1
|
Islam A, Shaukat Z, Hussain R, Ricos MG, Dibbens LM, Gregory SL. Aneuploidy is Linked to Neurological Phenotypes Through Oxidative Stress. J Mol Neurosci 2024; 74:50. [PMID: 38693434 PMCID: PMC11062972 DOI: 10.1007/s12031-024-02227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer's disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using Drosophila as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to Mad2 depletion in the third-instar larval brain and increased cell death. Depletion of Mad2 in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.
Collapse
Affiliation(s)
- Anowarul Islam
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Zeeshan Shaukat
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Rashid Hussain
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Michael G Ricos
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Leanne M Dibbens
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stephen L Gregory
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia.
| |
Collapse
|
2
|
Iourov IY, Vorsanova SG, Yurov YB. A Paradoxical Role for Somatic Chromosomal Mosaicism and Chromosome Instability in Cancer: Theoretical and Technological Aspects. Methods Mol Biol 2024; 2825:67-78. [PMID: 38913303 DOI: 10.1007/978-1-0716-3946-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Somatic chromosomal mosaicism, chromosome instability, and cancer are intimately linked together. Addressing the role of somatic genome variations (encompassing chromosomal mosaicism and instability) in cancer yields paradoxical results. Firstly, somatic mosaicism for specific chromosomal rearrangement causes cancer per se. Secondly, chromosomal mosaicism and instability are associated with a variety of diseases (chromosomal disorders demonstrating less severe phenotypes, complex diseases), which exhibit cancer predisposition. Chromosome instability syndromes may be considered the best examples of these diseases. Thirdly, chromosomal mosaicism and instability are able to result not only in cancerous diseases but also in non-cancerous disorders (brain diseases, autoimmune diseases, etc.). Currently, the molecular basis for these three outcomes of somatic chromosomal mosaicism and chromosome instability remains incompletely understood. Here, we address possible mechanisms for the aforementioned scenarios using a system analysis model. A number of theoretical models based on studies dedicated to chromosomal mosaicism and chromosome instability seem to be valuable for disentangling and understanding molecular pathways to cancer-causing genome chaos. In addition, technological aspects of uncovering causes and consequences of somatic chromosomal mosaicism and chromosome instability are discussed. In total, molecular cytogenetics, cytogenomics, and system analysis are likely to form a powerful technological alliance for successful research against cancer.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| |
Collapse
|
3
|
Iourov IY, Gerasimov AP, Zelenova MA, Ivanova NE, Kurinnaia OS, Zabrodskaya YM, Demidova IA, Barantsevich ER, Vasin KS, Kolotii AD, Ushanov VV, Sitovskaya DA, Lobzhanidze TBA, Iuditskaia ME, Iakushev NS, Zhumatov MM, Vorsanova SG, Samochernyh KA. Cytogenomic epileptology. Mol Cytogenet 2023; 16:1. [PMID: 36600272 PMCID: PMC9814426 DOI: 10.1186/s13039-022-00634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Molecular cytogenetic and cytogenomic studies have made a contribution to genetics of epilepsy. However, current genomic research of this devastative condition is generally focused on the molecular genetic aspects (i.e. gene hunting, detecting mutations in known epilepsy-associated genes, searching monogenic causes of epilepsy). Nonetheless, chromosomal abnormalities and copy number variants (CNVs) represent an important part of genetic defects causing epilepsy. Moreover, somatic chromosomal mosaicism and genome/chromosome instability seem to be a possible mechanism for a wide spectrum of epileptic conditions. This idea becomes even more attracting taking into account the potential of molecular neurocytogenetic (neurocytogenomic) studies of the epileptic brain. Unfortunately, analyses of chromosome numbers and structure in the affected brain or epileptogenic brain foci are rarely performed. Therefore, one may conclude that cytogenomic area of genomic epileptology is poorly researched. Accordingly, molecular cytogenetic and cytogenomic studies of the clinical cohorts and molecular neurocytogenetic analyses of the epileptic brain appear to be required. Here, we have performed a theoretical analysis to define the targets of the aforementioned studies and to highlight future directions for molecular cytogenetic and cytogenomic research of epileptic disorders in the widest sense. To succeed, we have formed a consortium, which is planned to perform at least a part of suggested research. Taking into account the nature of the communication, "cytogenomic epileptology" has been introduced to cover the research efforts in this field of medical genomics and epileptology. Additionally, initial results of studying cytogenomic variations in the Russian neurodevelopmental cohort are reviewed with special attention to epilepsy. In total, we have concluded that (i) epilepsy-associated cytogenomic variations require more profound research; (ii) ontological analyses of epilepsy genes affected by chromosomal rearrangements and/or CNVs with unraveling pathways implicating epilepsy-associated genes are beneficial for epileptology; (iii) molecular neurocytogenetic (neurocytogenomic) analysis of postoperative samples are warranted in patients suffering from epileptic disorders.
Collapse
Affiliation(s)
- Ivan Y. Iourov
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia ,grid.445984.00000 0001 2224 0652Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Alexandr P. Gerasimov
- grid.452417.1Research Laboratory of Pediatric Neurosurgery, Polenov Neurosurgical Institute, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Maria A. Zelenova
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Natalya E. Ivanova
- grid.452417.1Scientific Department of Polenov Neurosurgical Institute, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Oksana S. Kurinnaia
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Yulia M. Zabrodskaya
- grid.452417.1Research Laboratory of Pathomorphology of the Nervous System, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Irina A. Demidova
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Evgeny R. Barantsevich
- grid.412460.5Postgraduate Neurology and Manual Medicine Department, Pavlov First Saint-Petersburg State Medical University, Saint Petersburg, Russia
| | - Kirill S. Vasin
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Alexey D. Kolotii
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Vseslav V. Ushanov
- grid.452417.1Department of Neurosurgery, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Darya A. Sitovskaya
- grid.452417.1Research Laboratory of Pathomorphology of the Nervous System, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Timur B.-A. Lobzhanidze
- grid.445931.e0000 0004 0471 4078Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Maria E. Iuditskaia
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Nikita S. Iakushev
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Muslim M. Zhumatov
- grid.445931.e0000 0004 0471 4078Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Svetlana G. Vorsanova
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Konstantin A. Samochernyh
- grid.452417.1Polenov Neurosurgical Institute, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
4
|
Iourov IY, Vorsanova SG, Kurinnaia OS, Kutsev SI, Yurov YB. Somatic mosaicism in the diseased brain. Mol Cytogenet 2022; 15:45. [PMID: 36266706 PMCID: PMC9585840 DOI: 10.1186/s13039-022-00624-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
It is hard to believe that all the cells of a human brain share identical genomes. Indeed, single cell genetic studies have demonstrated intercellular genomic variability in the normal and diseased brain. Moreover, there is a growing amount of evidence on the contribution of somatic mosaicism (the presence of genetically different cell populations in the same individual/tissue) to the etiology of brain diseases. However, brain-specific genomic variations are generally overlooked during the research of genetic defects associated with a brain disease. Accordingly, a review of brain-specific somatic mosaicism in disease context seems to be required. Here, we overview gene mutations, copy number variations and chromosome abnormalities (aneuploidy, deletions, duplications and supernumerary rearranged chromosomes) detected in the neural/neuronal cells of the diseased brain. Additionally, chromosome instability in non-cancerous brain diseases is addressed. Finally, theoretical analysis of possible mechanisms for neurodevelopmental and neurodegenerative disorders indicates that a genetic background for formation of somatic (chromosomal) mosaicism in the brain is likely to exist. In total, somatic mosaicism affecting the central nervous system seems to be a mechanism of brain diseases.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia. .,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia. .,Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia.
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Oxana S Kurinnaia
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | | | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| |
Collapse
|
5
|
|
6
|
Vorsanova SG, Demidova IA, Kolotii AD, Kurinnaia OS, Kravets VS, Soloviev IV, Yurov YB, Iourov IY. Klinefelter syndrome mosaicism in boys with neurodevelopmental disorders: a cohort study and an extension of the hypothesis. Mol Cytogenet 2022; 15:8. [PMID: 35248137 PMCID: PMC8897849 DOI: 10.1186/s13039-022-00588-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 01/14/2023] Open
Abstract
Abstract
Background
Klinefelter syndrome is a common chromosomal (aneuploidy) disorder associated with an extra X chromosome in males. Regardless of numerous studies dedicated to somatic gonosomal mosaicism, Klinefelter syndrome mosaicism (KSM) has not been systematically addressed in clinical cohorts. Here, we report on the evaluation of KSM in a large cohort of boys with neurodevelopmental disorders. Furthermore, these data have been used for an extension of the hypothesis, which we have recently proposed in a report on Turner’s syndrome mosaicism in girls with neurodevelopmental disorders.
Results
Klinefelter syndrome-associated karyotypes were revealed in 49 (1.1%) of 4535 boys. Twenty one boys (0.5%) were non-mosaic 47,XXY individuals. KSM was found in 28 cases (0.6%) and manifested as mosaic aneuploidy (50,XXXXXY; 49,XXXXY; 48,XXXY; 48,XXYY; 47,XXY; and 45,X were detected in addition to 47,XXY/46,XY) and mosaic supernumerary marker chromosomes derived from chromosome X (ring chromosomes X and rearranged chromosomes X). It is noteworthy that KSM was concomitant with Rett-syndrome-like phenotypes caused by MECP2 mutations in 5 boys (0.1%).
Conclusion
Our study provides data on the occurrence of KSM in neurodevelopmental disorders among males. Accordingly, it is proposed that KSM may be a possible element of pathogenic cascades in psychiatric and neurodegenerative diseases. These observations allowed us to extend the hypothesis proposed in our previous report on the contribution of somatic gonosomal mosaicism (Turner’s syndrome mosaicism) to the etiology of neurodevelopmental disorders. Thus, it seems to be important to monitor KSM (a possible risk factor or a biomarker for adult-onset multifactorial brain diseases) and analysis of neuromarkers for aging in individuals with Klinefelter syndrome. Cases of two or more supernumerary chromosomes X were all associated with KSM. Finally, Rett syndrome-like phenotypes associated with KSM appear to be more common in males with neurodevelopmental disorders than previously recognized.
Collapse
|
7
|
Iourov IY, Yurov YB, Vorsanova SG, Kutsev SI. Chromosome Instability, Aging and Brain Diseases. Cells 2021; 10:cells10051256. [PMID: 34069648 PMCID: PMC8161106 DOI: 10.3390/cells10051256] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Chromosome instability (CIN) has been repeatedly associated with aging and progeroid phenotypes. Moreover, brain-specific CIN seems to be an important element of pathogenic cascades leading to neurodegeneration in late adulthood. Alternatively, CIN and aneuploidy (chromosomal loss/gain) syndromes exhibit accelerated aging phenotypes. Molecularly, cellular senescence, which seems to be mediated by CIN and aneuploidy, is likely to contribute to brain aging in health and disease. However, there is no consensus about the occurrence of CIN in the aging brain. As a result, the role of CIN/somatic aneuploidy in normal and pathological brain aging is a matter of debate. Still, taking into account the effects of CIN on cellular homeostasis, the possibility of involvement in brain aging is highly likely. More importantly, the CIN contribution to neuronal cell death may be responsible for neurodegeneration and the aging-related deterioration of the brain. The loss of CIN-affected neurons probably underlies the contradiction between reports addressing ontogenetic changes of karyotypes within the aged brain. In future studies, the combination of single-cell visualization and whole-genome techniques with systems biology methods would certainly define the intrinsic role of CIN in the aging of the normal and diseased brain.
Collapse
Affiliation(s)
- Ivan Y. Iourov
- Yurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia; (Y.B.Y.); (S.G.V.)
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
- Correspondence: ; Tel.: +7-495-109-03-93 (ext. 3500)
| | - Yuri B. Yurov
- Yurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia; (Y.B.Y.); (S.G.V.)
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia
| | - Svetlana G. Vorsanova
- Yurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia; (Y.B.Y.); (S.G.V.)
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia
| | | |
Collapse
|
8
|
Iourov IY, Vorsanova SG, Kurinnaia OS, Zelenova MA, Vasin KS, Yurov YB. Causes and Consequences of Genome Instability in Psychiatric and Neurodegenerative Diseases. Mol Biol 2021. [DOI: 10.1134/s0026893321010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Iourov IY, Vorsanova SG, Yurov YB. Systems Cytogenomics: Are We Ready Yet? Curr Genomics 2021; 22:75-78. [PMID: 34220294 PMCID: PMC8188578 DOI: 10.2174/1389202922666210219112419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022] Open
Abstract
With the introduction of systems theory to genetics, numerous opportunities for genomic research have been identified. Consequences of DNA sequence variations are systematically evaluated using the network- or pathway-based analysis, a technological basis of systems biology or, more precisely, systems genomics. Despite comprehensive descriptions of advantages offered by systems genomic approaches, pathway-based analysis is uncommon in cytogenetic (cytogenomic) studies, i.e. genome analysis at the chromosomal level. Here, we would like to express our opinion that current cytogenomics benefits from the application of systems biology methodology. Accordingly, systems cytogenomics appears to be a biomedical area requiring more attention than it actually receives.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, 117152, Russia.,Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, 125412, Russia.,Department of Medical Biological Disciplines, Belgorod State University, 308015, Belgorod, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, 117152, Russia.,Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, 125412, Russia
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, 117152, Russia.,Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, 125412, Russia
| |
Collapse
|
10
|
Vorsanova SG, Kolotii AD, Kurinnaia OS, Kravets VS, Demidova IA, Soloviev IV, Yurov YB, Iourov IY. Turner's syndrome mosaicism in girls with neurodevelopmental disorders: a cohort study and hypothesis. Mol Cytogenet 2021; 14:9. [PMID: 33573679 PMCID: PMC7879607 DOI: 10.1186/s13039-021-00529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Turner's syndrome is associated with either monosomy or a wide spectrum of structural rearrangements of chromosome X. Despite the interest in studying (somatic) chromosomal mosaicism, Turner's syndrome mosaicism (TSM) remains to be fully described. This is especially true for the analysis of TSM in clinical cohorts (e.g. cohorts of individuals with neurodevelopmental disorders). Here, we present the results of studying TSM in a large cohort of girls with neurodevelopmental disorders and a hypothesis highlighting the diagnostic and prognostic value. RESULTS Turner's syndrome-associated karyotypes were revealed in 111 (2.8%) of 4021 girls. Regular Turner's syndrome-associated karyotypes were detected in 35 girls (0.9%). TSM was uncovered in 76 girls (1.9%). TSM manifested as mosaic aneuploidy (45,X/46,XX; 45,X/47,XXX/46,XX; 45,X/47,XXX) affected 47 girls (1.2%). Supernumerary marker chromosomes derived from chromosome X have been identified in 11 girls with TSM (0.3%). Isochromosomes iX(q) was found in 12 cases (0.3%); one case was non-mosaic. TSM associated with ring chromosomes was revealed in 5 girls (0.1%). CONCLUSION The present cohort study provides data on the involvement of TSM in neurodevelopmental disorders among females. Thus, TSM may be an element of pathogenic cascades in brain diseases (i.e. neurodegenerative and psychiatric disorders). Our data allowed us to propose a hypothesis concerning ontogenetic variability of TSM levels. Accordingly, it appears that molecular cytogenetic monitoring of TSM, which is a likely risk factor/biomarker for adult-onset multifactorial diseases, is required.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Alexey D Kolotii
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Oksana S Kurinnaia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Victor S Kravets
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Irina A Demidova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Ilya V Soloviev
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Yuri B Yurov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412.,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522
| | - Ivan Y Iourov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412. .,Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia, 115522. .,Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia, 308015.
| |
Collapse
|
11
|
The Cytogenomic "Theory of Everything": Chromohelkosis May Underlie Chromosomal Instability and Mosaicism in Disease and Aging. Int J Mol Sci 2020; 21:ijms21218328. [PMID: 33171981 PMCID: PMC7664247 DOI: 10.3390/ijms21218328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023] Open
Abstract
Mechanisms for somatic chromosomal mosaicism (SCM) and chromosomal instability (CIN) are not completely understood. During molecular karyotyping and bioinformatic analyses of children with neurodevelopmental disorders and congenital malformations (n = 612), we observed colocalization of regular chromosomal imbalances or copy number variations (CNV) with mosaic ones (n = 47 or 7.7%). Analyzing molecular karyotyping data and pathways affected by CNV burdens, we proposed a mechanism for SCM/CIN, which had been designated as “chromohelkosis” (from the Greek words chromosome ulceration/open wound). Briefly, structural chromosomal imbalances are likely to cause local instability (“wreckage”) at the breakpoints, which results either in partial/whole chromosome loss (e.g., aneuploidy) or elongation of duplicated regions. Accordingly, a function for classical/alpha satellite DNA (protection from the wreckage towards the centromere) has been hypothesized. Since SCM and CIN are ubiquitously involved in development, homeostasis and disease (e.g., prenatal development, cancer, brain diseases, aging), we have metaphorically (ironically) designate the system explaining chromohelkosis contribution to SCM/CIN as the cytogenomic “theory of everything”, similar to the homonymous theory in physics inasmuch as it might explain numerous phenomena in chromosome biology. Recognizing possible empirical and theoretical weaknesses of this “theory”, we nevertheless believe that studies of chromohelkosis-like processes are required to understand structural variability and flexibility of the genome.
Collapse
|
12
|
Vorsanova SG, Yurov YB, Iourov IY. Dynamic nature of somatic chromosomal mosaicism, genetic-environmental interactions and therapeutic opportunities in disease and aging. Mol Cytogenet 2020; 13:16. [PMID: 32411302 PMCID: PMC7206664 DOI: 10.1186/s13039-020-00488-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Somatic chromosomal mosaicism is the presence of cell populations differing with respect to the chromosome complements (e.g. normal and abnormal) in an individual. Chromosomal mosaicism is associated with a wide spectrum of disease conditions and aging. Studying somatic genome variations has indicated that amounts of chromosomally abnormal cells are likely to be unstable. As a result, dynamic changes of mosaicism rates occur through ontogeny. Additionally, a correlation between disease severity and mosaicism rates appears to exist. High mosaicism rates are usually associated with severe disease phenotypes, whereas low-level mosaicism is generally observed in milder disease phenotypes or in presumably unaffected individuals. Here, we hypothesize that dynamic nature of somatic chromosomal mosaicism may result from genetic-environmental interactions creating therapeutic opportunities in the associated diseases and aging. CONCLUSION Genetic-environmental interactions seem to contribute to the dynamic nature of somatic mosaicism. Accordingly, an external influence on cellular populations may shift the ratio of karyotypically normal and abnormal cells in favor of an increase in the amount of cells without chromosome rearrangements. Taking into account the role of somatic chromosomal mosaicism in health and disease, we have hypothesized that artificial changing of somatic mosaicism rates may be beneficial in individuals suffering from the associated diseases and/or behavioral or reproductive problems. In addition, such therapeutic procedures might be useful for anti-aging strategies (i.e. possible rejuvenation through a decrease in levels of chromosomal mosaicism) increasing the lifespan. Finally, the hypothesis appears to be applicable to any type of somatic mosacism.
Collapse
Affiliation(s)
- Svetlana G. Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
- Mental Health Research Center, 117152 Moscow, Russia
| | - Yuri B. Yurov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
- Mental Health Research Center, 117152 Moscow, Russia
| | - Ivan Y. Iourov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
- Mental Health Research Center, 117152 Moscow, Russia
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| |
Collapse
|
13
|
Casamassa A, Ferrari D, Gelati M, Carella M, Vescovi AL, Rosati J. A Link between Genetic Disorders and Cellular Impairment, Using Human Induced Pluripotent Stem Cells to Reveal the Functional Consequences of Copy Number Variations in the Central Nervous System-A Close Look at Chromosome 15. Int J Mol Sci 2020; 21:ijms21051860. [PMID: 32182809 PMCID: PMC7084702 DOI: 10.3390/ijms21051860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Recent cutting-edge human genetics technology has allowed us to identify copy number variations (CNVs) and has provided new insights for understanding causative mechanisms of human diseases. A growing number of studies show that CNVs could be associated with physiological mechanisms linked to evolutionary trigger, as well as to the pathogenesis of various diseases, including cancer, autoimmune disease and mental disorders such as autism spectrum disorders, schizophrenia, intellectual disabilities or attention-deficit/hyperactivity disorder. Their incomplete penetrance and variable expressivity make diagnosis difficult and hinder comprehension of the mechanistic bases of these disorders. Additional elements such as co-presence of other CNVs, genomic background and environmental factors are involved in determining the final phenotype associated with a CNV. Genetically engineered animal models are helpful tools for understanding the behavioral consequences of CNVs. However, the genetic background and the biology of these animal model systems have sometimes led to confusing results. New cellular models obtained through somatic cellular reprogramming technology that produce induced pluripotent stem cells (iPSCs) from human subjects are being used to explore the mechanisms involved in the pathogenic consequences of CNVs. Considering the vast quantity of CNVs found in the human genome, we intend to focus on reviewing the current literature on the use of iPSCs carrying CNVs on chromosome 15, highlighting advantages and limits of this system with respect to mouse model systems.
Collapse
Affiliation(s)
- Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Viale Abramo Lincoln 5, 81100 Caserta, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
- Correspondence: (A.L.V.); (J.R.)
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Correspondence: (A.L.V.); (J.R.)
| |
Collapse
|
14
|
Nunes KM, Benzaquem DC, Carvalho NDM, Vianez TN, Fernandes ERDQGDSE, Fantin C. Investigation of chromosomal alterations in patients with Alzheimer's disease in the state of Amazonas, Brazil. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 77:855-859. [PMID: 31939582 DOI: 10.1590/0004-282x20190163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) has as its main characteristic the deterioration of cerebral functions. Its etiology is still complex and undefined despite the progress made in understanding its neurological, infectious, biochemical, genetic and cytogenetic mechanisms. METHODS Considering this, the aim of this study was to investigate the presence of chromosomal alterations in the peripheral blood lymphocytes, and to verify if there was a high frequency of these alterations in patients diagnosed with AD at the University Hospital GetúLio Vargas Outpatient Clinic Araújo Lima in Manaus, Amazonas, Brazil. RESULTS Among the nine patients in the AD group, only one patient did not have metaphases with chromosomal alterations (2n = 46,XX), while eight patients with AD showed numerical chromosomal alterations, classified as X chromosome aneupLoidy (2n = 45,X) and double aneupLoidy (2n = 44,X,-X,-10; 2n = 44,X,-X,-13 and 2n = 44,X,-X,-21). CONCLUSION In the control group, no chromosomal changes were found in the karyotypes of these individuals. Therefore, the karyotypes of patients with AD undergo chromosomal alterations at different levels. These findings are being described for the first time in the population of Amazonas, and they highlight the importance of the inclusion of cytogenetic investigations in the routine management of patients with AD.
Collapse
Affiliation(s)
- Kledson Moraes Nunes
- Universidade do Estado do Amazonas, Escola Superior de Ciências da Saúde, Laboratório de Citogenética, Manaus AM, Brasil
| | - Denise Corrêa Benzaquem
- Universidade do Estado do Amazonas, Escola Superior de Ciências da Saúde, Laboratório de Citogenética, Manaus AM, Brasil
| | - Natalia Dayane Moura Carvalho
- Universidade do Estado do Amazonas, Escola Superior de Ciências da Saúde, Laboratório de Citogenética, Manaus AM, Brasil
| | - Talísia Nascimento Vianez
- Universidade Federal do Amazonas, Hospital Universitário Getúlio Vargas, Departamento de Neurologia, Manaus AM, Brasil
| | | | - Cleiton Fantin
- Universidade do Estado do Amazonas, Escola Superior de Ciências da Saúde, Laboratório de Citogenética, Manaus AM, Brasil
| |
Collapse
|
15
|
Iourov IY, Vorsanova SG, Yurov YB. The variome concept: focus on CNVariome. Mol Cytogenet 2019; 12:52. [PMID: 31890032 PMCID: PMC6924070 DOI: 10.1186/s13039-019-0467-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background Variome may be used for designating complex system of interplay between genomic variations specific for an individual or a disease. Despite the recognized complexity of genomic basis for phenotypic traits and diseases, studies of genetic causes of a disease are usually dedicated to the identification of single causative genomic changes (mutations). When such an artificially simplified model is employed, genomic basis of phenotypic outcomes remains elusive in the overwhelming majority of human diseases. Moreover, it is repeatedly demonstrated that multiple genomic changes within an individual genome are likely to underlie the phenome. Probably the best example of cumulative effect of variome on the phenotype is CNV (copy number variation) burden. Accordingly, we have proposed a variome concept based on CNV studies providing the evidence for the existence of a CNVariome (the set of CNV affecting an individual genome), a target for genomic analyses useful for unraveling genetic mechanisms of diseases and phenotypic traits. Conclusion Variome (CNVariome) concept suggests that a genomic milieu is determined by the whole set of genomic variations (CNV) within an individual genome. The genomic milieu is likely to result from interplay between these variations. Furthermore, such kind of variome may be either individual or disease-specific. Additionally, such variome may be pathway-specific. The latter is able to affect molecular/cellular pathways of genome stability maintenance leading to occurrence of genomic/chromosome instability and/or somatic mosaicism resulting in somatic variome. This variome type seems to be important for unraveling disease mechanisms, as well. Finally, it appears that bioinformatic analysis of both individual and somatic variomes in the context of diseases- and pathway-specific variomes is the most promising way to determine genomic basis of the phenome and to unravel disease mechanisms for the management and treatment of currently incurable diseases.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| |
Collapse
|
16
|
Potter H, Chial HJ, Caneus J, Elos M, Elder N, Borysov S, Granic A. Chromosome Instability and Mosaic Aneuploidy in Neurodegenerative and Neurodevelopmental Disorders. Front Genet 2019; 10:1092. [PMID: 31788001 PMCID: PMC6855267 DOI: 10.3389/fgene.2019.01092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Evidence from multiple laboratories has accumulated to show that mosaic neuronal aneuploidy and consequent apoptosis characterizes and may underlie neuronal loss in many neurodegenerative diseases, particularly Alzheimer’s disease and frontotemporal dementia. Furthermore, several neurodevelopmental disorders, including Seckel syndrome, ataxia telangiectasia, Nijmegen breakage syndrome, Niemann–Pick type C, and Down syndrome, have been shown to also exhibit mosaic aneuploidy in neurons in the brain and in other cells throughout the body. Together, these results indicate that both neurodegenerative and neurodevelopmental disorders with apparently different pathogenic causes share a cell cycle defect that leads to mosaic aneuploidy in many cell types. When such mosaic aneuploidy arises in neurons in the brain, it promotes apoptosis and may at least partly underlie the cognitive deficits that characterize the neurological symptoms of these disorders. These findings have implications for both diagnosis and treatment/prevention.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Heidi J Chial
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Julbert Caneus
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
| | - Mihret Elos
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Nina Elder
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Sergiy Borysov
- Department of Math and Science, Saint Leo University, Saint Leo, FL, United States
| | - Antoneta Granic
- AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle University Institute for Ageing, NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
Iourov IY, Vorsanova SG, Zelenova MA, Vasin KS, Kurinnaia OS, Korostelev SA, Yurov YB. [Epigenomic variations manifesting as a loss of heterozygosity affecting imprinted genes represent a molecular mechanism of autism spectrum disorders and intellectual disability in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:91-97. [PMID: 31317896 DOI: 10.17116/jnevro201911905191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM Long continuous stretches of homozygosity (LCSH) are regularly detected in studies using molecular karyotyping (SNP array). Despite this type of variation being able to provide meaningful data on the parents' kinship, uniparental disomy and chromosome rearrangements, LCSH are rarely considered as a possible epigenetic cause of neurodevelopmental disorders. Despite their direct relationship to imprinting, LCSH in imprinted loci have not been considered in terms of pathogenicity. The present work is aimed at studying LCSH in chromosomal regions containing imprinted genes previously associated with disease in children with idiopathic intellectual disability, autism, congenital malformations and/or epilepsy. MATERIAL AND METHODS Five hundred and four patients with autism spectrum disorders and intellectual disability were examined. RESULTS LCSH affecting imprinted loci associated with various diseases were identified in 40 (7.9%) individuals. Chromosomal region 7q21.3 was affected in twenty three cases, 15q11.2 in twelve, 11p15.5 in five, 7q32.2 in four. Four patients had 2 LCSH affecting imprinted loci. Besides one LCSH in 7q31.33q32.3 (~4 Mbp) region, all LCSH were 1-1.6 Mbp. Clinically, these cases resembled the corresponding imprinting diseases (e.g. Silver-Russell, Beckwith-Wiedemann, Prader-Willi, Angelman syndromes). Parental kinship was identified in 8 cases (1.59%), which were not affected by LCSH at imprinted loci. CONCLUSION The present study shows that LCSH affecting chromosomal regions 7q21.3, 7q32.2, 11p15.5 and 15p11.2 occur in about 7.9% of children with intellectual disability, autism, congenital malformations and/or epilepsy. Consequently, this type of epigenetic mutations is obviously common in a group of children with neurodevelopmental disorders. LCSH less than 2.5-10 Mbp are usually ignored in molecular karyotyping (SNP array) studies and, therefore, an important epigenetic cause of intellectual disability, autism or epilepsy with high probability remains without attention.
Collapse
Affiliation(s)
- I Y Iourov
- Mental Health Research Center, Moscow, Russia; Veltishchev Research Clinical Institute of Pediatric of Pirogov Russian National Research Medical University, Moscow, Russia; Russian Medical Academy for Postgraduate Continuing Education, Moscow, Russia
| | - S G Vorsanova
- Mental Health Research Center, Moscow, Russia; Veltishchev Research Clinical Institute of Pediatric of Pirogov Russian National Research Medical University, Moscow, Russia
| | - M A Zelenova
- Mental Health Research Center, Moscow, Russia; Veltishchev Research Clinical Institute of Pediatric of Pirogov Russian National Research Medical University, Moscow, Russia
| | - K S Vasin
- Mental Health Research Center, Moscow, Russia; Veltishchev Research Clinical Institute of Pediatric of Pirogov Russian National Research Medical University, Moscow, Russia
| | - O S Kurinnaia
- Mental Health Research Center, Moscow, Russia; Veltishchev Research Clinical Institute of Pediatric of Pirogov Russian National Research Medical University, Moscow, Russia
| | - S A Korostelev
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yu B Yurov
- Mental Health Research Center, Moscow, Russia; Veltishchev Research Clinical Institute of Pediatric of Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
18
|
Yurov YB, Vorsanova SG, Iourov IY. Chromosome Instability in the Neurodegenerating Brain. Front Genet 2019; 10:892. [PMID: 31616475 PMCID: PMC6764389 DOI: 10.3389/fgene.2019.00892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia.,Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
19
|
Affiliation(s)
- Ivan Y. Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow 117152, Russian Federation
| |
Collapse
|
20
|
Affiliation(s)
- Ivan Y. Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow 117152, Russian Federation
| |
Collapse
|
21
|
Iourov IY, Vorsanova SG, Yurov YB, Kutsev SI. Ontogenetic and Pathogenetic Views on Somatic Chromosomal Mosaicism. Genes (Basel) 2019; 10:E379. [PMID: 31109140 PMCID: PMC6562967 DOI: 10.3390/genes10050379] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Intercellular karyotypic variability has been a focus of genetic research for more than 50 years. It has been repeatedly shown that chromosome heterogeneity manifesting as chromosomal mosaicism is associated with a variety of human diseases. Due to the ability of changing dynamically throughout the ontogeny, chromosomal mosaicism may mediate genome/chromosome instability and intercellular diversity in health and disease in a bottleneck fashion. However, the ubiquity of negligibly small populations of cells with abnormal karyotypes results in difficulties of the interpretation and detection, which may be nonetheless solved by post-genomic cytogenomic technologies. In the post-genomic era, it has become possible to uncover molecular and cellular pathways to genome/chromosome instability (chromosomal mosaicism or heterogeneity) using advanced whole-genome scanning technologies and bioinformatic tools. Furthermore, the opportunities to determine the effect of chromosomal abnormalities on the cellular phenotype seem to be useful for uncovering the intrinsic consequences of chromosomal mosaicism. Accordingly, a post-genomic review of chromosomal mosaicism in the ontogenetic and pathogenetic contexts appears to be required. Here, we review chromosomal mosaicism in its widest sense and discuss further directions of cyto(post)genomic research dedicated to chromosomal heterogeneity.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Sergei I Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia.
- Molecular & Cell Genetics Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
| |
Collapse
|
22
|
Iourov IY, Vorsanova SG, Yurov YB. Pathway-based classification of genetic diseases. Mol Cytogenet 2019; 12:4. [PMID: 30766616 PMCID: PMC6362588 DOI: 10.1186/s13039-019-0418-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background In medical genetics, diseases are classified according to the nature (hypothetical nature) of the underlying genetic defect. The classification is “gene-centric” and “factor-centric”; a disease may be, thereby, designated as monogenic, oligogenic or polygenic/multifactorial. Chromosomal diseases/syndromes and abnormalities are generally considered apart from these designations due to distinctly different formation mechanisms and simultaneous encompassing from several to several hundreds of co-localized genes. These definitions are ubiquitously used and are perfectly suitable for human genetics issues in historical and academic perspective. However, recent achievements in systems biology have offered a possibility to explore the consequences of a genetic defect from genomic variations to molecular/cellular pathway alterations unique to a disease. Since pathogenetic mechanisms (pathways) are more influential on our understating of disease presentation and progression than genetic defects per se, a need for a disease classification reflecting both genetic causes and molecular/cellular mechanisms appears to exist. Here, we propose an extension to the common disease classification based on the underlying genetic defects, which focuses on disease-specific molecular pathways. Conclusion The basic idea of our classification is to propose pathways as parameters for designating a genetic disease. To proceed, we have followed the tradition of using ancient Greek words and prefixes to create the terms for the pathway-based classification of genetic diseases. We have chosen the word “griphos” (γρῖφος), which simultaneously means “net” and “puzzle”, accurately symbolizing the term “pathway” currently used in molecular biology and medicine. Thus, diseases may be classified as monogryphic (single pathway is altered to result in a phenotype), digryphic (two pathways are altered to result in a phenotype), etc.; additionally, diseases may be designated as oligogryphic (several pathways are altered to result in a phenotype), polygryphic (numerous pathways or cascades of pathways are altered to result in a phenotype) and homeogryphic in cases of comorbid diseases resulted from shared pathway alterations. We suppose that classifying illness this way using both “gene-centric” and “pathway-centric” concepts is able to revolutionize current views on genetic diseases.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia.,Department of Medical Genetics, Russian Medical Academy of Continuous Professional Education, Moscow, 125993 Russia
| | - Svetlana G Vorsanova
- Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Yuri B Yurov
- Mental Health Research Center, 117152 Moscow, Russia.,2Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| |
Collapse
|
23
|
Iourov IY, Vorsanova SG, Yurov YB, Bertrand T. VIII World Rett Syndrome Congress & Symposium of rare diseases, Kazan, Russia. Mol Cytogenet 2018; 11:61. [PMID: 30603047 PMCID: PMC6304760 DOI: 10.1186/s13039-018-0412-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND VIII World Rett Syndrome Congress & Symposium of Rare Diseases was held in Kazan, Russia from 13 to 17 May 2016. Although it has been a while since the event, specific problems highlighted by the contributors to the scientific program have stood the test of time. The Symposium of Rare Diseases has shown that studying Rett syndrome provides clues on molecular and cellular mechanisms for a variety of rare genetic/genomic disorders. Moreover, rare diseases associated with Rett-syndrome-like phenotype or MECP2 mutations/copy number variations have been thoroughly covered by a number of contributors. In this respect, we have found that a review dedicated to the scientific program of the VIII World Rett Syndrome Congress & Symposium of Rare Diseases could be an important addition to current literature. CONCLUSION Taking the opportunity to review the World Rett Syndrome Congress & Symposium of Rare Diseases at Kazan, we have made an attempt to describe a number of achievements and developments in the field of studying Rett syndrome and rare diseases in Russia. Furthermore, chromosomal abnormalities/disorders have been considered in the rare disease context. Such approach to chromosomal abnormalities/disorders has been found to be rather new for an appreciable part of international researchers and health care providers. We do hope that this congress review may be helpful not only for those who are interested in local development of research and management of rare genetic disorders, but also for international researchers and clinical community of rare disease specialists.
Collapse
Affiliation(s)
- Ivan Y. Iourov
- Mental Health Research Center, 117152 Moscow, Russia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
- Department of Medical Genetics, Russian Medical Academy of Continuous Professional Education, Moscow, 125993 Russia
| | - Svetlana G. Vorsanova
- Mental Health Research Center, 117152 Moscow, Russia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Yuri B. Yurov
- Mental Health Research Center, 117152 Moscow, Russia
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | | |
Collapse
|
24
|
Yurov YB, Vorsanova SG, Demidova IA, Kravets VS, Vostrikov VM, Soloviev IV, Uranova NA, Iourov IY. [Genomic instability in the brain: chromosomal mosaicism in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 116:86-91. [PMID: 28091506 DOI: 10.17116/jnevro201611611186-91] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM Experimental verification of the hypothesis about the possible involvement of the mosaic genome variations (mosaic aneuploidy) in the pathogenesis of a number of mental illnesses, including schizophrenia and autism: a genetic study of the level of mosaic genome variations in cells of the brain autopsy tissues in healthy controls and schizophrenia. MATERIAL AND METHODS Autopsy brain tissues of 15 unaffected controls and 15 patients with schizophrenia were analyzed by molecular cytogenetic methods to determine the frequency of chromosomal mutations (the mosaic aneuploidy) in neural human cells. The original collection of chromosome-enumeration DNA probes to autosomes 1, 9, 15, 16, 18 and the sex chromosomes X and Y was used for the interphase cytogenetic analysis of chromosomes in the cells of the brain. RESULTS AND CONCLUSION The frequency of low-level aneuploidy per individual chromosome was 0.54% (median - 0.53%; 95% confidence interval (CI) CI - 0.41-1.13%) in controls and 1.66% (median - 1.55%; 95% CI -1.32-2.12%) in schizophrenia (p=0.000013). Thus, the three-fold increase in aneuploidy frequency in the brain in schizophrenia was detected. It is suggested that mosaic aneuploidy, as a significant biological marker of genomic instability, may lead to genеtic imbalance and abnormal functional activity of neural cells and neural networks in schizophrenia.
Collapse
Affiliation(s)
- Y B Yurov
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | - S G Vorsanova
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | - I A Demidova
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | - V S Kravets
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | | | | | - N A Uranova
- Mental Health Research Center, Moscow, Russia
| | - I Y Iourov
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia; Moscow State University of Psychology and Education, Moscow, Russia
| |
Collapse
|
25
|
|
26
|
|
27
|
Yurov YB, Vorsanova SG, Demidova IA, Kolotii AD, Soloviev IV, Iourov IY. Mosaic Brain Aneuploidy in Mental Illnesses: An Association of Low-level Post-zygotic Aneuploidy with Schizophrenia and Comorbid Psychiatric Disorders. Curr Genomics 2018; 19:163-172. [PMID: 29606903 PMCID: PMC5850504 DOI: 10.2174/1389202918666170717154340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/18/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Postzygotic chromosomal variation in neuronal cells is hypothesized to make a substantial contribution to the etiology and pathogenesis of neuropsychiatric disorders. However, the role of somatic genome instability and mosaic genome variations in common mental illnesses is a matter of conjecture. MATERIALS AND METHODS To estimate the pathogenic burden of somatic chromosomal mutations, we determined the frequency of mosaic aneuploidy in autopsy brain tissues of subjects with schizophrenia and other psychiatric disorders (intellectual disability comorbid with autism spectrum disorders). Recently, post-mortem brain tissues of subjects with schizophrenia, intellectual disability and unaffected controls were analyzed by Interphase Multicolor FISH (MFISH), Quantitative Fluorescent in situ Hybridization (QFISH) specially designed to register rare mosaic chromosomal mutations such as lowlevel aneuploidy (whole chromosome mosaic deletion/duplication). The low-level mosaic aneuploidy in the diseased brain demonstrated significant 2-3-fold frequency increase in schizophrenia (p=0.0028) and 4-fold increase in intellectual disability comorbid with autism (p=0.0037) compared to unaffected controls. Strong associations of low-level autosomal/sex chromosome aneuploidy (p=0.001, OR=19.0) and sex chromosome-specific mosaic aneuploidy (p=0.006, OR=9.6) with schizophrenia were revealed. CONCLUSION Reviewing these data and literature supports the hypothesis suggesting that an association of low-level mosaic aneuploidy with common and, probably, overlapping psychiatric disorders does exist. Accordingly, we propose a pathway for common neuropsychiatric disorders involving increased burden of rare de novo somatic chromosomal mutations manifesting as low-level mosaic aneuploidy mediating local and general brain dysfunction.
Collapse
Affiliation(s)
- Yuri B. Yurov
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Svetlana G. Vorsanova
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Irina A. Demidova
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Alexei D. Kolotii
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | | | - Ivan Y. Iourov
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Ministry of Health, Moscow, Russian Federation
| |
Collapse
|
28
|
Vorsanova SG, Zelenova MA, Yurov YB, Iourov IY. Behavioral Variability and Somatic Mosaicism: A Cytogenomic Hypothesis. Curr Genomics 2018; 19:158-162. [PMID: 29606902 PMCID: PMC5850503 DOI: 10.2174/1389202918666170719165339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/11/2016] [Accepted: 01/01/2017] [Indexed: 02/06/2023] Open
Abstract
Behavioral sciences are inseparably related to genetics. A variety of neurobehavioral phenotypes are suggested to result from genomic variations. However, the contribution of genetic factors to common behavioral disorders (i.e. autism, schizophrenia, intellectual disability) remains to be understood when an attempt to link behavioral variability to a specific genomic change is made. Probably, the least appreciated genetic mechanism of debilitating neurobehavioral disorders is somatic mosaicism or the occurrence of genetically diverse (neuronal) cells in an individual’s brain. Somatic mosaicism is assumed to affect directly the brain being associated with specific behavioral patterns. As shown in studies of chromosome abnormalities (syndromes), genetic mosaicism is able to change dynamically the phenotype due to inconsistency of abnormal cell proportions. Here, we hypothesize that brain-specific postzygotic changes of mosaicism levels are able to modulate variability of behavioral phenotypes. More precisely, behavioral phenotype variability in individuals exhibiting somatic mosaicism might correlate with changes in the amount of genetically abnormal cells throughout the lifespan. If proven, the hypothesis can be used as a basis for therapeutic interventions through regulating levels of somatic mosaicism to increase functioning and to improve overall condition of individuals with behavioral problems.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Maria A Zelenova
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Yuri B Yurov
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Ivan Y Iourov
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Moscow123995, Russian Federation
| |
Collapse
|
29
|
Iourov IY, Zelenova MA, Vorsanova SG, Voinova VV, Yurov YB. 4q21.2q21.3 Duplication: Molecular and Neuropsychological Aspects. Curr Genomics 2018; 19:173-178. [PMID: 29606904 PMCID: PMC5850505 DOI: 10.2174/1389202918666170717161426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/20/2016] [Accepted: 01/20/2017] [Indexed: 12/15/2022] Open
Abstract
During the last decades, a large amount of newly described microduplications and microdeletions associated with intellectual disability (ID) and related neuropsychiatric diseases have been discovered. However, due to natural limitations, a significant part of them has not been the focus of multidisciplinary approaches. Here, we address previously undescribed chromosome 4q21.2q21.3 microduplication for gene prioritization, evaluation of cognitive abilities and estimation of genomic mechanisms for brain dysfunction by molecular cytogenetic (cytogenomic) and gene expression (meta-) analyses as well as for neuropsychological assessment. We showed that duplication at 4q21.2q21.3 is associated with moderate ID, cognitive deficits, developmental delay, language impairment, memory and attention problems, facial dysmorphisms, congenital heart defect and dentinogenesis imperfecta. Gene-expression meta-analysis prioritized the following genes: ENOPH1, AFF1, DSPP, SPARCL1, and SPP1. Furthermore, genotype/phenotype correlations allowed the attribution of each gene gain to each phenotypic feature. Neuropsychological testing showed visual-perceptual and fine motor skill deficits, reduced attention span, deficits of the nominative function and problems in processing both visual and aural information. Finally, emerging approaches including molecular cytogenetic, bioinformatic (genome/epigenome meta-analysis) and neuropsychological methods are concluded to be required for comprehensive neurological, genetic and neuropsychological descriptions of new genomic rearrangements/diseases associated with ID.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Mental Health Research Center, Moscow, Russian Federation.,Separated Structural Unit "Clinical Research Institute of Pediatrics named after Y.E Veltishev", Pirogov Russian National Research Medical University, Ministry of Health, Moscow, Russian Federation.,Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Ministry of Health, Moscow, Russian Federation
| | - Maria A Zelenova
- Mental Health Research Center, Moscow, Russian Federation.,Separated Structural Unit "Clinical Research Institute of Pediatrics named after Y.E Veltishev", Pirogov Russian National Research Medical University, Ministry of Health, Moscow, Russian Federation.,Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Svetlana G Vorsanova
- Mental Health Research Center, Moscow, Russian Federation.,Separated Structural Unit "Clinical Research Institute of Pediatrics named after Y.E Veltishev", Pirogov Russian National Research Medical University, Ministry of Health, Moscow, Russian Federation.,Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Victoria V Voinova
- Mental Health Research Center, Moscow, Russian Federation.,Separated Structural Unit "Clinical Research Institute of Pediatrics named after Y.E Veltishev", Pirogov Russian National Research Medical University, Ministry of Health, Moscow, Russian Federation.,Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Yuri B Yurov
- Mental Health Research Center, Moscow, Russian Federation.,Separated Structural Unit "Clinical Research Institute of Pediatrics named after Y.E Veltishev", Pirogov Russian National Research Medical University, Ministry of Health, Moscow, Russian Federation.,Moscow State University of Psychology and Education, Moscow, Russian Federation
| |
Collapse
|
30
|
Serologic Markers of Autism Spectrum Disorder. J Mol Neurosci 2017; 62:420-429. [PMID: 28730336 DOI: 10.1007/s12031-017-0950-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022]
Abstract
According to WHO data, about 67 million people worldwide are affected by autism, and this number grows by 14% annually. Among the possible causes of autism are genetic modifications, organic lesions of the central nervous system, metabolic disorders, influence of viral and bacterial infections, chemical influence to the mother's body during pregnancy, etc. The conducted research shows that research papers published until today do not name any potential protein markers that meet the requirements of the basic parameters for evaluating the efficiency of disease diagnostics, in particular high sensitivity, specificity, and accuracy. Conducting proteomic research on a big scale in order to detect serologic markers of protein nature associated with development of autism spectrum disorders seems to be highly relevant.
Collapse
|
31
|
Iourov IY, Vorsanova SG, Demidova IA, Aliamovskaia GA, Keshishian ES, Yurov YB. 5p13.3p13.2 duplication associated with developmental delay, congenital malformations and chromosome instability manifested as low-level aneuploidy. SPRINGERPLUS 2015; 4:616. [PMID: 26543751 PMCID: PMC4628017 DOI: 10.1186/s40064-015-1399-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023]
Abstract
Recent developments in molecular cytogenetics allow the detection of genomic rearrangements at an unprecedented level leading to discoveries of previously unknown chromosomal imbalances (zygotic and post-zygotic/mosaic). These can be accompanied by a different kind of pathological genome variations, i.e. chromosome instability (CIN) manifested as structural chromosomal rearrangements and low-level mosaic aneuploidy. Fortunately, combining whole-genome and single-cell molecular cytogenetic techniques with bioinformatics offers an opportunity to link genomic changes to specific molecular or cellular pathology. High-resolution chromosomal SNP microarray analysis was performed to study the genome of a 15-month-aged boy presented with developmental delay, congenital malformations, feeding problems, deafness, epileptiform activity, and eye pathology. In addition, somatic chromosomal mutations (CIN) were analyzed by fluorescence in situ hybridization (FISH). Interstitial 5p13.3p13.2 duplication was revealed in the index patient. Moreover, CIN manifested almost exclusively as chromosome losses and gains (aneuploidy) was detected. Using bioinformatic analysis of SNP array data and FISH results, CIN association with the genomic imbalance resulted from the duplication was proposed. The duplication was demonstrated to encompass genes implicated in cell cycle, programmed cell death, chromosome segregation and genome stability maintenance pathways as shown by an interactomic analysis. Genotype-phenotype correlations were observed, as well. To the best our knowledge, identical duplications have not been reported in the available literature. Apart from genotype-phenotype correlations, it was possible to propose a link between the duplication and CIN (aneuploidy). This case study demonstrates that combining SNP array genomic analysis, bioinformatics and molecular cytogenetic evaluation of somatic genome variations is able to provide a view on cellular and molecular pathology in a personalized manner. Therefore, one can speculate that similar approaches targeting both interindividual and intercellular genomic variations could be useful for a better understanding of disease mechanisms and disease-related biological processes.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, 117152 Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia ; Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Moscow, 123995 Russia
| | - Svetlana G Vorsanova
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, 117152 Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia
| | - Irina A Demidova
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, 117152 Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia
| | - Galina A Aliamovskaia
- Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia
| | - Elena S Keshishian
- Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia
| | - Yuri B Yurov
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, 117152 Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, Moscow, 125412 Russia
| |
Collapse
|
32
|
3p22.1p21.31 microdeletion identifies CCK as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromosome imbalances. Mol Cytogenet 2015; 8:82. [PMID: 26523151 PMCID: PMC4628252 DOI: 10.1186/s13039-015-0185-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/10/2015] [Indexed: 01/25/2023] Open
Abstract
Background In contrast to other autism spectrum disorders, chromosome abnormalities are rare in Asperger syndrome (AS) or high-functioning autism. Consequently, AS was occasionally subjected to classical positional cloning. Here, we report on a case of AS associated with a deletion of the short arm of chromosome 3. Further in silico analysis has identified a candidate gene for AS and has suggested a therapeutic strategy for manifestations of the chromosome rearrangement. Results Using array comparative genomic hybridization, an interstitial deletion of 3p22.1p21.31 (~2.5 Mb in size) in a child with Asperger’s syndrome, seborrheic dermatitis and chronic pancreatitis was detected. Original bioinformatic approach to the prioritization of candidate genes/processes identified CCK (cholecystokinin) as a candidate gene for AS. In addition to processes associated with deleted genes, bioinformatic analysis of CCK gene interactome indicated that zinc deficiency might be a pathogenic mechanism in this case. This suggestion was supported by plasma zinc concentration measurements. The increase of zinc intake produced a rise in zinc plasma concentration and the improvement in the patient’s condition. Conclusions Our study supported previous linkage findings and had suggested a new candidate gene in AS. Moreover, bioinformatic analysis identified the pathogenic mechanism, which was used to propose a therapeutic strategy for manifestations of the deletion. The relative success of this strategy allows speculating that therapeutic or dietary normalization of metabolic processes altered by a chromosome imbalance or genomic copy number variations may be a way for treating at least a small proportion of cases of these presumably incurable genetic conditions.
Collapse
|
33
|
Iourov IY, Vorsanova SG, Korostelev SA, Zelenova MA, Yurov YB. Long contiguous stretches of homozygosity spanning shortly the imprinted loci are associated with intellectual disability, autism and/or epilepsy. Mol Cytogenet 2015; 8:77. [PMID: 26478745 PMCID: PMC4608298 DOI: 10.1186/s13039-015-0182-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/27/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Long contiguous stretches of homozygosity (LCSH) (regions/runs of homozygosity) are repeatedly detected by single-nucleotide polymorphism (SNP) chromosomal microarrays. Providing important clues regarding parental relatedness (consanguinity), uniparental disomy, chromosomal recombination or rearrangements, LCSH are rarely considered as a possible epigenetic cause of neurodevelopmental disorders. Additionally, despite being relevant to imprinting, LCSH at imprinted loci have not been truly addressed in terms of pathogenicity. In this study, we examined LCSH in children with unexplained intellectual disability, autism, congenital malformations and/or epilepsy focusing on chromosomal regions which harbor imprinted disease genes. RESULTS Out of 267 cases, 14 (5.2 %) were found to have LCSH at imprinted loci associated with a clinical outcome. There were 5 cases of LCSH at 15p11.2, 4 cases of LCSH at 7q31.2, 3 cases of LCSH at 11p15.5, and 2 cases of LCSH at 7q21.3. Apart from a case of LCSH at 7q31.33q32.3 (~4 Mb in size), all causative LCSH were 1-1.5 Mb in size. Clinically, these cases were characterized by a weak resemblance to corresponding imprinting diseases (i.e., Silver-Russell, Beckwith-Wiedemann, and Prader-Willi/Angelman syndromes), exhibiting distinctive intellectual disability, autistic behavior, developmental delay, seizures and/or facial dysmorphisms. Parental consanguinity was detected in 8 cases (3 %), and these cases did not exhibit LCSH at imprinted loci. CONCLUSIONS This study demonstrates that shorter LCSH at chromosomes 7q21.3, 7q31.2, 11p15.5, and 15p11.2 occur with a frequency of about 5 % in the children with intellectual disability, autism, congenital malformations and/or epilepsy. Consequently, this type of epigenetic mutations appears to be the most common one among children with neurodevelopmental diseases. Finally, since LCSH less than 2.5-10 Mb in size are generally ignored in diagnostic SNP microarray studies, one can conclude that an important epigenetic cause of intellectual disability, autism or epilepsy is actually overlooked.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Mental Health Research Center, 117152 Moscow, Russia ; Separated Structural Unit "Clinical Research Institute of Pediatrics", Russian National Research Medical University named after N.I. Pirogov, Ministry of Health of Russian Federation, 125412 Moscow, Russia ; Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, 123995 Moscow, Russia
| | - Svetlana G Vorsanova
- Mental Health Research Center, 117152 Moscow, Russia ; Separated Structural Unit "Clinical Research Institute of Pediatrics", Russian National Research Medical University named after N.I. Pirogov, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | | | - Maria A Zelenova
- Mental Health Research Center, 117152 Moscow, Russia ; Separated Structural Unit "Clinical Research Institute of Pediatrics", Russian National Research Medical University named after N.I. Pirogov, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Yuri B Yurov
- Mental Health Research Center, 117152 Moscow, Russia ; Separated Structural Unit "Clinical Research Institute of Pediatrics", Russian National Research Medical University named after N.I. Pirogov, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| |
Collapse
|
34
|
Genomic Copy Number Variation Affecting Genes Involved in the Cell Cycle Pathway: Implications for Somatic Mosaicism. Int J Genomics 2015; 2015:757680. [PMID: 26421275 PMCID: PMC4569762 DOI: 10.1155/2015/757680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022] Open
Abstract
Somatic genome variations (mosaicism) seem to represent a common mechanism for human intercellular/interindividual diversity in health and disease. However, origins and mechanisms of somatic mosaicism remain a matter of conjecture. Recently, it has been hypothesized that zygotic genomic variation naturally occurring in humans is likely to predispose to nonheritable genetic changes (aneuploidy) acquired during the lifetime through affecting cell cycle regulation, genome stability maintenance, and related pathways. Here, we have evaluated genomic copy number variation (CNV) in genes implicated in the cell cycle pathway (according to Kyoto Encyclopedia of Genes and Genomes/KEGG) within a cohort of patients with intellectual disability, autism, and/or epilepsy, in which the phenotype was not associated with genomic rearrangements altering this pathway. Benign CNVs affecting 20 genes of the cell cycle pathway were detected in 161 out of 255 patients (71.6%). Among them, 62 individuals exhibited >2 CNVs affecting the cell cycle pathway. Taking into account the number of individuals demonstrating CNV of these genes, a support for this hypothesis appears to be presented. Accordingly, we speculate that further studies of CNV burden across the genes implicated in related pathways might clarify whether zygotic genomic variation generates somatic mosaicism in health and disease.
Collapse
|
35
|
Sakai M, Watanabe Y, Someya T, Araki K, Shibuya M, Niizato K, Oshima K, Kunii Y, Yabe H, Matsumoto J, Wada A, Hino M, Hashimoto T, Hishimoto A, Kitamura N, Iritani S, Shirakawa O, Maeda K, Miyashita A, Niwa SI, Takahashi H, Kakita A, Kuwano R, Nawa H. Assessment of copy number variations in the brain genome of schizophrenia patients. Mol Cytogenet 2015; 8:46. [PMID: 26136833 PMCID: PMC4487564 DOI: 10.1186/s13039-015-0144-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022] Open
Abstract
Background Cytogenomic mutations and chromosomal abnormality are implicated in the neuropathology of several brain diseases. Cell heterogeneity of brain tissues makes their detection and validation difficult, however. In the present study, we analyzed gene dosage alterations in brain DNA of schizophrenia patients and compared those with the copy number variations (CNVs) identified in schizophrenia patients as well as with those in Asian lymphocyte DNA and attempted to obtain hints at the pathological contribution of cytogenomic instability to schizophrenia. Results Brain DNA was extracted from postmortem striatum of schizophrenia patients and control subjects (n = 48 each) and subjected to the direct two color microarray analysis that limits technical data variations. Disease-associated biases of relative DNA doses were statistically analyzed with Bonferroni’s compensation on the premise of brain cell mosaicism. We found that the relative gene dosage of 85 regions significantly varied among a million of probe sites. In the candidate CNV regions, 26 regions had no overlaps with the common CNVs found in Asian populations and included the genes (i.e., ANTXRL, CHST9, DNM3, NDST3, SDK1, STRC, SKY) that are associated with schizophrenia and/or other psychiatric diseases. The majority of these candidate CNVs exhibited high statistical probabilities but their signal differences in gene dosage were less than 1.5-fold. For test evaluation, we rather selected the 10 candidate CNV regions that exhibited higher aberration scores or larger global effects and were thus confirmable by PCR. Quantitative PCR verified the loss of gene dosage at two loci (1p36.21 and 1p13.3) and confirmed the global variation of the copy number distributions at two loci (11p15.4 and 13q21.1), both indicating the utility of the present strategy. These test loci, however, exhibited the same somatic CNV patterns in the other brain region. Conclusions The present study lists the candidate regions potentially representing cytogenomic CNVs in the brain of schizophrenia patients, although the significant but modest alterations in their brain genome doses largely remain to be characterized further. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0144-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miwako Sakai
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan ; Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Kazuaki Araki
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | | | | | - Yasuto Kunii
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Hirooki Yabe
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Junya Matsumoto
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Akira Wada
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Mizuki Hino
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Takeshi Hashimoto
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Akitoyo Hishimoto
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Noboru Kitamura
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Shuji Iritani
- Matsuzawa Hospital, Setagaya-ku, 156-0057 Tokyo, Japan ; Department of Mental Health, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Aichi Japan
| | - Osamu Shirakawa
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan ; Department of Neuropsychiatry, Kinki University Faculty of Medicine, 589-8511 Osaka-Sayama, Osaka Japan
| | - Kiyoshi Maeda
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan ; Department of Social Rehabilitation, Kobe University School of Medicine, 654-0142 Hyogo, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Shin-Ichi Niwa
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Hitoshi Takahashi
- Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Akiyoshi Kakita
- Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Ryozo Kuwano
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan
| |
Collapse
|
36
|
Calero M, Gómez-Ramos A, Calero O, Soriano E, Avila J, Medina M. Additional mechanisms conferring genetic susceptibility to Alzheimer's disease. Front Cell Neurosci 2015; 9:138. [PMID: 25914626 PMCID: PMC4391239 DOI: 10.3389/fncel.2015.00138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/23/2015] [Indexed: 01/18/2023] Open
Abstract
Familial Alzheimer’s disease (AD), mostly associated with early onset, is caused by mutations in three genes (APP, PSEN1, and PSEN2) involved in the production of the amyloid β peptide. In contrast, the molecular mechanisms that trigger the most common late onset sporadic AD remain largely unknown. With the implementation of an increasing number of case-control studies and the upcoming of large-scale genome-wide association studies there is a mounting list of genetic risk factors associated with common genetic variants that have been associated with sporadic AD. Besides apolipoprotein E, that presents a strong association with the disease (OR∼4), the rest of these genes have moderate or low degrees of association, with OR ranging from 0.88 to 1.23. Taking together, these genes may account only for a fraction of the attributable AD risk and therefore, rare variants and epistastic gene interactions should be taken into account in order to get the full picture of the genetic risks associated with AD. Here, we review recent whole-exome studies looking for rare variants, somatic brain mutations with a strong association to the disease, and several studies dealing with epistasis as additional mechanisms conferring genetic susceptibility to AD. Altogether, recent evidence underlines the importance of defining molecular and genetic pathways, and networks rather than the contribution of specific genes.
Collapse
Affiliation(s)
- Miguel Calero
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid, Spain ; Chronic Disease Programme, Instituto de Salud Carlos III Madrid, Spain ; Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center Madrid, Spain
| | - Alberto Gómez-Ramos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid, Spain ; Centro de Biología Molecular Severo Ochoa CSIC-UAM Madrid, Spain
| | - Olga Calero
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid, Spain ; Chronic Disease Programme, Instituto de Salud Carlos III Madrid, Spain
| | - Eduardo Soriano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid, Spain ; University of Barcelona Barcelona, Spain
| | - Jesús Avila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid, Spain ; Centro de Biología Molecular Severo Ochoa CSIC-UAM Madrid, Spain
| | - Miguel Medina
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid, Spain ; Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center Madrid, Spain
| |
Collapse
|
37
|
Iourov IY, Vorsanova SG, Yurov YB. In silico molecular cytogenetics: a bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol Cytogenet 2014; 7:98. [PMID: 25525469 PMCID: PMC4269961 DOI: 10.1186/s13039-014-0098-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 01/08/2023] Open
Abstract
Background The availability of multiple in silico tools for prioritizing genetic variants widens the possibilities for converting genomic data into biological knowledge. However, in molecular cytogenetics, bioinformatic analyses are generally limited to result visualization or database mining for finding similar cytogenetic data. Obviously, the potential of bioinformatics might go beyond these applications. On the other hand, the requirements for performing successful in silico analyses (i.e. deep knowledge of computer science, statistics etc.) can hinder the implementation of bioinformatics in clinical and basic molecular cytogenetic research. Here, we propose a bioinformatic approach to prioritization of genomic variations that is able to solve these problems. Results Selecting gene expression as an initial criterion, we have proposed a bioinformatic approach combining filtering and ranking prioritization strategies, which includes analyzing metabolome and interactome data on proteins encoded by candidate genes. To finalize the prioritization of genetic variants, genomic, epigenomic, interactomic and metabolomic data fusion has been made. Structural abnormalities and aneuploidy revealed by array CGH and FISH have been evaluated to test the approach through determining genotype-phenotype correlations, which have been found similar to those of previous studies. Additionally, we have been able to prioritize copy number variations (CNV) (i.e. differentiate between benign CNV and CNV with phenotypic outcome). Finally, the approach has been applied to prioritize genetic variants in cases of somatic mosaicism (including tissue-specific mosaicism). Conclusions In order to provide for an in silico evaluation of molecular cytogenetic data, we have proposed a bioinformatic approach to prioritization of candidate genes and CNV. While having the disadvantage of possible unavailability of gene expression data or lack of expression variability between genes of interest, the approach provides several advantages. These are (i) the versatility due to independence from specific databases/tools or software, (ii) relative algorithm simplicity (possibility to avoid sophisticated computational/statistical methodology) and (iii) applicability to molecular cytogenetic data because of the chromosome-centric nature. In conclusion, the approach is able to become useful for increasing the yield of molecular cytogenetic techniques.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Mental Health Research Center, Russian Academy of Medical Sciences, 117152 Moscow, Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, 125412 Moscow, Russia ; Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Moscow, 123995 Russia
| | - Svetlana G Vorsanova
- Mental Health Research Center, Russian Academy of Medical Sciences, 117152 Moscow, Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Yuri B Yurov
- Mental Health Research Center, Russian Academy of Medical Sciences, 117152 Moscow, Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, 125412 Moscow, Russia
| |
Collapse
|
38
|
Abstract
Zusammenfassung
Das gesunde menschliche Gehirn weist ein bemerkenswert hohes Maß an somatischen Zellmosaiken auf. Zum einen ist dies altersassoziiert, und darüber hinaus wurde nachgewiesen, dass stärker ausgeprägte Zellmosaike im Gehirn Grundlage für neurologische und/oder psychiatrische Störungen (z. B. Alzheimer-Krankheit oder Schizophrenie) sind bzw. damit im Zusammenhang stehen. Möglicherweise eröffnen diese neueren Erkenntnisse künftig Anwendungsmöglichkeiten für die klinische Diagnostik, z. B. in Kombination mit neuen Biomarkern. In diesem Zusammenhang könnte eine vielversprechende Perspektive die Erforschung molekularer Signalwege sein, die die Zellen vor Genom- und/oder Chromosomeninstabilität schützen könnten.
Collapse
Affiliation(s)
- Ivan Y. Iourov
- Aff1 grid.466123.4 National Research Center for Mental Health Russian Academy of Medical Sciences Zgorodnoe sh. 2 117152 Moscow Russische Föderation
- Aff2 grid.415738.c 0000000092162496 Institute of Pediatrics and Children Surgery Russian Federation Ministry of Health Moscow Russische Föderation
- Aff3 grid.465497.d Department of Medical Genetics Russian Medical Academy of Postgraduate Education Moscow Russische Föderation
| | - Svetlana G. Vorsanova
- Aff1 grid.466123.4 National Research Center for Mental Health Russian Academy of Medical Sciences Zgorodnoe sh. 2 117152 Moscow Russische Föderation
- Aff2 grid.415738.c 0000000092162496 Institute of Pediatrics and Children Surgery Russian Federation Ministry of Health Moscow Russische Föderation
- Aff4 grid.466944.d Moscow City University of Psychology and Education Moscow Russische Föderation
| | - Thomas Liehr
- Aff5 grid.10388.32 0000000122403300 Jena University Hospital, Friedrich Schiller University Institute of Human Genetics Kollegiengasse 10 07743 Jena Deutschland
| | - Yuri B. Yurov
- Aff1 grid.466123.4 National Research Center for Mental Health Russian Academy of Medical Sciences Zgorodnoe sh. 2 117152 Moscow Russische Föderation
- Aff2 grid.415738.c 0000000092162496 Institute of Pediatrics and Children Surgery Russian Federation Ministry of Health Moscow Russische Föderation
- Aff4 grid.466944.d Moscow City University of Psychology and Education Moscow Russische Föderation
| |
Collapse
|
39
|
Bennett RJ, Forche A, Berman J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a019604. [PMID: 25081629 DOI: 10.1101/cshperspect.a019604] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human fungal pathogens can exist in a variety of ploidy states, including euploid and aneuploid forms. Ploidy change has a major impact on phenotypic properties, including the regulation of interactions with the human host. In addition, the rapid emergence of drug-resistant isolates is often associated with the formation of specific supernumerary chromosomes. Pathogens such as Candida albicans and Cryptococcus neoformans appear particularly well adapted for propagation in multiple ploidy states with novel pathways driving ploidy variation. In both species, heterozygous cells also readily undergo loss of heterozygosity (LOH), leading to additional phenotypic changes such as altered drug resistance. Here, we examine the sexual and parasexual cycles that drive ploidy variation in human fungal pathogens and discuss ploidy and LOH events with respect to their far-reaching roles in fungal adaptation and pathogenesis.
Collapse
Affiliation(s)
- Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
40
|
Abstract
BACKGROUND Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. RESULTS Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (p<3.0x10(-7)). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. CONCLUSIONS The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, New York, United States of America
| |
Collapse
|
41
|
Yurov YB, Vorsanova SG, Liehr T, Kolotii AD, Iourov IY. X chromosome aneuploidy in the Alzheimer's disease brain. Mol Cytogenet 2014; 7:20. [PMID: 24602248 PMCID: PMC3995993 DOI: 10.1186/1755-8166-7-20] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. RESULTS Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). CONCLUSIONS Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD.
Collapse
Affiliation(s)
| | | | - Thomas Liehr
- Mental Health Research Center, Russian Academy of Medical Sciences, 117152 Moscow, Russia.
| | | | | |
Collapse
|
42
|
Xq28 (MECP2) microdeletions are common in mutation-negative females with Rett syndrome and cause mild subtypes of the disease. Mol Cytogenet 2013; 6:53. [PMID: 24283533 PMCID: PMC4176196 DOI: 10.1186/1755-8166-6-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 01/13/2023] Open
Abstract
Background Rett syndrome (RTT) is an X-linked neurodevelopmental disease affecting predominantly females caused by MECP2 mutations. Although RTT is classically considered a monogenic disease, a stable proportion of patients, who do not exhibit MECP2 sequence variations, does exist. Here, we have attempted at uncovering genetic causes underlying the disorder in mutation-negative cases by whole genome analysis using array comparative genomic hybridization (CGH) and a bioinformatic approach. Results Using BAC and oligonucleotide array CGH, 39 patients from RTT Russian cohort (in total, 354 RTT patients), who did not bear intragenic MECP2 mutations, were studied. Among the individuals studied, 12 patients were those with classic RTT and 27 were those with atypical RTT. We have detected five 99.4 kb deletions in chromosome Xq28 affecting MECP2 associated with mild manifestations of classic RTT and five deletions encompassing MECP2 spanning 502.428 kb (three cases), 539.545 kb (one case) and 877.444 kb (one case) associated with mild atypical RTT. A case has demonstrated somatic mosaicism. Regardless of RTT type and deletion size, all the cases exhibited mild phenotypes. Conclusions Our data indicate for the first time that no fewer than 25% of RTT cases without detectable MECP2 mutations are caused by Xq28 microdeletions. Furthermore, Xq28 (MECP2) deletions are likely to cause mild subtypes of the disease, which can manifest as both classical and atypical RTT.
Collapse
|