1
|
Lozano-Tovar S, Rodríguez-Agudelo Y, Dávila-Ortiz de Montellano DJ, Pérez-Aldana BE, Ortega-Vázquez A, Monroy-Jaramillo N. Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4412. [PMID: 36901420 PMCID: PMC10001852 DOI: 10.3390/ijerph20054412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of neuropsychiatric or behavioral and psychological symptoms of dementia (BPSD). BPSD have been associated with the APOE_ε4 allele, which is also the major genetic AD risk factor. Although the involvement of some circadian genes and orexin receptors in sleep and behavioral disorders has been studied in some psychiatric pathologies, including AD, there are no studies considering gene-gene interactions. The associations of one variant in PER2, two in PER3, two in OX2R and two in APOE were evaluated in 31 AD patients and 31 cognitively healthy subjects. Genotyping was performed using real-time PCR and capillary electrophoresis from blood samples. The allelic-genotypic frequencies of variants were calculated for the sample study. We explored associations between allelic variants with BPSD in AD patients based on the NPI, PHQ-9 and sleeping disorders questionnaires. Our results showed that the APOE_ε4 allele is an AD risk variant (p = 0.03). The remaining genetic variants did not reveal significant differences between patients and controls. The PER3_rs228697 variant showed a nine-fold increased risk for circadian rhythm sleep-wake disorders in Mexican AD patients, and our gene-gene interaction analysis identified a novel interaction between PERIOD and APOE gene variants. These findings need to be further confirmed in larger samples.
Collapse
Affiliation(s)
- Susana Lozano-Tovar
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Circuito Ciudad Universitaria Avenida, C.U., Mexico City 04510, Mexico
| | - Yaneth Rodríguez-Agudelo
- Laboratorio de Neuropsicología Clínica, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | | | - Blanca Estela Pérez-Aldana
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
2
|
Huang JN, Wen B, Xu L, Ma HC, Li XX, Gao JZ, Chen ZZ. Micro/nano-plastics cause neurobehavioral toxicity in discus fish (Symphysodon aequifasciatus): Insight from brain-gut-microbiota axis. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126830. [PMID: 34396975 DOI: 10.1016/j.jhazmat.2021.126830] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have investigated neurobehavioral toxicity of microplastics, but no studies have illustrated mechanism via brain-gut axis. Here, juvenile discus fish (Symphysodon aequifasciatus) were exposed for 96 h to microfibers (900 µm, fiber, MFs) or nanoplastics (~88 nm, bead, NPs) with three concentrations (0, 20 and 200 µg/L). Accumulation in fish gut was independent of plastics type and concentration. MFs reduced growth performance while NPs weakened swimming and predatory performance of post-exposed discus. For brain cholinesterase activity, acetylcholinesterase was activated by NPs while NPs/MFs exposure inhibited butyrylcholinesterase. Concentrations of neurotransmitters (acetylcholine, dopamine and γ-aminobutyric acid) increased in brain but decreased in gut after NPs or MFs exposure. For gut microbiota, increased richness under MFs exposure was observed. At phylum level, Proteobacteria proportion was lower in NPs but higher in MFs. Abundance of Clostridia and Fusobacteriia (Bacillus), potentially secreting neurotransmitters, increased in NPs but decreased in MFs. Brain transcriptomics revealed seven upregulated and four downregulated genes concerning neural-activities. Pathways of neuroactive ligand-receptor interaction and serotonergic synapse were enriched in both MFs and NPs, but dopaminergic synapse pathway was enriched only in MFs. These results established a novel mechanism by which microplastics might cause behavioral toxicities via brain-gut-microbiota axis.
Collapse
Affiliation(s)
- Jun-Nan Huang
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Lei Xu
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Huan-Chao Ma
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xin-Xin Li
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Trait anxiety, a personality risk factor associated with Alzheimer's Disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110124. [PMID: 33035604 DOI: 10.1016/j.pnpbp.2020.110124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly population and the leading cause of dementia worldwide. While senile plaques and neurofibrillary tangles have been proposed as the principal histopathologic hallmarks of AD, the exact etiology of this disease is still far from being clearly understood. AD has been recognized as pathological consequences of complex interactions among genetic, aging, medical, life style and psychosocial factors. Recently, the roles of neuroticism personality traits in AD incidence and progression have come into focus. More specifically, increasing evidence has further shown that the trait anxiety, one major component of neuroticism predicting the individual vulnerability in response to stress, is a risk factor for AD and may correlated with various AD pathologies. In this review, we summarized recent literature on the association of trait anxiety with AD. We also discussed the possible neuroendocrinological and neurochemical mechanisms of this association, which may provide clinical implications for AD diagnosis and therapy.
Collapse
|
4
|
Van Drunen R, Eckel-Mahan K. Circadian Rhythms of the Hypothalamus: From Function to Physiology. Clocks Sleep 2021; 3:189-226. [PMID: 33668705 PMCID: PMC7931002 DOI: 10.3390/clockssleep3010012] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The nearly ubiquitous expression of endogenous 24 h oscillations known as circadian rhythms regulate the timing of physiological functions in the body. These intrinsic rhythms are sensitive to external cues, known as zeitgebers, which entrain the internal biological processes to the daily environmental changes in light, temperature, and food availability. Light directly entrains the master clock, the suprachiasmatic nucleus (SCN) which lies in the hypothalamus of the brain and is responsible for synchronizing internal rhythms. However, recent evidence underscores the importance of other hypothalamic nuclei in regulating several essential rhythmic biological functions. These extra-SCN hypothalamic nuclei also express circadian rhythms, suggesting distinct regions that oscillate either semi-autonomously or independent of SCN innervation. Concurrently, the extra-SCN hypothalamic nuclei are also sensitized to fluctuations in nutrient and hormonal signals. Thus, food intake acts as another powerful entrainer for the hypothalamic oscillators' mediation of energy homeostasis. Ablation studies and genetic mouse models with perturbed extra-SCN hypothalamic nuclei function reveal their critical downstream involvement in an array of functions including metabolism, thermogenesis, food consumption, thirst, mood and sleep. Large epidemiological studies of individuals whose internal circadian cycle is chronically disrupted reveal that disruption of our internal clock is associated with an increased risk of obesity and several neurological diseases and disorders. In this review, we discuss the profound role of the extra-SCN hypothalamic nuclei in rhythmically regulating and coordinating body wide functions.
Collapse
Affiliation(s)
- Rachel Van Drunen
- MD Anderson UTHealth School Graduate School of Biomedical Sciences, Houston TX 77030, USA;
- Brown Foundation Institute of Molecular Medicine University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Kristin Eckel-Mahan
- MD Anderson UTHealth School Graduate School of Biomedical Sciences, Houston TX 77030, USA;
- Brown Foundation Institute of Molecular Medicine University of Texas McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
5
|
Abstract
Twenty-two years after their discovery, the hypocretins (Hcrts), also known as orexins, are two of the most studied peptidergic systems, involved in myriad physiological systems that range from sleep, arousal, motivation, homeostatic regulation, fear, anxiety and learning. A causal relationship between activity of Hcrt and arousal stability was established shortly after their discovery and have led to the development of a new class of drugs to treat insomnia. In this review we discuss the many faces of the Hcrt system and examine recent findings that implicate decreased Hcrt function in the pathogenesis of a number of neuropsychiatric conditions. We also discuss future therapeutic strategies to replace or enhance Hcrt function as a treatment option for these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Erica Seigneur
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
6
|
Um YH, Lim HK. Orexin and Alzheimer's Disease: A New Perspective. Psychiatry Investig 2020; 17:621-626. [PMID: 32517419 PMCID: PMC7385219 DOI: 10.30773/pi.2020.0136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Orexin's role in human cognition has recently been emphasized and emerging evidences indicate its close relationship with Alzheimer's disease (AD). This review aimed to demonstrate recent research on the relationship between orexin and AD. Orexin's role in stress regulation and memory is discussed, with significant findings related to sexual disparities in stress response, with potential clinical implications pertaining to AD pathology. There are controversies regarding the orexin levels in AD patients, but the role of orexin in the trajectory of AD is still emphasized in recent literatures. Orexin is also accentuated in the context of tau pathology, and orexin as a potential therapeutic target for AD is frequently discussed. Future directions with regard to the relationship between orexin and AD are suggested: 1) consideration for AD trajectory in the measurement of orexin levels, 2) the need for objective measure such as polysomnography and actigraphy, 3) the need for close observation of cognitive profiles of orexin-deficient narcolepsy patients, 4) the need for validation studies by neuroimaging 5) the need for taking account sexual disparities in orexinergic activiation, and 6) consideration for orexin's role as a stress regulator. The aforementioned new perspectives could help unravel the relationship between orexin and AD.
Collapse
Affiliation(s)
- Yoo Hyun Um
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Gottschalk MG, Richter J, Ziegler C, Schiele MA, Mann J, Geiger MJ, Schartner C, Homola GA, Alpers GW, Büchel C, Fehm L, Fydrich T, Gerlach AL, Gloster AT, Helbig-Lang S, Kalisch R, Kircher T, Lang T, Lonsdorf TB, Pané-Farré CA, Ströhle A, Weber H, Zwanzger P, Arolt V, Romanos M, Wittchen HU, Hamm A, Pauli P, Reif A, Deckert J, Neufang S, Höfler M, Domschke K. Orexin in the anxiety spectrum: association of a HCRTR1 polymorphism with panic disorder/agoraphobia, CBT treatment response and fear-related intermediate phenotypes. Transl Psychiatry 2019; 9:75. [PMID: 30718541 PMCID: PMC6361931 DOI: 10.1038/s41398-019-0415-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/06/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022] Open
Abstract
Preclinical studies point to a pivotal role of the orexin 1 (OX1) receptor in arousal and fear learning and therefore suggest the HCRTR1 gene as a prime candidate in panic disorder (PD) with/without agoraphobia (AG), PD/AG treatment response, and PD/AG-related intermediate phenotypes. Here, a multilevel approach was applied to test the non-synonymous HCRTR1 C/T Ile408Val gene variant (rs2271933) for association with PD/AG in two independent case-control samples (total n = 613 cases, 1839 healthy subjects), as an outcome predictor of a six-weeks exposure-based cognitive behavioral therapy (CBT) in PD/AG patients (n = 189), as well as with respect to agoraphobic cognitions (ACQ) (n = 483 patients, n = 2382 healthy subjects), fMRI alerting network activation in healthy subjects (n = 94), and a behavioral avoidance task in PD/AG pre- and post-CBT (n = 271). The HCRTR1 rs2271933 T allele was associated with PD/AG in both samples independently, and in their meta-analysis (p = 4.2 × 10-7), particularly in the female subsample (p = 9.8 × 10-9). T allele carriers displayed a significantly poorer CBT outcome (e.g., Hamilton anxiety rating scale: p = 7.5 × 10-4). The T allele count was linked to higher ACQ sores in PD/AG and healthy subjects, decreased inferior frontal gyrus and increased locus coeruleus activation in the alerting network. Finally, the T allele count was associated with increased pre-CBT exposure avoidance and autonomic arousal as well as decreased post-CBT improvement. In sum, the present results provide converging evidence for an involvement of HCRTR1 gene variation in the etiology of PD/AG and PD/AG-related traits as well as treatment response to CBT, supporting future therapeutic approaches targeting the orexin-related arousal system.
Collapse
Affiliation(s)
- Michael G. Gottschalk
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany ,0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Jan Richter
- grid.5603.0Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Mann
- 0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Maximilian J. Geiger
- 0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany ,grid.5963.9Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schartner
- 0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany ,0000 0001 2297 6811grid.266102.1Department of Physiology, University of California San Francisco, San Francisco, CA USA
| | - György A. Homola
- 0000 0001 1958 8658grid.8379.5Department of Neuroradiology, University of Würzburg, Würzburg, Germany
| | - Georg W. Alpers
- 0000 0001 0943 599Xgrid.5601.2Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Christian Büchel
- 0000 0001 2180 3484grid.13648.38Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lydia Fehm
- 0000 0001 2248 7639grid.7468.dDepartment of Psychology, Humboldt University, Berlin, Germany
| | - Thomas Fydrich
- 0000 0001 2248 7639grid.7468.dDepartment of Psychology, Humboldt University, Berlin, Germany
| | - Alexander L. Gerlach
- 0000 0000 8580 3777grid.6190.eDepartment of Clinical Psychology and Psychotherapy, University of Cologne, Cologne, Germany
| | - Andrew T. Gloster
- 0000 0001 2111 7257grid.4488.0Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany ,0000 0004 1937 0642grid.6612.3Division of Clinical Psychology and Intervention Science, University of Basel, Basel, Switzerland
| | - Sylvia Helbig-Lang
- 0000 0001 2111 7257grid.4488.0Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany ,0000 0001 2287 2617grid.9026.dDepartment of Psychology and Psychotherapy, University of Hamburg, Hamburg, Germany
| | - Raffael Kalisch
- grid.410607.4Neuroimaging Center (NIC) und Deutsches Resilienz-Zentrum (DRZ), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Tilo Kircher
- 0000 0004 1936 9756grid.10253.35Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Thomas Lang
- 0000 0001 2111 7257grid.4488.0Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany ,0000 0001 2287 2617grid.9026.dDepartment of Psychology and Psychotherapy, University of Hamburg, Hamburg, Germany ,Christoph-Dornier-Foundation for Clinical Psychology, Bremen, Germany
| | - Tina B. Lonsdorf
- 0000 0001 2180 3484grid.13648.38Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane A. Pané-Farré
- grid.5603.0Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Weber
- 0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany ,0000 0004 0578 8220grid.411088.4Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Peter Zwanzger
- 0000 0004 0551 4246grid.16149.3bDepartment of Psychiatry and Psychotherapy, University Hospital of Münster, Münster, Germany ,kbo-Inn-Salzach-Hospital, Wasserburg, Germany ,0000 0004 1936 973Xgrid.5252.0Department of Psychiatry und Psychotherapy, Ludwig Maximilians University, Munich, Germany
| | - Volker Arolt
- 0000 0004 0551 4246grid.16149.3bDepartment of Psychiatry and Psychotherapy, University Hospital of Münster, Münster, Germany
| | - Marcel Romanos
- 0000 0001 1378 7891grid.411760.5Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Hans-Ulrich Wittchen
- 0000 0001 2111 7257grid.4488.0Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany ,0000 0004 1936 973Xgrid.5252.0Department of Psychiatry und Psychotherapy, Ludwig Maximilians University, Munich, Germany
| | - Alfons Hamm
- grid.5603.0Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Paul Pauli
- 0000 0001 1958 8658grid.8379.5Department of Psychology, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Andreas Reif
- 0000 0004 0578 8220grid.411088.4Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Jürgen Deckert
- 0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Neufang
- 0000 0001 1378 7891grid.411760.5Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany ,0000 0001 2176 9917grid.411327.2Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich-Heine University, Duesseldorf, Germany
| | - Michael Höfler
- 0000 0001 2111 7257grid.4488.0Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Fourier C, Ran C, Steinberg A, Sjöstrand C, Waldenlind E, Belin AC. Analysis of HCRTR2 Gene Variants and Cluster Headache in Sweden. Headache 2019; 59:410-417. [PMID: 30652302 PMCID: PMC6590220 DOI: 10.1111/head.13462] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 01/03/2023]
Abstract
Objective The purpose of this study was to investigate the HCRTR2 gene variants rs3122156, rs2653342, and rs2653349 in a large homogenous Swedish case‐control cohort in order to further evaluate the possible contribution of HCRTR2 to cluster headache. Background Cluster headache is a severe neurovascular disorder and the pathophysiology is not yet fully understood. Due to striking circadian and circannual patterns of this disease, the hypothalamus has been a research focus in cluster headache. Several studies with many different cohorts from Europe have investigated the hypocretin receptor 2 (HCRTR2) gene, which is expressed in the hypothalamus. In particular, one HCRTR2 single nucleotide polymorphism, rs2653349, has been subject to a number of genetic association studies on cluster headache, with conflicting results. Two other HCRTR2 gene variants, rs2653342 and rs2653349, have been reported to be linked to cluster headache in an Italian study. Methods We genotyped a total of 517 patients diagnosed with cluster headache and 581 controls, representing a general Swedish population, for rs3122156, rs2653342, and rs2653349 using quantitative real‐time PCR. Statistical analyses of genotype, allele, and haplotype frequencies for the 3 gene variants were performed comparing patients and controls. Results For rs3122156, the minor allele frequency in patients was 25.9% compared to 29.9% in controls (P = .0421). However, this significance did not hold after correction for multiple testing. The minor allele frequencies for rs2653342 (14.7% vs 14.7%) and rs2653349 (19.5% vs 18.8%) were similar for patients and controls. Furthermore, we found one haplotype that was significantly less common in patients than controls (P = .0264). This haplotype included the minor allele for rs3122156 and the major alleles for rs2653342 and rs2653349. Significance did not hold after applying a permutation test. Conclusions Our data show a trend for association between cluster headache and the HCRTR2 polymorphism rs3122156, where the minor allele seems to be a protective factor. However, the other 2 HCRTR2 gene variants, including the previously reported rs2653349, were not associated with cluster headache in our Swedish material. A comparison with previous studies points to variance in genotype and allele frequencies among the different populations, which most likely contributes to the opposing results regarding rs2653349. Although the results from this study do not strongly support an association, HCRTR2 remains an interesting candidate gene for involvement in the pathophysiology of cluster headache.
Collapse
Affiliation(s)
- Carmen Fourier
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ran
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Sjöstrand
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Waldenlind
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
9
|
Chen XY, Du YF, Chen L. Neuropeptides Exert Neuroprotective Effects in Alzheimer's Disease. Front Mol Neurosci 2019; 11:493. [PMID: 30687008 PMCID: PMC6336706 DOI: 10.3389/fnmol.2018.00493] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 12/21/2018] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits and neuronal loss. Deposition of beta-amyloid peptide (Aβ) causes neurotoxicity through the formation of plaques in brains of Alzheimer's disease. Numerous studies have indicated that the neuropeptides including ghrelin, neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y, substance P and orexin are closely related to the pathophysiology of Alzheimer's disease. The levels of neuropeptides and their receptors change in Alzheimer's disease. These neuropeptides exert neuroprotective roles mainly through preventing Aβ accumulation, increasing neuronal glucose transport, increasing the production of neurotrophins, inhibiting endoplasmic reticulum stress and autophagy, modulating potassium channel activity and hippocampal long-term potentiation. Therefore, the neuropeptides may function as potential drug targets in the prevention and cure of Alzheimer's disease.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China.,Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yi-Feng Du
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
The exploration of novel Alzheimer's therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomed Pharmacother 2018; 109:2513-2526. [PMID: 30551512 DOI: 10.1016/j.biopha.2018.11.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
Novel drug development is onerous, time consuming and overpriced process with particularly low success and relatively high enfeebling rates. To overcome this burden, drug repositioning approach is being used to predict the possible therapeutic effects of FDA approved drugs in different diseases. Herein, we designed a computational and enzyme inhibitory mechanistic approach to fetch the promising drugs from the pool of FDA approved drugs against AD. The binding interaction patterns and conformations of screened drugs within active region of AChE were confirmed through molecular docking profiles. The possible associations of selected drugs with AD genes were predicted by pharmacogenomics analysis and confirmed through data mining. The stability behaviour of docked complexes (Drugs-AChE) were checked by MD simulations. The possible therapeutic potential of repositioned drugs against AChE were checked by in vitro analysis. Taken together, Cinitapride displayed a comparable results with standard and can be used as possible therapeutic agent in the treatment of AD.
Collapse
|
11
|
Proserpio P, Arnaldi D, Nobili F, Nobili L. Integrating Sleep and Alzheimer’s Disease Pathophysiology: Hints for Sleep Disorders Management. J Alzheimers Dis 2018; 63:871-886. [DOI: 10.3233/jad-180041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paola Proserpio
- Centre of Sleep Medicine, Department of Neuroscience, Niguarda Hospital, Milan, Italy
| | - Dario Arnaldi
- Department of Neuroscience (DINOGMI), University of Genoa, Italy
- Clinical of Neurology, Polyclinic San Martino Hospital, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Italy
- Clinical of Neurology, Polyclinic San Martino Hospital, Genoa, Italy
| | - Lino Nobili
- Centre of Sleep Medicine, Department of Neuroscience, Niguarda Hospital, Milan, Italy
- Department of Neuroscience (DINOGMI), University of Genoa, Italy
| |
Collapse
|
12
|
Mander BA, Winer JR, Jagust WJ, Walker MP. Sleep: A Novel Mechanistic Pathway, Biomarker, and Treatment Target in the Pathology of Alzheimer's Disease? Trends Neurosci 2016; 39:552-566. [PMID: 27325209 PMCID: PMC4967375 DOI: 10.1016/j.tins.2016.05.002] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/13/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022]
Abstract
Sleep disruption appears to be a core component of Alzheimer's disease (AD) and its pathophysiology. Signature abnormalities of sleep emerge before clinical onset of AD. Moreover, insufficient sleep facilitates accumulation of amyloid-β (Aβ), potentially triggering earlier cognitive decline and conversion to AD. Building on such findings, this review has four goals: evaluating (i) associations and plausible mechanisms linking non-rapid-eye-movement (NREM) sleep disruption, Aβ, and AD; (ii) a role for NREM sleep disruption as a novel factor linking cortical Aβ to impaired hippocampus-dependent memory consolidation; (iii) the potential diagnostic utility of NREM sleep disruption as a new biomarker of AD; and (iv) the possibility of sleep as a new treatment target in aging, affording preventative and therapeutic benefits.
Collapse
Affiliation(s)
- Bryce A Mander
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA.
| | - Joseph R Winer
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1650, USA; Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew P Walker
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1650, USA.
| |
Collapse
|
13
|
D Potdar P, U Shetti A. Molecular Biomarkers for Diagnosis & Therapies of Alzheimer’s Disease. AIMS Neurosci 2016. [DOI: 10.3934/neuroscience.2016.4.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Ishii M, Iadecola C. Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metab 2015; 22:761-76. [PMID: 26365177 PMCID: PMC4654127 DOI: 10.1016/j.cmet.2015.08.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is increasingly recognized as a complex neurodegenerative disease beginning decades prior to the cognitive decline. While cognitive deficits remain the cardinal manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in body weight and neuroendocrine functions, are also present, often preceding the cognitive decline. Furthermore, hypothalamic dysfunction can also be a driver of AD pathology. Here we offer a brief appraisal of hypothalamic dysfunction in AD and provide insight into an underappreciated dual role of the hypothalamus as both a culprit and target of AD pathology, as well as into new opportunities for therapeutic interventions and biomarker development.
Collapse
Affiliation(s)
- Makoto Ishii
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
15
|
Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015; 20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 02/03/2023]
Abstract
The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost.
Collapse
|