1
|
Ramakrishnan Chandra J, Kalidass M, Demidov D, Dabravolski SA, Lermontova I. The role of centromeric repeats and transcripts in kinetochore assembly and function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:982-996. [PMID: 37665331 DOI: 10.1111/tpj.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Centromeres are the chromosomal domains, where the kinetochore protein complex is formed, mediating proper segregation of chromosomes during cell division. Although the function of centromeres has remained conserved during evolution, centromeric DNA is highly variable, even in closely related species. In addition, the composition of the kinetochore complexes varies among organisms. Therefore, it is assumed that the centromeric position is determined epigenetically, and the centromeric histone H3 (CENH3) serves as an epigenetic marker. The loading of CENH3 onto centromeres depends on centromere-licensing factors, chaperones, and transcription of centromeric repeats. Several proteins that regulate CENH3 loading and kinetochore assembly interact with the centromeric transcripts and DNA in a sequence-independent manner. However, the functional aspects of these interactions are not fully understood. This review discusses the variability of centromeric sequences in different organisms and the regulation of their transcription through the RNA Pol II and RNAi machinery. The data suggest that the interaction of proteins involved in CENH3 loading and kinetochore assembly with centromeric DNA and transcripts plays a role in centromere, and possibly neocentromere, formation in a sequence-independent manner.
Collapse
Affiliation(s)
| | - Manikandan Kalidass
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| | - Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel, 2161002, Israel
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| |
Collapse
|
2
|
Tourdot E, Mauxion JP, Gonzalez N, Chevalier C. Endoreduplication in plant organogenesis: a means to boost fruit growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6269-6284. [PMID: 37343125 DOI: 10.1093/jxb/erad235] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Endoreduplication is the major source of somatic endopolyploidy in higher plants, and leads to variation in cell ploidy levels due to iterative rounds of DNA synthesis in the absence of mitosis. Despite its ubiquitous occurrence in many plant organs, tissues, and cells, the physiological meaning of endoreduplication is not fully understood, although several roles during plant development have been proposed, mostly related to cell growth, differentiation, and specialization via transcriptional and metabolic reprogramming. Here, we review recent advances in our knowledge of the molecular mechanisms and cellular characteristics of endoreduplicated cells, and provide an overview of the multi-scale effects of endoreduplication on supporting growth in plant development. In addition, the effects of endoreduplication in fruit development are discussed, since it is highly prominent during fruit organogenesis where it acts as a morphogenetic factor supporting rapid fruit growth, as illustrated by case of the model fleshy fruit, tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Edouard Tourdot
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| |
Collapse
|
3
|
Super-resolution microscopy reveals the number and distribution of topoisomerase IIα and CENH3 molecules within barley metaphase chromosomes. Chromosoma 2023; 132:19-29. [PMID: 36719450 PMCID: PMC9981516 DOI: 10.1007/s00412-023-00785-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 02/01/2023]
Abstract
Topoisomerase IIα (Topo IIα) and the centromere-specific histone H3 variant CENH3 are key proteins involved in chromatin condensation and centromere determination, respectively. Consequently, they are required for proper chromosome segregation during cell divisions. We combined two super-resolution techniques, structured illumination microscopy (SIM) to co-localize Topo IIα and CENH3, and photoactivated localization microscopy (PALM) to determine their molecule numbers in barley metaphase chromosomes. We detected a dispersed Topo IIα distribution along chromosome arms but an accumulation at centromeres, telomeres, and nucleolus-organizing regions. With a precision of 10-50 nm, we counted ~ 20,000-40,000 Topo IIα molecules per chromosome, 28% of them within the (peri)centromere. With similar precision, we identified ~13,500 CENH3 molecules per centromere where Topo IIα proteins and CENH3-containing chromatin intermingle. In short, we demonstrate PALM as a useful method to count and localize single molecules with high precision within chromosomes. The ultrastructural distribution and the detected amount of Topo IIα and CENH3 are instrumental for a better understanding of their functions during chromatin condensation and centromere determination.
Collapse
|
4
|
Randall RS, Jourdain C, Nowicka A, Kaduchová K, Kubová M, Ayoub MA, Schubert V, Tatout C, Colas I, Kalyanikrishna, Desset S, Mermet S, Boulaflous-Stevens A, Kubalová I, Mandáková T, Heckmann S, Lysak MA, Panatta M, Santoro R, Schubert D, Pecinka A, Routh D, Baroux C. Image analysis workflows to reveal the spatial organization of cell nuclei and chromosomes. Nucleus 2022; 13:277-299. [PMID: 36447428 PMCID: PMC9754023 DOI: 10.1080/19491034.2022.2144013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence microscopy imaging to elucidate the distribution and abundance of structural and regulatory components. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity level and distribution and on the type and shape of distribution patterns in space. Their analysis can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative image analysis requires specific software and workflows for image rendering, processing, segmentation, setting measurement points and reference frames and exporting target data before further numerical processing and plotting. These tasks often call for the development of customized computational scripts and require an expertise that is not broadly available to the community of experimental biologists. Yet, the increasing accessibility of high- and super-resolution imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide a compendium of strategies developed by participants of a training school from the COST action INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy methods (SIM and STED). While the examples make use of one specific commercial software package, the workflows can easily be adapted to concurrent commercial and open-source software. The aim is to encourage biologists lacking custom-script-based expertise to venture into quantitative image analysis and to better exploit the discovery potential of their images.Abbreviations: 3D FISH: three-dimensional fluorescence in situ hybridization; 3D: three-dimensional; ASY1: ASYNAPTIC 1; CC: chromocenters; CO: Crossover; DAPI: 4',6-diamidino-2-phenylindole; DMC1: DNA MEIOTIC RECOMBINASE 1; DSB: Double-Strand Break; FISH: fluorescence in situ hybridization; GFP: GREEN FLUORESCENT PROTEIN; HEI10: HUMAN ENHANCER OF INVASION 10; NCO: Non-Crossover; NE: Nuclear Envelope; Oligo-FISH: oligonucleotide fluorescence in situ hybridization; RNPII: RNA Polymerase II; SC: Synaptonemal Complex; SIM: structured illumination microscopy; ZMM (ZIP: MSH4: MSH5 and MER3 proteins); ZYP1: ZIPPER-LIKE PROTEIN 1.
Collapse
Affiliation(s)
- Ricardo S Randall
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | - Anna Nowicka
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic
| | - Kateřina Kaduchová
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic
| | - Michaela Kubová
- Central European Institute of Technology (CEITEC) and Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Mohammad A. Ayoub
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466Seeland, Germany
| | - Christophe Tatout
- Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001Clermont-Ferrand, France
| | - Isabelle Colas
- The James Hutton Institute, Errol Road, Invergowrie, DD2 5DA, Scotland UK
| | | | - Sophie Desset
- Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001Clermont-Ferrand, France
| | - Sarah Mermet
- Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001Clermont-Ferrand, France
| | - Aurélia Boulaflous-Stevens
- Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001Clermont-Ferrand, France
| | - Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466Seeland, Germany
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC) and Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466Seeland, Germany
| | - Martin A. Lysak
- Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Martina Panatta
- Department of Molecular Mechanisms of Disease, DMMD, University of Zürich, Zürich, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease, DMMD, University of Zürich, Zürich, Switzerland
| | | | - Ales Pecinka
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic
| | - Devin Routh
- Service and Support for Science IT (S3IT), Universität Zürich, Zürich, Switzerland
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland,CONTACT Célia Baroux Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
De la Fuente IM, Martínez L, Carrasco-Pujante J, Fedetz M, López JI, Malaina I. Self-Organization and Information Processing: From Basic Enzymatic Activities to Complex Adaptive Cellular Behavior. Front Genet 2021; 12:644615. [PMID: 34093645 PMCID: PMC8176287 DOI: 10.3389/fgene.2021.644615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
One of the main aims of current biology is to understand the origin of the molecular organization that underlies the complex dynamic architecture of cellular life. Here, we present an overview of the main sources of biomolecular order and complexity spanning from the most elementary levels of molecular activity to the emergence of cellular systemic behaviors. First, we have addressed the dissipative self-organization, the principal source of molecular order in the cell. Intensive studies over the last four decades have demonstrated that self-organization is central to understand enzyme activity under cellular conditions, functional coordination between enzymatic reactions, the emergence of dissipative metabolic networks (DMN), and molecular rhythms. The second fundamental source of order is molecular information processing. Studies on effective connectivity based on transfer entropy (TE) have made possible the quantification in bits of biomolecular information flows in DMN. This information processing enables efficient self-regulatory control of metabolism. As a consequence of both main sources of order, systemic functional structures emerge in the cell; in fact, quantitative analyses with DMN have revealed that the basic units of life display a global enzymatic structure that seems to be an essential characteristic of the systemic functional metabolism. This global metabolic structure has been verified experimentally in both prokaryotic and eukaryotic cells. Here, we also discuss how the study of systemic DMN, using Artificial Intelligence and advanced tools of Statistic Mechanics, has shown the emergence of Hopfield-like dynamics characterized by exhibiting associative memory. We have recently confirmed this thesis by testing associative conditioning behavior in individual amoeba cells. In these Pavlovian-like experiments, several hundreds of cells could learn new systemic migratory behaviors and remember them over long periods relative to their cell cycle, forgetting them later. Such associative process seems to correspond to an epigenetic memory. The cellular capacity of learning new adaptive systemic behaviors represents a fundamental evolutionary mechanism for cell adaptation.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Murcia, Spain
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Basque Center of Applied Mathematics (BCAM), Bilbao, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Granada, Spain
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
6
|
Kubalová I, Schmidt Černohorská M, Huranová M, Weisshart K, Houben A, Schubert V. Prospects and limitations of expansion microscopy in chromatin ultrastructure determination. Chromosome Res 2020; 28:355-368. [PMID: 32939606 PMCID: PMC7691311 DOI: 10.1007/s10577-020-09637-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 02/04/2023]
Abstract
Expansion microscopy (ExM) is a method to magnify physically a specimen with preserved ultrastructure. It has the potential to explore structural features beyond the diffraction limit of light. The procedure has been successfully used for different animal species, from isolated macromolecular complexes through cells to tissue slices. Expansion of plant-derived samples is still at the beginning, and little is known, whether the chromatin ultrastructure becomes altered by physical expansion. In this study, we expanded isolated barley nuclei and compared whether ExM can provide a structural view of chromatin comparable with super-resolution microscopy. Different fixation and denaturation/digestion conditions were tested to maintain the chromatin ultrastructure. We achieved up to ~4.2-times physically expanded nuclei corresponding to a maximal resolution of ~50-60 nm when imaged by wild-field (WF) microscopy. By applying structured illumination microscopy (SIM, super-resolution) doubling the WF resolution, the chromatin structures were observed at a resolution of ~25-35 nm. WF microscopy showed a preserved nucleus shape and nucleoli. Moreover, we were able to detect chromatin domains, invisible in unexpanded nuclei. However, by applying SIM, we observed that the preservation of the chromatin ultrastructure after the expansion was not complete and that the majority of the tested conditions failed to keep the ultrastructure. Nevertheless, using expanded nuclei, we localized successfully centromere repeats by fluorescence in situ hybridization (FISH) and the centromere-specific histone H3 variant CENH3 by indirect immunolabelling. However, although these repeats and proteins were localized at the correct position within the nuclei (indicating a Rabl orientation), their ultrastructural arrangement was impaired.
Collapse
Affiliation(s)
- Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Markéta Schmidt Černohorská
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics,, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martina Huranová
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics,, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
7
|
Maß L, Holtmannspötter M, Zachgo S. Dual-color 3D-dSTORM colocalization and quantification of ROXY1 and RNAPII variants throughout the transcription cycle in root meristem nuclei. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1423-1436. [PMID: 32896918 DOI: 10.1111/tpj.14986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
To unravel the function of a protein of interest, it is crucial to asses to what extent it associates via direct interactions or by overlapping expression with other proteins. ROXY1, a land plant-specific glutaredoxin, exerts a function in Arabidopsis flower development and interacts with TGA transcription factors in the nucleus. We detected a novel ROXY1 function in the root meristem. Root cells that lack chlorophyll reducing plant-specific background problems that can hamper colocalization 3D microscopy. Thus far, a super-resolution three-dimensional stochastic optical reconstruction microscopy (3D-dSTORM) approach has mainly been applied in animal studies. We established 3D-dSTORM using the roxy1 mutant complemented with green fluorescence protein-ROXY1 and investigated its colocalization with three distinct RNAPII isoforms. To quantify the colocalization results, 3D-dSTORM was coupled with the coordinate-based colocalization method. Interestingly, ROXY1 proteins colocalize with different RNA polymerase II (RNAPII) isoforms that are active at distinct transcription cycle steps. Our colocalization data provide new insights on nuclear glutaredoxin activities suggesting that ROXY1 is not only required in early transcription initiation events via interaction with transcription factors but likely also participates throughout further transcription processes until late termination steps. Furthermore, we showed the applicability of the combined approaches to detect and quantify responses to altered growth conditions, exemplified by analysis of H2 O2 treatment, causing a dissociation of ROXY1 and RNAPII isoforms. We envisage that the powerful dual-color 3D-dSTORM/coordinate-based colocalization combination offers plant cell biologists the opportunity to colocalize and quantify root meristem proteins at an increased, unprecedented resolution level <50 nm, which will enable the detection of novel subcellular protein associations and functions.
Collapse
Affiliation(s)
- Lucia Maß
- Botany Department, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
| | - Michael Holtmannspötter
- Integrated Bioimaging Facility iBiOs, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
- Center of Cellular Nanoanalytics Osnabrück, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
| | - Sabine Zachgo
- Botany Department, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
| |
Collapse
|
8
|
Huang Y, Rodriguez-Granados NY, Latrasse D, Raynaud C, Benhamed M, Ramirez-Prado JS. The matrix revolutions: towards the decoding of the plant chromatin three-dimensional reality. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5129-5147. [PMID: 32639553 DOI: 10.1093/jxb/eraa322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
In recent years, we have witnessed a significant increase in studies addressing the three-dimensional (3D) chromatin organization of the plant nucleus. Important advances in chromatin conformation capture (3C)-derived and related techniques have allowed the exploration of the nuclear topology of plants with large and complex genomes, including various crops. In addition, the increase in their resolution has permitted the depiction of chromatin compartmentalization and interactions at the gene scale. These studies have revealed the highly complex mechanisms governing plant nuclear architecture and the remarkable knowledge gaps in this field. Here we discuss the state-of-the-art in plant chromosome architecture, including our knowledge of the hierarchical organization of the genome in 3D space and regarding other nuclear components. Furthermore, we highlight the existence in plants of topologically associated domain (TAD)-like structures that display striking differences from their mammalian counterparts, proposing the concept of ICONS-intergenic condensed spacers. Similarly, we explore recent advances in the study of chromatin loops and R-loops, and their implication in the regulation of gene activity. Finally, we address the impact that polyploidization has had on the chromatin topology of modern crops, and how this is related to phenomena such as subgenome dominance and biased gene retention in these organisms.
Collapse
Affiliation(s)
- Ying Huang
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - Natalia Yaneth Rodriguez-Granados
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - Cecile Raynaud
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
- Institut Universitaire de France (IUF), France
| | - Juan Sebastian Ramirez-Prado
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| |
Collapse
|
9
|
Zelkowski M, Zelkowska K, Conrad U, Hesse S, Lermontova I, Marzec M, Meister A, Houben A, Schubert V. Arabidopsis NSE4 Proteins Act in Somatic Nuclei and Meiosis to Ensure Plant Viability and Fertility. FRONTIERS IN PLANT SCIENCE 2019; 10:774. [PMID: 31281325 PMCID: PMC6596448 DOI: 10.3389/fpls.2019.00774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 05/02/2023]
Abstract
The SMC 5/6 complex together with cohesin and condensin is a member of the structural maintenance of chromosome (SMC) protein family. In non-plant organisms SMC5/6 is engaged in DNA repair, meiotic synapsis, genome organization and stability. In plants, the function of SMC5/6 is still enigmatic. Therefore, we analyzed the crucial δ-kleisin component NSE4 of the SMC5/6 complex in the model plant Arabidopsis thaliana. Two functional conserved Nse4 paralogs (Nse4A and Nse4B) are present in A. thaliana, which may have evolved via gene subfunctionalization. Due to its high expression level, Nse4A seems to be the more essential gene, whereas Nse4B appears to be involved mainly in seed development. The morphological characterization of A. thaliana T-DNA mutants suggests that the NSE4 proteins are essential for plant growth and fertility. Detailed investigations in wild-type and the mutants based on live cell imaging of transgenic GFP lines, fluorescence in situ hybridization (FISH), immunolabeling and super-resolution microscopy suggest that NSE4A acts in several processes during plant development, such as mitosis, meiosis and chromatin organization of differentiated nuclei, and that NSE4A operates in a cell cycle-dependent manner. Differential response of NSE4A and NSE4B mutants after induced DNA double strand breaks (DSBs) suggests their involvement in DNA repair processes.
Collapse
Affiliation(s)
- Mateusz Zelkowski
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Katarzyna Zelkowska
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Susann Hesse
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Plant Cytogenomics Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Marzec
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
10
|
Vavrdová T, Šamajová O, Křenek P, Ovečka M, Floková P, Šnaurová R, Šamaj J, Komis G. Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins. PLANT METHODS 2019; 15:22. [PMID: 30899319 PMCID: PMC6408805 DOI: 10.1186/s13007-019-0406-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND In the present work, we provide an account of structured illumination microscopy (SIM) imaging of fixed and immunolabeled plant probes. We take advantage of SIM, to superresolve intracellular structures at a considerable z-range and circumvent its low temporal resolution capacity during the study of living samples. Further, we validate the protocol for the imaging of fixed transgenic material expressing fluorescent protein-based markers of different subcellular structures. RESULTS Focus is given on 3D imaging of bulky subcellular structures, such as mitotic and cytokinetic microtubule arrays as well as on the performance of SIM using multichannel imaging and the quantitative correlations that can be deduced. As a proof of concept, we provide a superresolution output on the organization of cortical microtubules in wild-type and mutant Arabidopsis cells, including aberrant preprophase microtubule bands and phragmoplasts in a cytoskeletal mutant devoid of the p60 subunit of the microtubule severing protein KATANIN and refined details of cytoskeletal aberrations in the mitogen activated protein kinase (MAPK) mutant mpk4. We further demonstrate, in a qualitative and quantitative manner, colocalizations between MPK6 and unknown dually phosphorylated and activated MAPK species and we follow the localization of the microtubule associated protein 65-3 (MAP65-3) in telophase and cytokinetic microtubular arrays. CONCLUSIONS 3D SIM is a powerful, versatile and adaptable microscopy method for elucidating spatial relationships between subcellular compartments. Improved methods of sample preparation aiming to the compensation of refractive index mismatches, allow the use of 3D SIM in the documentation of complex plant cell structures, such as microtubule arrays and the elucidation of their interactions with microtubule associated proteins.
Collapse
Affiliation(s)
- T. Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - O. Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - P. Křenek
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - M. Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - P. Floková
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - R. Šnaurová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - J. Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - G. Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
11
|
Baroux C, Schubert V. Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations. Methods Mol Biol 2018; 1675:537-589. [PMID: 29052212 DOI: 10.1007/978-1-4939-7318-7_31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument's ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
12
|
Gutsche N, Holtmannspötter M, Maß L, O'Donoghue M, Busch A, Lauri A, Schubert V, Zachgo S. Conserved redox-dependent DNA binding of ROXY glutaredoxins with TGA transcription factors. PLANT DIRECT 2017; 1:e00030. [PMID: 31245678 PMCID: PMC6508501 DOI: 10.1002/pld3.30] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana CC-type glutaredoxin (GRX) ROXY1 and the bZIP TGA transcription factor (TF) PERIANTHIA (PAN) interact in the nucleus and together regulate petal development. The CC-type GRXs exist exclusively in land plants, and in contrast to the ubiquitously occurring CPYC and CGFS GRX classes, only the CC-type GRXs expanded strongly during land plant evolution. Phylogenetic analyses show that TGA TFs evolved before the CC-type GRXs in charophycean algae. MpROXY1/2 and MpTGA were isolated from the liverwort Marchantia polymorpha to analyze regulatory ROXY/TGA interactions in a basal land plant. Homologous and heterologous protein interaction studies demonstrate that nuclear ROXY/TGA interactions are conserved since the occurrence of CC-type GRXs in bryophytes and mediated by a conserved ROXY C-terminus. Redox EMSA analyses show a redox-sensitive binding of MpTGA to the cis-regulatory as-1-like element. Furthermore, we demonstrate that MpTGA binds together with MpROXY1/2 to this motif under reducing conditions, whereas this interaction is not observed under oxidizing conditions. Remarkably, heterologous complementation studies reveal a strongly conserved land plant ROXY activity, suggesting an ancestral role for CC-type GRXs in modulating the activities of TGA TFs. Super-resolution microscopy experiments detected a strong colocalization of ROXY1 with the active form of the RNA polymerase II in the nucleus. Together, these data shed new light on the function of ROXYs and TGA TFs and the evolution of redox-sensitive transcription regulation processes, which likely contributed to adapt land plants to novel terrestrial habitats.
Collapse
Affiliation(s)
- Nora Gutsche
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Lucia Maß
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Andrea Busch
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| | | | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Sabine Zachgo
- Botany DepartmentSchool of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
| |
Collapse
|
13
|
Abstract
Dynamic reshuffling of the chromatin landscape is a recurrent theme orchestrated in many, if not all, plant developmental transitions and adaptive responses. Spatiotemporal variations of the chromatin properties on regulatory genes and on structural genomic elements trigger the establishment of distinct transcriptional contexts, which in some instances can epigenetically be inherited. Studies on plant cell plasticity during the differentiation of stem cells, including gametogenesis, or the specialization of vegetative cells in various organs, as well as the investigation of allele-specific gene regulation have long been impaired by technical challenges in generating specific chromatin profiles in complex or hardly accessible cell populations. Recent advances in increasing the sensitivity of genome-enabled technologies and in the isolation of specific cell types have allowed for overcoming such limitations. These developments hint at multilevel regulatory events ranging from nucleosome accessibility and composition to higher order chromatin organization and genome topology. Uncovering the large extent to which chromatin dynamics and epigenetic processes influence gene expression is therefore not surprisingly revolutionizing current views on plant molecular genetics and (epi)genomics as well as their perspectives in eco-evolutionary biology. Here, we introduce current methodologies to probe genome-wide chromatin variations for which protocols are detailed in this book chapter, with an emphasis on the plant model species Arabidopsis.
Collapse
|
14
|
Schubert V. Super-resolution Microscopy - Applications in Plant Cell Research. FRONTIERS IN PLANT SCIENCE 2017; 8:531. [PMID: 28450874 PMCID: PMC5390026 DOI: 10.3389/fpls.2017.00531] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/24/2017] [Indexed: 05/10/2023]
Abstract
Most of the present knowledge about cell organization and function is based on molecular and genetic methods as well as cytological investigations. While electron microscopy allows identifying cell substructures until a resolution of ∼1 nm, the resolution of fluorescence microscopy is restricted to ∼200 nm due to the diffraction limit of light. However, the advantage of this technique is the possibility to identify and co-localize specifically labeled structures and molecules. The recently developed super-resolution microscopy techniques, such as Structured Illumination Microscopy, Photoactivated Localization Microscopy, Stochastic Optical Reconstruction Microscopy, and Stimulated Emission Depletion microscopy allow analyzing structures and molecules beyond the diffraction limit of light. Recently, there is an increasing application of these techniques in cell biology. This review evaluates and summarizes especially the data achieved until now in analyzing the organization and function of plant cells, chromosomes and interphase nuclei using super-resolution techniques.
Collapse
|
15
|
Liu C, Wang C, Wang G, Becker C, Zaidem M, Weigel D. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res 2016; 26:1057-68. [PMID: 27225844 PMCID: PMC4971768 DOI: 10.1101/gr.204032.116] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022]
Abstract
The three-dimensional packing of the genome plays an important role in regulating gene expression. We have used Hi-C, a genome-wide chromatin conformation capture (3C) method, to analyze Arabidopsis thaliana chromosomes dissected into subkilobase segments, which is required for gene-level resolution in this species with a gene-dense genome. We found that the repressive H3K27me3 histone mark is overrepresented in the promoter regions of genes that are in conformational linkage over long distances. In line with the globally dispersed distribution of RNA polymerase II in A. thaliana nuclear space, actively transcribed genes do not show a strong tendency to associate with each other. In general, there are often contacts between 5' and 3' ends of genes, forming local chromatin loops. Such self-loop structures of genes are more likely to occur in more highly expressed genes, although they can also be found in silent genes. Silent genes with local chromatin loops are highly enriched for the histone variant H3.3 at their 5' and 3' ends but depleted of repressive marks such as heterochromatic histone modifications and DNA methylation in flanking regions. Our results suggest that, different from animals, a major theme of genome folding in A. thaliana is the formation of structural units that correspond to gene bodies.
Collapse
Affiliation(s)
- Chang Liu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Congmao Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Institute of Digital Agriculture, Zhejiang Academy of Agriculture Sciences, Hangzhou 310029, China
| | - George Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Weisshart K, Fuchs J, Schubert V. Structured Illumination Microscopy (SIM) and Photoactivated Localization Microscopy (PALM) to Analyze the Abundance and Distribution of RNA Polymerase II Molecules on Flow-sorted Arabidopsis Nuclei. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1725] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
17
|
|
18
|
Light signaling controls nuclear architecture reorganization during seedling establishment. Proc Natl Acad Sci U S A 2015; 112:E2836-44. [PMID: 25964332 DOI: 10.1073/pnas.1503512112] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis.
Collapse
|
19
|
De la Fuente IM. Elements of the cellular metabolic structure. Front Mol Biosci 2015; 2:16. [PMID: 25988183 PMCID: PMC4428431 DOI: 10.3389/fmolb.2015.00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/12/2015] [Indexed: 12/19/2022] Open
Abstract
A large number of studies have demonstrated the existence of metabolic covalent modifications in different molecular structures, which are able to store biochemical information that is not encoded by DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by specific input stimuli. Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in covalent post-translational modulation, so that determined functional memory can be embedded in multiple stable molecular marks. The metabolic dynamics governed by Hopfield-type attractors (functional processes), as well as the enzymatic covalent modifications of specific molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones CientíficasGranada, Spain
- Department of Mathematics, University of the Basque Country, UPV/Euskal Herriko UnibertsitateaLeioa, Spain
| |
Collapse
|
20
|
Schubert V, Weisshart K. Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1687-98. [PMID: 25740920 PMCID: PMC4357323 DOI: 10.1093/jxb/erv091] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
RNA polymerase II (RNAPII) is responsible for the transcription of most eukaryotic protein-coding genes. Analysing the topological distribution and quantification of RNAPII can contribute to understanding its function in interphase nuclei. Previously it was shown that RNAPII molecules in plant nuclei form reticulate structures within euchromatin of differentiated Arabidopsis thaliana nuclei rather than being organized in distinct 'transcription factories' as observed in mammalian nuclei. Immunosignal intensity measurements based on specific antibody labelling in maximum intensity projections of image stacks acquired by structured illumination microscopy (SIM) suggested a relative proportional increase of RNAPII in endopolyploid plant nuclei. Here, photoactivated localization microscopy (PALM) was applied to determine the absolute number and distribution of active and inactive RNAPII molecules in differentiated A. thaliana nuclei. The proportional increase of RNAPII during endopolyploidization is confirmed, but it is also shown that PALM measurements are more reliable than those based on SIM in terms of quantification. The single molecule localization results show that, although RNAPII molecules are globally dispersed within plant euchromatin, they also aggregate within smaller distances as described for mammalian transcription factories.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Stadt Seeland, Germany
| | | |
Collapse
|
21
|
Schubert V, Rudnik R, Schubert I. Chromatin associations in Arabidopsis interphase nuclei. Front Genet 2014; 5:389. [PMID: 25431580 PMCID: PMC4230181 DOI: 10.3389/fgene.2014.00389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/23/2014] [Indexed: 11/30/2022] Open
Abstract
The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analyzed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fiber movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns. Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its 10 centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben Stadt Seeland, Germany
| | - Radoslaw Rudnik
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben Stadt Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben Stadt Seeland, Germany ; Faculty of Science and Central European Institute of Technology, Masaryk University Brno, Czech Republic
| |
Collapse
|
22
|
Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell 2014; 55:694-707. [PMID: 25132175 DOI: 10.1016/j.molcel.2014.07.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/02/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022]
Abstract
Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome.
Collapse
Affiliation(s)
- Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shawn J Cokus
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Jixian Zhai
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|