1
|
Bhattacharya S, Price AN, Uus A, Sousa HS, Marenzana M, Colford K, Murkin P, Lee M, Cordero-Grande L, Teixeira RPAG, Malik SJ, Deprez M. In vivo T2 measurements of the fetal brain using single-shot fast spin echo sequences. Magn Reson Med 2024; 92:715-729. [PMID: 38623934 PMCID: PMC7617281 DOI: 10.1002/mrm.30094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2023] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE We propose a quantitative framework for motion-corrected T2 fetal brain measurements in vivo and validate the single-shot fast spin echo (SS-FSE) sequence to perform these measurements. METHODS Stacks of two-dimensional SS-FSE slices are acquired with different echo times (TE) and motion-corrected with slice-to-volume reconstruction (SVR). The quantitative T2 maps are obtained by a fit to a dictionary of simulated signals. The sequence is selected using simulated experiments on a numerical phantom and validated on a physical phantom scanned on a 1.5T system. In vivo quantitative T2 maps are obtained for five fetuses with gestational ages (GA) 21-35 weeks on the same 1.5T system. RESULTS The simulated experiments suggested that a TE of 400 ms combined with the clinically utilized TEs of 80 and 180 ms were most suitable for T2 measurements in the fetal brain. The validation on the physical phantom confirmed that the SS-FSE T2 measurements match the gold standard multi-echo spin echo measurements. We measured average T2s of around 200 and 280 ms in the fetal brain grey and white matter, respectively. This was slightly higher than fetal T2* and the neonatal T2 obtained from previous studies. CONCLUSION The motion-corrected SS-FSE acquisitions with varying TEs offer a promising practical framework for quantitative T2 measurements of the moving fetus.
Collapse
Affiliation(s)
- Suryava Bhattacharya
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Anthony N. Price
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Alena Uus
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Helena S. Sousa
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | | | - Kathleen Colford
- Centre for the Developing Brain, King’s College London, London, UK
| | - Peter Murkin
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Maggie Lee
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicración, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Rui Pedro A. G. Teixeira
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Shaihan J. Malik
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Maria Deprez
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| |
Collapse
|
2
|
Sun Z, Wu W, Zhao P, Wang Q, Woodard PK, Nelson DM, Odibo A, Cahill A, Wang Y. Association of intraplacental oxygenation patterns on dual-contrast MRI with placental abnormality and fetal brain oxygenation. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:215-223. [PMID: 35638228 PMCID: PMC9708928 DOI: 10.1002/uog.24959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/13/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Most human in-vivo placental imaging techniques are unable to distinguish and characterize various placental compartments, such as the intervillous space (IVS), placental vessels (PV) and placental tissue (PT), limiting their specificity. We describe a method that employs T2* and diffusion-weighted magnetic resonance imaging (MRI) data to differentiate automatically placental compartments, quantify their oxygenation properties and identify placental lesions (PL) in vivo. We also investigate the association between placental oxygenation patterns and fetal brain oxygenation. METHODS This was a prospective study conducted between 2018 and 2021 in which dual-contrast clinical MRI data (T2* and diffusion-weighted MRI) were acquired from patients between 20 and 38 weeks' gestation. We trained a fuzzy clustering method to analyze T2* and diffusion-weighted MRI data and assign placental voxels to one of four clusters, based on their distinct imaging domain features. The new method divided automatically the placenta into IVS, PV, PT and PL compartments and characterized their oxygenation changes throughout pregnancy. RESULTS A total of 27 patients were recruited, of whom five developed pregnancy complications. Total placental oxygenation level and T2* did not demonstrate a statistically significant temporal correlation with gestational age (GA) (R2 = 0.060, P = 0.27). In contrast, the oxygenation level reflected by T2* values in the placental IVS (R2 = 0.51, P = 0.0002) and PV (R2 = 0.76, P = 1.1 × 10-7 ) decreased significantly with advancing GA. Oxygenation levels in the PT did not show any temporal change during pregnancy (R2 = 0.00044, P = 0.93). A strong spatial-dependent correlation between PV oxygenation level and GA was observed. The strongest negative correlation between PV oxygenation and GA (R2 = 0.73, P = 4.5 × 10-7 ) was found at the fetal-vessel-dominated region close to the chorionic plate. The location and extent of the placental abnormality were automatically delineated and quantified in the five women with clinically confirmed placental pathology. Compared to the averaged total placental oxygenation, placental IVS oxygenation level best reflected fetal brain oxygenation level during fetal development. CONCLUSION Based on clinically feasible dual-MRI, our method enables accurate spatiotemporal quantification of placental compartment and fetal brain oxygenation across different GAs. This information should improve our knowledge of human placenta development and its relationship with normal and abnormal pregnancy. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Z. Sun
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - W. Wu
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - P. Zhao
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - Q. Wang
- Mallinckrodt Institute of RadiologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - P. K. Woodard
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Mallinckrodt Institute of RadiologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - D. M. Nelson
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - A. Odibo
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - A. Cahill
- Department of Women's HealthUniversity of Texas at Austin, Dell Medical SchoolAustinTXUSA
| | - Y. Wang
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
- Mallinckrodt Institute of RadiologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
- Department of Electrical & Systems EngineeringWashington University in St LouisSt LouisMOUSA
| |
Collapse
|
3
|
Deeba F, Hu R, Lessoway V, Terry J, Pugash D, Mayer C, Hutcheon J, Salcudean S, Rohling R. Project SWAVE 2.0: An overview of the study design for multimodal placental image acquisition and alignment. MethodsX 2022; 9:101738. [PMID: 35677846 PMCID: PMC9168134 DOI: 10.1016/j.mex.2022.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
Development of non-invasive and in utero placenta imaging techniques can potentially identify biomarkers of placental health. Correlative imaging using multiple multiscale modalities is particularly important to advance the understanding of placenta structure, function and their relationship. The objective of the project SWAVE 2.0 was to understand human placental structure and function and thereby identify quantifiable measures of placental health using a multimodal correlative approach. In this paper, we present a multimodal image acquisition protocol designed to acquire and align data from ex vivo placenta specimens derived from both healthy and complicated pregnancies. Qualitative and quantitative validation of the alignment method were performed. The qualitative analysis showed good correlation between findings in the MRI, ultrasound and histopathology images. The proposed protocol would enable future studies on comprehensive analysis of placental anatomy, function and their relationship. ● An overview of a novel multimodal placental image acquisition protocol is presented. ● A co-registration method using surface markers and external fiducials is described. ● A preliminary correlative imaging analysis for a placenta specimen is presented.
Collapse
Affiliation(s)
- Farah Deeba
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Corresponding author.
| | - Ricky Hu
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | | | - Jefferson Terry
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Department of Ultrasound, BC Women’s Hospital, Vancouver, Canada
| | - Denise Pugash
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Chantal Mayer
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Jennifer Hutcheon
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Septimiu Salcudean
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | - Robert Rohling
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Nakao KK, Kido A, Fujimoto K, Chigusa Y, Minamiguchi S, Mandai M, Nakamoto Y. Placental functional assessment and its relationship to adverse pregnancy outcome: comparison of intravoxel incoherent motion (IVIM) MRI, T2-relaxation time, and umbilical artery Doppler ultrasound. Acta Radiol 2021; 64:370-376. [PMID: 34882022 DOI: 10.1177/02841851211060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Early identification of placental insufficiency can lead to appropriate treatment selections and can improve neonates' outcomes. Possible contributions of magnetic resonance imaging (MRI) have been suggested. PURPOSE To evaluate the prognostic capabilities of placental intravoxel incoherent motion (IVIM) parameters and T2-relaxation time, and their correlation with fetal growth and adverse outcomes, comparing umbilical artery (UmA) pulsatility index (PI). MATERIAL AND METHODS A total of 68 singleton pregnancies at 24-40 weeks of gestation underwent placental MRI and were reviewed retrospectively. UmA-PI was measured using Doppler ultrasound by obstetricians. IVIM parameters (Dfast, Dslow, and f) were calculated with a Bayesian model fitting. First, the associations between gestational age (GA) with placental IVIM parameters, T2-relaxation time, and placental thickness (PT) were evaluated. Second, IVIM parameters, T2 value (Z-score), PT (Z-score), and UmA-PI (Z-score) were compared between ( 1) those delivering small for gestational age (SGA) and appropriate for gestational age (AGA) neonates, ( 2) emergency cesarean section (ECS), and non-ECS, and ( 3) preterm birth and full-term birth. RESULTS Low birth weight was observed in 15/68 cases (22%). GA was significantly associated only with T2-relaxation time and PT. SGA was significantly associated with T2 value (Z-score), f, and UmA-PI (Z-score). In the ECS groups, T2 value (Z-score), f, and Dfast were significantly lower than those in non-ECS groups. All IVIM parameters and T2 values (Z-score) showed significantly lower scores in the preterm birth group. CONCLUSION Placental f and T2 value (Z-score) had significant associations with low birth weight and clinical adverse outcomes and could be potential imaging biomarkers of placental insufficiency.
Collapse
Affiliation(s)
- Kyoko Kameyama Nakao
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Kido
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Minamiguchi
- Departments of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Mandai
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Anderson KB, Andersen AS, Hansen DN, Sinding M, Peters DA, Frøkjaer JB, Sørensen A. Placental transverse relaxation time (T2) estimated by MRI: Normal values and the correlation with birthweight. Acta Obstet Gynecol Scand 2020; 100:934-940. [PMID: 33258106 DOI: 10.1111/aogs.14057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Placental transverse relaxation time (T2) assessed by MRI may have the potential to improve the antenatal identification of small for gestational age. The aims of this study were to provide normal values of placental T2 in relation to gestational age at the time of MRI and to explore the correlation between placental T2 and birthweight. MATERIAL AND METHODS A mixed cohort of 112 singleton pregnancies was retrieved from our placental MRI research database. MRI was performed at 23.6-41.3 weeks of gestation in a 1.5T system (TE (8): 50-440 ms, TR: 4000 ms). Normal pregnancies were defined by uncomplicated pregnancies with normal obstetric outcome and birthweight deviation within ±1 SD of the expected for gestational age. The correlation between placental T2 and birthweight was investigated using the following outcomes; small for gestational age (birthweight ≤-2 SD of the expected for gestational age) and birthweight deviation (birthweight Z-scores). RESULTS In normal pregnancies (n = 27), placenta T2 showed a significant negative linear correlation with gestational age (r = -.91, P = .0001) being 184 ms ± 15.94 ms (mean ± SD) at 20 weeks of gestation and 89 ms ± 15.94 ms at 40 weeks of gestation. Placental T2 was significantly reduced among small-for-gestational-age pregnancies (mean Z-score -1.95, P < .001). Moreover, we found a significant positive correlation between placenta T2 deviation (Z-score) and birthweight deviation (Z-score) (R2 = .26, P = .0001). CONCLUSIONS This study provides normal values of placental T2 to be used in future studies on placental MRI. Placental T2 is closely related to birthweight and may improve the antenatal identification of small-for-gestational-age pregnancies.
Collapse
Affiliation(s)
- Kristi B Anderson
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Anna S Andersen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - Ditte N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark
| | - Jens B Frøkjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Turk EA, Stout JN, Ha C, Luo J, Gagoski B, Yetisir F, Golland P, Wald LL, Adalsteinsson E, Robinson JN, Roberts DJ, Barth WH, Grant PE. Placental MRI: Developing Accurate Quantitative Measures of Oxygenation. Top Magn Reson Imaging 2019; 28:285-297. [PMID: 31592995 PMCID: PMC7323862 DOI: 10.1097/rmr.0000000000000221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
Abstract
The Human Placenta Project has focused attention on the need for noninvasive magnetic resonance imaging (MRI)-based techniques to diagnose and monitor placental function throughout pregnancy. The hope is that the management of placenta-related pathologies would be improved if physicians had more direct, real-time measures of placental health to guide clinical decision making. As oxygen alters signal intensity on MRI and oxygen transport is a key function of the placenta, many of the MRI methods under development are focused on quantifying oxygen transport or oxygen content of the placenta. For example, measurements from blood oxygen level-dependent imaging of the placenta during maternal hyperoxia correspond to outcomes in twin pregnancies, suggesting that some aspects of placental oxygen transport can be monitored by MRI. Additional methods are being developed to accurately quantify baseline placental oxygenation by MRI relaxometry. However, direct validation of placental MRI methods is challenging and therefore animal studies and ex vivo studies of human placentas are needed. Here we provide an overview of the current state of the art of oxygen transport and quantification with MRI. We suggest that as these techniques are being developed, increased focus be placed on ensuring they are robust and reliable across individuals and standardized to enable predictive diagnostic models to be generated from the data. The field is still several years away from establishing the clinical benefit of monitoring placental function in real time with MRI, but the promise of individual personalized diagnosis and monitoring of placental disease in real time continues to motivate this effort.
Collapse
Affiliation(s)
- Esra Abaci Turk
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Jeffrey N. Stout
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Christopher Ha
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Jie Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Filiz Yetisir
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Polina Golland
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Julian N. Robinson
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, USA
| | | | - William H. Barth
- Maternal-Fetal Medicine, Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - P. Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| |
Collapse
|
7
|
Kameyama KN, Kido A, Himoto Y, Moribata Y, Minamiguchi S, Konishi I, Togashi K. What is the most suitable MR signal index for quantitative evaluation of placental function using Half-Fourier acquisition single-shot turbo spin-echo compared with T2-relaxation time? Acta Radiol 2018; 59:748-754. [PMID: 28862023 DOI: 10.1177/0284185117727786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIRpl./psoas muscle) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIRpl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIRpl./psoas muscle might be optimal as a clinically available quantitative index of placental function.
Collapse
Affiliation(s)
- Kyoko Nakao Kameyama
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Kido
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Himoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusaku Moribata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ikuo Konishi
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Krishnamurthy U, Szalai G, Shen Y, Xu Z, Yadav BK, Tarca AL, Chaiworapongsa T, Hernandez-Andrade E, Than NG, Haacke EM, Romero R, Neelavalli J. Longitudinal Changes in Placental Magnetic Resonance Imaging Relaxation Parameter in Murine Pregnancy: Compartmental Analysis. Gynecol Obstet Invest 2015; 81:193-201. [PMID: 26336923 PMCID: PMC4769121 DOI: 10.1159/000431223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2015] [Accepted: 05/06/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To quantify gestation-dependent longitudinal changes in the magnetic resonance transverse relaxation time (T2) parameter of the major constituent regions of the mouse placenta and to evaluate their relative contributions to changes in overall placental T2. METHODS Timed-pregnant CD-1 mice underwent magnetic resonance imaging at 7.0 T field strength, on gestational day 13 (GD13), GD15 and GD17. T2 of the placenta and its constituent high and low blood perfusion regions were quantified. A linear mixed-effects model was used to fit the T2 across gestation, and the significance of coefficients was tested. RESULTS A decrease in the T2 values of the placenta and its constituent regions was observed across gestation. The temporal change in T2 was estimated to be -1.85 ms/GD (p < 0.0001) for the placenta, -1.00 ms/GD (p < 0.001) for the high-perfusion zones (HPZs) and -1.66 ms/GD (p < 0.0001) for the low-perfusion zones (LPZs). CONCLUSION T2 of the constituent zones of the murine placenta decreases with advancing gestation. While the T2 of the LPZ is smaller than that of the HPZ, there is no difference in their decrease rate relative to that of the whole placenta (p = 0.24). The results suggest an increased role of constituent volume fractions in affecting overall gestation-dependent placental T2 decrease in mice.
Collapse
Affiliation(s)
- Uday Krishnamurthy
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Gabor Szalai
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Yimin Shen
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhonghui Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Brijesh Kumar Yadav
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ewart Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | | | - D Med Sci
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Jaladhar Neelavalli
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
9
|
Szalai G, Romero R, Chaiworapongsa T, Xu Y, Wang B, Ahn H, Xu Z, Chiang PJ, Sundell B, Wang R, Jiang Y, Plazyo O, Olive M, Tarca AL, Dong Z, Qureshi F, Papp Z, Hassan SS, Hernandez-Andrade E, Than NG. Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice. PLoS One 2015; 10:e0119547. [PMID: 25860260 PMCID: PMC4393117 DOI: 10.1371/journal.pone.0119547] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2014] [Accepted: 01/30/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring. METHODS Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia. RESULTS Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3 ± 51.7 μg/mg vs. 19.3 ± 5.6 μg/mg, p = 4.4 x 10(-2); GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2 x 10(-2)). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR). CONCLUSIONS A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the in vivo pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome.
Collapse
Affiliation(s)
- Gabor Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Bing Wang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Hyunyoung Ahn
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Zhonghui Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Po Jen Chiang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Birgitta Sundell
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Rona Wang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Yang Jiang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Olesya Plazyo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Mary Olive
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Faisal Qureshi
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Andescavage NN, DuPlessis A, Limperopoulos C. Advanced MR imaging of the placenta: Exploring the in utero placenta-brain connection. Semin Perinatol 2015; 39:113-23. [PMID: 25765905 PMCID: PMC4409865 DOI: 10.1053/j.semperi.2015.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
The placenta is a vital organ necessary for the healthy neurodevelopment of the fetus. Despite the known associations between placental dysfunction and neurologic impairment, there is a paucity of tools available to reliably assess in vivo placental health and function. Existing clinical tools for placental assessment remain insensitive in predicting and evaluating placental well-being. Advanced MRI techniques hold significant promise for the dynamic, non-invasive, real-time assessment of placental health and identification of early placental-based disorders. In this review, we summarize the available clinical tools for placental assessment, including ultrasound, Doppler, and conventional MRI. We then explore the emerging role of advanced placental MR imaging techniques for supporting the developing fetus and appraise the strengths and limitations of quantitative MRI in identifying early markers of placental dysfunction for improved pregnancy monitoring and fetal outcomes.
Collapse
Affiliation(s)
- Nickie Niforatos Andescavage
- Division of Neonatology, Children’s National Health System, 111
Michigan Ave. NW, Washington, DC 20010,Fetal & Transitional Medicine, Children’s National Health
System, 111 Michigan Ave. NW, Washington, DC 20010,Department of Pediatrics, George Washington University School of Medicine,
2300 Eye St. NW, Washington, DC 20037
| | - Adre DuPlessis
- Fetal & Transitional Medicine, Children’s National Health
System, 111 Michigan Ave. NW, Washington, DC 20010,Diagnostic Imaging & Radiology, Children’s National Health
System, 111 Michigan Ave. NW, Washington, DC 20010,Department of Pediatrics, George Washington University School of Medicine,
2300 Eye St. NW, Washington, DC 20037
| | - Catherine Limperopoulos
- Division of Neonatology, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010; Division of Fetal and Transitional Medicine, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010; Department of Pediatrics, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC 20037; Division of Diagnostic Imaging and Radiology, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010; Division of Radiology, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC 20037.
| |
Collapse
|