1
|
Hung L, Zientara B, Berin MC. Contribution of T cell subsets to different food allergic diseases. Immunol Rev 2024; 326:35-47. [PMID: 39054597 DOI: 10.1111/imr.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food allergies occur due to a lack of tolerance to the proteins found in foods. While IgE- and non-IgE-mediated food allergies have different clinical manifestations, epidemiology, pathophysiology, and management, they share dysregulated T cell responses. Recent studies have shed light on the contributions of different T cell subsets to the development and persistence of different food allergic diseases. This review discusses the role of T cells in both IgE- and non-IgE-mediated food allergies and considers the potential future investigations in this context.
Collapse
Affiliation(s)
- Lisa Hung
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brianna Zientara
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - M Cecilia Berin
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Assugeni IOS, Bazon ML, Pinto LM, Mainente LAB, Brochetto-Braga MR, de Lima Zollner R, Fernandes LGR. Recombinant antigen 5 from Polybia paulista wasp venom (Hymenoptera, Vespidae): Antigen-specific antibody production and functional profile of CD4 + T cells in the immune response. J Immunol Methods 2023; 522:113557. [PMID: 37689389 DOI: 10.1016/j.jim.2023.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Polybia paulista is a neotropical social wasp related to severe accidents and allergic reactions cases, including anaphylaxis, in southeastern Brazil. Antigen 5 (Poly p 5) is a major allergenic protein from its venom with potential use for component-resolved diagnostic. Therefore, the previous characterization of the immune response profile triggered by Poly p 5 should be evaluated. Recombinant Poly p 5 (rPoly p 5) was used to sensitize BALB/c mice with six weekly intradermal doses, and the specific antibody production and the functional profile of CD4+ T cells were assessed. rPoly p 5 induced the production of specific immunoglobulins (sIg) sIgE, sIgG1 and sIgG2a, which could recognize natural Poly p 5 presented in the venom of four different wasp species. rPoly p 5 stimulated in vitro the CD4+ T cells from immunized mice, which showed a significant proliferative response. These antigen-specific CD4+T cells produced IFN-γ and IL-17A cytokines and increased ROR-γT transcription factor expression. No differences between the control group and sensitized mice were found in IL-4 production and GATA-3 and T-bet expression. Interestingly, increased CD25+FoxP3+ regulatory T cells (Tregs) frequency was observed in the splenocyte cell cultures from rPoly p 5 immunized mice after the in vitro stimulation with both P. paulista venom extract and rPoly p 5. Here we showed that rPoly p 5 induces antigen-specific antibodies capable of recognizing Antigen 5 in the venom of four wasp species and modulates antigen-specific CD4+ T cells to IFN-γ production response associated with a Th17 profile in sensitized mice. These findings emphasize the potential use of rPoly p 5 as an essential source of a major wasp allergen with significant immunological properties.
Collapse
Affiliation(s)
- Isabela Oliveira Sandrini Assugeni
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Murilo Luiz Bazon
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Lucas Machado Pinto
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | | | - Márcia Regina Brochetto-Braga
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology (LIT), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology (LIT), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
3
|
Patel D, Munhoz J, Goruk S, Tsai S, Richard C, Field CJ. Maternal diet supplementation with high-docosahexaenoic-acid canola oil, along with arachidonic acid, promotes immune system development in allergy-prone BALB/c mouse offspring at 3 weeks of age. Eur J Nutr 2023; 62:2399-2413. [PMID: 37106253 DOI: 10.1007/s00394-023-03160-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE To study the effects of feeding docosahexaenoic acid (DHA, derived from novel canola oil), with same amount of arachidonic acid (ARA), supplemented diet to lactating dams on the immune system development of suckled offspring using a T helper type-2 (Th2)-dominant BALB/c mouse. METHODS Dams received nutritionally complete control (no ARA or DHA) or DHA + ARA diet (1% DHA and 1% ARA of total fatty acids) from 5 days pre-parturition to the end of 3-week suckling period. After euthanization, relevant tissues were collected to study fatty acids, splenocyte phenotype and function (ex vivo cytokines with/without lipopolysaccharide (LPS, bacterial challenge) or phorbol myristate acetate + ionomycin (PMAi) stimulation). RESULTS Feeding dams a DHA diet significantly increased the mammary gland milk phospholipid concentration of DHA and ARA. This resulted in 60% higher DHA levels in splenocyte phospholipids of the pups although ARA levels showed no difference. In dams fed DHA diet, significantly higher proportion of CD27+ cytotoxic T cell (CTL) and CXCR3+ CCR6- Th (enriched in Th1) were observed than control, but there were no differences in the splenocyte function upon PMAi (non-specific lymphocyte stimulant) stimulation. Pups from DHA-fed dams showed significantly higher IL-1β, IFN-γ and TNF-α (inflammatory cytokines) by LPS-stimulated splenocytes. This may be due to higher proportion of CD86+ macrophages and B cells (all p's < 0.05) in these pups, which may influence T cell polarization. CONCLUSION Plant-based source of DHA in maternal diet resulted in higher ex vivo production of inflammatory cytokines by splenocytes due to change in their phenotype, and this can skew T cell towards Th1 response in a Th2-dominant BALB/c mouse.
Collapse
Affiliation(s)
- Dhruvesh Patel
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jaqueline Munhoz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Prodinger C, Yerlett N, MacDonald C, Chottianchaiwat S, Goh L, Du Toit G, Mellerio JE, Petrof G, Martinez AE. Prevalence of and risk factors for nutritional deficiency and food allergy in a cohort of 21 patients with Netherton syndrome. Pediatr Allergy Immunol 2023; 34:e13914. [PMID: 36705039 DOI: 10.1111/pai.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Netherton syndrome (NS; OMIM: 256500) is a rare autosomal recessively inherited disease due to SPINK5 mutations. Hair and inflammatory skin involvement are variable along with allergies. Morbidity and mortality are high, particularly in infancy. A detailed clinical analysis of a NS patient cohort should broaden the understanding of nutritional challenges and allergic comorbidities. METHODS In this retrospective monocentric cohort study, medical and dietetic records of pediatric NS patients, presenting between 1999 and 2018, were reviewed. The severity of skin involvement was assessed according to the extent of the body surface area (BSA) affected by erythema. RESULTS We identified 21 patients with NS (median age 11.6 years). Within the first 6 months of life, requirements for fluid and kcals/protein were high for all patients (average 228 ml/kg/day) and infants had an average of 1.9 feed changes (range 0-4) due to food intolerance. Clinical evidence for IgE-mediated food allergy was present in 84.2% (16/19 children, 2 no data) with a range of 1-12 food allergies per patient. In 75%, more than one food had to be avoided. Specific IgE levels were falsely positive in 38.3% and 8/18 patients (44.4%). One-third (5/15; 6 no data) of patients, all with severe disease, had anaphylactic reactions following ingestion of fish (n = 2), sesame (n = 1), cow's milk (n = 1), and both peanut and egg (n = 1). CONCLUSIONS Our data emphasize feeding difficulties in children with NS and reveal an unexpectedly higher prevalence of food allergies that gives evidence to the importance of early coordinated multidisciplinary care for overcoming these challenges in NS.
Collapse
Affiliation(s)
- Christine Prodinger
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Natalie Yerlett
- Department of Dermatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Cassie MacDonald
- Department of Dermatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Leanne Goh
- Pediatric Allergy Clinic, University College London Hospital, London, UK
| | - George Du Toit
- Children's Allergy Service, Evelina Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Jemima E Mellerio
- St. John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gabriela Petrof
- Department of Dermatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Anna E Martinez
- Department of Dermatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Lewis SA, Peters B. T-cell epitope discovery and single-cell technologies to advance food allergy research. J Allergy Clin Immunol 2023; 151:15-20. [PMID: 36411114 PMCID: PMC9825656 DOI: 10.1016/j.jaci.2022.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
Abstract
There is good evidence for a role of T cells in food allergy, but there is a lack of mechanistic understanding and phenotypic markers of the specific T cells contributing to pathology. Recent technologic advancements have allowed for a new experimental paradigm where we can find and pull out rare antigen-specific T cells and characterize them at the single-cell level. However, studies in infectious disease and broader allergy have shown that these techniques benefit greatly from precisely defined T-cell epitopes. Food allergens have fewer epitopes currently available, but it is growing and promises to overcome this gap. With growing use of this experimental design, it will be important to unbiasedly map T-cell phenotypes across food allergy and look for commonalities and contrasts to other allergic and infectious diseases. Once a pathologic phenotype for T cells has been established, the frequencies of these cells can be monitored with simpler techniques that could be applied to the clinic and used in diagnosis, prediction of treatment responsiveness, and discovery of targets for new treatments.
Collapse
Affiliation(s)
- Sloan A Lewis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, Calif
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, Calif; Department of Medicine, University of California San Diego, La Jolla, Calif.
| |
Collapse
|
6
|
Packi K, Matysiak J, Klimczak S, Matuszewska E, Bręborowicz A, Pietkiewicz D, Matysiak J. Analysis of the Serum Profile of Cytokines Involved in the T-Helper Cell Type 17 Immune Response Pathway in Atopic Children with Food Allergy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7877. [PMID: 35805534 PMCID: PMC9265836 DOI: 10.3390/ijerph19137877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
The main risk factor for the development of food allergies (FAs) in children is atopic dermatitis (AD). AD is usually recognized as the Th1/Th2 paradigm of allergic disease. Recently, the Th1/Th2 paradigm in allergy and autoimmunity has been revised, including the role of the Th17 cell population and related cytokines. However, there are only a few studies that have found Th17 cytokine involvement in the allergic inflammatory response, especially with food allergens. This research aimed to analyze the serum profile of cytokines involved in the T-helper cell type 17 immune response pathway in young, atopic children with an IgE-mediated and delayed-type FA. The study involved 76 children (0−5 years old) with chronic AD. We used the Bio-Plex system to simultaneously determine the concentrations of 15 different cytokines in one experiment. In accordance with complete dermatological and allergological examination, including OFC testing and ALEX2 assays, participants were divided into 3 groups: IgE-mediated FA, delayed-type FA, and the control group. Data were analyzed using univariate statistical tests. In the IgE-mediated FA group, the circulating levels of tested cytokines had increased compared with those of other patients; however, a statistically significant difference was only obtained for IL-1beta (p < 0.05). According to the ROC curves, IL-1beta may be considered an effective predictor of IgE-mediated FA in AD children (p < 0.05; AUC = 0.67). In the delayed-type FA group, the concentration of most cytokines had slightly decreased compared to the control group. The obtained results suggest that FA influences the Th17-related cytokine profile in the serum of AD children. More advanced studies are needed to confirm the involvement of Th17 cytokines in the allergic inflammatory response and to prove their usefulness in clinical practice.
Collapse
Affiliation(s)
- Kacper Packi
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (K.P.); (E.M.); (D.P.)
- AllerGen, Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland;
| | - Joanna Matysiak
- Faculty of Health Sciences, Calisia University-Kalisz, 62-800 Kalisz, Poland;
| | - Sylwia Klimczak
- AllerGen, Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland;
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (K.P.); (E.M.); (D.P.)
| | - Anna Bręborowicz
- Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Dagmara Pietkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (K.P.); (E.M.); (D.P.)
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (K.P.); (E.M.); (D.P.)
| |
Collapse
|
7
|
Stark KG, Falkowski NR, Brown CA, McDonald RA, Huffnagle GB. Contribution of the Microbiome, Environment, and Genetics to Mucosal Type 2 Immunity and Anaphylaxis in a Murine Food Allergy Model. FRONTIERS IN ALLERGY 2022; 3:851993. [PMID: 35769569 PMCID: PMC9234882 DOI: 10.3389/falgy.2022.851993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
There is heterogeneity inherent in the immune responses of individual mice in murine models of food allergy, including anaphylaxis, similar to the clinical heterogeneity observed in humans with food allergies to a defined food. One major driver of this heterogeneity may be differences in the microbiome between sensitized individuals. Our laboratory and others have reported that disruption of the microbiome (dysbiosis) by broad spectrum antibiotics and/or yeast colonization can alter systemic immunity and favor the development of mucosal Type 2 immunity to aeroallergens. Our objective was to use a well-characterized murine model (Balb/c mice) of food allergies (chicken egg ovalbumin, OVA) and determine if antibiotic-mediated dysbiosis (including C. albicans colonization) could enhance the manifestation of food allergies. Furthermore, we sought to identify elements of the microbiome and host response that were associated with this heterogeneity in the anaphylactic reaction between individual food allergen-sensitized mice. In our dataset, the intensity of the anaphylactic reactions was most strongly associated with a disrupted microbiome that included colonization by C. albicans, loss of a specific Lachnoclostridium species (tentatively, Lachnoclostridium YL32), development of a highly polarized Type 2 response in the intestinal mucosa and underlying tissue, and activation of mucosal mast cells. Serum levels of allergen-specific IgE were not predictive of the response and a complete absence of a microbiome did not fully recapitulate the response. Conventionalization of germ-free mice resulted in Akkermansia muciniphila outgrowth and a higher degree of heterogeneity in the allergic response. C57BL/6 mice remained resistant even under the same dysbiosis-inducing antibiotic regimens, while changes in the microbiome markedly altered the reactivity of Balb/c mice to OVA, as noted above. Strikingly, we also observed that genetically identical mice from different rooms in our vivarium develop different levels of a Type 2 response, as well as anaphylactic reactions. The intestinal microbiome in these mice also differed between rooms. Thus, our data recapitulate the heterogeneity in anaphylactic reactions, ranging from severe to none, seen in patients that have circulating levels of food allergen-reactive IgE and support the concept that alterations in the microbiome can be one factor underlying this heterogeneity.
Collapse
Affiliation(s)
- Kelsey G. Stark
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Christopher A. Brown
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Institute for Research on Innovation and Science (IRIS), Institute for Social Research (ISR), University of Michigan, Ann Arbor, MI, United States
| | - Roderick A. McDonald
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Gary B. Huffnagle
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Gary B. Huffnagle
| |
Collapse
|
8
|
Lu W, Qian L, Fang Z, Wang H, Zhu J, Lee YK, Zhao J, Zhang H, Chen W. Probiotic strains alleviated OVA-induced food allergy in mice by regulating the gut microbiota and improving the level of indoleacrylic acid in fecal samples. Food Funct 2022; 13:3704-3719. [PMID: 35266474 DOI: 10.1039/d1fo03520g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Food allergy (FA) is a common immune disorder caused by food antigens. Probiotic strains showed alleviating effects on FA, such as the alleviation of FA pathological symptoms, serum OVA-sIgE levels, and the gut microbiota diversity and composition. The results showed that intragastric administration of Lactiplantibacillus plantarum CCFM1189, Limosilactobacillus reuteri CCFM1190, and Bifidobacterium longum CCFM1029 alleviated the weight loss and FA pathological symptoms of FA mice and decreased OVA-specific IgE and histamine (HIS) levels. CCFM1189 and CCFM1190 decreased IL-4, IL-5, and IL-13 levels, while CCFM1189 and CCFM 1029 decreased IL-17 levels. The gut microbiota analysis demonstrated that CCFM1189 increased the abundance of Akkermansia, while CCFM1190 improved immune regulation bacteria such as Faecalibaculum. CCFM1029 increased Bifidobacterium and the bacteria involved in short-chain fatty acid (SCFA) production, such as Dubosiella. L. plantarum CCFM1189 and L. reuteri CCFM1190 improved indoleacrylic acid levels in mouse fecal samples using untargeted metabolomics analysis. In conclusion, CCFM1189, CCFM1190, and CCFM1029 decreased Th2 immune responses and alleviated FA pathological symptoms by regulating the gut microbiota diversity and composition, and altering gut microbial metabolites, which could provide support in clinical tests and probiotic production in the future.
Collapse
Affiliation(s)
- Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Li Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan-Kun Lee
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Differential Cytokine Expression in the Duodenum and Rectum of Children with Non-Immunoglobulin E-Mediated Cow's Milk Protein Allergy. Dig Dis Sci 2021; 66:3769-3775. [PMID: 33433798 DOI: 10.1007/s10620-020-06743-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/20/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cow's milk protein allergy (CMPA) is the most prevalent food allergy in children, and its pathogenesis remains poorly understood. It has been shown that the combination of genetic predisposition, perinatal factors, and intestinal imbalance of the immune response mediated by cytokines may play an essential role in CMPA pathogenesis. AIM To characterize the gene expression of Th1, Th2, and Th17 cytokines in the duodenum and rectum in patients with CMPA. METHODS This is an observational, descriptive, cross-sectional, prospective study. We used specific IgE (ImmunoCAP®) in serum and biopsies from the rectum and duodenum for the detection of cytokine messenger RNA levels by real-time PCR in patients with a positive oral food challenge for CMPA. We analyzed the relative quantification of the gene expression of cytokines by real-time PCR, and we used the housekeeping gene GAPDH for normalization purposes. RESULTS Thirty children (13 male and 17 female) were evaluated. All patients had an open challenge for CMPA. IgE specific to casein, alfa-lactalbumin, and beta-lactoglobulin was negative in all patients. In terms of cytokine levels, the levels of TNFα, IL-6, IL-12 (Th1), IL-4, IL-10, IL-13 (Th2), and IL-17 were found to be higher in the rectum than in the duodenum (p < 0.05). IL-15 was found to be higher in the duodenum than in the rectum (p < 0.05). CONCLUSIONS In the present study we observed that the immune response in CMPA seems to be mediated by a Th1, Th2, and Th17 cytokine profile, with the rectum being the main affected site.
Collapse
|
10
|
De Paepe E, Van Gijseghem L, De Spiegeleer M, Cox E, Vanhaecke L. A Systematic Review of Metabolic Alterations Underlying IgE-Mediated Food Allergy in Children. Mol Nutr Food Res 2021; 65:e2100536. [PMID: 34648231 DOI: 10.1002/mnfr.202100536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/10/2021] [Indexed: 12/24/2022]
Abstract
SCOPE Immunoglobulin E-mediated food allergies (IgE-FA) are characterized by an ever-increasing prevalence, currently reaching up to 10.4% of children in the European Union. Metabolomics has the potential to provide a deeper understanding of the pathogenic mechanisms behind IgE-FA. METHODS AND RESULTS In this work, literature is systematically searched using Web of Science, PubMed, Scopus, and Embase, from January 2010 until May 2021, including human and animal metabolomic studies on multiple biofluids (urine, blood, feces). In total, 15 studies on IgE-FA are retained and a dataset of 277 potential biomarkers is compiled for in-depth pathway mapping. Decreased indoleamine 2,3-dioxygenase-1 (IDO- 1) activity is hypothesized due to altered plasma levels of tryptophan and its metabolites in IgE-FA children. In feces of children prior to IgE-FA, aberrant metabolization of sphingolipids and histidine is noted. Decreased fecal levels of (branched) short chain fatty acids ((B)SCFAs) compel a shift towards aerobic glycolysis and suggest dysbiosis, associated with an immune system shift towards T-helper 2 (Th2) responses. During animal anaphylaxis, a similar switch towards glycolysis is observed, combined with increased ketogenic pathways. Additionally, altered histidine, purine, pyrimidine, and lipid pathways are observed. CONCLUSION To conclude, this work confirms the unprecedented opportunities of metabolomics and supports the in-depth pathophysiological qualification in the quest towards improved diagnostic and prognostic biomarkers for IgE-FA.
Collapse
Affiliation(s)
- Ellen De Paepe
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Lynn Van Gijseghem
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Margot De Spiegeleer
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Eric Cox
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Immunology, Ghent University, Ghent, Belgium
| | - Lynn Vanhaecke
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, Belfast, UK
| |
Collapse
|
11
|
Hofmann MA, Fluhr JW, Ruwwe‐Glösenkamp C, Stevanovic K, Bergmann K, Zuberbier T. Role of IL-17 in atopy-A systematic review. Clin Transl Allergy 2021; 11:e12047. [PMID: 34429872 PMCID: PMC8361814 DOI: 10.1002/clt2.12047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE OF REVIEW Atopy is defined as the genetic predisposition to react with type I allergic diseases such as food-, skin-, and respiratory allergies. Distinct molecular mechanisms have been described, including the known Th2 driven immune response. IL-17A (IL-17) is mainly produced by Th17 cells and belongs to the IL-17 family of cytokines, IL-17A to F. While IL-17 plays a major role in inflammatory and autoimmune disorders, more data was published in recent years elucidating the role of IL-17 in allergic diseases. The present study aimed to elaborate specifically the role of IL-17 in atopy. METHODS A systematic literature search was conducted in MEDLINE, Embase, and Cochrane Central Register of Controlled Trials, regarding IL-17 and atopy/allergic diseases. RESULTS In total, 31 novel publications could be identified (food allergy n = 3, allergic asthma n = 7, allergic rhinitis [AR] n = 10, atopic dermatitis [AD] n = 11). In all allergic diseases, the IL-17 pathway has been investigated. Serum IL-17 was elevated in all allergic diseases. In AR, serum and nasal IL-17 levels correlated with the severity of the disease. In food allergies, serum IL-17E was also elevated in children. In AD, there is a trend for higher IL-17 values in the serum and skin specimen, while it is more expressed in acute lesions. In allergic asthma, serum IL-17 levels were increased. In two studies, higher serum IL-17 levels were found in severe persistent asthmatic patients than in intermittent asthmatics or healthy controls. Only one therapeutic clinical study exists on allergic diseases (asthma patients) using a monoclonal antibody against the IL-17 receptor A. No clinical efficacy was found in the total study population, except for a subgroup of patients with (post-bronchodilator) high reversibility. SUMMARY The role of IL 17 in the pathogenesis of allergic diseases is evident, but the involvement of the Th17 cytokine in the pathophysiological pathway is not conclusively defined. IL-17 is most likely relevant and will be a clinical target in subgroups of patients. The current data indicates that IL-17 is elevated more often in acute and severe forms of allergic diseases.
Collapse
Affiliation(s)
- Maja A. Hofmann
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Joachim W. Fluhr
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | | | - Katarina Stevanovic
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | | | - Torsten Zuberbier
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
12
|
Friesen C, Colombo J, Schurman J. Update on the Role of Allergy in Pediatric Functional Abdominal Pain Disorders: A Clinical Perspective. Nutrients 2021; 13:2056. [PMID: 34208479 PMCID: PMC8235503 DOI: 10.3390/nu13062056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
Both functional abdominal pain disorders (FAPDs) and food allergies are relatively common in children and adolescents, and most studies report an association between FAPDs and allergic conditions. FAPDs share pathophysiologic processes with allergies, including both immune and psychological processes interacting with the microbiome. No conclusive data are implicating IgE-mediated reactions to foods in FAPDs; however, there may be patients who have IgE reactions localized to the gastrointestinal mucosa without systemic symptoms that are not identified by common tests. In FAPDs, the data appears stronger for aeroallergens than for foods. It also remains possible that food antigens initiate an IgG reaction that promotes mast cell activation. If a food allergen is identified, the management involves eliminating the specific food from the diet. In the absence of systemic allergic symptoms or oral allergy syndrome, it appears unlikely that allergic triggers for FAPDs can be reliably identified by standard testing. Medications used to blunt allergic reactions or symptomatically treat allergic reactions may be useful in FAPDs. The purpose of the current manuscript is to review the current literature regarding the role of allergy in FAPDs from a clinical perspective, including how allergy may fit in the current model of FAPDs.
Collapse
Affiliation(s)
- Craig Friesen
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Mercy Kansas City, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (J.C.); (J.S.)
| | | | | |
Collapse
|
13
|
Zhou X, Han X, Lyu SC, Bunning B, Kost L, Chang I, Cao S, Sampath V, Nadeau KC. Targeted DNA methylation profiling reveals epigenetic signatures in peanut allergy. JCI Insight 2021; 6:143058. [PMID: 33571165 PMCID: PMC8026193 DOI: 10.1172/jci.insight.143058] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
DNA methylation (DNAm) has been shown to play a role in mediating food allergy; however, the mechanism by which it does so is poorly understood. In this study, we used targeted next-generation bisulfite sequencing to evaluate DNAm levels in 125 targeted highly informative genomic regions containing 602 CpG sites on 70 immune-related genes to understand whether DNAm can differentiate peanut allergy (PA) versus nonallergy (NA). We found PA-associated DNAm signatures associated with 12 genes (7 potentially novel to food allergy, 3 associated with Th1/Th2, and 2 associated with innate immunity), as well as DNAm signature combinations with superior diagnostic potential compared with serum peanut–specific IgE for PA versus NA. Furthermore, we found that, following peanut protein stimulation, peripheral blood mononuclear cell (PBMCs) from PA participants showed increased production of cognate cytokines compared with NA participants. The varying responses between PA and NA participants may be associated with the interaction between the modification of DNAm and the interference of environment. Using Euclidean distance analysis, we found that the distances of methylation profile comprising 12 DNAm signatures between PA and NA pairs in monozygotic (MZ) twins were smaller than those in randomly paired genetically unrelated individuals, suggesting that PA-related DNAm signatures may be associated with genetic factors.
Collapse
|
14
|
Złotkowska D, Stachurska E, Fuc E, Wróblewska B, Mikołajczyk A, Wasilewska E. Differences in Regulatory Mechanisms Induced by β-Lactoglobulin and κ-Casein in Cow's Milk Allergy Mouse Model-In Vivo and Ex Vivo Studies. Nutrients 2021; 13:nu13020349. [PMID: 33503831 PMCID: PMC7911159 DOI: 10.3390/nu13020349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
The presence of various proteins, including modified ones, in food which exhibit diverse immunogenic and sensitizing properties increases the difficulty of predicting host immune responses. Still, there is a lack of sufficiently reliable and comparable data and research models describing allergens in dietary matrices. The aim of the study was to estimate the immunomodulatory effects of β-lactoglobulin (β-lg) in comparison to those elicited by κ-casein (κ-CN), in vivo and ex vivo, using naïve splenocytes and a mouse sensitization model. Our results revealed that the humoral and cellular responses triggered by β-lg and κ-CN were of diverse magnitudes and showed different dynamics in the induction of control mechanisms. β-Lg turned out to be more immunogenic and induced a more dominant Th1 response than κ-CN, which triggered a significantly higher IgE response. For both proteins, CD4+ lymphocyte profiles correlated with CD4+CD25+ and CD4+CD25+Foxp3+ T cells induction and interleukin 10 secretion, but β-lg induced more CD4+CD25+Foxp3- Tregs. Moreover, ex vivo studies showed the risk of interaction of immune responses to different milk proteins, which may exacerbate allergy, especially the one caused by β-lg. In conclusion, the applied model of in vivo and ex vivo exposure to β-lg and κ-CN showed significant differences in immunoreactivity of the tested proteins (κ-CN demonstrated stronger allergenic potential than β-lg), and may be useful for the estimation of allergenic potential of various food proteins, including those modified in technological processes.
Collapse
Affiliation(s)
- Dagmara Złotkowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
- Correspondence: (D.Z.); (E.W.); Tel.: +48-89-523-46-75 (D.Z.); +48-89-523-46-03 (E.W.)
| | - Emilia Stachurska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Ewa Fuc
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
- Correspondence: (D.Z.); (E.W.); Tel.: +48-89-523-46-75 (D.Z.); +48-89-523-46-03 (E.W.)
| |
Collapse
|
15
|
Alashkar Alhamwe B, Meulenbroek LAPM, Veening-Griffioen DH, Wehkamp TMD, Alhamdan F, Miethe S, Harb H, Hogenkamp A, Knippels LMJ, Pogge von Strandmann E, Renz H, Garssen J, van Esch BCAM, Garn H, Potaczek DP, Tiemessen MM. Decreased Histone Acetylation Levels at Th1 and Regulatory Loci after Induction of Food Allergy. Nutrients 2020; 12:E3193. [PMID: 33086571 PMCID: PMC7603208 DOI: 10.3390/nu12103193] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Immunoglobulin E (IgE)-mediated allergy against cow's milk protein fractions such as whey is one of the most common food-related allergic disorders of early childhood. Histone acetylation is an important epigenetic mechanism, shown to be involved in the pathogenesis of allergies. However, its role in food allergy remains unknown. IgE-mediated cow's milk allergy was successfully induced in a mouse model, as demonstrated by acute allergic symptoms, whey-specific IgE in serum, and the activation of mast cells upon a challenge with whey protein. The elicited allergic response coincided with reduced percentages of regulatory T (Treg) and T helper 17 (Th17) cells, matching decreased levels of H3 and/or H4 histone acetylation at pivotal Treg and Th17 loci, an epigenetic status favoring lower gene expression. In addition, histone acetylation levels at the crucial T helper 1 (Th1) loci were decreased, most probably preceding the expected reduction in Th1 cells after inducing an allergic response. No changes were observed for T helper 2 cells. However, increased histone acetylation levels, promoting gene expression, were observed at the signal transducer and activator of transcription 6 (Stat6) gene, a proallergic B cell locus, which was in line with the presence of whey-specific IgE. In conclusion, the observed histone acetylation changes are pathobiologically in line with the successful induction of cow's milk allergy, to which they might have also contributed mechanistically.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35039 Marburg, Germany;
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Laura A. P. M. Meulenbroek
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Désirée H. Veening-Griffioen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Tjalling M. D. Wehkamp
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Fahd Alhamdan
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Philipps University Marburg, 35039 Marburg, Germany
| | - Sarah Miethe
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Philipps University Marburg, 35039 Marburg, Germany
| | - Hani Harb
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Léon M. J. Knippels
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35039 Marburg, Germany;
| | - Harald Renz
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
| | - Johan Garssen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Betty C. A. M. van Esch
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Holger Garn
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Philipps University Marburg, 35039 Marburg, Germany
| | - Daniel P. Potaczek
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Philipps University Marburg, 35039 Marburg, Germany
- John Paul II Hospital, 31-202 Krakow, Poland
| | - Machteld M. Tiemessen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| |
Collapse
|
16
|
Mansueto P, Di Liberto D, Fayer F, Soresi M, Geraci G, Giannone AG, Seidita A, D'Alcamo A, La Blasca F, Lo Pizzo M, Florena AM, Dieli F, Carroccio A. TNF-α, IL-17, and IL-22 production in the rectal mucosa of nonceliac wheat sensitivity patients: role of adaptive immunity. Am J Physiol Gastrointest Liver Physiol 2020; 319:G281-G288. [PMID: 32658621 DOI: 10.1152/ajpgi.00104.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, a new gluten- or wheat-related disease has emerged, a condition labeled "nonceliac gluten sensitivity" (NCGS) or "nonceliac wheat sensitivity" (NCWS). NCWS pathogenesis is still uncertain and attributed to very different mechanisms. We aimed to study the different T-lymphocyte subsets in the rectal mucosa of NCWS patients to demonstrate the possible contribution of adaptative immune response. Twelve patients (11 women, 1 man, age range 23-61 yr, median 32 yr) with a definitive diagnosis of NCWS were recruited at random for the present study. They underwent rectal endoscopy with multiple mucosal biopsies at the end of a double-blind placebo-controlled (DBPC) wheat challenge when they reported the reappearance of the symptoms. As controls we included 11 "healthy patients", sex- and age-matched with the patients who underwent colonoscopy evaluation for rectal bleeding due to hemorrhoids. Cells freshly obtained from rectal tissue were stained to detect anti-CD45, anti-CD3, anti-CD4, and anti-CD8. Furthermore, intracellular staining was performed with anti-tumor necrosis factor (TNF)-α, anti-interleukin (IL)-17, and anti-IL-22. Production of TNF-α by CD45+, CD3+, CD4+, and CD8+ cells, as well as of IL-17 by CD4+ cells, was higher in the rectal tissue of NCWS patients than in controls. On the contrary, IL-22 production by CD8+ cells was lower in NCWS patients than in the controls. In NCWS patients diagnosed by DBPC wheat challenge, there is a complex immunological activation, with a significant role for the adaptive response.NEW & NOTEWORTHY Nonceliac wheat sensitivity (NCWS) is a syndrome characterized by symptoms triggered by gluten intake. The pathogenesis is still uncertain. Studies have shown a role for innate immunity. We demonstrated that production of TNF-α by CD45+, CD3+, CD4+, and CD8+ cells and of IL-17 by CD4+ cells is higher in the rectal tissue of NCWS patients than in controls. We clearly demonstrated that in patients with NCWS there is a significant role for the adaptive response.
Collapse
Affiliation(s)
- Pasquale Mansueto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Francesca Fayer
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maurizio Soresi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Girolamo Geraci
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Antonio Giulio Giannone
- Pathology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Aurelio Seidita
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS-ISMETT), University of Pittsburgh Medical Center Italy, Palermo, Italy
| | - Alberto D'Alcamo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Francesco La Blasca
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Marianna Lo Pizzo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Ada Maria Florena
- Pathology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Antonio Carroccio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
17
|
Fukushima T, Yokooji T, Hirano T, Kataoka Y, Taogoshi T, Matsuo H. Aspirin enhances sensitization to the egg-white allergen ovalbumin in rats. PLoS One 2019; 14:e0226165. [PMID: 31805177 PMCID: PMC6894855 DOI: 10.1371/journal.pone.0226165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/20/2019] [Indexed: 12/04/2022] Open
Abstract
Enhancement of oral absorption of food allergens by non-steroidal anti-inflammatory drugs (NSAIDs), especially aspirin, is considered an exacerbating factor in the development of food allergies. In this study, we examined the effect of aspirin on oral sensitization to and absorption of the egg-white allergen ovalbumin (OVA) in rats. The absorption of OVA was evaluated by measuring the plasma concentration of OVA after oral administration by gavage. To evaluate oral sensitization to OVA, plasma levels of immunoglobulin (Ig) E and IgG1 antibodies (Abs) specific to OVA were determined by enzyme-linked immunosorbent assay after initiation of sensitization. High-dose aspirin (30 mg/kg) increased oral OVA absorption and plasma levels of OVA-specific IgE and IgG1 Abs compared with those observed in vehicle-treated rats. In contrast, low-dose aspirin (3 mg/kg) exerted no changes in either absorption or sensitization. Spermine, an absorption enhancer, increased the oral absorption of OVA to nearly the same extent as high-dose aspirin, whereas the plasma levels of OVA-specific IgE and IgG1 Abs exhibited no significant differences between spermine- and vehicle-treated rats. Among the NSAIDs, diclofenac and indomethacin increased sensitization to OVA, similar to high-dose aspirin, but meloxicam exerted no effects on Ab levels. In conclusion, we showed that high-dose aspirin enhanced oral sensitization to OVA. Our study suggests that enhanced oral sensitization to OVA cannot be ascribed to increased absorption of OVA from the intestinal tract. Although the mechanisms underlying this enhancement of sensitization are still controversial, our study suggests that modification of cytokine production due to impairment of the intestinal barrier function and inhibition of cyclooxygenase-1 activity by aspirin may be involved.
Collapse
Affiliation(s)
- Takahiro Fukushima
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoharu Yokooji
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| | - Taiki Hirano
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Kataoka
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takanori Taogoshi
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Matsuo
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Mumcu G, Direskeneli H. Triggering agents and microbiome as environmental factors on Behçet's syndrome. Intern Emerg Med 2019; 14:653-660. [PMID: 30523495 DOI: 10.1007/s11739-018-2000-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Environmental and other triggering factors are suggested to cause the onset and the clinical relapses of Behçet's syndrome (BS), a multi-systemic inflammatory disorder. In this review, environmental factors are discussed according to their interactions with etiopathogenesis, immune response and disease activity. Stress is a common self-triggering factor for most BS patients. Stimuli such as some foods can activate oral ulcers, and may be linked to the histamine content of the food. Oral/skin trauma and menstruation associated with hormonal factors aggravate, whereas allergy/atopy seem to alleviate the symptoms of BS. Infections are associated with BS, and microbial stimuli can activate inflammation in mucosal surfaces with increased Th1/Th17 responses. Fecal and oral microbiome patterns change in diversity and composition in BS. Better oral hygiene applications and anti-microbial interventions might be helpful to suppress oral ulcers in BS.
Collapse
Affiliation(s)
- Gonca Mumcu
- Department of Health Management, Faculty of Health Sciences, Marmara University, Istanbul, Turkey
| | - Haner Direskeneli
- Department of Internal Medicine, Division of Rheumatology, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
19
|
Pessato TB, de Carvalho NC, de Figueiredo D, Colomeu TC, Fernandes LGR, Netto FM, de L. Zollner R. Complexation of whey protein with caffeic acid or (−)-epigallocatechin-3-gallate as a strategy to induce oral tolerance to whey allergenic proteins. Int Immunopharmacol 2019; 68:115-123. [DOI: 10.1016/j.intimp.2018.12.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 01/02/2023]
|
20
|
Almaas R, Haflidadottir S, Kaldestad RH, Matthews IL. Asthma, Eczema, and Food Allergy in Children Following Liver Transplantation. J Pediatr 2019; 204:263-269. [PMID: 30270158 DOI: 10.1016/j.jpeds.2018.08.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To describe the prevalence and the relationship between asthma, eczema, food allergy, and rhinitis in children after liver transplantation. STUDY DESIGN Children who were liver transplant recipients were investigated to assess whether the high prevalence of food allergies was accompanied by eczema, rhinitis, and asthma. Furthermore, we included 56 children with chronic liver disease to explore the risk of allergy, eczema, and asthma in this group. RESULTS After liver transplantation, children had higher prevalence of allergic reactions to food as compared with children with chronic liver disease (P < .001). Current asthma (P = .04) and eczema (P < .02) were observed more frequently in transplanted children as compared with children with chronic liver disease. For transplanted children who had ever received tacrolimus the relative risk (RR) of asthma was 1.7 (95% CI, 1.2-2.4; P = .02) as compared with children with chronic liver disease. Transplanted children with asthma had higher rates of sensitization to food allergens than those without asthma (RR, 3.6; 95% CI, 1.3-10.3; P = .01). The most frequent food allergens associated with asthma in transplanted children were milk (RR for asthma, 3.9; 95% CI, 1.6-9.4; P < .01), eggs (RR, 2.9; 95% CI, 1.2-7.0; P = .03), and peanuts (RR, 3.7; 95% CI, 1.6-8.3; P < .01). Food allergies occurred earlier than asthma, at 1.5 years after transplantation (IQR, 0.5-3.0 years) vs 2.5 years after transplantation (IQR, 1.0-4.5 years; P < .05). Food allergies were also associated with eczema, but not with sensitization to aero-allergens or rhinitis. CONCLUSIONS The high risk of food allergies in children who were liver transplant recipients was associated with eczema and asthma, but not rhinitis. The most frequent food allergens associated with asthma were milk, eggs, and peanuts.
Collapse
Affiliation(s)
- Runar Almaas
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway; Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
| | - Svanhildur Haflidadottir
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway; Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Runa Helen Kaldestad
- Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Iren Lindbak Matthews
- Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Bogahawaththa D, Ashraf R, Chandrapala J, Donkor O, Vasiljevic T. In vitro immunogenicity of various native and thermally processed bovine milk proteins and their mixtures. J Dairy Sci 2018; 101:8726-8736. [DOI: 10.3168/jds.2018-14488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
|
22
|
Bogahawaththa D, Buckow R, Chandrapala J, Vasiljevic T. Comparison between thermal pasteurization and high pressure processing of bovine skim milk in relation to denaturation and immunogenicity of native milk proteins. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Gupta RK, Gupta K, Dwivedi PD. Pathophysiology of IL-33 and IL-17 in allergic disorders. Cytokine Growth Factor Rev 2017; 38:22-36. [PMID: 29153708 DOI: 10.1016/j.cytogfr.2017.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
|
24
|
Gamazo C, García-Azpíroz M, Souza Rebouças JD, Gastaminza G, Ferrer M, Irache JM. Oral immunotherapy using polymeric nanoparticles loaded with peanut proteins in a murine model of fatal anaphylaxis. Immunotherapy 2017; 9:1205-1217. [DOI: 10.2217/imt-2017-0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Carlos Gamazo
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (Idisna), C/Irunlarrea, 1; 31080 - Pamplona, Spain
| | - Maddi García-Azpíroz
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (Idisna), C/Irunlarrea, 1; 31080 - Pamplona, Spain
| | - Juliana De Souza Rebouças
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (Idisna), C/Irunlarrea, 1; 31080 - Pamplona, Spain
- Laboratory of Microbiology & Immunoregulation, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Gabriel Gastaminza
- Department of Allergology & Clinical Immunology, Clínica Universidad de Navarra, Navarra, Spain
| | - Marta Ferrer
- Department of Allergology & Clinical Immunology, Clínica Universidad de Navarra, Navarra, Spain
| | - Juan M Irache
- Department of Pharmacy & Pharmaceutical Technology, University of Navarra, Navarra, Spain
| |
Collapse
|
25
|
Jin Y, Ebaugh S, Martens A, Gao H, Olson E, Ng PKW, Gangur V. A Mouse Model of Anaphylaxis and Atopic Dermatitis to Salt-Soluble Wheat Protein Extract. Int Arch Allergy Immunol 2017; 174:7-16. [PMID: 28950276 DOI: 10.1159/000479386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Wheat allergy and other immune-mediated disorders triggered by wheat proteins are growing at an alarming rate for reasons not well understood. A mouse model to study hypersensitivity responses to salt-soluble wheat protein (SSWP) extract is currently unavailable. Here we tested the hypothesis that SSWP extract from wheat will induce sensitization as well as allergic disease in mice. METHODS Female BALB/cJ mice were weaned onto a plant protein-free diet. The mice were injected a total of 4 times with an SSWP (0.01 mg/mouse) fraction extracted from durum wheat along with alum as an adjuvant. Blood was collected biweekly and SSWP-specific IgE (SIgE) and total IgE (TIgE) levels were measured using ELISA. Systemic anaphylaxis upon intraperitoneal injection with SSWP was quantified by hypothermia shock response (HSR). Mucosal mast cell degranulation was measured by the elevation of mMCP-1 in the blood. The mice were monitored for dermatitis. Skin tissues were used in histopathology and for measuring cytokine/chemokine/adhesion molecule levels using a protein microarray system. RESULTS Injection with SSWP resulted in time-dependent SIgE antibody responses associated with the elevation of TIgE concentration. Challenge with SSWP elicited severe HSR that correlated with a significant elevation of plasma mMCP-1 levels. Sensitized mice developed facial dermatitis associated with mast cell degranulation. Lesions expressed significant elevation of Th2/Th17/Th1 cytokines and chemokines and E-selectin adhesion molecule. CONCLUSION Here we report a mouse model of anaphylaxis and atopic dermatitis to SSWP extract that may be used for further basic and applied research on wheat allergy.
Collapse
Affiliation(s)
- Yining Jin
- Food Allergy and Immunology Laboratory, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Lozano-Ojalvo D, Pérez-Rodríguez L, Pablos-Tanarro A, Molina E, López-Fandiño R. Hydrolysed ovalbumin offers more effective preventive and therapeutic protection against egg allergy than the intact protein. Clin Exp Allergy 2017; 47:1342-1354. [DOI: 10.1111/cea.12989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- D. Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - L. Pérez-Rodríguez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - A. Pablos-Tanarro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - E. Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - R. López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| |
Collapse
|
27
|
Jiang S, Han S, Chen J, Li X, Che H. Inhibition effect of blunting Notch signaling on food allergy through improving T H1/T H2 balance in mice. Ann Allergy Asthma Immunol 2017; 118:94-102. [PMID: 28007091 DOI: 10.1016/j.anai.2016.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Notch signaling regulates proliferation, differentiation, and function of dendritic cells, T cells, and mast cells, as well as many other immune cells, which act as important parts in food allergy, Notch signaling may play an important role in food allergy. OBJECTIVE To investigate the role of Notch signaling in IgE-mediated food allergy. METHODS An ovalbumin-induced food allergy mouse model was built (cholera toxin as adjuvant) and Notch signaling was blunted by FLI-06 and MW167, which inhibited Notch receptor-expressing phase and the γ-secretase-affecting phase, respectively. Then food allergy indicators, including levels of serum antibodies, cytokines, and degranulation, were examined. Meanwhile, clinical features, such as vascular permeability changes, intestinal permeability changes, body temperature changes, and symptoms, were also observed. RESULTS After blunting Notch signaling, the levels of serum ovalbumin specific IgE and IgG1 were decreased significantly, suggesting that blunting Notch signaling inhibited antibody responses. The levels of TH1 cytokines (interferon-γ) were increased significantly, whereas the levels of TH2 cytokines (interleukin-4, -5, and -13) were decreased significantly, suggesting TH2 polarization was suppressed after blunting Notch signaling. The expression of T-bet was significantly increased, whereas the expression of Gata-3 was significantly reduced in both messenger RNA and protein levels, indicating TH2 polarization was inhibited and TH1 polarization was enhanced after blunting Notch signaling. Moreover, allergic clinical features of mice were alleviated after blunting Notch signaling. CONCLUSION Food allergy was inhibited by blunting Notch signaling through suppressing TH2 polarization, enhancing TH1 cell differentiation and promoting TH1/TH2 balance in mice. Notch signaling plays a key role in IgE-mediated food allergy.
Collapse
Affiliation(s)
- Songsong Jiang
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China
| | - Shiwen Han
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China
| | - Jingyu Chen
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China
| | - Xuejiao Li
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China
| | - Huilian Che
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.
| |
Collapse
|
28
|
Kratzer B, Pickl WF. Years in Review: Recent Progress in Cellular Allergology. Int Arch Allergy Immunol 2016; 169:1-12. [PMID: 26953825 PMCID: PMC7058417 DOI: 10.1159/000444753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This review highlights the recent key advances in the biology of CD4+ effector T cells, antigen-presenting cells, Th17 and T regulatory cells, as well as immediate effector cells, such as mast cells, basophils and eosinophils, which are critically contributing to the better understanding of the pathophysiology of allergic diseases and are helping to improve their diagnosis and therapy. Some of the key advances with a direct impact on allergic asthma research and treatment are summarized.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
29
|
De Bruyne R, Gevaert P, Van Winckel M, De Ruyck N, Minne A, Bogaert D, Van Biervliet S, Vande Velde S, Smets F, Sokal E, Gottrand F, Vanhelst J, Detry B, Pilette C, Lambrecht BN, Dullaers M. Raised immunoglobulin A and circulating T follicular helper cells are linked to the development of food allergy in paediatric liver transplant patients. Clin Exp Allergy 2016; 45:1060-70. [PMID: 25702946 DOI: 10.1111/cea.12514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Post-transplant food allergy (LTFA) is increasingly observed after paediatric liver transplantation (LT). Although the immunopathology of LTFA remains unclear, immunoglobulin (Ig) E seems to be implicated. OBJECTIVE To study humoral and cellular immunity in paediatric LT patients in search for factors associated with LTFA, and compare with healthy controls (HC) and non-transplant food-allergic children (FA). METHODS We studied serum Ig levels in 29 LTFA, 43 non-food-allergic LT patients (LTnoFA), 21 FA patients and 36 HC. Serum-specific IgA and IgE against common food allergens in LTFA, IgA1 , IgA2 and joining-chain-containing polymeric IgA (pIgA) were measured. Peripheral blood mononuclear cells were analysed by flow cytometry for B and T cell populations of interest. RESULTS Serum IgA and specific IgA were higher in LTFA compared to LTnoFA. LTFA patients had the highest proportion of circulating T follicular helper cells (cTfh). The percentage of cTfh correlated positively with serum IgA. Unique in LTFA was also the significant increase in serum markers of mucosal IgA and the decrease in the Th17 subset of CXCR5(-) CD4(+) cells compared to HC. Both LT patients exhibited a rise in IgA(+) memory B cells and plasmablasts compared to HC and FA. CONCLUSIONS LT has an impact on humoral immunity, remarkably in those patients developing FA. The increase in serum markers of mucosal IgA, food allergen-specific IgA and cTfh cells observed in LTFA, point towards a disturbance in intestinal immune homoeostasis in this patient group.
Collapse
Affiliation(s)
- R De Bruyne
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Princess Elisabeth Children's Hospital, Ghent University Hospital, Ghent, Belgium
| | - P Gevaert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - M Van Winckel
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Princess Elisabeth Children's Hospital, Ghent University Hospital, Ghent, Belgium
| | - N De Ruyck
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - A Minne
- Department of Pediatrics, Princess Elisabeth Children's Hospital, Ghent University Hospital, Ghent, Belgium
| | - D Bogaert
- Department of Pediatrics, Princess Elisabeth Children's Hospital, Ghent University Hospital, Ghent, Belgium.,Clinical Immunology Research Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - S Van Biervliet
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Princess Elisabeth Children's Hospital, Ghent University Hospital, Ghent, Belgium
| | - S Vande Velde
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Princess Elisabeth Children's Hospital, Ghent University Hospital, Ghent, Belgium
| | - F Smets
- Service de Gastro-entérologie et Hépatologie Pédiatrique et Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - E Sokal
- Service de Gastro-entérologie et Hépatologie Pédiatrique et Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - F Gottrand
- Inserm U995, Faculty of Medicine, CIC-PT-9301, Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hospital Jeanne de Flandre, CHRU Lille, University Lille2, Lille, France
| | - J Vanhelst
- Centre d'Investigation Clinique de Lille-PT-1403-Inserm-CH&U, Inserm U995, Faculty of Medicine, University Lille2, Lille, France
| | - B Detry
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO) Institute, Brussels, Belgium
| | - C Pilette
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO) Institute, Brussels, Belgium
| | - B N Lambrecht
- Clinical Immunology Research Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - M Dullaers
- Clinical Immunology Research Laboratory, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
30
|
Frossard CP, Zimmerli SC, Rincon Garriz JM, Eigenmann PA. Food allergy in mice is modulated through the thymic stromal lymphopoietin pathway. Clin Transl Allergy 2016; 6:2. [PMID: 26793299 PMCID: PMC4719751 DOI: 10.1186/s13601-016-0090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022] Open
Abstract
Background Thymic stromal lymphopoietin (TSLP) is involved in the pathogenesis of allergic reactions in the skin and the lung. Nevertheless, data on the role of TSLP in food allergy are scarce. We explored the role of TSLP in a mouse model with oral sensitization and oral challenge eliciting food allergy. Methods TSLP receptor (TSLPR)−/− mice and wild type mice were orally sensitized to β-lactoglobulin in presence of cholera toxin (CT) or CT alone. The elicited immune response was characterized in vitro and the mice were subsequently challenged with the antigen. Lymphocytes from various locations in the gut were activated either by the antigen or by CT and assayed for cytokine secretion. Results Here we report that TSLPR−/− are less prone to generate food-induced reactions in conjunction with a decreased antigen-specific IgG1, but not IgE response. In addition, mesenteric lymphnode lymphocytes of TSLPR−/− mice were secreting lower quantities of IL-4, IL-5 and IL-10 after in vivo Ag activation, whereas higher numbers of IL-17 secreting cells were observed. Similarly, activation by the Th2-type adjuvant cholera toxin resulted in an increased frequency of IL-12 and IL-17 secreting lamina propria and mesenteric lymphocytes, together with increased production of IL-12 by activated dendritic cells in TSLPR−/− mice. Conclusions TSLP can be considered as an essential, but not exclusive, mediator for elicitation of food allergy in mice, as well as a potential target for future therapeutic interventions.
Collapse
Affiliation(s)
- Christophe P Frossard
- Inflammation and Allergy Research Group and Department of Pediatrics, University Hospitals of Geneva and University of Geneva, 6 rue Willy-Donzé, 1211 Geneva 14, Switzerland
| | - Simone C Zimmerli
- Allergy Unit, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland ; EMD Serono, Billerica, MA USA
| | - José M Rincon Garriz
- Inflammation and Allergy Research Group and Department of Pediatrics, University Hospitals of Geneva and University of Geneva, 6 rue Willy-Donzé, 1211 Geneva 14, Switzerland ; Fasteris SA, Plan-les-Ouates, Switzerland
| | - Philippe A Eigenmann
- Inflammation and Allergy Research Group and Department of Pediatrics, University Hospitals of Geneva and University of Geneva, 6 rue Willy-Donzé, 1211 Geneva 14, Switzerland
| |
Collapse
|
31
|
Effect of heat denaturation of egg white proteins ovalbumin and ovomucoid on CD4+ T cell cytokine production and human mast cell histamine production. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
32
|
Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma. J Neuroimmunol 2015; 286:33-41. [PMID: 26298322 DOI: 10.1016/j.jneuroim.2015.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 07/01/2015] [Indexed: 01/08/2023]
Abstract
Inflammation and asthma have both been reported in some children with autism spectrum disorder (ASD). To further assess this connection, peripheral immune cells isolated from young children with ASD and typically developing (TD) controls and the production of cytokines IL-17, -13, and -4 assessed following ex vivo mitogen stimulation. Notably, IL-17 production was significantly higher following stimulation in ASD children compared to controls. Moreover, IL-17 was increased in ASD children with co-morbid asthma compared to controls with the same condition. In conclusion, children with ASD exhibited a differential response to T cell stimulation with elevated IL-17 production compared to controls.
Collapse
|
33
|
Kiewiet MBG, Gros M, van Neerven RJJ, Faas MM, de Vos P. Immunomodulating properties of protein hydrolysates for application in cow's milk allergy. Pediatr Allergy Immunol 2015; 26:206-217. [PMID: 25692325 DOI: 10.1111/pai.12354] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 12/20/2022]
Abstract
Cow's milk proteins cause allergic symptoms in 2-3% of all infants. In these individuals, the tolerogenic state of the intestinal immune system is broken, which can lead to sensitization against antigens and eventually to allergic responses. Although a true treatment for food allergy is not available, symptoms can be avoided by providing the infants with hydrolyzed proteins. Hydrolyzed proteins are proteins that are enzymatically degraded. They lack typical allergenic IgE-binding epitopes but are also thought to play a pertinent role in other mechanisms inducing hypoallergenic effects. This review discusses the mechanisms and evidence for immunomodulating properties of cow's milk hydrolysates. Hydrolysates are found to strengthen the epithelial barrier, modulate T-cell differentiation, and decrease inflammation. Some studies suggest a role for hydrolysates in manipulating pathogen recognition receptors signaling as underlying mechanism. Peptides from hydrolysates have been shown to bind to TLR2 and TLR4 and influence cytokine production in epithelial cells and macrophages. Current insight suggests that hydrolysates may actively participate in modulating the immune responses in subjects with cow's milk allergy and those at risk to develop cow's milk allergy. However, more research is required to design effective and reproducible means to develop targeting strategies to modulate the immune response.
Collapse
Affiliation(s)
- M B G Kiewiet
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Gros
- FrieslandCampina, Amersfoort, The Netherlands
| | | | - M M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Jug r 2-reactive CD4(+) T cells have a dominant immune role in walnut allergy. J Allergy Clin Immunol 2015; 136:983-92.e7. [PMID: 25772597 PMCID: PMC4568181 DOI: 10.1016/j.jaci.2015.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 12/24/2022]
Abstract
Background Allergic reactions to walnut can be life threatening. While IgE epitopes of walnut have been studied, CD4+ T-cell specific epitopes for walnut remain uncharacterized. Particularly, the relationship of both phenotype and frequency of walnut specific T-cells to the disease have not been examined. Objectives We sought to provide a thorough phenotypic analysis for walnut reactive T-cells in allergic and non-allergic subjects. Particularly, the relationship of phenotypes and frequencies of walnut specific T-cells with the disease. Methods CD154 up-regulation assay was used to examine CD4+ T-cell reactivity towards walnut allergens.Jug r 1, Jug r 2 and Jug r 3. Tetramer-Guided epitope mapping approach was utilized to identify HLA-restricted CD4+ T-cells epitopes in Jug r 2. Direct ex vivo staining with peptide-major histocompatibility complex class II (pMHC-II) tetramers enabled the comparison of frequency and phenotype of Jug r 2-specific CD4+ T-cells between allergic and non-allergic subjects. Jug r 2-specific T-cell-clones were also generated and mRNA transcription factor levels were assessed by RT qPCR. Intracellular cytokine staining (ICS) assays were performed for further phenotypical analyses. Results Jug r 2 was identified as the major allergen that elicited CD4+ T-cell responses. Multiple Jug r 2 T-cell epitopes were identified. The majority of these T-cells in allergic subjects have a CCR4+ TCM (central memory) phenotype. A subset of these T-cells express CCR4+CCR6+ irrespectively of the asthmatic status of the allergic subjects. ICS confirmed these TH2, TH2/TH17 and TH17-like heterogenic profiles. Jug r 2-specific T-cell-clones from allergic subjects mainly expressed GATA3; nonetheless, a portion of T-cell clones expressed either GATA3 and RORC, or RORC, confirming the presence of TH2, TH2/TH17 and TH17 cells. Conclusions Jug r 2 specific responses dominate walnut T-cell responses in subjects with walnut allergy. Jug r 2 central memory CD4+ cells and terminal effector T-cells were detected in peripheral blood with the central memory phenotype as the most prevalent phenotype. In addition to conventional TH2-cells, TH2/TH17 and TH17 cells were also detected in non-asthmatic and asthmatic subjects with walnut allergy. Understanding this T-cell heterogeneity may render better understanding of the disease manifestation.
Collapse
|