1
|
HAYASHI A, OKAMOTO T, NIO-KOBAYASHI J, IWAHARA N, SUZUKI R, UEDA Y, TAKAHASHI T, Yasuyuki SATO, IWANAGA T, HOTTA K. CD44 as a pathological marker for the early detection of calcineurin inhibitor-induced nephrotoxicity post kidney transplantation. Biomed Res 2022; 43:181-186. [DOI: 10.2220/biomedres.43.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Asako HAYASHI
- Department of Pediatrics, Hokkaido University Graduate School of Medicine
| | - Takayuki OKAMOTO
- Department of Pediatrics, Hokkaido University Graduate School of Medicine
| | - Junko NIO-KOBAYASHI
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine
| | - Naoya IWAHARA
- Department of Renal Genitourinary Surgery, Hokkaido University Graduate School of Medicine
| | - Ryota SUZUKI
- Department of Pediatrics, Hokkaido University Graduate School of Medicine
| | - Yasuhiro UEDA
- Department of Pediatrics, Hokkaido University Graduate School of Medicine
| | | | - Yasuyuki SATO
- Department of Pediatrics, Hokkaido University Graduate School of Medicine
| | - Toshihiko IWANAGA
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine
| | - Kiyohiko HOTTA
- Department of Renal Genitourinary Surgery, Hokkaido University Graduate School of Medicine
| |
Collapse
|
2
|
Ravaglia F, Melica ME, Angelotti ML, De Chiara L, Romagnani P, Lasagni L. The Pathology Lesion Patterns of Podocytopathies: How and why? Front Cell Dev Biol 2022; 10:838272. [PMID: 35281116 PMCID: PMC8907833 DOI: 10.3389/fcell.2022.838272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Podocytopathies are a group of proteinuric glomerular disorders driven by primary podocyte injury that are associated with a set of lesion patterns observed on kidney biopsy, i.e., minimal changes, focal segmental glomerulosclerosis, diffuse mesangial sclerosis and collapsing glomerulopathy. These unspecific lesion patterns have long been considered as independent disease entities. By contrast, recent evidence from genetics and experimental studies demonstrated that they represent signs of repeated injury and repair attempts. These ongoing processes depend on the type, length, and severity of podocyte injury, as well as on the ability of parietal epithelial cells to drive repair. In this review, we discuss the main pathology patterns of podocytopathies with a focus on the cellular and molecular response of podocytes and parietal epithelial cells.
Collapse
Affiliation(s)
| | - Maria Elena Melica
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology Unit, Meyer Children’s Hospital, Florence, Italy
| | - Laura Lasagni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Hudkins KL, Li X, Holland AL, Swaminathan S, Alpers CE. Regression of diabetic nephropathy by treatment with empagliflozin in BTBR ob/ob mice. Nephrol Dial Transplant 2021; 37:847-859. [PMID: 34865099 DOI: 10.1093/ndt/gfab330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The SGLT2 inhibitor empagliflozin lowers blood glucose via reduced tubular reabsorption of filtered glucose and is an important new therapy for diabetic nephropathy (DN). This study tested whether treatment with empagliflozin would ameliorate proteinuria and the pathologic alterations of DN including podocyte number and integrity in the leptin deficient BTBR ob/ob mouse model of DN. METHODS Study cohorts included wild type BTBR mice, untreated diabetic BTBR ob/ob mice, and mice treated with empagliflozin for six weeks after development of established DN at 18 weeks of age. RESULTS Hyperglycemia, proteinuria, serum creatinine, accumulation of mesangial matrix and the extent of mesangiolysis were reversed with empagliflozin treatment. Treatment with empagliflozin resulted in increased podocyte number and podocyte density, improvement in the degree of podocyte foot process effacement and parietal epithelial cell activation. SGLT2 inhibition reduced renal oxidative stress, measured by urinary excretion of markers of RNA/DNA damage and in situ demonstration of decreased carbonyl oxidation. There was no discernable difference in accumulations of advanced glycation endproducts by immunohistochemistry. CONCLUSION The structural improvements seen in BTBR ob/ob mice treated with empagliflozin provide insight into potential long term benefits for humans with DN, for whom there is no comparable biopsy information to identify structural changes effected by SGLT2 inhibition. The findings suggest SGLT2 inhibition may ameliorate diabetic nephropathy through glucose lowering-dependent and -independent mechanisms that lead to podocyte restoration and delay or reversal of the disease progress.
Collapse
Affiliation(s)
- Kelly L Hudkins
- Department of Pathology, University of Washington, Seattle WA, USA
| | - Xianwu Li
- Department of Pathology, University of Washington, Seattle WA, USA
| | | | | | - Charles E Alpers
- Department of Pathology, University of Washington, Seattle WA, USA
| |
Collapse
|
4
|
Parietal epithelial cell dysfunction in crescentic glomerulonephritis. Cell Tissue Res 2021; 385:345-354. [PMID: 34453566 PMCID: PMC8523405 DOI: 10.1007/s00441-021-03513-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Crescentic glomerulonephritis represents a group of kidney diseases characterized by rapid loss of kidney function and the formation of glomerular crescents. While the role of the immune system has been extensively studied in relation to the development of crescents, recent findings show that parietal epithelial cells play a key role in the pathophysiology of crescent formation, even in the absence of immune modulation. This review highlights our current understanding of parietal epithelial cell biology and the reported physiological and pathological roles that these cells play in glomerular lesion formation, especially in the context of crescentic glomerulonephritis.
Collapse
|
5
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
6
|
Kawaguchi T, Hasegawa K, Yasuda I, Muraoka H, Umino H, Tokuyama H, Hashiguchi A, Wakino S, Itoh H. Diabetic condition induces hypertrophy and vacuolization in glomerular parietal epithelial cells. Sci Rep 2021; 11:1515. [PMID: 33452384 PMCID: PMC7810998 DOI: 10.1038/s41598-021-81027-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
Diabetic nephropathy (DN) is accompanied by characteristic changes in the glomerulus, but little is known about the effect of diabetes on parietal epithelial cells (PECs). In this study, a descriptive analysis of PECs was undertaken in diabetic db/db mice and in diabetic patients. PEC hypertrophy was significantly more prominent in diabetic mice than in nondiabetic mice, and this was evident even at the early stage. Additionally, the number of vacuoles in PECs was markedly increased in diabetic mice, suggesting the presence of cellular injury in PECs in DN. Although rare, binuclear cells were observed in mice with early diabetes. In cultured PECs, a high glucose condition, compared with normal glucose condition, induced cellular hypertrophy and apoptosis. Flow cytometry showed that some PECs in the G0 phase reentered the cell cycle but got arrested in the S phase. Finally, in human diabetic subjects, hypertrophy and vacuolization were observed in the PECs. Our data showed that PECs undergo substantial changes in DN and may participate in rearrangement for differentiation into podocytes.
Collapse
Affiliation(s)
- Takahisa Kawaguchi
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Kazuhiro Hasegawa
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Itaru Yasuda
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Hirokazu Muraoka
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Hiroyuki Umino
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Hirobumi Tokuyama
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Akinori Hashiguchi
- grid.26091.3c0000 0004 1936 9959Department of Pathology, School of Medicine, Keio University, Tokyo, 160-8582 Japan
| | - Shu Wakino
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Hiroshi Itoh
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
7
|
Aslam R, Hussain A, Cheng K, Kumar V, Malhotra A, Gupta S, Singhal PC. Transplantation of mesenchymal stem cells preserves podocyte homeostasis through modulation of parietal epithelial cell activation in adriamycin-induced mouse kidney injury model. Histol Histopathol 2020; 35:1483-1492. [PMID: 33124682 DOI: 10.14670/hh-18-276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To determine the role of the transplantation of bone marrow-derived mesenchymal stem cells (MSCs) in podocyte renewal, we studied BALB/C mice with or without adriamycin-induced acute kidney injury. MSCs were transplanted ectopically under the capsule of the left kidney or into the peritoneal cavity after the onset of kidney injury to test testing their local or systemic paracrine effects, respectively. Adriamycin produced increases in urine protein: creatinine ratios, blood urea nitrogen, and blood pressure, which improved after both renal subcapsular and intraperitoneal MSCs transplants. The histological changes of adriamycin kidney changes regressed in both kidneys and in only the ipsilateral kidney after intraperitoneal or renal subcapsular transplants indicating that the benefits of transplanted MSCs were related to the extent of paracrine factor distribution. Analysis of kidney tissues for p57-positive parietal epithelial cells (PECs) showed that MSC transplants restored adriamycin-induced decreases in the abundance of these cells to normal levels, although after renal subcapsular transplants these changes did not extend to contralateral kidneys. Moreover, adriamycin caused inflammatory activation of PECs with coexpression of CD44 and phospho-ERK, which was normalized in both or only ipsilateral kidneys depending on whether MSCs were transplanted in the peritoneal cavity or subcapsular space, respectively.
Collapse
Affiliation(s)
- Rukhsana Aslam
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Ali Hussain
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Kang Cheng
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Vinod Kumar
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Ashwani Malhotra
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Sanjeev Gupta
- Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, The Irwin S. and Sylvia Chanin Institute for Cancer Research, and Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA
| | - Pravin C Singhal
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA.
| |
Collapse
|
8
|
Ito N, Sakamoto K, Hikichi C, Matsusaka T, Nagata M. Biphasic MIF and SDF1 expression during podocyte injury promote CD44-mediated glomerular parietal cell migration in focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2020; 318:F741-F753. [PMID: 32068458 DOI: 10.1152/ajprenal.00414.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glomerular parietal epithelial cell (PEC) activation, as revealed by de novo expression of CD44 and cell migration toward the injured filtration barrier, is a hallmark of podocyte injury-driven focal segmental glomerulosclerosis (FSGS). However, the signaling pathway that mediates activation of PECs in response to podocyte injury is unknown. The present study focused on CD44 signaling, particularly the roles of two CD44-related chemokines, migration inhibitory factor (MIF) and stromal cell-derived factor 1 (SDF1), and their common receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), in the NEP25/LMB2 mouse podocyte-toxin model of FSGS. In the early phase of the disease, CD44-positive PECs were locally evident on the opposite side of the intact glomerular tuft and subsequently increased in the vicinity of synechiae with podocyte loss. Expression of MIF and SDF1 was first increased in injured podocytes and subsequently transferred to activated PECs expressing CD44 and CXCR4. In an immortalized mouse PEC (mPEC) line, recombinant MIF and SDF1 (rMIF and rSDF1, respectively) individually increased CD44 and CXCR4 mRNA and protein levels. rMIF and rSDF1 stimulated endogenous MIF and SDF1 production. rMIF- and rSDF1-induced mPEC migration was suppressed by CD44 siRNA. However, MIF and SDF1 inhibitors failed to show any impact on proteinuria, podocyte number, and CD44 expression in NEP25/LMB2 mice. Our data suggest that injured podocytes upregulate MIF and SDF1 that stimulate CD44 expression and CD44-mediated migration, which is enhanced by endogenous MIF and SDF1 in PECs. This biphasic expression pattern of the chemokine-CD44 axis in podocytes and PECs may be a novel mechanism of "podocyte-PEC cross-talk" signaling underlying podocyte injury-driven FSGS.
Collapse
Affiliation(s)
- Naoko Ito
- Department of Pathology, Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kazuo Sakamoto
- Department of Pathology, Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Chihiro Hikichi
- Department of Pathology, Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Taiji Matsusaka
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Michio Nagata
- Department of Pathology, Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Chan GC, Eng DG, Miner JH, Alpers CE, Hudkins K, Chang A, Pippin JW, Shankland SJ. Differential expression of parietal epithelial cell and podocyte extracellular matrix proteins in focal segmental glomerulosclerosis and diabetic nephropathy. Am J Physiol Renal Physiol 2019; 317:F1680-F1694. [PMID: 31630546 PMCID: PMC6962515 DOI: 10.1152/ajprenal.00266.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/03/2023] Open
Abstract
In healthy glomeruli, parietal epithelial cell (PEC)-derived extracellular matrix (ECM) proteins include laminin-β1, perlecan, and collagen type IV-α2 and podocyte-specific ECM proteins include laminin-β2, agrin, and collagen type IV-α4. This study aimed to define individual ECM protein isoform expression by PECs in both experimental and human focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy (DN) and to determine if changes were CD44 dependent. In experimental FSGS induced with a cytotoxic podocyte antibody and in the BTBR ob/ob mouse model of DN, PEC-derived protein staining was significantly increased in PECs. Dual staining also showed de novo expression of the podocyte-specific ECM proteins laminin-β2 and agrin in PECs. Similar findings were observed in biopsies from patients with FSGS and DN. Increases in individual ECM proteins colocalized with CD44 in PECs in disease. To determine the role of CD44, FSGS was induced in CD44-/- and CD44+/+ mice. PEC staining for perlecan, collagen type IV-α2, laminin-β2, and agrin were significantly lower in diseased CD44-/- mice compared with diseased CD44+/+ mice. These results show that in experimental and human FSGS and DN, PECs typically in an activated state, produce both PEC-derived and podocyte-specific ECM protein isoforms, and that the majority of these changes were dependent on CD44.
Collapse
Affiliation(s)
- Gek Cher Chan
- Division of Nephrology, University of Washington, Seattle, Washington
- Division of Nephrology, National University Hospital, Singapore
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Charles E Alpers
- Department of Pathology, University of Washington, Seattle, Washington
| | - Kelly Hudkins
- Department of Pathology, University of Washington, Seattle, Washington
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | | |
Collapse
|
10
|
Sakhi H, Moktefi A, Bouachi K, Audard V, Hénique C, Remy P, Ollero M, El Karoui K. Podocyte Injury in Lupus Nephritis. J Clin Med 2019; 8:jcm8091340. [PMID: 31470591 PMCID: PMC6780135 DOI: 10.3390/jcm8091340] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by a broad spectrum of renal lesions. In lupus glomerulonephritis, histological classifications are based on immune-complex (IC) deposits and hypercellularity lesions (mesangial and/or endocapillary) in the glomeruli. However, there is compelling evidence to suggest that glomerular epithelial cells, and podocytes in particular, are also involved in glomerular injury in patients with SLE. Podocytes now appear to be not only subject to collateral damage due to glomerular capillary lesions secondary to IC and inflammatory processes, but they are also a potential direct target in lupus nephritis. Improvements in our understanding of podocyte injury could improve the classification of lupus glomerulonephritis. Indeed, podocyte injury may be prominent in two major presentations: lupus podocytopathy and glomerular crescent formation, in which glomerular parietal epithelial cells play also a key role. We review here the contribution of podocyte impairment to different presentations of lupus nephritis, focusing on the podocyte signaling pathways involved in these lesions.
Collapse
Affiliation(s)
- Hamza Sakhi
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France
| | - Anissa Moktefi
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Pathology, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France
| | - Khedidja Bouachi
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France
| | - Vincent Audard
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France
| | - Carole Hénique
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France
| | - Philippe Remy
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France
| | - Mario Ollero
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France
| | - Khalil El Karoui
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, 94010 Créteil, France.
- UPEC (Université Paris Est Créteil), UMR-S955, 94010 Créteil, France.
- INSERM (Institut National de la Santé et de la Recherche Médicale) U955, Institut Mondor de Recherche Biomédicale (IMRB), Équipe 21, 94010 Créteil, France.
| |
Collapse
|
11
|
Zhao X, Chen X, Chima A, Zhang Y, George J, Cobbs A, Emmett N. Albumin induces CD44 expression in glomerular parietal epithelial cells by activating extracellular signal-regulated kinase 1/2 pathway. J Cell Physiol 2019; 234:7224-7235. [PMID: 30362534 PMCID: PMC6344259 DOI: 10.1002/jcp.27477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/04/2018] [Indexed: 01/21/2023]
Abstract
De novo expression of CD44 in glomerular parietal epithelial cells (PECs) leads to a prosclerotic and migratory PEC phenotype in glomerulosclerosis. However, the regulatory mechanisms underlying CD44 expression by activated PECs remain largely unknown. This study was performed to examine the mediators responsible for CD44 induction in glomerular PECs in association with diabetes. CD44 expression and localization were evaluated in the glomeruli of Zucker diabetic rat kidneys and primary cultured PECs upon albumin stimulation. Real-time polymerase chain reaction confirmed an albuminuria-associated upregulation of the CD44 gene in the glomeruli of diabetic rats. Immunostaining analysis of diabetic kidneys further revealed an increase in CD44 in hypertrophic PECs, which often contain albumin-positive vesicles. Losartan treatment significantly attenuated albuminuria and lowered CD44 protein levels in the diabetic kidneys. In primary cultured rat PECs, rat serum albumin (0.25-1 mg/ml) caused a dose-dependent upregulation of CD44, claudin-1, and megalin protein expression, which was accompanied by an activation of extracellular signal-regulated kinase1/2 (ERK1/2) signaling. Albumin-induced CD44 and claudin-1 expression were greatly suppressed in the presence of the ERK1/2 inhibitor, U0126. In addition, knockdown of megalin by small interfering RNA interference in PECs resulted in a significant reduction of albumin-induced CD44 and claudin-1 proteins. Taken together, our results demonstrate that albumin induces CD44 expression by PECs via the activation of the ERK signaling pathway, which is partially mediated by endocytic receptor megalin.
Collapse
Affiliation(s)
- Xueying Zhao
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia
| | - Xiaoming Chen
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia
| | - Ashmeer Chima
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia
| | - Yuanyuan Zhang
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia
| | - Jasmine George
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia
| | - Alyssa Cobbs
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia
| | - Nerimiah Emmett
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Xing F, Liu G, Duan X, Xiang Z. [The application of urine derived stem cells in regeneration of musculoskeletal system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1477-1482. [PMID: 30417628 PMCID: PMC8414118 DOI: 10.7507/1002-1892.201804024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 10/13/2018] [Indexed: 02/05/2023]
Abstract
Objective To review the application of urine derived stem cells (USCs) in regeneration of musculoskeletal system. Methods The original literature about USCs in the regeneration of musculoskeletal system was extensively reviewed and analyzed. Results The source of USCs is noninvasive and extensive. USCs express MSCs surface markers with stable proliferative and multi-directional differentiation capabilities, and are widely used in bone, skin, nerve, and other skeletal and muscle system regeneration fields and show a certain repair capacity. Conclusion USCs from non-invasive sources have a wide application prospect in the regeneration of musculoskeletal system, but the definite biological mechanism of its repair needs further study.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Guoming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
13
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
14
|
Nagata M, Kobayashi N, Hara S. Focal segmental glomerulosclerosis; why does it occur segmentally? Pflugers Arch 2017; 469:983-988. [PMID: 28664408 DOI: 10.1007/s00424-017-2023-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Podocyte loss is the fundamental basis of glomerulosclerosis. Focal segmental glomerulosclerosis (FSGS) is a progressive glomerular disease, and its glomerular features are a prototype of podocyte loss-driven glomerulosclerosis. The glomerular pathology of FSGS is characterized by a focal and segmental location of the sclerotic lesions in human FSGS; segmental sclerosis often shows simultaneous intra- and extra-capillary changes, including parietal cell migration, capillary collapse, hyaline deposition, and intra-capillary thrombi and occasional hypercellularity. This suggests that local cellular events, initiated by podocyte loss, are the basis of the segmental lesions in FSGS. Using podocyte-specific injury by toxin administration, a series of recent works has identified the cellular basis of the glomerular response to podocyte loss. This review discusses the molecular pathway of the local response to podocyte loss and its progression to sclerosis. Recent results suggest that segmental sclerosis is a physiological tissue response aimed at halting protein leakage from a disrupted filtration barrier.
Collapse
Affiliation(s)
- Michio Nagata
- Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Ten-nodai 1-1-1, Tsukuba-City, Ibaraki, 305-8577, Japan.
| | - Namiko Kobayashi
- Nephrology, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-850, Japan
| | - Satoshi Hara
- Rheumatology, Kanazawa University Graduate School of Medicine, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8671, Japan
| |
Collapse
|
15
|
Sweetwyne MT, Pippin JW, Eng DG, Hudkins KL, Chiao YA, Campbell MD, Marcinek DJ, Alpers CE, Szeto HH, Rabinovitch PS, Shankland SJ. The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int 2017; 91:1126-1145. [PMID: 28063595 DOI: 10.1016/j.kint.2016.10.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/09/2016] [Accepted: 10/27/2016] [Indexed: 01/12/2023]
Abstract
Although age-associated changes in kidney glomerular architecture have been described in mice and man, the mechanisms are unknown. It is unclear if these changes can be prevented or even reversed by systemic therapies administered at advanced age. Using light microscopy and transmission electron microscopy, our results showed glomerulosclerosis with injury to mitochondria in glomerular epithelial cells in mice aged 26 months (equivalent to a 79-year-old human). To test the hypothesis that reducing mitochondrial damage in late age would result in lowered glomerulosclerosis, we administered the mitochondrial targeted peptide, SS-31, to aged mice. Baseline (24-month-old) mice were randomized to receive 8 weeks of SS-31, or saline, and killed at 26 months of age. SS-31 treatment improved age-related mitochondrial morphology and glomerulosclerosis. Assessment of glomeruli revealed that SS-31 reduced senescence (p16, senescence-associated-ß-Gal) and increased the density of parietal epithelial cells. However, SS-31 treatment reduced markers of parietal epithelial cell activation (Collagen IV, pERK1/2, and α-smooth muscle actin). SS-31 did not impact podocyte density, but it reduced markers of podocyte injury (desmin) and improved cytoskeletal integrity (synaptopodin). This was accompanied by higher glomerular endothelial cell density (CD31). Thus, despite initiating therapy in late-age mice, a short course of SS-31 has protective benefits on glomerular mitochondria, accompanied by temporal changes to the glomerular architecture. This systemic pharmacological intervention in old-aged animals limits glomerulosclerosis and senescence, reduces parietal epithelial cell activation, and improves podocyte and endothelial cell integrity.
Collapse
Affiliation(s)
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, WA, USA
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, WA, USA
| | - Kelly L Hudkins
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Ying Ann Chiao
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Charles E Alpers
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Hazel H Szeto
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | | | | |
Collapse
|
16
|
Roeder SS, Barnes TJ, Lee JS, Kato I, Eng DG, Kaverina NV, Sunseri MW, Daniel C, Amann K, Pippin JW, Shankland SJ. Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion. Kidney Int 2016; 91:896-913. [PMID: 27998643 DOI: 10.1016/j.kint.2016.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/19/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
The glycoprotein CD44 is barely detected in normal mouse and human glomeruli, but is increased in glomerular parietal epithelial cells following podocyte injury in focal segmental glomerulosclerosis (FSGS). To determine the biological role and regulation of CD44 in these cells, we employed an in vivo and in vitro approach. Experimental FSGS was induced in CD44 knockout and wild-type mice with a cytotoxic podocyte antibody. Albuminuria, focal and global glomerulosclerosis (periodic acid-Schiff stain), and collagen IV staining were lower in CD44 knockout compared with wild-type mice with FSGS. Parietal epithelial cells had lower migration from Bowman's capsule to the glomerular tuft in CD44 knockout mice with disease compared with wild type mice. In cultured murine parietal epithelial cells, overexpressing CD44 with a retroviral vector encoding CD44 was accompanied by significantly increased collagen IV expression and parietal epithelial cell migration. Because our results showed de novo co-staining for activated ERK1/2 (pERK) in parietal epithelial cells in experimental FSGS, and also in biopsies from patients with FSGS, two in vitro strategies were employed to prove that pERK regulated CD44 levels. First, mouse parietal epithelial cells were infected with a retroviral vector for the upstream kinase MEK-DD to increase pERK, which was accompanied by increased CD44 levels. Second, in CD44-overexpressing parietal epithelial cells, decreasing pERK with U0126 was accompanied by reduced CD44. Finally, parietal epithelial cell migration was higher in cells with increased and reduced in cells with decreased pERK. Thus, pERK is a regulator of CD44 expression, and increased CD44 expression leads to a pro-sclerotic and migratory parietal epithelial cell phenotype.
Collapse
Affiliation(s)
- Sebastian S Roeder
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Taylor J Barnes
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Department of Biology, Oregon State University, Corvallis, Oregon, USA
| | - Jonathan S Lee
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - India Kato
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Natalya V Kaverina
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Maria W Sunseri
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Christoph Daniel
- Department of Nephropathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
17
|
Yamazaki T, Sasaki S, Okamoto T, Sato Y, Hayashi A, Ariga T. Up-Regulation of CD74 Expression in Parietal Epithelial Cells in a Mouse Model of Focal Segmental Glomerulosclerosis. Nephron Clin Pract 2016; 134:238-252. [PMID: 27463800 DOI: 10.1159/000448221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS De novo expression of CD44 is considered as a marker of parietal epithelial cell (PEC) activation. The aim of our study was to explore CD74 expression, which can form a complex with CD44, in PECs during the progression of focal segmental glomerulosclerosis (FSGS). To clarify the role of CD74 expression and of its interaction with CD44, we generated a new mouse model with enhanced PEC activation through lipopolysaccharide (LPS) application to adriamycin (ADR)-induced nephropathy mice (LPS-treated ADR mice). METHODS As a new model, LPS was intraperitoneally injected into the mice 3 weeks after ADR injection. The mice were divided into 3 categories: control mice, ADR mice and LPS-treated ADR mice. Renal function parameters, histologic changes and immunohistochemical expression of CD74 and other PEC activation markers were analyzed after LPS application. RESULTS After LPS stimulation, the glomeruli were characterized by enlarged epithelial cells with strong CD74 expression, followed by pseudo-crescent formation. By double staining, CD74-positive enlarged cells showed co-expression of classical PEC markers, but not of Lotus tetragonolobus lectin (marker of proximal tubular cells), suggesting amplification of PEC activation. Time-course analysis displayed marked upregulation of CD74 expression during rapid PEC activation compared with CD44. Additionally, the time-dependent change in ERK phosphorylation showed a similar pattern to CD74. CONCLUSION Our results indicate that CD74 can be a marker for PEC activation in FSGS. By modifying the ADR mouse model through LPS treatment, we found that CD74 upregulation better reflects a rapid amplification of PEC activation than CD44 expression.
Collapse
Affiliation(s)
- Takeshi Yamazaki
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Nagata M. Podocyte injury and its consequences. Kidney Int 2016; 89:1221-30. [PMID: 27165817 DOI: 10.1016/j.kint.2016.01.012] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/12/2015] [Accepted: 01/27/2016] [Indexed: 01/02/2023]
Abstract
Podocytes maintain the glomerular filtration barrier, and the stability of this barrier depends on their highly differentiated postmitotic phenotype, which also defines the particular vulnerability of the glomerulus. Recent podocyte biology and gene disruption studies in vivo indicate a causal relationship between abnormalities of single podocyte molecules and proteinuria and glomerulosclerosis. Podocytes live under various stresses and pathological stimuli. They adapt to maintain homeostasis, but excessive stress leads to maladaptation with complex biological changes including loss of integrity and dysregulation of cellular metabolism. Podocyte injury causes proteinuria and detachment from the glomerular basement membrane. In addition to "sick" podocytes and their detachment, our understanding of glomerular responses following podocyte loss needs to address the pathways from podocyte injury to sclerosis. Studies have found a variety of glomerular responses to podocyte dysfunction in vivo, such as disruption of podocyte-endothelial cross talk and activation of podocyte-parietal cell interactions, all of which help us to understand the complex scenario of podocyte injury and its consequences. This review focuses on the cellular aspects of podocyte dysfunction and the adaptive or maladaptive glomerular responses to podocyte injury that lead to its major consequence, glomerulosclerosis.
Collapse
Affiliation(s)
- Michio Nagata
- Kidney and Vascular Pathology, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
19
|
Roeder SS, Stefanska A, Eng DG, Kaverina N, Sunseri MW, McNicholas BA, Rabinovitch P, Engel FB, Daniel C, Amann K, Lichtnekert J, Pippin JW, Shankland SJ. Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age. Am J Physiol Renal Physiol 2015; 309:F164-78. [PMID: 26017974 DOI: 10.1152/ajprenal.00144.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/26/2015] [Indexed: 02/08/2023] Open
Abstract
Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and β-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-β, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age.
Collapse
Affiliation(s)
- Sebastian S Roeder
- Division of Nephrology, University of Washington, Seattle, Washington; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ania Stefanska
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Natalya Kaverina
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Maria W Sunseri
- Division of Nephrology, University of Washington, Seattle, Washington
| | | | - Peter Rabinovitch
- Department of Pathology, University of Washington, Seattle, Washington
| | - Felix B Engel
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Julia Lichtnekert
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | | |
Collapse
|
20
|
Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int 2015; 88:999-1012. [PMID: 25993321 PMCID: PMC4654724 DOI: 10.1038/ki.2015.152] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/02/2023]
Abstract
Since adult podocytes cannot adequately proliferate following depletion in disease states there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine if parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PECrtTA/LC1/R26 reporter mice. In normal mice, labeled PECs were confined to Bowman's capsule, while in disease (cytotoxic sheep anti-podocyte antibody), labeled PECs were found in the glomerular tuft in progressively higher numbers by days 7, 14 and 28. Early in disease, the majority of PECs in the tuft co-expressed CD44. By day 28, when podocyte numbers were significantly higher and disease severity was significantly lower, the majority of labeled PECs co-expressed podocyte proteins but not CD44. Neither labeled PECs on the tuft, nor podocytes stained for the proliferation marker BrdU. The de novo expression of phospho-ERK colocalized to CD44 expressing PECs, but not to PECs expressing podocyte markers. Thus, in a mouse model of focal segmental glomerulosclerosis typified by abrupt podocyte depletion followed by regeneration, PECs undergo two phenotypic changes once they migrate to the glomerular tuft. Initially these cells are predominantly activated CD44 expressing cells coinciding with glomerulosclerosis, and later they predominantly exhibit a podocyte phenotype which is likely reparative.
Collapse
|
21
|
Invasion of Calponin-positive Glomerular Parietal Epithelial Cells into Glomerular Tuft Is Related to the Development of Glomerulosclerosis. Appl Microsc 2014. [DOI: 10.9729/am.2014.44.4.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Zhang D, Wei G, Li P, Zhou X, Zhang Y. Urine-derived stem cells: A novel and versatile progenitor source for cell-based therapy and regenerative medicine. Genes Dis 2014; 1:8-17. [PMID: 25411659 PMCID: PMC4234168 DOI: 10.1016/j.gendis.2014.07.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engineered functional organs or tissues, created with autologous somatic cells and seeded on biodegradable or hydrogel scaffolds, have been developed for use in individuals with tissue damage suffered from congenital disorders, infection, irradiation, or cancer. However, in those patients, abnormal cells obtained by biopsy from the compromised tissue could potentially contaminate the engineered tissues. Thus, an alternative cell source for construction of the neo-organ or functional recovery of the injured or diseased tissues would be useful. Recently, we have found stem cells existing in the urine. These cells are highly expandable, and have self-renewal capacity, paracrine properties, and multi-differentiation potential. As a novel cell source, urine-derived stem cells (USCs) provide advantages for cell therapy and tissue engineering applications in regeneration of various tissues, particularly in the genitourinary tract, because they originate from the urinary tract system. Importantly, USCs can be obtained via a non-invasive, simple, and low-cost approach and induced with high efficiency to differentiate into three dermal cell lineages.
Collapse
Affiliation(s)
- Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China ; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Peng Li
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA ; Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaobo Zhou
- Center for Bioinformatics and Systems Biology, Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|