1
|
QingNing S, Mohd Ismail ZI, Ab Patar MNA, Mat Lazim N, Hadie SNH, Mohd Noor NF. The limelight of adipose-derived stem cells in the landscape of neural tissue engineering for peripheral nerve injury. Tissue Cell 2024; 91:102556. [PMID: 39293138 DOI: 10.1016/j.tice.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND AIMS Challenges in treating peripheral nerve injury include prolonged repair time and insufficient functional recovery. Stem cell therapy coupled with neural tissue engineering has been shown to induce nerve regeneration following peripheral nerve injury. Among these stem cells, adipose-derived stem cells (ADSCs) are preferred due to their accessibility, expansion, multidirectional differentiation, and production of essential nutrient factors for nerve growth. In recent years, ADSC-laden nerve guide conduit has been utilized to enhance the therapeutic effects of tissue-engineered nerve grafts. This review explores existing research that recognizes the roles played by ADSCs in inducing peripheral nerve regeneration following injury and summarizes the different methods of application of ADSC-laden nerve conduit in neural tissue engineering.
Collapse
Affiliation(s)
- Sun QingNing
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia; Department of Rehabilitation, School of Special Education, Zhengzhou Normal University, Zhengzhou 450044, China.
| | - Zul Izhar Mohd Ismail
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Mohd Nor Azim Ab Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Siti Nurma Hanim Hadie
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Nor Farid Mohd Noor
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Kuala Terengganu, Terengganu 20400, Malaysia.
| |
Collapse
|
2
|
Wei C, Guo Y, Ci Z, Li M, Zhang Y, Zhou Y. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomed Pharmacother 2024; 175:116645. [PMID: 38729050 DOI: 10.1016/j.biopha.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.
Collapse
Affiliation(s)
- Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanxin Guo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mucong Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Hama S, Yokoi T, Orita K, Uemura T, Takamatsu K, Okada M, Nakamura H. Peripheral nerve regeneration by bioabsorbable nerve conduits filled with platelet-rich fibrin. Clin Neurol Neurosurg 2024; 236:108051. [PMID: 37995621 DOI: 10.1016/j.clineuro.2023.108051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE To repair peripheral nerve defects and seek alternatives for autografts, nerve conduits with various growth factors and cells have been invented. Few pieces of literature report the effect of nerve conduits plus platelet-rich fibrin (PRF). This study aimed to investigate the effectiveness of nerve conduits filled with PRF. METHODS The model of a 10 mm sciatic nerve gap in a rat was used to evaluate peripheral nerve regeneration. The thirty rats were randomly divided into one of the following three groups (n = 10 per group). Autogenous nerve grafts (autograft group), conduits filled with phosphate-buffered saline (PBS) (PBS group), or conduits filled with PRF group (PRF group). We assessed motor and sensory functions for the three groups at 4, 8, and 12 weeks postoperatively. In addition, axon numbers were measured 12 weeks after repair of the peripheral nerve gaps. RESULTS Significant differences in motor function were observed between the autograft group and the other two groups at 12 weeks postoperatively. In the test to evaluate the recovery of sensory function, there were significant differences between the PBS group and the other two groups at all time points. The most axon number was found in the autograft group. The axon number of the PRF group was significantly more extensive than that of the PBS group. CONCLUSIONS The nerve conduit filled with PRF promoted the axon regeneration of the sciatic nerve and improved sensory function.
Collapse
Affiliation(s)
- Shunpei Hama
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan; Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Takuya Yokoi
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan; Department of Orthopaedic Surgery, Seikeikai Hospital, Osaka, Japan.
| | - Kumi Orita
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan; Department of Orthopaedic Surgery, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Kiyohito Takamatsu
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan; Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Mitsuhiro Okada
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
4
|
Liu X, Zou D, Hu Y, He Y, Lu J. Research Progress of Low-Intensity Pulsed Ultrasound in the Repair of Peripheral Nerve Injury. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:414-428. [PMID: 36785967 DOI: 10.1089/ten.teb.2022.0194] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Peripheral nerve injury (PNI) is a common disease that has profound impact on the health of patients, but has poor prognosis. The gold standard for the treatment of peripheral nerve defects is autologous nerve grafting; notwithstanding, due to the extremely high requirement for surgeons and medical facilities, there is great interest in developing better treatment strategies for PNI. Low-intensity pulsed ultrasound (LIPUS) is a noninterventional stimulation method characterized by low-intensity pulsed waves. It has good therapeutic effect on fractures, inflammation, soft tissue regeneration, and nerve regulation, and can participate in PNI repair from multiple perspectives. This review concentrates on the effects and mechanisms of LIPUS in the repair of PNI from the perspective of LIPUS stimulation of neural cells and stem cells, modulation of neurotrophic factors, signaling pathways, proinflammatory cytokines, and nerve-related molecules. In addition, the effects of LIPUS on nerve conduits are reviewed, as nerve conduits are expected to be a successful alternative treatment for PNI with the development of tissue engineering. Overall, the application advantages and prospects of LIPUS in the repair of PNI are highlighted by summarizing the effects of LIPUS on seed cells, neurotrophic factors, and nerve conduits for neural tissue engineering.
Collapse
Affiliation(s)
- Xuling Liu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Derong Zou
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yushi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Hama S, Uemura T, Onode E, Yokoi T, Okada M, Takamatsu K, Nakamura H. Nerve capping treatment using a bioabsorbable nerve conduit with open or closed end for rat sciatic neuroma. Clin Neurol Neurosurg 2021; 209:106920. [PMID: 34500341 DOI: 10.1016/j.clineuro.2021.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Nerve capping treatment using bioabsorbable nerve conduits has recently been introduced for painful amputation neuroma. However, no clinical or experimental data are available for comparing nerve conduits with open distal ends and closed distal ends. Here, we investigated the nerve conduit with open or closed distal ends as the superior capping device, using a commercially available polyglycolic acid (PGA) nerve conduit in a rat sciatic nerve amputation model. METHODS Ninety-one rats were assigned to three groups: no-capping (n = 30), capping the resected nerve stump with open ends (n = 31), and closed-end nerve conduits (n = 30). Twelve weeks after sciatic neurectomy, with or without capping, the evaluation of neuropathic pain using the autotomy score was performed. Stump neuromas with perineural scars and neuroinflammation were evaluated histologically. RESULTS The mean autotomy scores in the closed-end nerve conduit group were significantly lower than those in the no-capping group. However, the difference between the open-end nerve conduit and the closed-end nerve conduit groups was insignificant. Histologically, distal axonal fibers expanded radially and formed neuromas in the no-capping group while they were terminated within the PGA conduit in both capping groups. In particular, the closed-end version of the PGA nerve conduit blocked scarring from intruding through the open end and protected the nerve stump with less neuroinflammation. Nerve capping with the closed-end version of the PGA nerve conduit most effectively suppressed perineural neuroinflammation and scar formation around the resected nerve stump. INTERPRETATION Nerve capping with the PGA nerve conduit, particularly those with closed ends, after rat sciatic neurectomy prevented amputation neuroma and relieved neuropathic pain.
Collapse
Affiliation(s)
- Shunpei Hama
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Orthopaedic Surgery, Osaka General Hospital of West Japan Railway Company, Osaka, Japan.
| | - Ema Onode
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takuya Yokoi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Orthopaedic Surgery, Seikeikai Hospital, Osaka, Japan
| | - Mitsuhiro Okada
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kiyohito Takamatsu
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
6
|
Yokoi T, Uemura T, Takamatsu K, Shintani K, Onode E, Hama S, Miyashima Y, Okada M, Nakamura H. Fate and contribution of induced pluripotent stem cell-derived neurospheres transplanted with nerve conduits to promote peripheral nerve regeneration in mice. Biomed Mater Eng 2021; 32:171-181. [PMID: 33780359 DOI: 10.3233/bme-201182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND We previously demonstrated that a bioabsorbable nerve conduit coated with mouse induced pluripotent stem cell (iPSC)-derived neurospheres accelerated peripheral nerve regeneration in mice. OBJECTIVE We examined the fate and utility of iPSC-derived neurospheres transplanted with nerve conduits for the treatment of sciatic nerve gaps in mice. METHODS Complete 5-mm defects were created in sciatic nerves and reconstructed using nerve conduits that were either uncoated or coated with mouse iPSC-derived neurospheres. The survival of the neurospheres on the nerve conduits was tracked using an in vivo imaging. The localization of the transplanted cells and regenerating axons was examined histologically. The gene expression levels in the nerve conduits were evaluated. RESULTS The neurospheres survived for at least 14 days, peaking at 4--7 days after implantation. The grafted neurospheres remained as Schwann-like cells within the nerve conduits and migrated into the regenerated axons. The expression levels of ATF3, BDNF, and GDNF in the nerve conduit coated with neurospheres were upregulated. CONCLUSIONS Mouse iPSC-derived neurospheres transplanted with nerve conduits for the treatment of sciatic nerve defects in mice migrated into regenerating axons, survived as Schwann-like cells, and promoted axonal growth with an elevation in the expression of nerve regeneration-associated trophic factors.
Collapse
Affiliation(s)
- Takuya Yokoi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Orthopaedic Surgery, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Kiyohito Takamatsu
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Kosuke Shintani
- Department of Pediatric Orthopaedic Surgery, Osaka City General Hospital, Osaka, Japan
| | - Ema Onode
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shunpei Hama
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Miyashima
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mitsuhiro Okada
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Yokoi T, Uemura T, Takamatsu K, Onode E, Shintani K, Hama S, Miyashima Y, Okada M, Nakamura H. Long-term survival of transplanted induced pluripotent stem cell-derived neurospheres with nerve conduit into sciatic nerve defects in immunosuppressed mice. Biochem Biophys Rep 2021; 26:100979. [PMID: 33817351 PMCID: PMC8010205 DOI: 10.1016/j.bbrep.2021.100979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Since the advent of induced pluripotent stem cells (iPSCs), clinical trials using iPSC-based cell transplantation therapy have been performed in various fields of regenerative medicine. We previously demonstrated that the transplantation of mouse iPSC-derived neurospheres containing neural stem/progenitor cells with bioabsorbable nerve conduits promoted nerve regeneration in the long term in murine sciatic nerve defect models. However, it remains unclear how long the grafted iPSC-derived neurospheres survived and worked after implantation. In this study, the long-term survival of the transplanted mouse iPSC-derived neurospheres with nerve conduits was evaluated in high-immunosuppressed or non-immunosuppressed mice using in vivo imaging for the development of iPSC-based cell therapy for peripheral nerve injury. Complete 5-mm long defects were created in the sciatic nerves of immunosuppressed and non-immunosuppressed mice and reconstructed using nerve conduits coated with iPSC-derived neurospheres labeled with ffLuc. The survival of mouse iPSC-derived neurospheres on nerve conduits was monitored using in vivo imaging. The transplanted iPSC-derived neurospheres with nerve conduits survived for 365 days after transplantation in the immunosuppressed allograft models, but only survived for at least 14 days in non-immunosuppressed allograft models. This is the first study to find the longest survival rate of stem cells with nerve conduits transplanted into the peripheral nerve defects using in vivo imaging and demonstrates the differences in graft survival rate between the immunosuppressed allograft model and immune responsive allograft model. In the future, if iPSC-derived neurospheres are successfully transplanted into peripheral nerve defects with nerve conduits using iPSC stock cells without eliciting an immune response, axonal regeneration will be induced due to the longstanding supportive effect of grafted cells on direct remyelination and/or secretion of trophic factors.
Collapse
Affiliation(s)
- Takuya Yokoi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Orthopaedic Surgery, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Kiyohito Takamatsu
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Ema Onode
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosuke Shintani
- Department of Pediatric Orthopaedic Surgery, Osaka City General Hospital, Osaka, Japan
| | - Shunpei Hama
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Miyashima
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mitsuhiro Okada
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Onode E, Uemura T, Takamatsu K, Yokoi T, Shintani K, Hama S, Miyashima Y, Okada M, Nakamura H. Bioabsorbable nerve conduits three-dimensionally coated with human induced pluripotent stem cell-derived neural stem/progenitor cells promote peripheral nerve regeneration in rats. Sci Rep 2021; 11:4204. [PMID: 33602991 PMCID: PMC7893001 DOI: 10.1038/s41598-021-83385-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Peripheral nerve regeneration using nerve conduits has been less effective than autogenous nerve grafts. To overcome this hurdle, we developed a tissue-engineered nerve conduit coated with mouse induced pluripotent stem cell (iPSC)-derived neurospheres, for the first time, which accelerated nerve regeneration in mice. We previously demonstrated the long-term efficacy and safety outcomes of this hybrid nerve conduit for mouse peripheral nerve regeneration. In this study, we investigated the therapeutic potential of nerve conduits coated with human iPSC (hiPSC)-derived neurospheres in rat sciatic nerve defects, as a translational preclinical study. The hiPSC-derived quaternary neurospheres containing neural stem/progenitor cells were three-dimensionally cultured within the nerve conduit (poly l-lactide and polycaprolactone copolymer) for 14 days. Complete 5-mm defects were created as a small size peripheral nerve defect in sciatic nerves of athymic nude rats and reconstructed with nerve conduit alone (control group), nerve conduits coated with hiPSC-derived neurospheres (iPS group), and autogenous nerve grafts (autograft group) (n = 8 per group). The survival of the iPSC-derived neurospheres was continuously tracked using in vivo imaging. At 12 weeks postoperatively, motor and sensory function and histological nerve regeneration were evaluated. Before implantation, the hiPSC-derived quaternary neurospheres that three-dimensional coated the nerve conduit were differentiated into Schwann-like cells. The transplanted hiPSC-derived neurospheres survived for at least 56 days after implantation. The iPS group showed non-significance higher sensory regeneration than the autograft group. Although there was no actual motor functional nerve regeneration in the three groups: control, iPS, and autograft groups, the motor function in the iPS group recovered significantly better than that in the control group, but it did not recover to the same level as that in the autograft group. Histologically, the iPS group demonstrated significantly higher axon numbers and areas, and lower G-ratio values than the control group, whereas the autograft group demonstrated the highest axon numbers and areas and the lowest G-ratio values. Nerve conduit three-dimensionally coated with hiPSC-derived neurospheres promoted axonal regeneration and functional recovery in repairing rat sciatic nerve small size defects. Transplantation of hiPSC-derived neurospheres with nerve conduits is a promising clinical iPSC-based cell therapy for the treatment of peripheral nerve defects.
Collapse
Affiliation(s)
- Ema Onode
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan. .,Department of Orthopaedic Surgery, Osaka General Hospital of West Japan Railway Company, Osaka, Japan.
| | - Kiyohito Takamatsu
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Takuya Yokoi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kosuke Shintani
- Department of Pediatric Orthopaedic Surgery, Osaka City General Hospital, Osaka, Japan
| | - Shunpei Hama
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yusuke Miyashima
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Mitsuhiro Okada
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
9
|
Meena P, Kakkar A, Kumar M, Khatri N, Nagar RK, Singh A, Malhotra P, Shukla M, Saraswat SK, Srivastava S, Datt R, Pandey S. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res 2020; 383:617-644. [PMID: 33201351 DOI: 10.1007/s00441-020-03301-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Injuries to the peripheral nervous system remain a large-scale clinical problem. These injuries often lead to loss of motor and/or sensory function that significantly affects patients' quality of life. The current neurosurgical approach for peripheral nerve repair involves autologous nerve transplantation, which often leads to clinical complications. The most pressing need is to increase the regenerative capacity of existing tubular constructs in the repair of large nerve gaps through development of tissue-engineered approaches that can surpass the performance of autografts. To fully realize the clinical potential of nerve conduit technology, there is a need to reconsider design strategies, biomaterial selection, fabrication techniques and the various potential modifications to optimize a conduit microenvironment that can best mimic the natural process of regeneration. In recent years, a significant progress has been made in the designing and functionality of bioengineered nerve conduits to bridge long peripheral nerve gaps in various animal models. However, translation of this work from lab to commercial scale has not been achieve. The current review summarizes recent advances in the development of tissue engineered nerve guidance conduits (NGCs) with regard to choice of material, novel fabrication methods, surface modifications and regenerative cues such as stem cells and growth factors to improve regeneration performance. Also, the current clinical potential and future perspectives to achieve therapeutic benefits of NGCs will be discussed in context of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Poonam Meena
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rakesh Kumar Nagar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Aarti Singh
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Sumit Kumar Saraswat
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Supriya Srivastava
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India.
| |
Collapse
|
10
|
Perspectives on 3D Bioprinting of Peripheral Nerve Conduits. Int J Mol Sci 2020; 21:ijms21165792. [PMID: 32806758 PMCID: PMC7461058 DOI: 10.3390/ijms21165792] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
The peripheral nervous system controls the functions of sensation, movement and motor coordination of the body. Peripheral nerves can get damaged easily by trauma or neurodegenerative diseases. The injury can cause a devastating effect on the affected individual and his aides. Treatment modalities include anti-inflammatory medications, physiotherapy, surgery, nerve grafting and rehabilitation. 3D bioprinted peripheral nerve conduits serve as nerve grafts to fill the gaps of severed nerve bodies. The application of induced pluripotent stem cells, its derivatives and bioprinting are important techniques that come in handy while making living peripheral nerve conduits. The design of nerve conduits and bioprinting require comprehensive information on neural architecture, type of injury, neural supporting cells, scaffold materials to use, neural growth factors to add and to streamline the mechanical properties of the conduit. This paper gives a perspective on the factors to consider while bioprinting the peripheral nerve conduits.
Collapse
|
11
|
Onode E, Uemura T, Takamatsu K, Shintani K, Yokoi T, Okada M, Nakamura H. Nerve capping with a nerve conduit for the treatment of painful neuroma in the rat sciatic nerve. J Neurosurg 2020; 132:856-864. [PMID: 30964248 DOI: 10.3171/2018.10.jns182113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/15/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Treatment of painful neuroma remains difficult, despite the availability of numerous surgical procedures. Recently, nerve capping treatment for painful neuroma using artificial nerve conduits has been introduced in clinical and basic research. However, the appropriate length of the nerve conduit and the pain relief mechanism have not been determined. In this study the authors aimed to investigate nerve capping treatment with a bioabsorbable nerve conduit using the rat sciatic nerve amputation model. Using histological analysis, the authors focused on the nerve conduit length and pain relief mechanism. METHODS Sixteen Sprague Dawley rats were evaluated for neuropathic pain using an autotomy (self-amputation) score and gross and histological changes of the nerve stump 2, 4, 8, and 12 weeks after sciatic nerve neurectomy without capping. Forty-five rats were divided into 3 experimental groups, no capping (control; n = 15), capping with a 3-mm nerve conduit (n = 15), and capping with a 6-mm nerve conduit (n = 15). All rats were evaluated using an autotomy score and nerve stump histology 12 weeks after neurectomy. The nerve conduit was approximately 0.5 mm larger than the 1.5-mm diameter of the rat sciatic nerves to prevent nerve constriction. RESULTS The autotomy scores gradually exacerbated with time. Without capping, a typical bulbous neuroma was formed due to random axonal regeneration 2 weeks after neurectomy. Subsequently, the adhesion surrounding the neuroma expanded over time for 12 weeks, and at the 12-week time point, the highest average autotomy scores were observed in the no-capping (control) group, followed by the 3- and the 6-mm nerve conduit groups. Histologically, the distal axonal fibers became thinner and terminated within the 6-mm nerve conduit, whereas they were elongated and protruded across the 3-mm nerve conduit. Minimal perineural scar formation was present around the terminated axonal fibers in the 6-mm nerve conduit group. Expressions of anti-α smooth muscle actin and anti-sigma-1 receptor antibodies in the nerve stump significantly decreased in the 6-mm nerve conduit group. CONCLUSIONS In the rat sciatic nerve amputation model, nerve capping treatment with a bioabsorbable nerve conduit provided relief from neuroma-induced neuropathic pain and prevented perineural scar formation and neuroinflammation around the nerve stump. The appropriate nerve conduit length was determined to be more than 4 times the diameter of the original nerve.
Collapse
Affiliation(s)
- Ema Onode
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine
| | - Takuya Uemura
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine
- 2Department of Orthopaedic Surgery, Osaka General Hospital of West Japan Railway Company; and
| | - Kiyohito Takamatsu
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine
- 3Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Kosuke Shintani
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine
| | - Takuya Yokoi
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine
| | - Mitsuhiro Okada
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine
| | - Hiroaki Nakamura
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine
| |
Collapse
|
12
|
Yi S, Zhang Y, Gu X, Huang L, Zhang K, Qian T, Gu X. Application of stem cells in peripheral nerve regeneration. BURNS & TRAUMA 2020; 8:tkaa002. [PMID: 32346538 PMCID: PMC7175760 DOI: 10.1093/burnst/tkaa002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Traumatic peripheral nerve injury is a worldwide clinical issue with high morbidity. The severity of peripheral nerve injury can be classified as neurapraxia, axonotmesis or neurotmesis, according to Seddon's classification, or five different degrees according to Sunderland's classification. Patients with neurotmesis suffer from a complete transection of peripheral nerve stumps and are often in need of surgical repair of nerve defects. The applications of autologous nerve grafts as the golden standard for peripheral nerve transplantation meet some difficulties, including donor nerve sacrifice and nerve mismatch. Attempts have been made to construct tissue-engineered nerve grafts as supplements or even substitutes for autologous nerve grafts to bridge peripheral nerve defects. The incorporation of stem cells as seed cells into the biomaterial-based scaffolds increases the effectiveness of tissue-engineered nerve grafts and largely boosts the regenerative process. Numerous stem cells, including embryonic stem cells, neural stem cells, bone marrow mesenchymal stem cells, adipose stem cells, skin-derived precursor stem cells and induced pluripotent stem cells, have been used in neural tissue engineering. In the current review, recent trials of stem cell-based tissue-engineered nerve grafts have been summarized; potential concerns and perspectives of stem cell therapeutics have also been contemplated.
Collapse
Affiliation(s)
- Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Nuclear Medicine Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaokun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Li Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Kairong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Tianmei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
13
|
Shintani K, Uemura T, Takamatsu K, Yokoi T, Onode E, Okada M, Tabata Y, Nakamura H. Evaluation of dual release of stromal cell-derived factor-1 and basic fibroblast growth factor with nerve conduit for peripheral nerve regeneration: An experimental study in mice. Microsurgery 2019; 40:377-386. [PMID: 31868964 DOI: 10.1002/micr.30548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/30/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The development of drug delivery systems has enabled the release of multiple bioactive molecules. The efficacy of nerve conduits coated with dual controlled release of stromal cell-derived factor-1 (SDF-1) and basic fibroblast growth factor (bFGF) for peripheral nerve regeneration was investigated. MATERIALS AND METHODS Sixty-two C57BL6 mice were used for peripheral nerve regeneration with a nerve conduit (inner diameter, 1 mm, and length, 7 mm) and an autograft. The mice were randomized into five groups based on the different repairs of nerve defects. In the group of repair with conduits alone (n = 9), a 5-mm sciatic nerve defect was repaired by the nerve conduit. In the group of repair with conduits coated with bFGF (n = 10), SDF-1 (n = 10), and SDF-1/bFGF (n = 10), it was repaired by the nerve conduit with bFGF gelatin, SDF-1 gelatin, and SDF-1/bFGF gelatin, respectively. In the group of repair with autografts (n = 10), it was repaired by the resected nerve itself. The functional recovery, nerve regeneration, angiogenesis, and TGF-β1 gene expression were assessed. RESULTS In the conduits coated with SDF-1/bFGF group, the mean sciatic functional index value (-88.68 ± 10.64, p = .034) and the axon number (218.8 ± 111.1, p = .049) were significantly higher than the conduit alone group, followed by the autograft group; in addition, numerous CD34-positive cells and micro vessels were observed. TGF-β1 gene expression relative values in the conduits with SDF-1/bFGF group at 3 days (7.99 ± 5.14, p = .049) significantly increased more than the conduits alone group. CONCLUSION Nerve conduits coated with dual controlled release of SDF-1 and bFGF promoted peripheral nerve regeneration.
Collapse
Affiliation(s)
- Kosuke Shintani
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Pediatric Orthopaedic Surgery, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Orthopaedic Surgery, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Kiyohito Takamatsu
- Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Takuya Yokoi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ema Onode
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mitsuhiro Okada
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiko Tabata
- Department of Regeneration Science and Engineering, Institute for Frontier Life and MedicalSciences, Kyoto University, Kyoto, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
14
|
Sayad-Fathi S, Nasiri E, Zaminy A. Advances in stem cell treatment for sciatic nerve injury. Expert Opin Biol Ther 2019; 19:301-311. [PMID: 30700166 DOI: 10.1080/14712598.2019.1576630] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The sciatic nerve is one of the peripheral nerves that is most prone to injuries. After injury, the connection between the nervous system and the distal organs is disrupted, and delayed treatment results in distal organ atrophy and total disability. Regardless of great advances in the fields of neurosurgery, biological sciences, and regenerative medicine, total functional recovery is yet to be achieved. AREAS COVERED Cell-based therapy for the treatment of peripheral nerve injuries (PNIs) has brought a new perspective to the field of regenerative medicine. Having the ability to differentiate into neural and glial cells, stem cells enhance neural regeneration after PNIs. Augmenting axonal regeneration, remyelination, and muscle mass preservation are the main mechanisms underlying stem cells' beneficial effects on neural regeneration. EXPERT OPINION Despite the usefulness of employing stem cells for the treatment of PNIs in pre-clinical settings, further assessments are still needed in order to translate this approach into clinical settings. Mesenchymal stem cells, especially adipose-derived stem cells, with the ability of autologous transplantation, as well as easy harvesting procedures, are speculated to be the most promising source to be used in the treatment of PNIs.
Collapse
Affiliation(s)
- Sara Sayad-Fathi
- a Neuroscience Research Center, Faculty of Medicine , Guilan University of Medical Sciences , Rasht , Iran
| | - Ebrahim Nasiri
- a Neuroscience Research Center, Faculty of Medicine , Guilan University of Medical Sciences , Rasht , Iran
| | - Arash Zaminy
- a Neuroscience Research Center, Faculty of Medicine , Guilan University of Medical Sciences , Rasht , Iran
| |
Collapse
|
15
|
Him A, Onger ME, Delibas B. Periferik Sinir Rejenerasyonu ve Kök Hücre Tedavileri. ACTA ACUST UNITED AC 2018. [DOI: 10.31832/smj.404819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Shintani K, Uemura T, Takamatsu K, Yokoi T, Onode E, Okada M, Nakamura H. Protective effect of biodegradable nerve conduit against peripheral nerve adhesion after neurolysis. J Neurosurg 2017; 129:815-824. [PMID: 29053076 DOI: 10.3171/2017.4.jns162522] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Peripheral nerve adhesion caused by extraneural and intraneural scar formation after neurolysis leads to nerve dysfunction. The authors previously developed a novel very flexible biodegradable nerve conduit composed of poly(L-lactide) and poly(ε-caprolactone) for use in peripheral nerve regeneration. In the present study, they investigated the effect of protective nerve wrapping on preventing adhesion in a rat sciatic nerve adhesion model. METHODS Rat sciatic nerves were randomly assigned to one of the following four groups: a no-adhesion group, which involved neurolysis alone without an adhesion procedure; an adhesion group, in which the adhesion procedure was performed after neurolysis, but no treatment was subsequently administered; a nerve wrap group, in which the adhesion procedure was performed after neurolysis and protective nerve wrapping was then performed with the nerve conduit; and a hyaluronic acid (HA) group, in which the adhesion procedure was performed after neurolysis and nerve wrapping was then performed with a 1% sodium HA viscous solution. Six weeks postoperatively, the authors evaluated the extent of scar formation using adhesion scores and biomechanical and histological examinations and assessed nerve function with electrophysiological examination and gastrocnemius muscle weight measurement. RESULTS In the adhesion group, prominent scar tissue surrounded the nerve and strongly adhered to the nerve biomechanically and histologically. The motor nerve conduction velocity and gastrocnemius muscle weight were the lowest in this group. Conversely, the adhesion scores were significantly lower, motor nerve conduction velocity was significantly higher, and gastrocnemius muscle weight was significantly higher in the nerve wrap group than in the adhesion group. Additionally, the biomechanical breaking strength was significantly lower in the nerve wrap group than in the adhesion group and HA group. The morphological properties of axons in the nerve wrap group were preserved. Intraneural macrophage invasion, as assessed by the number of CD68- and CCR7-positive cells, was less severe in the nerve wrap group than in the adhesion group. CONCLUSIONS The nerve conduit prevented post-neurolysis peripheral nerves from developing adhesion and allowed them to maintain their nerve function because it effectively blocked scarring and prevented adhesion-related damage in the peripheral nerves.
Collapse
Affiliation(s)
- Kosuke Shintani
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine; and
| | - Takuya Uemura
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine; and
| | - Kiyohito Takamatsu
- 2Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Takuya Yokoi
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine; and
| | - Ema Onode
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine; and
| | - Mitsuhiro Okada
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine; and
| | - Hiroaki Nakamura
- 1Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine; and
| |
Collapse
|
17
|
Yokoi T, Uemura T, Takamatsu K, Shintani K, Onode E, Okada M, Hidaka N, Nakamura H. Bioabsorbable nerve conduits coated with induced pluripotent stem cell-derived neurospheres enhance axonal regeneration in sciatic nerve defects in aged mice. J Biomed Mater Res B Appl Biomater 2017; 106:1752-1758. [PMID: 28888079 DOI: 10.1002/jbm.b.33983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/16/2017] [Accepted: 08/16/2017] [Indexed: 11/10/2022]
Abstract
Aging influences peripheral nerve regeneration. Nevertheless, most basic research of bioabsorbable nerve conduits including commercial products have been performed in very young animals. Results from these studies may not provide information about axonal regeneration in aged tissue, because young nerve tissue holds sufficient endogenous potential for axonal regeneration. The clinical target age for nerve conduit application is most likely going to increase with a rapidly growing elderly population. In the present study, we examined axonal regeneration after sciatic nerve defects in aged and young mice. 5-mm sciatic nerve defects in young (6 weeks old) and aged (92 weeks old) mice were reconstructed using nerve conduits (composed of a poly lactide and caprolactone) or autografts. In addition, in aged mice, sciatic nerve defects were reconstructed using nerve conduits coated with mouse induced pluripotent stem cell (iPSc)-derived neurospheres. Using electrophysiological and histological techniques, we demonstrated axonal regeneration was significantly less effective in aged than in young mice both for nerve conduits and for nerve autografts. However, despite the low regenerative capacity of the peripheral nerve in aged mice, axonal regeneration significantly increased when nerve conduits coated with iPSc-derived neurospheres, rather than nerve conduits alone, were used. The present study shows that aging negatively affects peripheral nerve regeneration based on nerve conduits in mice. However, axonal regeneration using nerve conduits was improved when supportive iPSc-derived neurospheres were added in the aged mice. We propose that tissue-engineered bioabsorbable nerve conduits in combination with iPSc-derived neurospheres hold therapeutic potential both in young and elderly patients. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1752-1758, 2018.
Collapse
Affiliation(s)
- Takuya Yokoi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kiyohito Takamatsu
- Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Kosuke Shintani
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ema Onode
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mitsuhiro Okada
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Noriaki Hidaka
- Department of Orthopaedic Surgery, Osaka City General Hospital, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
18
|
Ishii T, Sakai D, Schol J, Nakai T, Suyama K, Watanabe M. Sciatic nerve regeneration by transplantation of in vitro differentiated nucleus pulposus progenitor cells. Regen Med 2017. [DOI: 10.2217/rme-2016-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To assess the applicability of mouse intervertebral disc-derived nucleus pulposus (NP) progenitor cells as a cell source for sciatic nerve regeneration. Materials & methods: P0-Cre/Floxed-EGFP-transgenic mouse-derived NP progenitor cells were differentiated to Schwann-like cells in conventional induction medium. Schwann-like cells were subsequently transplanted into a mouse model of sciatic nerve transection, and nerve regeneration assessed by immunohistochemistry, electron microscopy and functional walking track analysis and heat stimulus reflex. Results & conclusion: NP progenitor cells differentiated into Schwann-like cells. Transplantation of these cells promoted myelinated axon formation, morphology restoration and nerve function improvement. NP progenitor cells have the capacity to differentiate into neuronal cells and are candidates for peripheral nerve regeneration therapy.
Collapse
Affiliation(s)
- Takayuki Ishii
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| | - Tomoko Nakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| | - Kaori Suyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine; 143 Shimokasuya, Isehara, Kanagawa, 259–1143, Japan
| |
Collapse
|
19
|
Jiang L, Jones S, Jia X. Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities. Int J Mol Sci 2017; 18:ijms18010094. [PMID: 28067783 PMCID: PMC5297728 DOI: 10.3390/ijms18010094] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerve regeneration is a complicated process highlighted by Wallerian degeneration, axonal sprouting, and remyelination. Schwann cells play an integral role in multiple facets of nerve regeneration but obtaining Schwann cells for cell-based therapy is limited by the invasive nature of harvesting and donor site morbidity. Stem cell transplantation for peripheral nerve regeneration offers an alternative cell-based therapy with several regenerative benefits. Stem cells have the potential to differentiate into Schwann-like cells that recruit macrophages for removal of cellular debris. They also can secrete neurotrophic factors to promote axonal growth, and remyelination. Currently, various types of stem cell sources are being investigated for their application to peripheral nerve regeneration. This review highlights studies involving the stem cell types, the mechanisms of their action, methods of delivery to the injury site, and relevant pre-clinical or clinical data. The purpose of this article is to review the current point of view on the application of stem cell based strategy for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Liangfu Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Salazar Jones
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Xiaofeng Jia
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Pamies D, Barreras P, Block K, Makri G, Kumar A, Wiersma D, Smirnova L, Zang C, Bressler J, Christian KM, Harris G, Ming GL, Berlinicke CJ, Kyro K, Song H, Pardo CA, Hartung T, Hogberg HT. A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2016; 34:362-376. [PMID: 27883356 PMCID: PMC6047513 DOI: 10.14573/altex.1609122] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022]
Abstract
Human in vitro models of brain neurophysiology are needed to investigate molecular and cellular mechanisms associated with neurological disorders and neurotoxicity. We have developed a reproducible iPSC-derived human 3D brain microphysiological system (BMPS), comprised of differentiated mature neurons and glial cells (astrocytes and oligodendrocytes) that reproduce neuronal-glial interactions and connectivity. BMPS mature over eight weeks and show the critical elements of neuronal function: synaptogenesis and neuron-to-neuron (e.g., spontaneous electric field potentials) and neuronal-glial interactions (e.g., myelination), which mimic the microenvironment of the central nervous system, rarely seen in vitro before. The BMPS shows 40% overall myelination after 8 weeks of differentiation. Myelin was observed by immunohistochemistry and confirmed by confocal microscopy 3D reconstruction and electron microscopy. These findings are of particular relevance since myelin is crucial for proper neuronal function and development. The ability to assess oligodendroglial function and mechanisms associated with myelination in this BMPS model provide an excellent tool for future studies of neurological disorders such as multiple sclerosis and other demyelinating diseases. The BMPS provides a suitable and reliable model to investigate neuron-neuroglia function as well as pathogenic mechanisms in neurotoxicology.
Collapse
Affiliation(s)
- David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Paula Barreras
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Katharina Block
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Georgia Makri
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Anupama Kumar
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Daphne Wiersma
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Lenna Smirnova
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Ce Zang
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Joseph Bressler
- Hugo Moser Institute at the Kennedy Krieger, Johns Hopkins University, Baltimore, USA
| | - Kimberly M Christian
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Georgina Harris
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Guo-Li Ming
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | | | - Kelly Kyro
- US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, USA
| | - Hongjun Song
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA.,University of Konstanz, Konstanz, Germany
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
21
|
Matsumoto R, Shimizu K, Nagashima T, Tanaka H, Mizuno M, Kikkawa F, Hori M, Honda H. Plasma-activated medium selectively eliminates undifferentiated human induced pluripotent stem cells. Regen Ther 2016; 5:55-63. [PMID: 31245502 PMCID: PMC6581823 DOI: 10.1016/j.reth.2016.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
Human pluripotent stem cells, including human induced pluripotent stem cells (hiPSCs), are promising materials for regenerative medicine and cell transplantation therapy. However, tumorigenic potential of residual undifferentiated stem cells hampers their use in these therapies. Therefore, it is important to develop methods that selectively eliminate undifferentiated stem cells from a population of differentiated cells before their transplantation. In the present study, we investigated whether plasma-activated medium (PAM) selectively eliminated undifferentiated hiPSCs by inducing external oxidative stress. PAM was prepared by irradiating cell culture medium with non-thermal atmospheric pressure plasma. We observed that PAM selectively and efficiently killed undifferentiated hiPSCs cocultured with normal human dermal fibroblasts (NHDFs), which were used as differentiated cells. We also observed that undifferentiated hiPSCs were more sensitive to PAM than hiPSC-derived differentiated cells. Gene expression analysis suggested that lower expression of oxidative stress-related genes, including those encoding enzymes involved in hydrogen peroxide (H2O2) degradation, in undifferentiated hiPSCs was one of the mechanisms underlying PAM-induced selective cell death. PAM killed undifferentiated hiPSCs more efficiently than a medium containing the same concentration of H2O2 as that in PAM, suggesting that H2O2 and various reactive oxygen/nitrogen species in PAM selectively eliminated undifferentiated hiPSCs. Thus, our results indicate that PAM has a great potential to eliminate tumorigenic hiPSCs from a population of differentiated cells and that it may be a very useful tool in regenerative medicine and cell transplantation therapy.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- CAT, catalase
- GPX1, glutathione peroxidase 1
- Human induced pluripotent stem cells (hiPSCs)
- NHDFs, normal human dermal fibroblasts
- Oxidative stress
- PAM, plasma-activated medium
- PI, Propidium Iodide
- Plasma-activated medium (PAM)
- RONS, reactive oxygen/nitrogen species
- ROS, reactive oxygen species
- Regenerative medicine
- SOD, superoxide dismutase
- Selective elimination
- hESCs, human embryonic stem cells
- hPSCs, human pluripotent stem cells
- hiPSCs, human induced pluripotent stem cells
Collapse
Affiliation(s)
- Ryo Matsumoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazunori Shimizu
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takunori Nagashima
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiromasa Tanaka
- Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
| | - Masaru Hori
- Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hiroyuki Honda
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Innovative Research Center for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
22
|
Stem cell regenerative potential for plastic and reconstructive surgery. Cell Tissue Bank 2016; 17:735-744. [PMID: 27604466 DOI: 10.1007/s10561-016-9583-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022]
Abstract
Stem cells represent heterogeneous population of undifferentiated cells with unique characteristics of long term self renewal and plasticity. Moreover, they are capable of active migration to diseased tissues, secretion of different bioactive molecules, and they have immunosuppressive potential as well. They occur in all tissues through life and are involved in process of embryogenesis and regeneration. During last decades stem cells attracted significant attention in each field of medicine, including plastic and reconstructive surgery. The main goal of the present review article is to present and discuss the potential of stem cells and to provide information about their safe utilization in chronic wounds and fistulae healing, scar management, breast reconstruction, as well as in bone, tendon and peripheral nerve regeneration.
Collapse
|
23
|
Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair. Stem Cells Int 2016; 2016:7502178. [PMID: 27212954 PMCID: PMC4861803 DOI: 10.1155/2016/7502178] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury continues to pose a clinical hurdle despite its frequency and advances in treatment. Unlike the central nervous system, neurons of the peripheral nervous system have a greater ability to regenerate. However, due to a number of confounding factors, this is often both incomplete and inadequate. The lack of supportive Schwann cells or their inability to maintain a regenerative phenotype is a major factor. Advances in nervous system tissue engineering technology have led to efforts to build Schwann cell scaffolds to overcome this and enhance the regenerative capacity of neurons following injury. Stem cells that can differentiate along a neural lineage represent an essential resource and starting material for this process. In this review, we discuss the different stem cell types that are showing promise for nervous system tissue engineering in the context of peripheral nerve injury. We also discuss some of the biological, practical, ethical, and commercial considerations in using these different stem cells for future clinical application.
Collapse
|