Physiol 2021; 11:614244. [PMID: 33424637 PMCID: PMC7785967 DOI: 10.3389/fphys.2020.614244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
AICAR (Acadesine/AICA riboside) as an activator of AMPK, can protect renal tubular cells from cisplatin induced apoptosis. But in our experiment, the dorsomorphin (compound C, an inhibitor of AMPK) also significantly reduced cisplatin induced renal tubular cells apoptosis. Accordingly, we tested whether compound C can protect cisplatin-induced nephrotoxicity and the specific mechanism. Here, we treated Boston University mouse proximal tubular cells (BUMPT-306) with cisplatin and/or different dosages of AICAR (Acadesine/AICA riboside) or compound C to confirm the effect of AICAR and compound C in vitro. The AMPK-siRNA treated cells to evaluate whether the protective effect of compound C was through inhibiting AMPK. Male C57BL/6 mice were used to verify the effect of compound C in vivo. Both compound C and AICAR can reduce renal tubular cells apoptosis in dose-dependent manners, and compound C decreased serum creatinine and renal tubular injury induced by cisplatin. Mechanistically, compound C inhibited P53, CHOP and p-IREα during cisplatin treatment. Our results demonstrated that compound C inhibited AMPK, but the renal protective effects of compound C were not through AMPK. Instead, compound C protected cisplatin nephrotoxicity by inhibiting P53 and endoplasmic reticulum (ER) stress. Therefore, compound C may protect against cisplatin-induced nephrotoxicity through pleiotropic effects.
Collapse
Affiliation(s)
- Fanghua Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Anbang Sun
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Genyang Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
11
|
Grover A, Sharma K, Gautam S, Gautam S, Gulati M, Singh SK. Diabetes and Its Complications: Therapies Available, Anticipated and Aspired. Curr Diabetes Rev 2021; 17:397-420. [PMID: 33143627 DOI: 10.2174/1573399816666201103144231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 11/22/2022]
Abstract
Worldwide, diabetes ranks among the ten leading causes of mortality. Prevalence of diabetes is growing rapidly in low and middle income countries. It is a progressive disease leading to serious co-morbidities, which results in increased cost of treatment and over-all health system of the country. Pathophysiological alterations in Type 2 Diabetes (T2D) progressed from a simple disturbance in the functioning of the pancreas to triumvirate to ominous octet to egregious eleven to dirty dozen model. Due to complex interplay of multiple hormones in T2D, there may be multifaceted approach in its management. The 'long-term secondary complications' in uncontrolled diabetes may affect almost every organ of the body, and finally may lead to multi-organ dysfunction. Available therapies are inconsistent in maintaining long term glycemic control and their long term use may be associated with adverse effects. There is need for newer drugs, not only for glycemic control but also for prevention or mitigation of secondary microvascular and macrovascular complications. Increased knowledge of the pathophysiology of diabetes has contributed to the development of novel treatments. Several new agents like Glucagon Like Peptide - 1 (GLP-1) agonists, Dipeptidyl Peptidase IV (DPP-4) inhibitors, amylin analogues, Sodium-Glucose transport -2 (SGLT- 2) inhibitors and dual Peroxisome Proliferator-Activated Receptor (PPAR) agonists are available or will be available soon, thus extending the range of therapy for T2D, thereby preventing its long term complications. The article discusses the pathophysiology of diabetes along with its comorbidities, with a focus on existing and novel upcoming antidiabetic drugs which are under investigation. It also dives deep to deliberate upon the novel therapies that are in various stages of development. Adding new options with new mechanisms of action to the treatment armamentarium of diabetes may eventually help improve outcomes and reduce its economic burden.
Collapse
Affiliation(s)
- Anu Grover
- Ipca Laboratories, Mumbai - 400063, India
| | - Komal Sharma
- Bhupal Nobles' Institute of Pharmaceutical Sciences, Udaipur, India
| | - Suresh Gautam
- Department of Biochemistry, Pacific Institute of Medical Sciences, Udaipur, India
| | - Srishti Gautam
- Ravinder Nath Tagore Medical College and Maharana Bhupal Govt. Hospital, Udaipur, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411, India
| |
Collapse
|
12
|
AdipoRon Protects against Tubular Injury in Diabetic Nephropathy by Inhibiting Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6104375. [PMID: 32832003 PMCID: PMC7428946 DOI: 10.1155/2020/6104375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022]
Abstract
Endoplasmic reticulum (ER) stress has been reported to play a pivotal role in diabetic nephropathy (DN). AdipoRon is a newly developed adiponectin receptor agonist that provides beneficial effects for diabetic mice; however, its underlying mechanism remains to be delineated. Here, we demonstrated increased expression levels of ER stress markers, accompanied by upregulated levels of proinflammatory cytokines and increased expression of collagen I, fibronectin, Bax, and cleaved caspase 3 in the kidneys of db/db mice compared with control mice. Decreased expression of adiponectin receptor 1 (AdipoR1) and phosphorylated 5′AMP-activated kinase (p-AMPK) was also observed in the kidneys of db/db mice. However, these alterations were partially reversed by intragastric gavage with AdipoRon. In vitro, AdipoRon alleviated high-glucose-induced ER stress, oxidative stress, and apoptosis in HK-2 cells, a human tubular cell line. Moreover, AdipoRon restored the expression of AdipoR1 and p-AMPK in HK-2 cells exposed to high-glucose conditions. Additionally, these effects were partially abrogated by pretreatment with AdipoR1 siRNA, but this abrogation was ameliorated by cotreatment with AICAR, an AMPK activator. Furthermore, the effects of AdipoRon were also partially abolished by cotreatment with compound C. Together, these results suggest that AdipoRon exerts favorable effects on diabetes-induced tubular injury in DN by inhibiting ER stress mediated by the AdipoR1/p-AMPK pathway.
Collapse
|
13
|
Significance of Metformin Use in Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21124239. [PMID: 32545901 PMCID: PMC7352798 DOI: 10.3390/ijms21124239] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
Metformin is a glucose-lowering agent that is used as a first-line therapy for type 2 diabetes (T2D). Based on its various pharmacologic actions, the renoprotective effects of metformin have been extensively studied. A series of experimental studies demonstrated that metformin attenuates diabetic kidney disease (DKD) by suppressing renal inflammation, oxidative stress and fibrosis. In clinical studies, metformin use has been shown to be associated with reduced rates of mortality, cardiovascular disease and progression to end-stage renal disease (ESRD) in T2D patients with chronic kidney disease (CKD). However, metformin should be administered with caution to patients with CKD because it may increase the risk of lactic acidosis. In this review article, we summarize our current understanding of the safety and efficacy of metformin for DKD.
Collapse
|
14
|
Pan Q, Lu X, Zhao C, Liao S, Chen X, Guo F, Yang C, Liu HF. Metformin: the updated protective property in kidney disease. Aging (Albany NY) 2020; 12:8742-8759. [PMID: 32364526 PMCID: PMC7244070 DOI: 10.18632/aging.103095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Metformin is a frontline hypoglycemic agent, which is mainly prescribed to manage type 2 diabetes mellitus with obesity. Emerging evidence suggests that metformin also exerts protective effects against various kidney diseases. Some postulate that kidney disease is actually a metabolic disease, accompanied by nonresolving pathophysiologic pathways controlling oxidative stress, endoplasmic reticulum stress, inflammation, lipotoxicity, fibrosis, and senescence, as well as insufficient host defense mechanisms such as AMP-activated protein kinase (AMPK) signaling and autophagy. Metformin may interfere with these pathways by orchestrating AMPK signaling and AMPK-independent pathways to protect the kidneys from injury. Furthermore, the United States Food and Drug Administration declared metformin is safe for patients with mild or moderate kidney impairment in 2016, assuaging some conservative attitudes about metformin management in patients with renal insufficiency and broadening the scope of research on the renal protective effects of metformin. This review focuses on the molecular mechanisms by which metformin imparts renal protection and its potential in the treatment of various kidney diseases.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Xing Lu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chunfei Zhao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Xiaoqun Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
15
|
Schley G, Grampp S, Goppelt-Struebe M. Inhibition of oxygen-sensing prolyl hydroxylases increases lipid accumulation in human primary tubular epithelial cells without inducing ER stress. Cell Tissue Res 2020; 381:125-140. [PMID: 32189058 PMCID: PMC7306052 DOI: 10.1007/s00441-020-03186-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
Abstract
The role of the hypoxia-inducible transcription factor (HIF) pathway in renal lipid metabolism is largely unknown. As HIF stabilizing prolyl hydroxylase (PHD) inhibitors are currently investigated in clinical trials for the treatment of renal anemia, we studied the effects of genetic deletion and pharmacological inhibition of PHDs on renal lipid metabolism in transgenic mice and human primary tubular epithelial cells (hPTEC). Tubular cell-specific deletion of HIF prolyl hydroxylase 2 (Phd2) increased the size of Oil Red-stained lipid droplets in mice. In hPTEC, the PHD inhibitors (PHDi) DMOG and ICA augmented lipid accumulation, which was visualized by Oil Red staining and assessed by microscopy and an infrared imaging system. PHDi-induced lipid accumulation required the exogenous availability of fatty acids and was observed in both proximal and distal hPTEC. PHDi treatment was not associated with structural features of cytotoxicity in contrast to treatment with the immunosuppressant cyclosporine A (CsA). PHDi and CsA differentially upregulated the expression of the lipid droplet-associated genes PLIN2, PLIN4 and HILPDA. Both PHDi and CsA activated AMP-activated protein kinase (AMPK) indicating the initiation of a metabolic stress response. However, only CsA triggered endoplasmic reticulum (ER) stress as determined by the increased mRNA expression of multiple ER stress markers but CsA-induced ER stress was not linked to lipid accumulation. Our data raise the possibility that PHD inhibition may protect tubular cells from toxic free fatty acids by trapping them as triacylglycerides in lipid droplets. This mechanism might contribute to the renoprotective effects of PHDi in experimental kidney diseases.
Collapse
Affiliation(s)
- Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany.
| | - Steffen Grampp
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany
| |
Collapse
|
16
|
Kim H, Baek CH, Chang JW, Yang WS, Lee SK. Febuxostat, a novel inhibitor of xanthine oxidase, reduces ER stress through upregulation of SIRT1-AMPK-HO-1/thioredoxin expression. Clin Exp Nephrol 2019; 24:205-215. [PMID: 31677062 DOI: 10.1007/s10157-019-01804-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been implicated in the development of various renal diseases. Thus, inhibition of ER stress using pharmacological agents may serve as a promising therapeutic approach. We postulated that febuxostat, a novel xanthine oxidase inhibitor, could suppress the ER stress through upregulation of SIRT1 (silent mating type information regulation 2 homolog 1)-AMPK (AMP activated protein kinase)-HO-1 (heme oxygenase-1)/thioredoxin expression. METHODS We examined the effect of febuxostat on the ER stress induced by a chemical inducer, tunicamycin and non-chemical agents such as angiotensin II, aldosterone, high glucose, and albumin in renal tubular cells. We further examined the in vivo effects of febuxostat using mouse model of kidney disease induced by unilateral ureteral obstruction (UUO). Expression of ER stress was measured by western blot analysis and immunohistochemical stain. RESULTS Febuxostat suppressed the ER stress induced by tunicamycin and non-chemical agents, as shown by inhibition of increased GRP78 (glucose-related protein78) and p-eIF2α (phosphospecific-eukaryotic translation initiation factor 2α) expression. Inhibitory effect of febuxostat was mediated through upregulation of SIRT1-AMPK followed by induction of HO-1 and thioredoxin. In animal model of UUO, febuxostat reduced the UUO-induced ER stress, which was abolished by pretreatment with SIRT1 inhibitor (sirtinol) and AMPK inhibitor (compound C). CONCLUSION Febuxostat could suppress the ER stress caused by various ER stress inducers through upregulation of SIRT1-AMPK-HO-1/thioredoxin expression. Targeting these pathways might serve as one of the possible therapeutic approaches in kidney diseases under excessive ER stress.
Collapse
Affiliation(s)
- Hyosang Kim
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Chung Hee Baek
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Jai Won Chang
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Won Seok Yang
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Sang Koo Lee
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea.
| |
Collapse
|
17
|
Fang H, Deng M, Zhang L, Lu A, Su J, Xu C, Zhou L, Wang L, Ou JS, Wang W, Yang T. Role of (pro)renin receptor in albumin overload-induced nephropathy in rats. Am J Physiol Renal Physiol 2018; 315:F1759-F1768. [PMID: 29846109 DOI: 10.1152/ajprenal.00071.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proteinuria is not only a common feature of chronic kidney diseases (CKD) but also an independent risk factor promoting CKD progression to end-stage renal failure. However, the underlying molecular mechanisms for protein overload-induced renal injury remain elusive. The present study examined the role of (pro)renin receptor (PRR) in pathogenesis of albumin overload (AO)-induced nephropathy and activation of the intrarenal renin-angiotensin system (RAS) in rats. Wistar rats underwent unilateral nephrectomy and were treated for 7 wk with vehicle, bovine serum albumin (5 g·kg-1·day-1 via a single ip injection), alone or in conjunction with the PRR decoy inhibitor PRO20 (500 μg·kg-1·day-1 via 3 sc injections). The AO rat model exhibited severe proteinuria, tubular necrosis, and interstitial fibrosis, oxidative stress, and inflammation, accompanied by elevated urinary N-acetyl-β-d-glucosaminidase activity and urinary β2-microglobulin secretion, all of which were significantly attenuated by PRO20. Urinary and renal levels of renin, angiotensinogen, and ANG II were elevated by AO and suppressed by PRO20, contrasting to largely unaltered plasma levels of the RAS parameters. The AO model also showed increased renal expression of full-length PRR and soluble PRR (sPRR) and urinary excretion of sPRR. Taken together, we conclude that PRR antagonism with PRO20 alleviates AO-induced nephropathy via inhibition of intrarenal RAS.
Collapse
Affiliation(s)
- Hui Fang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Mokan Deng
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Linlin Zhang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Jiahui Su
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China.,Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Li Zhou
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Lei Wang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Weidong Wang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China.,Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| |
Collapse
|
18
|
Guo X, Jiang Q, Tuccitto A, Chan D, Alqawlaq S, Won GJ, Sivak JM. The AMPK-PGC-1α signaling axis regulates the astrocyte glutathione system to protect against oxidative and metabolic injury. Neurobiol Dis 2018; 113:59-69. [PMID: 29438738 DOI: 10.1016/j.nbd.2018.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/10/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Neurons are highly sensitive to metabolic and oxidative injury, but endogenous astrocyte mechanisms have a critical capacity to provide protection from these stresses. We previously reported that the master regulator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) is necessary for retinal astrocytes to mount effective injury responses, with particular regard to oxidative stress. Yet, this pathway has not been well studied in glia. PGC-1α is a transcriptional co-activator that is dysregulated in a variety of neurodegenerative diseases. It functions as a master regulator of cellular bioenergetics, with the ability to regulate tissue specific responses. A key inducer of PGC-1α signaling is adenosine monophosphate-activated kinase (AMPK). Thus, the AMPK-PGC-1α signaling axis coordinates metabolic and oxidative damage responses in the central nervous system (CNS). Here we report that AMPK selectively regulates expression of GCLM (glutamate cysteine ligase modulatory subunit) in astrocytes, but not neurons, through PGC-1α activation. Glutamate cysteine ligase (GCL) is the rate limiting enzyme in the biosynthesis of glutathione (GSH); a critical antioxidant and detoxifying peptide in the CNS. Through this mechanism we describe PGC-1α-dependent induction of GSH synthesis and antioxidant activity in astrocytes, and in the rodent retina in vivo. Furthermore, we demonstrate that therapeutic agonism of this pathway with the AMP mimetic, AICAR, rescues GSH levels in vivo, while reducing RGC death and astrocyte reactivity, following retinal ischemia/reperfusion injury. This mechanism presents a novel strategy for enhancing protective astrocyte antioxidant capacity in the CNS.
Collapse
Affiliation(s)
- Xiaoxin Guo
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Qi Jiang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alessandra Tuccitto
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Darren Chan
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Samih Alqawlaq
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gah-Jone Won
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Jeremy M Sivak
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Samman FS, Elaidy SM, Essawy SS, Hassan MS. New insights on the modulatory roles of metformin or alpha-lipoic acid versus their combination in dextran sulfate sodium-induced chronic colitis in rats. Pharmacol Rep 2017; 70:488-496. [PMID: 29653414 DOI: 10.1016/j.pharep.2017.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/29/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dextran sulfate sodium (DSS)-induced colitis is the most widely used model that resembles ulcerative colitis (UC) in human with challenging chronic mechanistic oxidative stress-inflammatory/immunological cascades. In models of acute colitis, reduction of oxidative stress and inflammatory burdens beside manipulation of many transcriptional factors were achieved by metformin or alpha-lipoic acid (α-LA). Currently, in vivo DSS-induced chronic colitis was conducted and the possible therapeutic roles of metformin and/or α-LA were explored. METHODS Chronic UC was induced by adding 5% DSS orally in drinking water for 7days followed by 3% DSS in drinking water for 14days in adult male albino Wistar rats. Intraperitoneal administration of α-LA (25mg/kg, twice/day) and/or metformin (100mg/kg/day) were set at day 7 of DSS administration and continued for 14days. Body weights, survival rates, disease activity index (DAI), colonic oxidative stress markers, tumor necrosis factor (TNF)-α levels, colonic nuclear factor-kappa-B (NF-κB) immunohistochemical expression, and the colonic histopathological changes were observed. RESULTS Metformin or/and α-LA attenuated the severity of the DSS-induced colitis through improving the reductions in body weights, the DAI, the colonic oxidative stress markers, TNF-α, and NF-κB levels, and the morphological mucosal damage scores. Significant synergetic therapeutic effects were observed with combined therapeutic regimens. CONCLUSION Therapeutically, metformin and α-LA could be administered in chronic colitis. The combination of currently used pharmaceutics with natural and synthetic potent antioxidant compounds will become a therapeutic strategy of choice for UC to improve the quality of life if sufficient clinical trials are available.
Collapse
Affiliation(s)
- Fatma S Samman
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Egypt
| | - Samah M Elaidy
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Egypt.
| | - Soha S Essawy
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Egypt
| | - Mohammad S Hassan
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Egypt
| |
Collapse
|
20
|
Allouch S, Munusamy S. Metformin attenuates albumin-induced alterations in renal tubular cells in vitro. J Cell Physiol 2017; 232:3652-3663. [DOI: 10.1002/jcp.25838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
|
21
|
Fan Y, Zhang J, Xiao W, Lee K, Li Z, Wen J, He L, Gui D, Xue R, Jian G, Sheng X, He JC, Wang N. Rtn1a-Mediated Endoplasmic Reticulum Stress in Podocyte Injury and Diabetic Nephropathy. Sci Rep 2017; 7:323. [PMID: 28336924 PMCID: PMC5428279 DOI: 10.1038/s41598-017-00305-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/20/2017] [Indexed: 11/10/2022] Open
Abstract
We previously reported a critical role of reticulon (RTN) 1A in mediating endoplasmic reticulum (ER) stress in kidney tubular cells and the expression of RTN1A correlates with the renal function and the severity of kidney injury in patients with diabetic nephropathy (DN). Here, we determined the roles of RTN1A and ER stress in podocyte injury and DN. We used db/db mice with early unilateral nephrectomy (Unx) as a murine model of progressive DN and treated mice with tauroursodeoxycholic acid (TUDCA), a specific inhibitor of ER stress. We found increased expression of RTN1A and ER stress markers in the kidney of db/db-Unx mice. Treatment of TUDCA not only attenuated proteinuria and kidney histological changes, but also ameliorated podocyte and glomeruli injury in diabetic mice, which were associated with reduction of RTN1A and ER stress marker expression in the podocytes of TUDCA-treated mice. In vitro, we showed RTN1A mediates albumin-induced ER stress and apoptosis in human podocytes. A positive feedback loop between RTN1A and CHOP was found leading to an enhanced ER stress in podocytes. Our data suggest that ER stress plays a major role in podocyte injury in DN and RTN1A might be a key regulator of ER stress in podocytes.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenzhen Xiao
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Zhengzhe Li
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Jiejun Wen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li He
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Xue
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guihua Jian
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaohua Sheng
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States. .,Renal Section, James J Peter Veterans Administration Medical Center, Bronx, NY, United States.
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Diabetic nephropathy (DN) has become the leading cause of end-stage renal disease (ESRD) worldwide. Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a major role in the development and progression of DN. Recent findings suggested that many attributes of DN, such as hyperglycemia, proteinuria, and increased advanced glycation end products and free fatty acids, can all trigger unfolded protein response (UPR) in kidney cells. Herein, we review the current knowledge on the role of ER stress in the setting of kidney injury with a specific emphasis on DN. RECENT FINDINGS As maladaptive ER stress response caused by excessively prolonged UPR will eventually cause cell death and increase kidney injury, several ER stress inhibitors have been shown to improve DN in animal models, albeit blocking both adaptive and maladaptive UPR. More recently, reticulon-1A (RTN1A), an ER-associated protein, was shown to be increased in both human and mouse diabetic kidneys. Its expression correlates with the progression of DN, and its polymorphisms are associated with kidney disease in people with diabetes. Increased RTN1A expression heightened the ER stress response and renal cell apoptosis, and conversely reduced RTN1A in renal cells decreased apoptosis and ameliorated kidney injury and DN progression, suggesting that RTN1A may be a novel target to specifically restrain the maladaptive UPR. These findings suggest that ER stress response in renal cells is a key driver of progression of DN and that the inhibition of the unchecked ER stress response in DN, such as by inhibition of RTN1A function, may be a promising therapeutic approach against DN.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1243, New York, NY, 10029, USA
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1243, New York, NY, 10029, USA.
- Renal Section, James J Peters VAMC, Bronx, NY, USA.
| |
Collapse
|
23
|
Fan Y, Xiao W, Lee K, Salem F, Wen J, He L, Zhang J, Fei Y, Cheng D, Bao H, Liu Y, Lin F, Jiang G, Guo Z, Wang N, He JC. Inhibition of Reticulon-1A-Mediated Endoplasmic Reticulum Stress in Early AKI Attenuates Renal Fibrosis Development. J Am Soc Nephrol 2017; 28:2007-2021. [PMID: 28137829 DOI: 10.1681/asn.2016091001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Several animal studies have shown an important role for endoplasmic reticulum (ER) stress in AKI, whereas human studies are lacking. We recently reported that Reticulon-1A (RTN1A) is a key mediator of ER stress and kidney cell injury. Here, we investigated whether modulation of RTN1A expression during AKI contributes to the progression to CKD. In a retrospective study of 51 patients with AKI, increased expression of RTN1A and other ER stress markers were associated with the severity of kidney injury and with progression to CKD. In an inducible tubular cell-specific RTN1A-knockdown mouse model subjected to folic acid nephropathy (FAN) or aristolochic acid nephropathy, reduction of RTN1A expression during the initial stage of AKI attenuated ER stress and kidney cell injury in early stages and renal fibrosis development in later stages. Treatment of wild-type mice with tauroursodeoxycholic acid, an inhibitor of ER stress, after the induction of kidney injury with FA facilitated renoprotection similar to that observed in RTN1A-knockdown mice. Conversely, in transgenic mice with inducible tubular cell-specific overexpression of RTN1A subjected to FAN, induction of RTN1A overexpression aggravated ER stress and renal injury at the early stage and renal fibrosis at the late stage of FAN. Together, our human and mouse data suggest that the RTN1A-mediated ER stress response may be an important determinant in the severity of AKI and maladaptive repair that may promote progression to CKD.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Medicine, Division of Nephrology, and
| | - Wenzhen Xiao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Medicine, Division of Nephrology, and
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, and
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jiejun Wen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li He
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Fei
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dongsheng Cheng
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongda Bao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yumei Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fujun Lin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Xinhua Hospital, Shanghai, China
| | - Gengru Jiang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Xinhua Hospital, Shanghai, China
| | - Zhiyong Guo
- Department of Nephrology, Second Military Medical University Affiliated Changhai Hospital, Shanghai, China; and
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China;
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, and .,Renal Section, James J Peters VA Medical Center, Bronx, New York
| |
Collapse
|
24
|
Qu J, Lu D, Guo H, Miao W, Wu G, Zhou M. PFKFB3 modulates glycolytic metabolism and alleviates endoplasmic reticulum stress in human osteoarthritis cartilage. Clin Exp Pharmacol Physiol 2016; 43:312-8. [PMID: 26718307 DOI: 10.1111/1440-1681.12537] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 11/29/2022]
Abstract
Glycolytic disorder has been demonstrated to be a major cause of osteoarthritis (OA) and chondrocyte dysfunction. The present work aimed to investigate the expression and role of the glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in OA cartilage. It was found that PFKFB3 expression was down-regulated in human OA cartilage tissues and in tumour necrosis factor (TNF)-α- or interleukin (IL)-1β-stimulated human chondrocytes. The glycolytic metabolism appeared as glucose utilization and adenosine triphosphate (ATP) generation, and lactate production was stunted in OA cartilage. However, the impaired glycolytic process in OA cartilage was improved by PFKFB3 overexpression, which was confirmed in TNF-α- or IL-1β-treated chondrocytes. Furthermore, the expressions of endoplasmic reticulum (ER) stress-associated genes including PERK, ATF3, IRE1, phosphorylated eIF2α (p-eIF2α) and MMP13 were enhanced in OA cartilage explants, while they were decreased by AdPFKFB3 transfection. PFKFB3 also modulated the expressions of PERK, ATF3, IRE1, p-eIF2α and MMP13 in tunicamycin-exposed chondrocytes. Additionally, PFKFB3 improved the cell viability of OA cartilage explants and chondrocytes through the PI3K/Akt/C/EBP homologous protein (CHOP) signalling pathway. The transfection of AdPFKFB3 also significantly reduced caspase 3 activation and promoted aggrecan and type II collagen expressions in OA cartilage explants and chondrocytes. In all, this study characterizes a novel role of PFKFB3 in glycolytic metabolism and ER stress of OA cartilage explants and chondrocytes. The study might provide a potential target for OA prevention or therapy.
Collapse
Affiliation(s)
- Jining Qu
- Department of Paediatric Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xian, China
| | - Daigang Lu
- Department of Trauma, Honghui Hospital, Xi'an Jiaotong University, Xian, China
| | - Hua Guo
- Department of Paediatric Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xian, China.,Department of Emergency, Honghui Hospital, Xi'an Jiaotong University, Xian, China
| | - Wusheng Miao
- Department of Paediatric Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xian, China
| | - Ge Wu
- Department of Paediatric Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xian, China
| | - Meifen Zhou
- Department of Paediatric Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xian, China
| |
Collapse
|
25
|
Ravindran S, Kuruvilla V, Wilbur K, Munusamy S. Nephroprotective Effects of Metformin in Diabetic Nephropathy. J Cell Physiol 2016; 232:731-742. [DOI: 10.1002/jcp.25598] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Kerry Wilbur
- College of Pharmacy; Qatar University; Doha Qatar
| | | |
Collapse
|
26
|
Xiao W, Fan Y, Wang N, Chuang PY, Lee K, He JC. Knockdown of RTN1A attenuates ER stress and kidney injury in albumin overload-induced nephropathy. Am J Physiol Renal Physiol 2016; 310:F409-15. [PMID: 26739891 DOI: 10.1152/ajprenal.00485.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/31/2015] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have suggested a critical role of reticulon (RTN)1A in mediating endoplasmic reticulum (ER) stress in kidney cells of animal models and humans with kidney diseases. A large body of evidence suggests that proteinuria itself can cause tubular cell injury leading to the progression of kidney disease. In the present study, we determined whether RTN1A mediates proteinuria-induced tubular cell injury through increased ER stress. We found that incubation of HK2 cells with human serum albumin induced the expression of RTN1A and ER stress markers, whereas knockdown of RTN1A expression attenuated human serum albumin-induced ER stress and tubular cell apoptosis in vitro. In vivo, we found that tubular cell-specific RTN1 knockdown resulted in a significant attenuation of tubular cell ER stress, apoptosis, and renal fibrosis in a model of albumin overload nephropathy. Based on these findings, we conclude that RTN1A is a key mediator for proteinuria-induced tubular cell toxicity and renal fibrosis.
Collapse
Affiliation(s)
- Wenzhen Xiao
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and Department of Nephrology, Shanghai Six Municipal Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Fan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and Department of Nephrology, Shanghai Six Municipal Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Six Municipal Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peter Y Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
27
|
Rashid HO, Yadav RK, Kim HR, Chae HJ. ER stress: Autophagy induction, inhibition and selection. Autophagy 2015; 11:1956-1977. [PMID: 26389781 DOI: 10.1080/15548627.2015.1091141] [Citation(s) in RCA: 590] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) leads to stress conditions. To mitigate such circumstances, stressed cells activate a homeostatic intracellular signaling network cumulatively called the unfolded protein response (UPR), which orchestrates the recuperation of ER function. Macroautophagy (hereafter autophagy), an intracellular lysosome-mediated bulk degradation pathway for recycling and eliminating wornout proteins, protein aggregates, and damaged organelles, has also emerged as an essential protective mechanism during ER stress. These 2 systems are dynamically interconnected, and recent investigations have revealed that ER stress can either stimulate or inhibit autophagy. However, the stress-associated molecular cues that control the changeover switch between induction and inhibition of autophagy are largely obscure. This review summarizes the crosstalk between ER stress and autophagy and their signaling networks mainly in mammalian-based systems. Additionally, we highlight current knowledge on selective autophagy and its connection to ER stress.
Collapse
Affiliation(s)
- Harun-Or Rashid
- a Department of Pharmacology ; Medical School; Chonbuk National University
| | - Raj Kumar Yadav
- a Department of Pharmacology ; Medical School; Chonbuk National University
| | - Hyung-Ryong Kim
- b Department of Dental Pharmacology ; College of Dentistry; Wonkwang University
| | - Han-Jung Chae
- a Department of Pharmacology ; Medical School; Chonbuk National University
| |
Collapse
|
28
|
Guan SS, Sheu ML, Wu CT, Chiang CK, Liu SH. ATP synthase subunit-β down-regulation aggravates diabetic nephropathy. Sci Rep 2015; 5:14561. [PMID: 26449648 PMCID: PMC4598833 DOI: 10.1038/srep14561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/03/2015] [Indexed: 01/14/2023] Open
Abstract
In this study, we investigated the role of ATP synthase subunit-β (ATP5b) in diabetic nephropathy. Histopathological changes, fibrosis, and protein expressions of α-smooth muscle actin (α-SMA), advanced glycation end-products (AGEs), and ATP5b were obviously observed in the kidneys of db/db diabetic mice as compared with the control db/m(+) mice. The increased ATP5b expression was majorly observed in diabetic renal tubules and was notably observed to locate in cytoplasm of tubule cells, but no significant increase of ATP5b in diabetic glomeruli. AGEs significantly increased protein expression of ATP5b and fibrotic factors and decreased ATP content in cultured renal tubular cells via an AGEs-receptor for AGEs (RAGE) axis pathway. Oxidative stress was also induced in diabetic kidneys and AGEs-treated renal tubular cells. The increase of ATP5b and CTGF protein expression in AGEs-treated renal tubular cells was reversed by antioxidant N-acetylcysteine. ATP5b-siRNA transfection augmented the increased protein expression of α-SMA and CTGF and CTGF promoter activity in AGEs-treated renal tubular cells. The in vivo ATP5b-siRNA delivery significantly enhanced renal fibrosis and serum creatinine in db/db mice with ATP5b down-regulation. These findings suggest that increased ATP5b plays an important adaptive or protective role in decreasing the rate of AGEs-induced renal fibrosis during diabetic condition.
Collapse
Affiliation(s)
- Siao-Syun Guan
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, Taoyuan, Taiwan
| | - Meei-Ling Sheu
- Biomedical Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Departments of Integrated Diagnostics &Therapeutics and Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
29
|
Fan Y, Xiao W, Li Z, Li X, Chuang PY, Jim B, Zhang W, Wei C, Wang N, Jia W, Xiong H, Lee K, He JC. RTN1 mediates progression of kidney disease by inducing ER stress. Nat Commun 2015; 6:7841. [PMID: 26227493 PMCID: PMC4532799 DOI: 10.1038/ncomms8841] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022] Open
Abstract
Identification of new biomarkers and drug targets for chronic kidney disease (CKD) is required for the development of more effective therapy. Here we report an association between expression of reticulon 1 (RTN1) and severity of CKD. An isoform-specific increase in the expression of RTN1A is detected in the diseased kidneys from mice and humans, and correlates inversely with renal function in patients with diabetic nephropathy. RTN1 overexpression in renal cells induces ER stress and apoptosis, whereas RTN1 knockdown attenuates tunicamycin-induced and hyperglycaemia-induced ER stress and apoptosis. RTN1A interacts with PERK through its N-terminal and C-terminal domains, and mutation of these domains prevents this effect on ER stress. Knockdown of Rtn1a expression in vivo attenuates ER stress and renal fibrosis in mice with unilateral ureteral obstruction, and also attenuates ER stress, proteinuria, glomerular hypertrophy and mesangial expansion in diabetic mice. Together, these data indicate that RTN1A contributes to progression of kidney disease by inducing ER stress. ER stress is associated with the pathogenesis of chronic kidney disease (CKD) and new CKD therapies are needed. Here the authors show that expression of Rtn1 can control severity of renal disease and that inhibition of its expression can attenuate ER stress and CKD.
Collapse
Affiliation(s)
- Ying Fan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wenzhen Xiao
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Xuezhu Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Peter Y Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Belinda Jim
- Division of Nephrology, Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weiping Jia
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Huabao Xiong
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| |
Collapse
|
30
|
Kim H, Moon SY, Kim JS, Baek CH, Kim M, Min JY, Lee SK. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis. Am J Physiol Renal Physiol 2015; 308:F226-36. [DOI: 10.1152/ajprenal.00495.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has been suggested that endoplasmic reticulum (ER) stress facilitates fibrotic remodeling. Therefore, modulation of ER stress may serve as one of the possible therapeutic approaches to renal fibrosis. We examined whether and how activation of AMP-activated protein kinase (AMPK) suppressed ER stress induced by chemical ER stress inducers [tunicamycin (TM) and thapsigargin (TG)] and also nonchemical inducers in tubular HK-2 cells. We further investigated the in vivo effects of AMPK on ER stress and renal fibrosis. Western blot analysis, immunofluorescence, small interfering (si)RNA experiments, and immunohistochemical staining were performed. Metformin (the best known clinical activator of AMPK) suppressed TM- or TG-induced ER stress, as shown by the inhibition of TM- or TG-induced upregulation of glucose-related protein (GRP)78 and phosphorylated eukaryotic initiation factor-2α through induction of heme oxygenase-1. Metformin inhibited TM- or TG-induced epithelial-mesenchymal transitions as well. Compound C (AMPK inhibitor) blocked the effect of metformin, and 5-aminoimidazole-4-carboxamide-1β riboside (another AMPK activator) exerted the same effects as metformin. Transfection with siRNA targeting AMPK blocked the effect of metformin. Consistent with the results of cell culture experiments, metformin reduced renal cortical GRP78 expression and increased heme oxygenase-1 expression in a mouse model of ER stress-induced acute kidney injury by TM. Activation of AMPK also suppressed ER stress by transforming growth factor-β, ANG II, aldosterone, and high glucose. Furthermore, metformin reduced GRP78 expression and renal fibrosis in a mouse model of unilateral ureteral obstruction. In conclusion, AMPK may serve as a promising therapeutic target through reducing ER stress and renal fibrosis.
Collapse
Affiliation(s)
- Hyosang Kim
- Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, Seoul, Korea
| | - Soo Young Moon
- Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, Seoul, Korea
| | - Joon-Seok Kim
- Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, Seoul, Korea
| | - Chung Hee Baek
- Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, Seoul, Korea
| | - Miyeon Kim
- Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, Seoul, Korea
| | - Ji Yeon Min
- Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, Seoul, Korea
| | - Sang Koo Lee
- Department of Internal Medicine, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan, Seoul, Korea
| |
Collapse
|
31
|
Anwar MA, Kheir WA, Eid S, Fares J, Liu X, Eid AH, Eid AA. Colorectal and Prostate Cancer Risk in Diabetes: Metformin, an Actor behind the Scene. J Cancer 2014; 5:736-44. [PMID: 25368673 PMCID: PMC4216797 DOI: 10.7150/jca.9726] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023] Open
Abstract
Both diabetes and cancer are prevalent diseases whose incidence rates are increasing worldwide, especially in countries that are undergoing rapid industrialization changes. Apparently, lifestyle risk factors including diet, physical inactivity and obesity play pivotal, yet preventable, roles in the etiology of both diseases. Epidemiological studies provide strong evidence that subjects with diabetes are at significantly higher risk of developing many forms of cancer and especially solid tumors. In addition to pancreatic and breast cancer, the incidence of colorectal cancer and prostate cancer is increased in type 2 diabetes. While diabetes (type 2) and cancer share many risk factors, the biological links between the two diseases are poorly characterized. In this review, we highlight the mechanistic pathways that link diabetes to colorectal and prostate cancer and the use of Metformin, a diabetes drug, to prevent and/or treat colorectal and prostate cancer. We review the role of AMPK activation in autophagy, oxidative stress, inflammation, apoptosis, and cell cycle progression.
Collapse
Affiliation(s)
- M Akhtar Anwar
- 1. Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha - Qatar
| | - Wassim Abou Kheir
- 2. Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut - Lebanon and
| | - Stephanie Eid
- 2. Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut - Lebanon and
| | - Joanna Fares
- 2. Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut - Lebanon and
| | - Xiaoqi Liu
- 3. Department of Biochemistry, Purdue University
| | - Ali H Eid
- 1. Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha - Qatar
| | - Assaad A Eid
- 2. Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut - Lebanon and
| |
Collapse
|
32
|
Leng YP, Qiu N, Fang WJ, Zhang M, He ZM, Xiong Y. Involvement of increased endogenous asymmetric dimethylarginine in the hepatic endoplasmic reticulum stress of type 2 diabetic rats. PLoS One 2014; 9:e97125. [PMID: 24918756 PMCID: PMC4053342 DOI: 10.1371/journal.pone.0097125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/15/2014] [Indexed: 11/22/2022] Open
Abstract
Objective Increasing evidence suggested that endoplasmic reticulum (ER) stress contributes to insulin resistance, which plays an important role in the development of type 2 diabetes mellitus (T2DM). Accumulation of endogenous nitric oxide synthase (NOS) inhibitor, asymmetric dimethylarginine (ADMA), is associated with insulin resistance, T2DM, and diabetic cardiovascular complications, although the mechanisms have not been elucidated. This study was to determine whether elevated endogenous ADMA is involved in hepatic ER stress of type 2 diabetic rats, verify their causal relationship, and elucidate the potential mechanism underlying ADMA induced ER stress in rat hepatocytes. Methods Immunoglobulin binding protein (Bip) transcription, eukaryotic initiation factor 2α kinase (eIF2α) phosphorylation, X box-binding protein-1 (XBP-1) mRNA splicing and C/EBP homologues protein (CHOP) expression were measured to reflect ER stress. Contents of ADMA and nitrite/nitrate as well as activities or expression of NOS and dimethylarginine dimethylaminohydrolase (DDAH) were detected to show the changes in DDAH/ADMA/NOS/NO pathway. The lipid peroxidation product malondialdehyde content and antioxidant enzyme superoxide dismutase activity were analyzed to evaluate oxidative stress. Results ER stress was provoked in the liver of type 2 diabetic rats, as expressed by increases of Bip transcription, eIF2α phosphorylation, XBP-1 splicing and CHOP expression, all of which were in parallel with the elevation of serum ADMA, suppression of NO generation, NOS and DDAH activities in the liver. Exposure of hepatocytes to ADMA or hydrogen peroxide also induced ER stress, which was associated with the inhibition of NO production and increase of oxidative stress. Treatment of hepatocytes with antioxidant pyrrolidine dithiocarbamate not only decreased ADMA-induced oxidative stress and inhibition of NO production but also reduced ADMA-triggered ER stress. Conclusions These results indicate that increased endogenous ADMA contributes to hepatic ER stress in type 2 diabetic rats, and the mechanism underlying ADMA-induced ER stress may relate to oxidative stress via NOS uncoupling.
Collapse
Affiliation(s)
- Yi-Ping Leng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Ni Qiu
- Department of Pharmacology, Guangzhou Research Institute of Snake Venom and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Wei-jin Fang
- Department of Pharmacology, Guangzhou Research Institute of Snake Venom and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Mei Zhang
- Department of Pharmacology, Guangzhou Research Institute of Snake Venom and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhi-Min He
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Yan Xiong
- Department of Pharmacology, Guangzhou Research Institute of Snake Venom and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- * E-mail:
| |
Collapse
|
33
|
Boyette LB, Tuan RS. Adult Stem Cells and Diseases of Aging. J Clin Med 2014; 3:88-134. [PMID: 24757526 PMCID: PMC3992297 DOI: 10.3390/jcm3010088] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/15/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023] Open
Abstract
Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan.
Collapse
Affiliation(s)
- Lisa B Boyette
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
34
|
Yoo YM. Melatonin-mediated insulin synthesis during endoplasmic reticulum stress involves HuD expression in rat insulinoma INS-1E cells. J Pineal Res 2013; 55:207-20. [PMID: 23711134 DOI: 10.1111/jpi.12064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/26/2013] [Indexed: 01/12/2023]
Abstract
In this study, we investigated how melatonin mediates insulin synthesis through endoplasmic reticulum (ER) via HuD expression in rat insulinoma INS-1E cells. Under ER stress condition (thapsigargin with/without melatonin, tunicamycin with/without melatonin), phosphorylation of AMP-activated protein kinase (p-AMPK) was significantly increased when compared with only with/without melatonin (control/melatonin). Insulin receptor substrate (IRS) two protein was significantly reduced under conditions of ER stress when compared with control/melatonin, but no expression of IRS1 protein was observed. In thapsigargin treatment, melatonin (10, 50 μm) increased IRS2 protein expression in a dose-dependent manner. p-Akt (Ser473) expression significantly decreased under ER stress condition prior to control/melatonin. Melatonin (10, 50 μm) significantly reduced nuclear and cellular p85α expressions in a dose-dependent manner when compared with only thapsigargin or tunicamycin. These results indicate the activation of the aforementioned expressions under regulation of the pathway, AMPK → IRS2 → Akt/PKB → PI3K (p85α). However, mammalian target of rapamycin and raptor protein, mTORC1, was found to be independent of the ER stress response. In thapsigargin treatment, melatonin increased nuclear mammalian RNA-binding protein (HuD) expression and reduced cellular HuD expression and subsequently resulted in a decrease in cellular insulin level and rise in insulin secretion in a dose-dependent manner. In tunicamycin treatment, HuD and insulin proteins showed similar expression tendencies. These results indicate that ER stress/melatonin, especially thapsigargin/melatonin, increased nuclear HuD expression and subsequently resulted in a decrease in intracellular biosynthesis; it is hypothesized that extracellular secretion of insulin may be regulated by melatonin.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon-do 220-710, Korea.
| |
Collapse
|
35
|
Yang L, Sha H, Davisson RL, Qi L. Phenformin activates the unfolded protein response in an AMP-activated protein kinase (AMPK)-dependent manner. J Biol Chem 2013; 288:13631-8. [PMID: 23548904 PMCID: PMC3650398 DOI: 10.1074/jbc.m113.462762] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/30/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cross-talk between UPR activation and metabolic stress remains largely unclear. RESULTS Phenformin treatment activates the IRE1α and PERK pathways in an AMPK-dependent manner. CONCLUSION AMPK is required for phenformin-mediated IRE1α and PERK activation. SIGNIFICANCE Our findings demonstrate the cross-talk between UPR and metabolic signals. Activation of the unfolded protein response (UPR) is associated with the disruption of endoplasmic reticulum (ER) homeostasis and has been implicated in the pathogenesis of many human metabolic diseases, including obesity and type 2 diabetes. However, the nature of the signals activating UPR under these conditions remains largely unknown. Using a method that we recently optimized to directly measure UPR sensor activation, we screened the effect of various metabolic drugs on UPR activation and show that the anti-diabetic drug phenformin activates UPR sensors IRE1α and pancreatic endoplasmic reticulum kinase (PERK) in both an ER-dependent and ER-independent manner. Mechanistically, AMP-activated protein kinase (AMPK) activation is required but not sufficient to initiate phenformin-mediated IRE1α and PERK activation, suggesting the involvement of additional factor(s). Interestingly, activation of the IRE1α (but not PERK) pathway is partially responsible for the cytotoxic effect of phenformin. Together, our data show the existence of a non-canonical UPR whose activation requires the cytosolic kinase AMPK, adding another layer of complexity to UPR activation upon metabolic stress.
Collapse
Affiliation(s)
- Liu Yang
- From the Graduate Program in Biochemistry, Molecular and Cell Biology
| | - Haibo Sha
- Division of Nutritional Sciences, and
| | - Robin L. Davisson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Ling Qi
- From the Graduate Program in Biochemistry, Molecular and Cell Biology
- Division of Nutritional Sciences, and
| |
Collapse
|