1
|
Maske TT, Cenci MS, Patzlaff R, Mocs I, Hashizume LN, Maltz M, Arthur RA. Presentation of a new multifunctional oral cavity simulator: the "MOCS". Braz Oral Res 2025; 39:e022. [PMID: 40008731 PMCID: PMC11844815 DOI: 10.1590/1807-3107bor-2025.vol39.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2024] [Accepted: 09/23/2024] [Indexed: 02/27/2025] Open
Abstract
This article describes a new multifunctional oral cavity simulator (MOCS) that allows, with little technical support and easy handling, the laboratory development of dental hard tissue lesions under clinically similar conditions. The MOCS consists of a heating unit containing three independent cylindrical chambers with three specimen holders inside. Liquids flow through the surfaces of specimens by inlets on the lid of the chamber, which is connected to a medium/artificial saliva source through a computer-controlled peristaltic pump. The design, operational principles, and clinical application of this simulator, such as microcosm-induced development of carious-like lesions, acidic-induced erosion-abrasion like-lesions, and testing the anticariogenic effect of restorative materials, are shown. The MOCS can mimic several aspects of the oral cavity, being a promising device for assessing dental hard tissue lesions.
Collapse
Affiliation(s)
- Tamires Timm Maske
- Universidade Federal do Rio Grande do Sul - UFRS, Department of Preventive and Community Dentistry, Porto Alegre, RS, Brazil
| | | | | | - Iniative Mocs
- O Universidade Federal do Rio Grande do Sul, Department of Preventive and Community Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lina Naomi Hashizume
- Universidade Federal do Rio Grande do Sul - UFRS, Department of Preventive and Community Dentistry, Porto Alegre, RS, Brazil
| | - Marisa Maltz
- Universidade Federal do Rio Grande do Sul - UFRS, Department of Preventive and Community Dentistry, Porto Alegre, RS, Brazil
| | - Rodrigo Alex Arthur
- Universidade Federal do Rio Grande do Sul - UFRS, Department of Preventive and Community Dentistry, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Figueira LW, Bessa Muniz A, Doria ACOC, Castaldelli Nishime TM, Kostov KG, Koga-Ito CY. Inhibitory effect of helium cold atmospheric plasma on cariogenic biofilms. J Oral Microbiol 2024; 16:2397831. [PMID: 39267862 PMCID: PMC11391876 DOI: 10.1080/20002297.2024.2397831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to determine the effects of low-temperature plasma jet produced in gas helium (LTP-helium) on cariogenic biofilms composedby Streptococcusmutans, Streptococcus sanguinis and Streptococcus gordonii, and also by the combination of Candida albicans, Lactobacillus acidophilus and S. mutans. Biofilms were treated for 1, 3, 5, and 7 minutes. A 0.12% chlorhexidine solution was used as the positive control and sterile physiologic solution was the negative control. Biofilm viability was analyzed by viable cell recovery, scanning electron microscopy, and confocal laser scanning microscopy. All assays were performed intriplicate in three independent experiments. Multispecies biofilms exposed to LTP-helium had a significant reduction in viability when compared to the negative control (p < 0.0001). For biofilm formedby S. mutans, S. sanguinis, and S. gordonii, LTP treatments for 5 and 7 minutes caused similar reduction of morethan 2 log10. Also, a significant reduction in the viability of biofilms formedby C. albicans, L. acidophilus, and S. mutans was detected (p < 0.0001). In conclusion, LTP-helium reduced theviability of cariogenic biofilms with different microbial compositions, which indicates that LTP-helium is a potential tool for developing new protocols for dental caries prevention and treatment.
Collapse
Affiliation(s)
- Leandro Wagner Figueira
- Department of Environmental Engineering and Oral Biopathology Graduate Program, Institute of Science and Technology, São Paulo State University, UNESP, São José dos Campos, São Paulo, Brazil
| | - Ana Bessa Muniz
- Department of Environmental Engineering and Oral Biopathology Graduate Program, Institute of Science and Technology, São Paulo State University, UNESP, São José dos Campos, São Paulo, Brazil
| | - Anelise Cristina Osorio Cesar Doria
- Biotechnology and Electric Plasma Laboratory (Biotechplasma) - Research and Development Institute - IPD - Universidade Do Vale Do Paraíba. Av. Shishima Hifumi, São José dos Campos, Brazil
| | | | - Konstantin Georgiev Kostov
- Department of Physics, Guaratinguetá Faculty of Engineering, São Paulo State University/ UNESP, Guaratinguetá, Brazil
| | - Cristiane Y Koga-Ito
- Department of Environmental Engineering and Oral Biopathology Graduate Program, Institute of Science and Technology, São Paulo State University, UNESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
3
|
Figueira LW, Panariello B, Koga-Ito CY, Duarte S. Exploring the efficacy of in-vitro low-temperature plasma treatment on single and multispecies dental cariogenic biofilms. Sci Rep 2024; 14:20678. [PMID: 39237570 PMCID: PMC11377728 DOI: 10.1038/s41598-024-70943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
The primary aim of this study was to investigate the impact of treatment with low-temperature plasma (LTP) for varying exposure durations on a multispecies cariogenic biofilm comprising C. albicans, L. casei, and S. mutans, as well as on single-species biofilms of L. casei and C. albicans, cultured on hydroxyapatite discs. Biofilms were treated with LTP-argon at a 10 mm distance for 30 s, 60 s, and 120 s. Chlorhexidine solution (0.12%) and NaCl (0.89%) were used as positive (PC) and negative controls (NC), respectively. Argon flow only was also used as gas flow control (F). Colony-forming units (CFU) recovery and confocal laser scanning microscopy (CLSM) were used to analyze biofilm viability. LTP starting at 30 s of application significantly reduced the viability of multispecies biofilms by more than 2 log10 in all treated samples (p < 0.0001). For single-species biofilms, L. casei showed a significant reduction compared to PC and NC of over 1 log10 at all exposure times (p < 0.0001). In the case of C. albicans biofilms, LTP treatment compared to PC and NC resulted in a significant decrease in bacterial counts when applied for 60 and 120 s (1.55 and 1.90 log10 CFU/mL, respectively) (p < 0.0001). A significant effect (p ≤ 0.05) of LTP in single-species biofilms was observed to start at 60 s of LTP application compared to F, suggesting a time-dependent effect of LTP for the single-species biofilms of C. albicans and L. casei. LTP is a potential mechanism in treating dental caries by being an effective anti-biofilm therapy of both single and multispecies cariogenic biofilms.
Collapse
Affiliation(s)
- Leandro Wagner Figueira
- Department of Environmental Engineering and Oral Biopathology Graduate Program, Institute of Science and Technology, São Paulo State University, UNESP, São José dos Campos, São Paulo, Brazil
| | - Beatriz Panariello
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Cristiane Y Koga-Ito
- Department of Environmental Engineering and Oral Biopathology Graduate Program, Institute of Science and Technology, São Paulo State University, UNESP, São José dos Campos, São Paulo, Brazil
| | - Simone Duarte
- Department of Restorative Dentistry, University at Buffalo School of Dental Medicine, Buffalo, NY, USA.
| |
Collapse
|
4
|
Araujo EMDS, Vidal CDMP, Zhu M, Banas JA, Freitas AZD, Wetter NU, Matos AB. Comparison of biofilm models for producing artificial active white spot lesions. J Appl Oral Sci 2024; 32:e20230458. [PMID: 38922241 PMCID: PMC11182642 DOI: 10.1590/1678-7757-2023-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE This study compared three protocols for developing artificial white spot lesions (WSL) using biofilm models. METHODOLOGY In total, 45 human enamel specimens were sterilized and allocated into three groups based on the biofilm model: Streptococcus sobrinus and Lactobacillus casei (Ss+Lc), Streptococcus sobrinus (Ss), or Streptococcus mutans (Sm). Specimens were incubated in filter-sterilized human saliva to form the acquired pellicle and then subjected to the biofilm challenge consisting of three days of incubation with bacteria (for demineralization) and one day of remineralization, which was performed once for Ss+Lc (four days total), four times for Ss (16 days total), and three times for Sm (12 days total). After WSL creation, the lesion fluorescence, depth, and chemical composition were assessed using Quantitative Light-induced Fluorescence (QLF), Polarized Light Microscopy (PLM), and Raman Spectroscopy, respectively. Statistical analysis consisted of two-way ANOVA followed by Tukey's post hoc test (α=0.05). WSL created using the Ss+Lc protocol presented statistically significant higher fluorescence loss (ΔF) and integrated fluorescence (ΔQ) in comparison to the other two protocols (p<0.001). RESULTS In addition, Ss+Lc resulted in significantly deeper WSL (137.5 µm), followed by Ss (84.1 µm) and Sm (54.9 µm) (p<0.001). While high mineral content was observed in sound enamel surrounding the WSL, lesions created with the Ss+Lc protocol showed the highest demineralization level and changes in the mineral content among the three protocols. CONCLUSION The biofilm model using S. sobrinus and L. casei for four days was the most appropriate and simplified protocol for developing artificial active WSL with lower fluorescence, higher demineralization, and greater depth.
Collapse
Affiliation(s)
- Erika Michele Dos Santos Araujo
- The University of Iowa, College of Dentistry, Iowa Institute for Oral Health Research,Iowa City, IA, USA
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Dentística, São Paulo, SP, Brasil
| | | | - Min Zhu
- The University of Iowa, College of Dentistry, Iowa Institute for Oral Health Research,Iowa City, IA, USA
| | - Jeffrey A Banas
- The University of Iowa, College of Dentistry, Iowa Institute for Oral Health Research,Iowa City, IA, USA
- The University of Iowa, College of Dentistry, Department of Pediatric Dentistry, Iowa City, IA, USA
| | - Anderson Zanardi de Freitas
- Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Centro de Lasers e Aplicações, São Paulo, SP, Brasil
| | - Niklaus Ursus Wetter
- Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Centro de Lasers e Aplicações, São Paulo, SP, Brasil
| | - Adriana Bona Matos
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Dentística, São Paulo, SP, Brasil
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Viseu, Portugal
| |
Collapse
|
5
|
Valan AS, Krithikadatta J, Sathish S. Influence of Sucrose and Arenga pinnata Solutions on Enamel Surface Demineralization: A Profilometric Study. Cureus 2023; 15:e44592. [PMID: 37795052 PMCID: PMC10545917 DOI: 10.7759/cureus.44592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/02/2023] [Indexed: 10/06/2023] Open
Abstract
Background Dental caries is a multifactorial disease that has the potential to impact individuals across various life stages. The influential role of sugar as a contributing risk element in the inception and advancement of dental caries is significantly pronounced. Aim The research aim was to analyze and compare the enamel surface roughness in teeth exposed to sucrose and Arenga pinnata (palm sugar) solutions by using a stylus profilometer Materials and methods In this investigation, 34 freshly extracted anterior teeth were obtained and they were split into two groups depending on the solution in which they were immersed. Group A consists of 17 teeth immersed in 1% sucrose solution supplemented in brain heart infusion (BHI) broth solution and Group B consists of 17 teeth immersed in 1% Arenga pinnata BHI broth. Each sample served as its own control. Streptococcus mutans was inoculated into these groups and they were immersed in their respective solution for five days. A stylus profilometer was utilized to measure the surface roughness of the teeth in this study. Data analysis involved paired t-tests for intragroup comparisons and independent t-tests for intergroup comparisons using SPSS software version 23. Results After five days of exposure to palm sugar or sucrose, it was observed that there was demineralization of the enamel surface on both samples. Although there was no statistical significance (p<0.05) when an independent t-test was conducted among these samples, there was a visible increase in the numerical values of Ra, Rq, Rz of teeth exposed to sucrose compared to palm sugar with a p-value of 0.529, 0.122 and 0.357, respectively. Conclusion From this study, it was concluded that although both sucrose and Arenga pinnata cause demineralization of enamel, it was shown that the latter caused lesser demineralization when compared to refined sugars to a certain extent. This study establishes a foundation for forthcoming investigations that could potentially explore the utilization of natural sugars as a substitute for sucrose, while also evaluating the mechanistic aspects underlying the impact of these sugars on enamel demineralization.
Collapse
Affiliation(s)
- Annie Sylvea Valan
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jogikalmat Krithikadatta
- Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sashwat Sathish
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
6
|
YU W, REN C, ZHANG N, CAO L, WEIR MD, YANG K, XU HHK, BAI Y. Dual function of anti-biofilm and modulating biofilm equilibrium of orthodontic cement containing quaternary ammonium salt. Dent Mater J 2023; 42:149-157. [PMID: 36464290 DOI: 10.4012/dmj.2022-142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The objectives of this study were to incorporate dimethylaminohexadecyl methacrylate (DMAHDM) into resin-modified glass ionomer cement (RMGI) to develop a novel orthodontic cement which endowed RMGI with strong antibacterial ability and investigated its modulation biofilm equilibrium from cariogenic state to non-cariogenic state for the first time. Cariogenic Streptococcus mutans (S. mutans), and non-cariogenic Streptococcus sanguinis (S. sanguinis) and Streptococcus gordonii (S. gordonii) were selected to form a tri-species biofilm model. RMGI incorporated with different mass fraction of DMAHDM was examined: biofilm colony-forming units, metabolic activity, live/dead staining, lactic acid and exopolysaccharides productions. TaqMan real-time polymerase chain reaction was used to determine changes of biofilm species compositions. The results showed RMGI containing 3% DMAHDM achieved strong antibacterial ability and suppressed the cariogenic species in biofilm, modulating biofilm equilibrium from cariogenic state to non-cariogenic state tendency. The novel bioactive cement containing DMAHDM is promising in fixed orthodontic treatments and protecting tooth enamel.
Collapse
Affiliation(s)
- Wenqi YU
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Chaochao REN
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Ning ZHANG
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Li CAO
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Michael D. WEIR
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Science and Therapeutics
| | - Kai YANG
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Hockin H. K. XU
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Science and Therapeutics
| | - Yuxing BAI
- Department of Orthodontics, School of Stomatology, Capital Medical University
| |
Collapse
|
7
|
de Farias AL, Arbeláez MIA, Meneguin AB, Barud HDS, Brighenti FL. Mucoadhesive controlled-release formulations containing morin for the control of oral biofilms. BIOFOULING 2022; 38:71-83. [PMID: 34906018 DOI: 10.1080/08927014.2021.2015580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the antimicrobial and anti-biofilm activity of morin on polymicrobial biofilms and its cytotoxicity in controlled-release films and tablets based on gellan gum. Polymicrobial biofilms were formed from saliva for 48 h under an intermittent exposure regime to 1% sucrose and in contact with films or tablets of gellan gum containing 2 mg of morin each. Acidogenicity, bacterial viability, dry weight and insoluble extracellular polysaccharides from biofilms were evaluated. The cytotoxicity of morin was evaluated in oral keratinocytes. Morin released from the systems reduced the viability of all the microbial groups evaluated, as well as the dry weight and insoluble polysaccharide concentration in the matrix and promoted the control of acidogenicity when compared with the control group without the substance. Morin was cytotoxic only at the highest concentration evaluated. In conclusion, morin is an effective agent and shows antimicrobial and anti-biofilm activity against polymicrobial biofilms.
Collapse
Affiliation(s)
- Aline Leite de Farias
- Department of Morphology, Pediatric Dentistry and Orthodontics, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Maria Isabel Amaya Arbeláez
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceuticals, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Hernane da Silva Barud
- Biopolymers and Biomaterials Laboratory (BioPolMat), University of Araraquara - UNIARA, Araraquara, SP, Brazil
| | - Fernanda Lourenção Brighenti
- Department of Morphology, Pediatric Dentistry and Orthodontics, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| |
Collapse
|
8
|
The influence of biofilm maturation on fluoride's anticaries efficacy. Clin Oral Investig 2021; 26:1269-1282. [PMID: 34328559 DOI: 10.1007/s00784-021-04100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES (1) To explore the influence of biofilm maturation and timing of exposure on fluoride anticaries efficacy and (2) to explore biofilm recovery post-treatment. METHODS Bovine enamel specimens were utilized in a pH cycling model (28 subgroups [n = 18]). Each subgroup received different treatments [exposure]: sodium fluoride [NaF]; stannous fluoride [SnF2]; amine fluoride [AmF]; and de-ionized water [DIW], at a specific period: early: days 1-4; middle: days 3-6; and late: days 7-10. During non-exposure periods, pH cycling included DIW instead of fluorides. Objective 1: part 1 (cycling for 4, 6, or 10 days). Part 2 (cycling for 10 days). Objective 2: early exposure: three sample collection time points (immediate, 3 days, and 6 days post-treatment); middle exposure: two sample collection time points (immediate, 4 days post-treatment). The enamel and biofilm were analyzed ([surface microhardness; mineral loss; lesion depth]; [lactate dehydrogenase enzyme activity; exopolysaccharide amount; viability]). Data were analyzed using ANOVA (p = 0.05). RESULTS Objective 1: Early exposure to fluorides produced protective effects against lesion progression in surface microhardness and mineral loss, but not for lesion depth. Objective 2: Early exposure slowed the demineralization process. SnF2 and AmF were superior to NaF in reducing LDH and EPS values, regardless of exposure time. They also prevented biofilm recovery. CONCLUSION Earlier exposure to SnF2 and AmF may result in less tolerant biofilm. Early fluoride treatment may produce a protective effect against demineralization. SnF2 and AmF may be the choice to treat older biofilm and prevent biofilm recovery. CLINICAL RELEVANCE The study provides an understanding of biofilm-fluoride interaction with mature biofilm (e.g., hard-to-reach areas, orthodontic patients) and fluoride's sustainable effect hours/days after brushing.
Collapse
|
9
|
Frazão Câmara JV, Araujo TT, Mendez DAC, da Silva NDG, de Medeiros FF, Santos LA, de Souza Carvalho T, Reis FN, Martini T, Moraes SM, Shibao PYT, Groisman S, Magalhães AC, Henrique-Silva F, Buzalaf MAR. Effect of a sugarcane cystatin on the profile and viability of microcosm biofilm and on dentin demineralization. Arch Microbiol 2021; 203:4133-4139. [PMID: 34059945 DOI: 10.1007/s00203-021-02403-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
To analyze the effect of a sugarcane cystatin (CaneCPI-5) on the microbial profile and viability, as well as on the prevention of dentin demineralization using a microcosm biofilm model. Ninety bovine dentine specimens were divided into five experimental groups according with the solution they were treated for 60 s: (1) PBS (negative control), (2) 0.12% chlorhexidine (positive control), (3) Fluoride (500 ppm F, as NaF), (4) 0.025 mg/ml CaneCPI-5, and (5) 0.05 mg/ml CaneCPI-5. Specimens were incubated with inoculum (McBain's saliva plus human saliva) in the first 8 h, and from then on, they were exposed to McBain saliva containing sucrose and daily treated (60 s) with the solutions for 5 days. Resazurin and colony-forming unit counting assays were performed. Dentin demineralization was measured by transverse micro-radiography (TMR). 0.12% chlorhexidine significantly reduced the metabolic activity of the microcosm biofilm in relation to the negative control and treated groups (p < 0.01). CHX and F significantly reduced the counts of total microorganisms, mutans group streptococci, and lactobacilli when compared with the negative control. None of the treatments was able to significantly reduce dentin demineralization in comparison with the negative control. In the model evaluated, CaneCPI-5 neither altered the microcosm biofilm profile and viability nor protected dentin against demineralization.
Collapse
Affiliation(s)
- João Victor Frazão Câmara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil.
| | - Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Daniela Alejandra Cusicanqui Mendez
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Natara Dias Gomes da Silva
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Felipe Fávaro de Medeiros
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Lethycia Almeida Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Thamyris de Souza Carvalho
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Fabiana Navas Reis
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Tatiana Martini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Samanta Mascarenhas Moraes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | | | - Sonia Groisman
- School of Dentistry, Federal University of Rio de Janeiro, Cidade Universitária da Universidade Federal Do Rio de Janeiro, R. Prof. Rodolpho Paulo Rocco, 325, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| | - Flavio Henrique-Silva
- Federal University of São Carlos, Rod. Washington Luiz, s/n, São Carlos, SP, 13565-905, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Regina, Bauru, SP, 17011-220, Brazil
| |
Collapse
|
10
|
Sánchez MC, Alonso-Español A, Ribeiro-Vidal H, Alonso B, Herrera D, Sanz M. Relevance of Biofilm Models in Periodontal Research: From Static to Dynamic Systems. Microorganisms 2021; 9:428. [PMID: 33669562 PMCID: PMC7922797 DOI: 10.3390/microorganisms9020428] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Microbial biofilm modeling has improved in sophistication and scope, although only a limited number of standardized protocols are available. This review presents an example of a biofilm model, along with its evolution and application in studying periodontal and peri-implant diseases. In 2011, the ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) research group at the University Complutense of Madrid developed an in vitro biofilm static model using representative bacteria from the subgingival microbiota, demonstrating a pattern of bacterial colonization and maturation similar to in vivo subgingival biofilms. When the model and its methodology were standardized, the ETEP research group employed the validated in vitro biofilm model for testing in different applications. The evolution of this model is described in this manuscript, from the mere observation of biofilm growth and maturation on static models on hydroxyapatite or titanium discs, to the evaluation of the impact of dental implant surface composition and micro-structure using the dynamic biofilm model. This evolution was based on reproducing the ideal microenvironmental conditions for bacterial growth within a bioreactor and reaching the target surfaces using the fluid dynamics mimicking the salivary flow. The development of this relevant biofilm model has become a powerful tool to study the essential processes that regulate the formation and maturation of these important microbial communities, as well as their behavior when exposed to different antimicrobial compounds.
Collapse
Affiliation(s)
- María Carmen Sánchez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
| | - Andrea Alonso-Español
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Honorato Ribeiro-Vidal
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Bettina Alonso
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| |
Collapse
|
11
|
Low-Temperature Plasma as an Approach for Inhibiting a Multi-Species Cariogenic Biofilm. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study aimed to determine how low-temperature plasma (LTP) treatment affects single- and multi-species biofilms formed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii formed on hydroxyapatite discs. LTP was produced by argon gas using the kINPen09™ (Leibniz Institute for Plasma Science and Technology, INP, Greifswald, Germany). Biofilms were treated at a 10 mm distance from the nozzle of the plasma device to the surface of the biofilm per 30 s, 60 s, and 120 s. A 0.89% saline solution and a 0.12% chlorhexidine solution were used as negative and positive controls, respectively. Argon flow at three exposure times (30 s, 60 s, and 120 s) was also used as control. Biofilm viability was analyzed by colony-forming units (CFU) recovery and confocal laser scanning microscopy. Multispecies biofilms presented a reduction in viability (log10 CFU/mL) for all plasma-treated samples when compared to both positive and negative controls (p < 0.0001). In single-species biofilms formed by either S. mutans or S. sanguinis, a significant reduction in all exposure times was observed when compared to both positive and negative controls (p < 0.0001). For single-species biofilms formed by S. gordonii, the results indicate total elimination of S. gordonii for all exposure times. Low exposure times of LTP affects single- and multi-species cariogenic biofilms, which indicates that the treatment is a promising source for the development of new protocols for the control of dental caries.
Collapse
|
12
|
Ayoub HM, Gregory RL, Tang Q, Lippert F. The anti-caries efficacy of three fluoride compounds at increasing maturation of a microcosm biofilm. Arch Oral Biol 2020; 117:104781. [PMID: 32622258 DOI: 10.1016/j.archoralbio.2020.104781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To explore the anti-caries efficacy of three fluoride compounds at increasing maturation of a microcosm biofilm. DESIGN Microcosm biofilm, obtained from saliva collected from three donors (IRB #1406440799), was grown on enamel samples (n = 18/group) for 24-h (Brain Heart Infusion; 0.2 % sucrose). Then, pH cycling model started. Three maturations were explored (4d, 8d, and 12d). The pH cycling consisted of daily 2 × 5 min treatments (NaF, SnF2, AmF: 287.5 ppm F, and de-ionized water [DIW]), 4 × 10 min remineralization (BHI, no sucrose, pH 7.0), and 3 × 2:15 h demineralization (BHI, 1% sucrose, pH 4.5). We analyzed the enamel (surface microhardness [VHNchange], integrated mineral loss [ΔZ], lesion depth [L]), and the biofilm (viability [log10 CFU/mL], lactic acid production [LDH], and exopolysaccharide [EPS] amount). Data were analyzed using two-way ANOVA (p = 0.05). RESULTS The interaction between tested variables was significant for VHNchange, viability, LDH, EPS (p = 0.0354, p = 0.0001, p < 0.0001, p < 0.0001), but not for L (p = 0.2412) or ΔZ (p = 0.6811). LDH and EPS analyses exhibited more tolerance of mature biofilm against NaF (LDH and EPS p < 0.0001); NaF-treated groups demonstrated significantly lower results than the control in the 12d group. The effect of SnF2 and AmF continued over time. VHNchange, L, and ΔZ: The effect of SnF2 and AmF was higher than NaF and DIW. L and ΔZ did not result in significant differences over time (all treatments). Within each maturation, fluoride compounds demonstrated statistically significantly lower L and ΔZ values than DIW. CONCLUSIONS Biofilm's maturation may influence the selection of fluoride compounds to achieve an optimum cariostatic effect.
Collapse
Affiliation(s)
- Hadeel M Ayoub
- King Saud University, College of Applied Medical Sciences, Dental Health Department, P.O. Box 145111, Riyadh, 4545, Saudi Arabia; Indiana University, School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA; Indiana University, School of Medicine, Department of Family Medicine, Bowen Center for Health Workforce Research & Policy, 1110 W. Michigan Street, Indianapolis, IN, 46202, USA.
| | - Richard L Gregory
- Indiana University, School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA.
| | - Qing Tang
- Indiana University, School of Medicine, Department of Biostatistics, 410 W. 10th Street, HITS 3000, Indianapolis, IN, 46202, USA.
| | - Frank Lippert
- Indiana University, School of Dentistry, Department of Cariology, Operative Dentistry and Dental Public Health, 415 Lansing Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|
13
|
Ayoub HM, Gregory RL, Tang Q, Lippert F. Influence of salivary conditioning and sucrose concentration on biofilm-mediated enamel demineralization. J Appl Oral Sci 2020; 28:e20190501. [PMID: 32236356 PMCID: PMC7105287 DOI: 10.1590/1678-7757-2019-0501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The acquired pellicle formation is the first step in dental biofilm formation. It distinguishes dental biofilms from other biofilm types. OBJECTIVE To explore the influence of salivary pellicle formation before biofilm formation on enamel demineralization. METHODOLOGY Saliva collection was approved by Indiana University IRB. Three donors provided wax-stimulated saliva as the microcosm bacterial inoculum source. Acquired pellicle was formed on bovine enamel samples. Two groups (0.5% and 1% sucrose-supplemented growth media) with three subgroups (surface conditioning using filtered/pasteurized saliva; filtered saliva; and deionized water (DIW)) were included (n=9/subgroup). Biofilm was then allowed to grow for 48 h using Brain Heart Infusion media supplemented with 5 g/l yeast extract, 1 mM CaCl2.2H2O, 5% vitamin K and hemin (v/v), and sucrose. Enamel samples were analyzed for Vickers surface microhardness change (VHNchange), and transverse microradiography measuring lesion depth (L) and mineral loss (∆Z). Data were analyzed using two-way ANOVA. RESULTS The two-way interaction of sucrose concentration × surface conditioning was not significant for VHNchange (p=0.872), ∆Z (p=0.662) or L (p=0.436). Surface conditioning affected VHNchange (p=0.0079), while sucrose concentration impacted ∆Z (p<0.0001) and L (p<0.0001). Surface conditioning with filtered/pasteurized saliva resulted in the lowest VHNchange values for both sucrose concentrations. The differences between filtered/pasteurized subgroups and the two other surface conditionings were significant (filtered saliva p=0.006; DIW p=0.0075). Growing the biofilm in 1% sucrose resulted in lesions with higher ∆Z and L values when compared with 0.5% sucrose. The differences in ∆Z and L between sucrose concentration subgroups was significant, regardless of surface conditioning (both p<0.0001). CONCLUSION Within the study limitations, surface conditioning using human saliva does not influence biofilm-mediated enamel caries lesion formation as measured by transverse microradiography, while differences were observed using surface microhardness, indicating a complex interaction between pellicle proteins and biofilm-mediated demineralization of the enamel surface.
Collapse
Affiliation(s)
- Hadeel M Ayoub
- King Saud University, Dental Health Department, College of Applied Medical Sciences, Riyadh, Saudi Arabia.,Indiana University, School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, Indianapolis, Indiana, USA
| | - Richard L Gregory
- Indiana University, School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, Indianapolis, Indiana, USA
| | - Qing Tang
- Indiana University, School of Medicine, Department of Biostatistics, Indianapolis, Indiana, USA
| | - Frank Lippert
- Indiana University, School of Dentistry, Department of Cariology, Operative Dentistry and Dental Public Health, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Moreira MJS, Klaus NM, Dall'Onder AP, Grando D, Parolo CCF, Faccini LS, Hashizume LN. Genotypic diversity and acidogenicity of Streptococcus mutans in Down syndrome children. SPECIAL CARE IN DENTISTRY 2019; 39:578-586. [PMID: 31515845 DOI: 10.1111/scd.12420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
AIMS To evaluate the genotypic diversity and acidogenicity of Streptococcus mutans (S. mutans) and the potential association of these factors with dental caries experience in children with DS compared to non-DS children (controls). METHODS AND RESULTS Seventeen children (age 6-12 years) with high salivary S. mutans counts (> 2.5 × 105 CFU/mL) were selected and divided into two groups: DS and non-DS. Five children in each group were caries-free, while the remainder had elevated caries experience. S. mutans isolates were obtained from each participant. The genotypic profile of the isolates was analyzed with the AP-PCR methodology. The acidogenicity of a representative strain from each genotype of S. mutans was also evaluated. DS children had 16 different S. mutans genotypes, while the control group had 21. Twelve genotypes were present in both groups and one of them was associated with caries-free status (P < .05). Although the acidogenicity of the genotypes found in DS children was significantly lower (P < .05) compared to controls, this fact was not associated with caries experience in both groups. CONCLUSIONS DS children have a lower S. mutans genotypic diversity and genotypes with lower acidogenicity than those of non-DS children. However these findings were not associated with their caries experience.
Collapse
Affiliation(s)
- Maurício José Santos Moreira
- Faculty of Dentistry, Department of Preventive and Social Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Mincato Klaus
- Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Paula Dall'Onder
- Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Grando
- Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Lina Naomi Hashizume
- Faculty of Dentistry, Department of Preventive and Social Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Conrads G, Wendt LK, Hetrodt F, Deng ZL, Pieper D, Abdelbary MMH, Barg A, Wagner-Döbler I, Apel C. Deep sequencing of biofilm microbiomes on dental composite materials. J Oral Microbiol 2019; 11:1617013. [PMID: 31143408 PMCID: PMC6522937 DOI: 10.1080/20002297.2019.1617013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The microbiome on dental composites has not been studied in detail before. It has not been conclusively clarified whether restorative materials influence the oral microbiome. Methods: We used Illumina Miseq next-generation sequencing of the 16S V1-V2 region to compare the colonisation patterns of bovine enamel (BE) and the composite materials Grandio Flow (GF) and Grandio Blocs (GB) after 48 h in vivo in 14 volunteers. Applying a new method to maintain the oral microbiome ex vivo for 48 h also, we compared the microbiome on GF alone and with the new antimicrobial substance carolacton (GF+C). Results: All in vitro biofilm communities showed a higher diversity and richness than those grown in vivo but the very different atmospheric conditions must be considered. Contrary to expectations, there were only a few significant differences between BE and the composite materials GB and GF either in vivo or in vitro: Oribacterium, Peptostreptococcaceae [XI][G-1] and Streptococcus mutans were more prevalent and Megasphaera, Prevotella oulorum, Veillonella atypica, V. parvula, Gemella morbillorum, and Fusobacterium periodonticum were less prevalent on BE than on composites. In vivo, such preferences were only significant for Granulicatella adiacens (more prevalent on BE) and Fusobacterium nucleatum subsp. animalis (more prevalent on composites). On DNA sequence level, there were no significant differences between the biofilm communities on GF and GF+C. Conclusion: We found that the oral microbiome showed an increased richness when grown on various composites compared to BE in vitro, but otherwise changed only slightly independent of the in vivo or in vitro condition. Our new ex vivo biofilm model might be useful for pre-clinical testing of preventive strategies.
Collapse
Affiliation(s)
- Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | - Laura Katharina Wendt
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | - Franziska Hetrodt
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University, Aachen, Germany
| | - Zhi-Luo Deng
- Group Microbial Communication, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Dietmar Pieper
- Group Microbial Interactions and Processes, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Irene Wagner-Döbler
- Group Microbial Communication, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Christian Apel
- Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
dos Santos D, Pires J, Silva A, Salomão P, Buzalaf M, Magalhães A. Protective Effect of 4% Titanium Tetrafluoride Varnish on Dentin Demineralization Using a Microcosm Biofilm Model. Caries Res 2019; 53:576-583. [DOI: 10.1159/000499317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/28/2019] [Indexed: 11/19/2022] Open
Abstract
This study evaluated the effect of titanium tetrafluoride (TiF4) varnish on the development of dentin carious lesions. Bovine root dentin samples were treated for 6 h with: (A) 4% TiF4 varnish (2.45% F); (B) 5.42% sodium fluoride (NaF) varnish (2.45% F); (C) 2% chlorhexidine (CHX) gel – positive control; (D) placebo varnish; or (E) untreated – negative control (n = 4 × biological triplicate, n = 12). Treated dentin samples were exposed to human saliva mixed with McBain saliva (1:50) for the first 8 h in 24-well plates. Thereafter, the medium was removed, and McBain saliva containing 0.2% sucrose was applied for 16 h. From days 2 to 5, McBain saliva with sucrose was replaced daily (37°C, 5% CO2). The demineralization was measured using transverse microradiography, while the effect on biofilm was analyzed using viability, extracellular polysaccharide (EPS), and lactic acid production assays. The data were statistically analyzed (p < 0.05). All treatments (fluorides and CHX) significantly reduced the biofilm viability compared to placebo varnish and negative control. However, none of them was able to reduce the colony-forming unit counting for total microorganism, total streptococci, and Streptococcus mutans. NaF significantly reduced the number of Lactobacillus sp. compared to negative control. No effect was seen on lactic acid production neither on EPS synthesis, except that CHX significantly reduced the amount of insoluble EPS. Both fluorides were able to reduce dentin demineralization compared to placebo varnish and negative control; TiF4 had a better effect in reducing mineral loss and lesion depth than NaF. Therefore, TiF4 varnish has the best protective effect on dentin carious lesion formation using this model.
Collapse
|
17
|
Guo X, Liu S, Zhou X, Hu H, Zhang K, Du X, Peng X, Ren B, Cheng L, Li M. Effect of D-cysteine on dual-species biofilms of Streptococcus mutans and Streptococcus sanguinis. Sci Rep 2019; 9:6689. [PMID: 31040318 PMCID: PMC6491432 DOI: 10.1038/s41598-019-43081-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/12/2019] [Indexed: 02/05/2023] Open
Abstract
Dental caries is a highly prevalent disease worldwide. It is caused by the cariogenic biofilms composed of multiple dynamic bacteria on dental surface. Streptococcus mutans and Streptococcus sanguinis are resident members within the biofilms and an antagonistic relationship has been shown between these two species. S. mutans, as the major causative microorganism of dental caries, has been reported to be inhibited by free D-cysteine (D-Cys). However, whether D-Cys could affect S. sanguinis and the interspecies relationship between S. mutans and S. sanguinis remains unknown. The aim of the current study was to investigate the effect of D-Cys on the growth and cariogenicity of dual-species biofilms formed by S. mutans and S. sanguinis. We measured dual-species biofilms biomass, metabolic activity, lactate production. We also detected the biofilms structure, the ratio of live/dead bacteria, extracellular polysaccharide (EPS) synthesis and bacterial composition in the dual-species biofilms. We found that D-Cys could reduce the metabolic activity and lactic acid production of dual-species biofilms (p < 0.05). In addition, biofilms formation, the proportion of S. mutans in dual-species biofilms, and EPS synthesis were decreased with D-Cys treatment. The results suggested that D-Cys could inhibit the growth and cariogenic virulence of dual-species biofilms formed by S. mutans and S. sanguinis, indicating the potential of D-Cys in clinical application for caries prevention and treatment.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shiyu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongying Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Keke Zhang
- Institute of Stem Cell and Tissue Engineering, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinmei Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Mingyun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
A Novel Small Molecule, ZY354, Inhibits Dental Caries-Associated Oral Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.02414-18. [PMID: 30858201 DOI: 10.1128/aac.02414-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/06/2019] [Indexed: 02/05/2023] Open
Abstract
Biofilm control is a critical approach to the better management of dental caries. Antimicrobial small molecules have shown their potential in the disruption of oral biofilm and control of dental caries. The objectives of this study were to examine the antimicrobial activity and cytotoxicity of a newly designed small-molecule compound, ZY354. ZY354 was synthesized, and its cytotoxicity was evaluated in human oral keratinocytes (HOK), human gingival epithelial cells (HGE), and macrophages (RAW) by CCK-8 assays. Minimal inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), minimum biofilm inhibition concentrations (MBICs), and minimum biofilm reduction concentrations (MBRCs) of ZY354 against common oral streptococci (i.e., Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis) were determined by microdilution method. The exopolysaccharide (EPS)/bacterium ratio and the dead/live bacterium ratio in the ZY354-treated multispecies biofilms were determined by confocal laser scanning microscopy, and the microbial composition was visualized and quantified by fluorescent in situ hybridization and quantitative PCR (qPCR). The demineralizing activity of ZY354-treated biofilms was evaluated by transverse microradiography. The results showed that ZY354 exhibited low cytotoxicity in HOK, HGE, and RAW cells and exhibited potent antimicrobial activity against common oral streptococci. The EPS and the abundance of S. mutans were significantly reduced after ZY354 treatment, along with an increased dead/live microbial ratio in multispecies biofilms compared to the level with the nontreated control. The ZY354-treated multispecies biofilms exhibited reduced demineralizing activity at the biofilm/enamel interface. In conclusion, the small-molecule compound ZY354 exhibits low cytotoxicity and remarkable antimicrobial activity against oral streptococci, and it may have a great potential in anticaries clinical applications.
Collapse
|
19
|
Zajdowicz S, Song HB, Baranek A, Bowman CN. Evaluation of biofilm formation on novel copper-catalyzed azide-alkyne cycloaddition (CuAAC)-based resins for dental restoratives. Dent Mater 2019; 34:657-666. [PMID: 29422327 DOI: 10.1016/j.dental.2018.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/25/2017] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE For the past several decades, the resins used in dental restorations have been plagued with numerous problems, including their implication in biofilm formation and secondary caries. The need for alternative resins is critical, and evaluation of biofilm formation on these resins is essential. The aim of this study was to evaluate in vitro biofilm formation on the surface of novel copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC)-based resins and composites. METHODS CuAAC-based resins/composites made from varying azide monomers and different copper concentrations were compared with BisGMA-TEGDMA resins/composites that served as the control. Biofilms were formed using a mono-species model containing a luciferase-expressing strain of Streptococcus mutans. Luciferase activity was measured and the number of viable bacteria was enumerated on biofilms associated with each resin and composite. RESULTS A significant reduction (p<0.05) in luciferase activity, and the number of viable bacteria recovered from biofilms on CuAAC-based resins and composites was observed in comparison to biofilms associated with the BisGMA-TEGDMA controls. SIGNIFICANCE CuAAC-based resins do still allow for the formation of biofilms; however, the statistically significant reduction of growth that was associated with the CuAAC resin may enhance the longevity of restorations that incorporate CuAAC-based materials.
Collapse
Affiliation(s)
- Sheryl Zajdowicz
- Department of Biology, Metropolitan State University of Denver, PO Box 173362, Campus Box #53, Denver, CO, 80217, United States.
| | - Han Byul Song
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States.
| | - Austin Baranek
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States.
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States.
| |
Collapse
|
20
|
Santos DMSD, Pires JG, Braga AS, Salomão PMA, Magalhães AC. Comparison between static and semi-dynamic models for microcosm biofilm formation on dentin. J Appl Oral Sci 2019; 27:e20180163. [PMID: 30624468 PMCID: PMC6322641 DOI: 10.1590/1678-7757-2018-0163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/13/2018] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE Microcosm biofilm has been applied to induce carious lesions in dentin. However, no study has been done to compare the impact of the type of model for providing nutrients to microcosm biofilm formation on dentin. This study compared the performance of two kinds of models (static and semi-dynamic) on the biofilm formation and the development of dentin carious lesions. MATERIAL AND METHODS In both models, biofilm was produced using inoculum from pooled human saliva mixed with McBain saliva for the first 8 h (5% CO2 and 37°C). Afterwards, for the static model, the samples were placed in 24-wells microplate containing McBain saliva with 0.2% sucrose, which was replaced at 24 h. In the semi-dynamic model, the samples were submitted to artificial mouth system with continuous flow of McBain saliva with 0.2% sucrose (0.15 ml/min, 37°C) for 10 h a day (for the other 14 h, no flow was applied, similarly to the static model). After 5 days, biofilm viability was measured by fluorescence and dentin demineralization by transverse microradiography. RESULTS Biofilm viability was significantly lower for the static compared with semi-dynamic model, while dentin demineralization was significantly higher for the first one (p<0.05). The static model was able to produce a higher number of typical subsurface lesions compared with the semi-dynamic model (p<0.05). CONCLUSIONS The type of model (static and semi-dynamic) applied in the microcosm biofilm may have influence on it's viability and the severity/profile of dentin carious lesions.
Collapse
Affiliation(s)
| | - Juliana Gonçalves Pires
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo, Brasil
| | - Aline Silva Braga
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo, Brasil
| | - Priscila Maria Aranda Salomão
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo, Brasil
| | - Ana Carolina Magalhães
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo, Brasil
| |
Collapse
|
21
|
Eidt G, Andrade CGD, Negrini TDC, Arthur RA. Role of Candida albicans on enamel demineralization and on acidogenic potential of Streptococcus mutans in vitro biofilms. J Appl Oral Sci 2019; 27:e20180593. [DOI: 10.1590/1678-7757-2018-0593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Gustavo Eidt
- Universidade Federal do Rio Grande do Sul, Brasil
| | | | | | | |
Collapse
|
22
|
Vieira TI, Câmara JVF, Cardoso JG, Alexandria AK, Pintor AVB, Villaça JC, Cabral LM, Romanos MTV, Fonseca-Gonçalves A, Valença AMG, Maia LC. Cytotoxicity of novel fluoride solutions and their influence on mineral loss from enamel exposed to a Streptococcus mutans biofilm. Arch Oral Biol 2018; 91:57-62. [PMID: 29679886 DOI: 10.1016/j.archoralbio.2018.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/24/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE This study evaluated the cytotoxicity, antimicrobial activity and in vitro influence of new fluoridated nanocomplexes on dental demineralization. DESIGN The nanocomplexes hydroxypropyl-β-cyclodextrin with 1% titanium tetrafluoride (TiF4) and γ-cyclodextrin with TiF4 were compared to a positive control (TiF4), a blank control (without treatment) and negative controls (hydroxypropyl-β-cyclodextrin, γ-cyclodextrin, deionized water), following 12- and 72-hour complexation periods. The cytotoxicity was assessed using the neutral red dye uptake assay at T1-15 min, T2-30 min and T3-24 h. A minimum bactericidal concentration (MBC) against Streptococcus mutans (ATCC 25175) was performed. Enamel blocks were exposed to an S. mutans biofilm, and the percentage of surface microhardness loss was obtained. Biocompatibility and microhardness data were analysed using ANOVA/Tukey tests (p < 0.05). RESULTS At T1, the cell viability results of the nanocomplexes were similar to that of the blank control. At T2 and T3, the 72 h nanocomplexes demonstrated cell viability results similar to that of the blank, while the 12 h solutions showed results different from that of the blank (p < 0.05). All fluoridated nanocompounds inhibited S. mutans (MBC = 0.25%), while the MBC of TiF4 alone was 0.13%. All fluoridated compounds presented a percentage of surface microhardness loss lower than that of deionized water (p < 0.05). CONCLUSIONS The new fluoridated nanocomplexes did not induce critical cytotoxic effects during the experimental periods, whilst they did show bactericidal potential against S. mutans and inhibited enamel mineral loss.
Collapse
Affiliation(s)
- Thiago Isidro Vieira
- Department of Paediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | - Adílis Kalina Alexandria
- Department of Paediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Andréa Vaz Braga Pintor
- Department of Paediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | - Lúcio Mendes Cabral
- School of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Maria Teresa Villela Romanos
- Laboratório Experimental de Drogas Antivirais e Citotóxicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Andrea Fonseca-Gonçalves
- Department of Paediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Ana Maria Gondim Valença
- Department of Clinic and Social Dentistry, School of Dentistry, Universidade Federal da Paraíba, Paraíba, Brazil.
| | - Lucianne Cople Maia
- Department of Paediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
23
|
Zhou X, Wang S, Peng X, Hu Y, Ren B, Li M, Hao L, Feng M, Cheng L, Zhou X. Effects of water and microbial-based aging on the performance of three dental restorative materials. J Mech Behav Biomed Mater 2018; 80:42-50. [DOI: 10.1016/j.jmbbm.2018.01.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
24
|
Liang J, Li M, Ren B, Wu T, Xu HHK, Liu Y, Peng X, Yang G, Weir MD, Zhang S, Cheng L, Zhou X. The anti-caries effects of dental adhesive resin influenced by the position of functional groups in quaternary ammonium monomers. Dent Mater 2017; 34:400-411. [PMID: 29269159 DOI: 10.1016/j.dental.2017.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 11/20/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES A new quaternary ammonium monomer (QAM), triethylaminododecyl acrylate (TEADDA) was synthesized, in which the position of the functional groups was different from that of dimethylaminododecyl methacrylate (DMADDM). The objectives were to: (1) investigate the effect of the changed position of the functional groups on the mechanical properties, anti-biofilm activity and biocompatibility of adhesive resin, and (2) study the anti-bacterial mechanism of QAM to improve the performance of the adhesive system modified by QAM. METHODS TEADDA and DMADDM were added into adhesives. Microtensile bond strength and surface charge density were measured. Multi-species biofilms were incubated on specimens for 16h, 48h and 72h and analyzed via MTT assay, lactic acid measurement and confocal laser scanning microscopy. The ratio of different species of bacteria was measured by real-time polymerase chain reaction. Cytotoxicity and biocompatibility were analyzed by eluents cytotoxicity test and histological images of H&E staining via an animal study in rats. RESULTS The mass fraction of TEDDA allowed to be added into adhesive was higher than that of DMADDM. However, even 10% TEADDA did not yield a strong anti-biofilm effect on biofilm growth, lactic acid production and bacteria compositions. TEADDA added into adhesives showed better mechanical properties but weaker anti-bacterial effect. There was no significant difference on cytotoxicity and biocompatibility between DMADDM and TEADDA. SIGNIFICANCE The study could be helpful for the investigation of the anti-caries mechanism of QAMs, the design of new QAMs and the improvement of the anti-caries activity of the modified dental materials.
Collapse
Affiliation(s)
- Jingou Liang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Tianmu Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yong Liu
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Ge Yang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Shiyong Zhang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
25
|
Effect of methylene blue-mediated antimicrobial photodynamic therapy on dentin caries microcosms. Lasers Med Sci 2017; 33:479-487. [DOI: 10.1007/s10103-017-2379-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/26/2017] [Indexed: 01/10/2023]
|
26
|
Degrazia FW, Genari B, Leitune VCB, Arthur RA, Luxan SA, Samuel SMW, Collares FM, Sauro S. Polymerisation, antibacterial and bioactivity properties of experimental orthodontic adhesives containing triclosan-loaded halloysite nanotubes. J Dent 2017; 69:77-82. [PMID: 29126948 DOI: 10.1016/j.jdent.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To evaluate the immediate enamel bond strength, in situ degree of conversion and the polymerisation rate of three experimental orthodontic adhesives containing triclosan-loaded halloysite nanotubes. The antibacterial and bioactivity properties of such experimental materials were also assessed. MATERIALS AND METHODS Three experimental orthodontic adhesives were formulated by incorporating triclosan-loaded halloysite nanotubes (TCN-HNT) at different concentrations (5wt%, 10wt% and 20wt%) into a resin blend (Control). The maximum polymerisation rate of the tested adhesives was evaluated trough FTIR, while Raman was used to analyse the in situ degree of conversion (DC) at the bracket/enamel interface. The shear bond strength (SBS) of the enamel-bonded specimens was assessed at 24h. The antibacterial properties of the experimental materials against S. Mutans were evaluate up to 72h, while, their bioactivity was evaluated after 14days of artificial saliva (AS) storage through SEM-EDS and Raman spectromicroscopy. RESULTS Incorporation of TCN-HNT increased the polymerisation properties without interfering with the immediate bonding properties of the experimental adhesives. All experimental adhesives containing TCN-HNT inhibited bacterial growth at 24h, and induced mineral deposition after 14days of AS storage. At 72h, only the experimental system containing 20% TCN-HNT maintained such a capability. CONCLUSIONS Adhesives doped with TCN-HNT present improved polymerisation properties and suitable bonding performance. However, only the adhesives containing TCN-HNT >10% might promote long-term antibacterial activity and reliable mineral deposition. CLINICAL SIGNIFICANCE The use of adhesives containing triclosan-loaded halloysite represents a promising "smart" approach to bond orthodontic brackets and bands; these might prevent enamel demineralisation and induce enamel remineralisation during the treatment.
Collapse
Affiliation(s)
- Felipe Weidenbach Degrazia
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, Brazil.
| | - Bruna Genari
- Centro Universitário do Distrito Federal (UDF), Brasília, Brazil.
| | - Vicente Castelo Branco Leitune
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, Brazil.
| | - Rodrigo Alex Arthur
- Laboratório de Bioquímica e Microbiologia Oral, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil..
| | - Santiago Arias Luxan
- Orthodontics, Departamento de Odontologia - Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, C/Del Pozo s/n, Alfara del Patriarca, Valencia, Spain.
| | - Susana Maria Werner Samuel
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, Brazil.
| | - Fabrício Mezzomo Collares
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, Brazil.
| | - Salvatore Sauro
- Dental Biomaterials, Preventive and Minimally Invasive Dentistry, Departamento de Odontologia - Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, C/Del Pozo s/n, Alfara del Patriarca, Valencia, Spain. E-mail: ; Tissue Engineering and Biophotonics Research Division, King's College London Dental Institute (KCLDI), Floor 17 Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT (UK)
| |
Collapse
|
27
|
Maske TT, van de Sande FH, Arthur RA, Huysmans MCDNJM, Cenci MS. In vitro biofilm models to study dental caries: a systematic review. BIOFOULING 2017; 33:661-675. [PMID: 28792234 DOI: 10.1080/08927014.2017.1354248] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
The aim of this systematic review is to characterize and discuss key methodological aspects of in vitro biofilm models for caries-related research and to verify the reproducibility and dose-response of models considering the response to anti-caries and/or antimicrobial substances. Inclusion criteria were divided into Part I (PI): an in vitro biofilm model that produces a cariogenic biofilm and/or caries-like lesions and allows pH fluctuations; and Part II (PII): models showing an effect of anti-caries and/or antimicrobial substances. Within PI, 72.9% consisted of dynamic biofilm models, while 27.1% consisted of batch models. Within PII, 75.5% corresponded to dynamic models, whereas 24.5% corresponded to batch models. Respectively, 20.4 and 14.3% of the studies reported dose-response validations and reproducibility, and 32.7% were classified as having a high risk of bias. Several in vitro biofilm models are available for caries-related research; however, most models lack validation by dose-response and reproducibility experiments for each proposed protocol.
Collapse
Affiliation(s)
- T T Maske
- a Graduate Program in Dentistry , Federal University of Pelotas , Pelotas-RS , Brazil
- b Department of Dentistry , Radboud University Medical Center , Nijmegen , the Netherlands
| | - F H van de Sande
- c School of Dentistry , IMED Faculdade Meridional , Passo Fundo-RS , Brazil
| | - R A Arthur
- d Department of Preventive and Community Dentistry , Federal University of Rio Grande do Sul , Porto Alegre-RS , Brazil
| | - M C D N J M Huysmans
- b Department of Dentistry , Radboud University Medical Center , Nijmegen , the Netherlands
| | - M S Cenci
- a Graduate Program in Dentistry , Federal University of Pelotas , Pelotas-RS , Brazil
| |
Collapse
|
28
|
Owens GJ, Lynch RJ, Hope CK, Cooper L, Higham SM, Valappil SP. Evidence of an in vitro Coupled Diffusion Mechanism of Lesion Formation within Microcosm Dental Plaque. Caries Res 2017; 51:188-197. [DOI: 10.1159/000456015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to determine whether or not the dual constant-depth film fermenter (dCDFF) is able to produce caries-like enamel lesions and to ascertain further information regarding the performance of this fully functional biological caries model. Conditions were defined by the continuation (CF) or cessation (FF) of a saliva-type growth medium supply during 50-mM sucrose exposures (8 times daily). Hydroxyapatite (n = 3) and bovine enamel (n = 3) substrata were included within each condition and samples extracted after 2, 4, 8, and 16 days. Community profiles were generated for fastidious anaerobes, Lactobacillus spp., Streptococcus spp., mutans streptococci (MS), and Veillonella spp. using selective culture techniques and enamel demineralisation assessed by transverse microradiography. Results demonstrated that the dCDFF model is able to produce caries-like enamel lesions with a high degree of sensitivity where reduced ionic strength within the FF condition increased surface layer mineral deposition. Between conditions, biofilm communities did not differ significantly, although MS in the biofilms extracted from the FF condition rose to a higher proportion (by 1.5 log10 units), and Veillonella spp. were initially greater within the CF condition (by 2.5 log10 units), indicating an enhanced ability for the clearance of low-pKa acids following exposures to sucrose. However, both conditions retained the ability for caries-like lesion formation.
Collapse
|
29
|
Stegues CG, Arthur RA, Hashizume LN. Effect of the association of maltodextrin and sucrose on the acidogenicity and adherence of cariogenic bacteria. Arch Oral Biol 2016; 65:72-6. [DOI: 10.1016/j.archoralbio.2016.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/11/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
30
|
In vitro antibacterial and remineralizing effect of adhesive containing triazine and niobium pentoxide phosphate inverted glass. Clin Oral Investig 2016; 21:93-103. [DOI: 10.1007/s00784-016-1754-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
|
31
|
Maske TT, Brauner KV, Nakanishi L, Arthur RA, van de Sande FH, Cenci MS. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies. BIOFOULING 2016; 32:339-348. [PMID: 26905384 DOI: 10.1080/08927014.2015.1130824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Some dynamic biofilm models for dental caries development are limited as they require multiple experiments and do not allow independent biofilm growth units, making them expensive and time-consuming. This study aimed to develop and test an in vitro dynamic microcosm biofilm model for caries lesion development and for dose-response to chlorhexidine. Microcosm biofilms were grown under two different protocols from saliva on bovine enamel discs for up to 21 days. The study outcomes were as follows: the percentage of enamel surface hardness change, integrated hardness loss, and the CFU counts from the biofilms formed. The measured outcomes, mineral loss and CFU counts showed dose-response effects as a result of the treatment with chlorhexidine. Overall, the findings suggest that biofilm growth for seven days with 0.06 ml min(-1) salivary flow under exposure to 5% sucrose (3 × daily, 0.25 ml min(-1), 6 min) was suitable as a pre-clinical model for enamel demineralization and antimicrobial studies.
Collapse
Affiliation(s)
- T T Maske
- a Graduate Program in Dentistry , Federal University of Pelotas , Pelotas-RS , Brazil
| | - K V Brauner
- a Graduate Program in Dentistry , Federal University of Pelotas , Pelotas-RS , Brazil
| | - L Nakanishi
- a Graduate Program in Dentistry , Federal University of Pelotas , Pelotas-RS , Brazil
| | - R A Arthur
- b Department of Preventive and Community Dentistry , Federal University of Rio Grande do Sul , Porto Alegre-RS , Brazil
| | - F H van de Sande
- a Graduate Program in Dentistry , Federal University of Pelotas , Pelotas-RS , Brazil
- c School of Dentistry , IMED Faculdade Meridional , Passo Fundo-RS , Brazil
| | - M S Cenci
- a Graduate Program in Dentistry , Federal University of Pelotas , Pelotas-RS , Brazil
| |
Collapse
|
32
|
Arthur RA, Martins VB, de Oliveira CL, Leitune VCB, Collares FM, Magalhães AC, Maltz M. Effect of over-the-counter fluoridated products regimens on root caries inhibition. Arch Oral Biol 2015; 60:1588-94. [DOI: 10.1016/j.archoralbio.2015.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 06/28/2015] [Accepted: 07/26/2015] [Indexed: 11/15/2022]
|
33
|
De Campos PH, Sanabe ME, Rodrigues JA, Duarte DA, Santos MTBR, Guaré RO, Duque C, Lussi A, Diniz MB. Different bacterial models forin vitroinduction of non-cavitated enamel caries-like lesions: Microhardness and polarized light miscroscopy analyses. Microsc Res Tech 2015; 78:444-51. [DOI: 10.1002/jemt.22493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/01/2015] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mariane Emi Sanabe
- Department of Pediatric Dentistry; Camilo Castelo Branco University-UNICATELO; São Paulo-SP 04204-002 Brazil
| | - Jonas Almeida Rodrigues
- Department of Pediatric Dentistry, School of Dentistry; Rio Grande Do Sul Federal University-UFRGS; Porto Alegre RS 90035-003 Brazil
| | - Danilo Antonio Duarte
- Department of Pediatric Dentistry; Cruzeiro Do Sul University-UNICSUL; São Paulo-SP 01506-000 Brazil
| | | | - Renata Oliveira Guaré
- Department of Pediatric Dentistry; Cruzeiro Do Sul University-UNICSUL; São Paulo-SP 01506-000 Brazil
| | - cristiane Duque
- Department of Pediatric Dentistry, Araçatuba School of Dentistry; São Paulo State University - UNESP; Araçatuba SP 16015-050 Brazil
| | - Adrian Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine; University of Bern-UNIBE; Bern CH 3010 Switzerland
| | - Michele Baffi Diniz
- Department of Pediatric Dentistry; Cruzeiro Do Sul University-UNICSUL; São Paulo-SP 01506-000 Brazil
| |
Collapse
|
34
|
Salli KM, Ouwehand AC. The use of in vitro model systems to study dental biofilms associated with caries: a short review. J Oral Microbiol 2015; 7:26149. [PMID: 25740099 PMCID: PMC4349908 DOI: 10.3402/jom.v7.26149] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 11/14/2022] Open
Abstract
A dental biofilm forms a distinct environment where microorganisms live in a matrix of extracellular polysaccharides. The biofilm favors certain bacteria and creates a habitat that functions differently compared to planktonic bacteria. Reproducible model systems which help to address various questions related to biofilm formation, the process of caries development, and its prevention are needed and are continuously developed. Recent research using both batch culture, continuous culture and flow cells in caries biofilm formation is presented. The development of new techniques and equipment has led to a deeper understanding of how caries biofilms function. Biofilm models have also been used in the development of materials inhibiting secondary caries. This short review summarizes available models to study these questions.
Collapse
Affiliation(s)
- Krista M Salli
- DuPont Nutrition and Health, Kantvik Active Nutrition, Kirkkonummi, Finland;
| | - Arthur C Ouwehand
- DuPont Nutrition and Health, Kantvik Active Nutrition, Kirkkonummi, Finland
| |
Collapse
|
35
|
Zhang K, Wang S, Zhou X, Xu HHK, Weir MD, Ge Y, Li M, Wang S, Li Y, Xu X, Zheng L, Cheng L. Effect of antibacterial dental adhesive on multispecies biofilms formation. J Dent Res 2015; 94:622-9. [PMID: 25715378 DOI: 10.1177/0022034515571416] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P < 0.05). EPS was reduced significantly in 5% DMADDM group (P < 0.05). The DMADDM groups reduced the colony-forming unit counts significantly (P < 0.05) and had higher dead:live volume ratio in biofilms compared with control group (P < 0.05). The proportion of S. mutans decreased steadily in DMADDM-containing groups and continually increased in control group, and the biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial properties to serve as "bioactive" adhesive materials and revealed its potential value for antibiofilm and anticaries clinical applications.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - S Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H H K Xu
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics, and Operative Dentistry, University of Maryland Dental School, Baltimore, MD, USA
| | - M D Weir
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics, and Operative Dentistry, University of Maryland Dental School, Baltimore, MD, USA
| | - Y Ge
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - S Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - X Xu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Zheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Enamel Carious Lesion Development in Response to Sucrose and Fluoride Concentrations and to Time of Biofilm Formation: An Artificial-Mouth Study. ACTA ACUST UNITED AC 2015; 2014. [PMID: 25664342 DOI: 10.1155/2014/348032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate both sucrose and fluoride concentrations and time of biofilm formation on enamel carious lesions induced by an in vitro artificial-mouth caries model. For Study 1, biofilms formed by streptococci and lactobacilli were grown on the surface of human enamel slabs and exposed to artificial saliva containing 0.50 or 0.75 ppmF (22.5 h/d) and broth containing 3 or 5% sucrose (30 min; 3x/d) over 5 d. In Study 2, biofilms were grown in the presence of 0.75 ppmF and 3% sucrose over 3 and 9 days. Counts of viable cells on biofilms, lesion depth (LD), and the integrated mineral loss (IML) on enamel specimens were assessed at the end of the tested conditions. Counts of total viable cells and L. casei were affected by sucrose and fluoride concentrations as well as by time of biofilm formation. Enamel carious lesions were shallower and IML was lower in the presence of 0.75 ppmF than in the presence of 0.50 ppmF (P < 0.005). No significant effect of sucrose concentrations was found with respect to LD and IML (P > 0.25). Additionally, deeper lesions and higher IML were found after 9 d of biofilm formation (P < 0.005). Distinct sucrose concentrations did not affect enamel carious lesion development. The severity of enamel demineralization was reduced by the presence of the higher fluoride concentration. Additionally, an increase in the time of biofilm formation produced greater demineralization. Our results also suggest that the present model is suitable for studying aspects related to caries lesion development.
Collapse
|
37
|
Azevedo MS, van de Sande FH, Maske TT, Signori C, Romano AR, Cenci MS. Correlation between the cariogenic response in biofilms generated from saliva of mother/child pairs. BIOFOULING 2014; 30:903-909. [PMID: 25184431 DOI: 10.1080/08927014.2014.948868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study aimed to correlate the cariogenic responsiveness of biofilms generated from the saliva of mothers and children. The mother-child pairs were classified according to the children's caries levels: caries-free, early childhood caries (ECC) or severe ECC. Microcosm biofilms were grown on enamel discs for 10 days. Factors under evaluation were caries experience levels, inoculum source (mothers and children) and growth conditions including cariogenic challenge (growth medium provided with and without sucrose) and no cariogenic challenge (growth medium sucrose-free). Statistical analysis was performed with ANOVA and Tukey's test, and the Spearman correlation test. Regular sucrose exposure resulted in a higher surface hardness change (%SHC). The correlation between biofilms formed from saliva of mother-child pairs was significant regarding pH, total aciduric microorganisms and lactobacilli counts under cariogenic challenge. Biofilm growth originating from mother-child pairs under regular sucrose exposure promoted the same cariogenic response independently of caries experience and the microbiological profile of the donors.
Collapse
Affiliation(s)
- M S Azevedo
- a Graduate Program in Dentistry , Federal University of Pelotas , Pelotas , Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Cavalcanti YW, Bertolini MM, da Silva WJ, Del-Bel-Cury AA, Tenuta LMA, Cury JA. A three-species biofilm model for the evaluation of enamel and dentin demineralization. BIOFOULING 2014; 30:579-588. [PMID: 24730462 DOI: 10.1080/08927014.2014.905547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although Streptococcus mutans biofilms have been useful for evaluating the cariogenic potential of dietary carbohydrates and the effects of fluoride on dental demineralization, a more appropriate biofilm should be developed to demonstrate the influence of other oral bacteria on cariogenic biofilms. This study describes the development and validation of a three-species biofilm model comprising Streptococcus mutans, Actinomyces naeslundii, and Streptococcus gordonii for the evaluation of enamel and dentin demineralization after cariogenic challenges and fluoride exposure. Single- or three-species biofilms were developed on dental substrata for 96 h, and biofilms were exposed to feast and famine episodes. The three-species biofilm model produced a large biomass, mostly comprising S. mutans (41%) and S. gordonii (44%), and produced significant demineralization in the dental substrata, although enamel demineralization was decreased by fluoride treatment. The findings indicate that the three-species biofilm model may be useful for evaluating the cariogenic potential of dietary carbohydrates other than sucrose and determining the effects of fluoride on dental substrata.
Collapse
Affiliation(s)
- Yuri Wanderley Cavalcanti
- a Department of Prosthodontics and Periodontology, Piracicaba Dental School , University of Campinas , Piracicaba , SP , Brazil
| | | | | | | | | | | |
Collapse
|