1
|
Zhao X, Hu X, Wang W, Lu S. Macrophages dying from ferroptosis promote microglia-mediated inflammatory responses during spinal cord injury. Int Immunopharmacol 2024; 143:113281. [PMID: 39357207 DOI: 10.1016/j.intimp.2024.113281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The neurological deficits following traumatic spinal cord injury are associated with severe patient disability and economic consequences. Currently, an increasing number of studies are focusing on the importance of ferroptosis during acute organ injuries. However, the spatial and temporal distribution patterns of ferroptosis during SCI and the details of its role are largely unknown. In this study, in vivo experiments revealed that microglia are in close proximity to macrophages, the major cell type that undergoes ferroptosis following SCI. Furthermore, we found that ferroptotic macrophages aggravate SCI by inducing the proinflammatory properties of microglia. In vitro studies further revealed ferroptotic macrophages increased the expression of IL-1β, IL-6, and IL-23 in microglia. Mechanistically, due to the activation of the NF-κB signaling pathway, the expression of IL-1β and IL-6 was increased. In addition, we established that increased levels of oxidative phosphorylation cause mitochondrial reactive oxygen species generation and unfolded protein response activation and trigger an inflammatory response marked by an increase in IL-23 production. Our findings identified that targeting ferroptosis and IL-23 could be an effective strategy for promoting neurological recovery after SCI.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
2
|
Zhang C, Liu X, Gu C, Su Y, Lv J, Liu Y, Gao Y, Chen H, Xu N, Xiao J, Xu Z, Su W. Histone deacetylases facilitate Th17-cell differentiation and pathogenicity in autoimmune uveitis via CDK6/ID2 axis. J Adv Res 2024:S2090-1232(24)00313-8. [PMID: 39107200 DOI: 10.1016/j.jare.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Autoimmune uveitis (AU) is a prevalent ocular autoimmune disease leading to significant visual impairment. However, underlying pathogenesis of AU required to develop more efficient therapy remain unclear. METHODS We isolated peripheral blood mononuclear cells (PBMCs) from AU patients and performed single-cell RNA sequencing (scRNA-seq). Besides, experimental autoimmune uveitis (EAU) model was established and treated with histone deacetylase inhibitor (HDACi) Belinostat or vehicle. We extracted immune cells from Blank, EAU, and HDACi-treated EAU mice and used scRNA-seq, flow cytometry, siRNA, specific inhibitors, and adoptive transfer experiments to explore the role of HDACs and its downstream potential molecular mechanisms in the immune response of EAU and AU. RESULTS We found highly expressed histone deacetylases (HDACs) family in AU patients and identified it as a key factor related to CD4+ effector T cell differentiation in the pathogenesis of AU. Our further studies showed that targeted inhibition of HDACs effectively alleviated EAU, restored its Th17/Treg balance, and reduced inflammatory gene expression, especially in CD4+ T cells. Post-HDACs inhibition, Treg proportions increased with enhanced immunomodulatory effects. Importantly, HDACs exhibited a positive promoting role on Th17 cells. Based on scRNA-seq screening and application of knock-down siRNAs and specific inhibitors in vitro and vivo, we identified CDK6 as a key downstream molecule regulated by HDAC1/3/6 through acetyl-histone H3/p53/p21 axis, which is involved in Th17 pathogenicity and EAU development. Additionally, HDACs-regulated CDK6 formed a positive loop with ID2, inducing PIM1 upregulation, promoting Th17 cell differentiation and pathogenicity, and correlates with AU progression. CONCLUSION Based on the screening of clinical samples and downstream molecular functional validation experiments, we revealed a driving role for HDACs and the HDACs-regulated CDK6/ID2 axis in Th17 cell differentiation and pathogenicity in AU, proposing a promising therapeutic strategy.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuhan Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Hui Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nanwei Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Clinical Medicine (Eight-Year Program), West China School of Medicine, Sichuan University, Chengdu 610044, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Wenru Su
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
3
|
Bagheri-Hosseinabadi Z, Kaeidi A, Rezvani M, Taghipour Khaje Sharifi G, Abbasifard M. Evaluation of the serum levels of CCL2, CCL3, and IL-29 after first and second administrations of the COVID-19 vaccine (Oxford-AstraZeneca). Immunobiology 2024; 229:152789. [PMID: 38290406 DOI: 10.1016/j.imbio.2024.152789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Previous studies show that chemokines and cytokines play a very important role in eliciting an appropriate response against viruses. Vaccination causes inflammation in the person receiving the vaccine, accompanied with production of inflammatory molecules by immune cells. The more and better the production and expression of chemokines and cytokines by immune cells, the better the response of the acquired immune system. Chemokines and cytokines are critical in promoting the innate immune response against the COVID-19. Here we intended to assess serum levels of CCL2, CCL3, and interleukin (IL)-29 in patients received COVID-19 vaccine. METHODS In this study, 40 subjects vaccinated with the Oxford-AstraZeneca COVID-19 vaccine were selected. Blood samples were collected before injection of the vaccine, 3-5 days after the first dose injection, and 3-5 days subsequent to the second vaccination. To check the serum level of CCL2, CCL3, and IL-29, ELISA technique was used. RESULTS Our results indicated that the serum levels of CCL2, CCL3, and IL-29 were significantly higher after first and second dose of vaccination compared to before vaccine administration. Furthermore, serum levels of all these mediators were higher after second dose of vaccine compared to the first vaccine administration. CONCLUSIONS Oxford-AstraZeneca COVID-19 vaccine is able to induce inflammatory CCL2 and CCL3 chemokines as well as protective interferon lambda (IL-29).
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahdi Rezvani
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
4
|
Kim HJ, Dinh DTT, Yang J, Herath KHINM, Seo SH, Son YO, Kang I, Jee Y. High sucrose intake exacerbates airway inflammation through pathogenic Th2 and Th17 response in ovalbumin (OVA)-induced acute allergic asthma in C57BL/6 mice. J Nutr Biochem 2024; 124:109504. [PMID: 37944673 DOI: 10.1016/j.jnutbio.2023.109504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Asthma is an inflammatory disease characterized by chronic inflammation in lung tissues and excessive mucus production. High-fat diets have long been assumed to be a potential risk factor for asthma. However, to date, very few direct evidence indicating the involvement of high sucrose intake (HSI) in asthma progression exists. In this study, we investigate the effect of HSI on ovalbumin (OVA)-sensitized allergic asthma mice. We observed that HSI increased the expression of inflammatory genes (IL-1β, IL-6, TNF-α) in adipose tissues and led to reactive oxygen species generation in the liver and lung. In addition, HSI accelerated the TLR4/NF-κB signaling pathway leading to MMP9 activation, which promotes the chemokines and TGF-β secretion in the lungs of OVA-sensitized allergic asthma mice. More importantly, HSI significantly promoted the pathogenic Th2 and Th17 responses. The increase of IL-17A secretion by HSI increased the expression of chemokines (MCP-1, CXCL1, CXCL5, CXCL8). It resulted in eosinophil and mast cell infiltration in the lung and trachea. We also demonstrated that HSI increased mucus hypersecretion, which was validated by increased main mucin protein (MUC5AC) secreted in the lungs. Our findings suggest that HSI exacerbates the development of Th2/Th17-predominant asthma by upregulating the TLR4-mediated NF-κB pathway, leading to excessive MMP9 production.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea
| | - Duong Thi Thuy Dinh
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Jiwon Yang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea; Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University
| | | | - Seok Hee Seo
- Department of Food Science and Nutrition, Jeju National University, Jeju, Republic of Korea
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea; Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University
| | - Inhae Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea; Department of Food Science and Nutrition, Jeju National University, Jeju, Republic of Korea.
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea; Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea.
| |
Collapse
|
5
|
Deng R, Wang X, Li R. Dermatophyte infection: from fungal pathogenicity to host immune responses. Front Immunol 2023; 14:1285887. [PMID: 38022599 PMCID: PMC10652793 DOI: 10.3389/fimmu.2023.1285887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Dermatophytosis is a common superficial infection caused by dermatophytes, a group of pathogenic keratinophilic fungi. Apart from invasion against skin barrier, host immune responses to dermatophytes could also lead to pathologic inflammation and tissue damage to some extent. Therefore, it is of great help to understand the pathogenesis of dermatophytes, including fungal virulence factors and anti-pathogen immune responses. This review aims to summarize the recent advances in host-fungal interactions, focusing on the mechanisms of anti-fungal immunity and the relationship between immune deficiency and chronic dermatophytosis, in order to facilitate novel diagnostic and therapeutic approaches to improve the outcomes of these patients.
Collapse
Affiliation(s)
- Ruixin Deng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
6
|
James BN, Weigel C, Green CD, Brown RDR, Palladino END, Tharakan A, Milstien S, Proia RL, Martin RK, Spiegel S. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice. FASEB J 2023; 37:e22799. [PMID: 36753412 PMCID: PMC9990076 DOI: 10.1096/fj.202201821r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Genome-wide association studies have linked the ORM (yeast)-like protein isoform 3 (ORMDL3) to asthma severity. Although ORMDL3 is a member of a family that negatively regulates serine palmitoyltransferase (SPT) and thus biosynthesis of sphingolipids, it is still unclear whether ORMDL3 and altered sphingolipid synthesis are causally related to non-Th2 severe asthma associated with a predominant neutrophil inflammation and high interleukin-17 (IL-17) levels. Here, we examined the effects of ORMDL3 overexpression in a preclinical mouse model of allergic lung inflammation that is predominantly neutrophilic and recapitulates many of the clinical features of severe human asthma. ORMDL3 overexpression reduced lung and circulating levels of dihydrosphingosine, the product of SPT. However, the most prominent effect on sphingolipid levels was reduction of circulating S1P. The LPS/OVA challenge increased markers of Th17 inflammation with a predominant infiltration of neutrophils into the lung. A significant decrease of neutrophil infiltration was observed in the Ormdl3 transgenic mice challenged with LPS/OVA compared to the wild type and concomitant decrease in IL-17, that plays a key role in the pathogenesis of neutrophilic asthma. LPS decreased survival of murine neutrophils, which was prevented by co-treatment with S1P. Moreover, S1P potentiated LPS-induced chemotaxis of neutrophil, suggesting that S1P can regulate neutrophil survival and recruitment following LPS airway inflammation. Our findings reveal a novel connection between ORMDL3 overexpression, circulating levels of S1P, IL-17 and neutrophil recruitment into the lung, and questions the potential involvement of ORMDL3 in the pathology, leading to development of severe neutrophilic asthma.
Collapse
Affiliation(s)
- Briana N. James
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Christopher D. Green
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Ryan D. R. Brown
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Elisa N. D. Palladino
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Anuj Tharakan
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Richard L. Proia
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Rebecca K. Martin
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
7
|
Zhang J, Chen J, Richardson JP, Francis-Newton NJ, Lai PF, Jenkins K, Major MR, Key RE, Stewart ME, Firth-Clark S, Lloyd SM, Newton GK, Perrior TR, Garrod DR, Robinson C. Targeting an Initiator Allergen Provides Durable and Expansive Protection against House Dust Mite Allergy. ACS Pharmacol Transl Sci 2022; 5:735-751. [PMID: 36110379 PMCID: PMC9469500 DOI: 10.1021/acsptsci.2c00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/30/2022]
Abstract
Whereas treatment of allergic diseases such as asthma relies largely on the targeting of dysregulated effector pathways, the conceptually attractive alternative of preventing them by a pharmaceutical, at-source intervention has been stymied until now by uncertainties about suitable targets and the challenges facing drug design. House dust mites (HDMs) are globally significant triggers of allergy. Group 1 HDM allergens, exemplified by Der p 1, are cysteine proteases. Their degradome has a strong disease linkage that underlies their status as risk and initiator allergens acting directly and through bystander effects on other allergens. Our objective was to test whether target-selective inhibitors of group 1 HDM allergens might provide a viable route to novel therapies. Using structure-directed design to optimize a series of pyruvamides, we undertook the first examination of whether pharmaceutically developable inhibitors of group 1 allergens might offer protection against HDM exposure. Developability criteria included durable inhibition of clinically relevant signals after a single aerosolized dose of the drug. The compounds suppressed acute airway responses of rats and mice when challenged with an HDM extract representing the HDM allergome. Inhibitory effects operated through a miscellany of downstream pathways involving, among others, IL-33, thymic stromal lymphopoietin, chemokines, and dendritic cells. IL-13 and eosinophil recruitment, indices of Th2 pathway activation, were strongly attenuated. The surprisingly expansive benefits arising from a unique at-source intervention suggest a novel approach to multiple allergic diseases in which HDMs play prominent roles and encourage exploration of these pharmaceutically developable molecules in a clinical setting.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| | - Jie Chen
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| | - Jonathan P. Richardson
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| | - Nicola-Jane Francis-Newton
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| | - Pei F. Lai
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| | - Kerry Jenkins
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Meriel R. Major
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Rebekah E. Key
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Mark E. Stewart
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Stuart Firth-Clark
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Steven M. Lloyd
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Gary K. Newton
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Trevor R. Perrior
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - David R. Garrod
- Faculty
of Biology, Medicine and Health, University
of Manchester, Manchester M13 9PL, United Kingdom
| | - Clive Robinson
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| |
Collapse
|
8
|
Hong JH, Lee YC. Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060857. [PMID: 35743888 PMCID: PMC9225349 DOI: 10.3390/life12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate the anti-inflammatory effects and mechanisms of CP and OA treatments in LPS-stimulated lung epithelial cells on overall chemokines and their receptors using PCR arrays. In addition, we aimed to confirm those effects and mechanisms in LPS-stimulated lung macrophages on some chemokines and cytokines. In our study, CP treatments significantly inhibited the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL6, CCL9, CCL11, CCL17, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL10, TNF-α, and IL-6, while markedly suppressing NF-κB p65 nuclear translocation and the phosphorylations of PI3K p55, Akt, Erk1/2, p38, and NF-κB p65 in LPS-stimulated lung epithelial cells. CP treatments also significantly decreased the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, and CXCL2, while markedly inhibiting phospho-PI3K p55 and iNOS expression in LPS-stimulated lung macrophages. Likewise, OA treatments significantly suppressed the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CXCL1, CXCL3, CXCL5, CXCL7, CXCL10, CCRL2, TNF-α, and IL-6, while markedly reducing the phosphorylations of PI3K p85, PI3K p55, p38, JNK, and NF-κB p65 in LPS-stimulated lung epithelial cells. Finally, OA treatments significantly inhibited the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, CXCL2, TNF-α, and IL-6, while markedly suppressing phospho-PI3K p55, iNOS, and Cox-2 in LPS-stimulated lung macrophages. These results prove that CP and OA treatments have anti-inflammatory effects on the inflammatory chemokines and cytokines by inhibiting pro-inflammatory mediators, including PI3K, Akt, MAPKs, NF-κB, iNOS, and Cox-2. These findings suggest that CP and OA are potential chemokine-based therapeutic substances for treating the lung and airway inflammation seen in allergic disorders.
Collapse
Affiliation(s)
| | - Young-Cheol Lee
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
9
|
Flegar D, Filipović M, Šućur A, Markotić A, Lukač N, Šisl D, Ikić Matijašević M, Jajić Z, Kelava T, Katavić V, Kovačić N, Grčević D. Preventive CCL2/CCR2 Axis Blockade Suppresses Osteoclast Activity in a Mouse Model of Rheumatoid Arthritis by Reducing Homing of CCR2 hi Osteoclast Progenitors to the Affected Bone. Front Immunol 2021; 12:767231. [PMID: 34925336 PMCID: PMC8677701 DOI: 10.3389/fimmu.2021.767231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023] Open
Abstract
Detailed characterization of medullary and extramedullary reservoirs of osteoclast progenitors (OCPs) is required to understand the pathophysiology of increased periarticular and systemic bone resorption in arthritis. In this study, we focused on identifying the OCP population specifically induced by arthritis and the role of circulatory OCPs in inflammatory bone loss. In addition, we determined the relevant chemokine axis responsible for their migration, and targeted the attraction signal to reduce bone resorption in murine collagen-induced arthritis (CIA). OCPs were expanded in periarticular as well as circulatory compartment of arthritic mice, particularly the CCR2hi subset. This subset demonstrated enhanced osteoclastogenic activity in arthritis, whereas its migratory potential was susceptible to CCR2 blockade in vitro. Intravascular compartment of the periarticular area contained increased frequency of OCPs with the ability to home to the arthritic bone, as demonstrated in vivo by intravascular staining and adoptive transfer of splenic LysMcre/Ai9 tdTomato-expressing cells. Simultaneously, CCL2 levels were increased locally and systemically in arthritic mice. Mouse cohorts were treated with the small-molecule inhibitor (SMI) of CCR2 alone or in combination with methotrexate (MTX). Preventive CCR2/CCL2 axis blockade in vivo reduced bone resorption and OCP frequency, whereas combining with MTX treatment also decreased disease clinical score, number of active osteoclasts, and OCP differentiation potential. In conclusion, our study characterized the functional properties of two distinct OCP subsets in CIA, based on their CCR2 expression levels, implying that the CCR2hi circulatory-like subset is specifically induced by arthritis. Signaling through the CCL2/CCR2 axis contributes to OCP homing in the inflamed joints and to their increased osteoclastogenic potential. Therefore, addition of CCL2/CCR2 blockade early in the course of arthritis is a promising approach to reduce bone pathology.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Benzoxazines/pharmacology
- Bone and Bones/drug effects
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Movement/drug effects
- Cell Movement/genetics
- Cells, Cultured
- Chemokine CCL2/metabolism
- Disease Models, Animal
- Flow Cytometry
- Humans
- Male
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Methotrexate/pharmacology
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Osteoclasts/cytology
- Osteoclasts/metabolism
- RNA Interference
- Receptors, CCR2/antagonists & inhibitors
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Spiro Compounds/pharmacology
- Mice
Collapse
Affiliation(s)
- Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Antonio Markotić
- Center for Clinical Pharmacology, University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina
- Department of Physiology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Nina Lukač
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Ikić Matijašević
- Department of Clinical Immunology, Rheumatology and Pulmology, Sveti Duh University Hospital, Zagreb, Croatia
| | - Zrinka Jajić
- Department of Rheumatology, Physical Medicine and Rehabilitation, Clinical Hospital Center Sestre Milosrdnice, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vedran Katavić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
10
|
Do Mast Cells Contribute to the Antifungal Host Defense? Cells 2021; 10:cells10102510. [PMID: 34685489 PMCID: PMC8534142 DOI: 10.3390/cells10102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
The fungal kingdom includes a group of microorganisms that are widely distributed in the environment, and therefore the exposure to them is almost constant. Furthermore, fungal components of the microbiome, i.e., mycobiome, could serve as a reservoir of potentially opportunistic pathogens. Despite close encounters with fungi, defense mechanisms that develop during fungal infections remain unexplored. The strategic location of mast cells (MCs) close to the external environment places them among the first cells to encounter pathogens along with the other innate immune cells. MCs are directly involved in the host defense through the ability to destroy pathogens or indirectly by activating other immune cells. Most available data present MCs’ involvement in antibacterial, antiviral, or antiparasitic defense mechanisms. However, less is known about their contribution in defense mechanisms against fungi. MCs may support immune responses to fungi or their specific molecules through initiated degranulation, synthesis and release of cytokines, chemokines, mediators, and generation of reactive oxygen species (ROS), as well as immune cells’ recruitment, phagocytosis, or provision of extracellular DNA traps. This review summarizes current knowledge on host defense mechanisms against fungi and MCs’ involvement in those processes. It also describes the effects of fungi or fungus-derived constituents on MCs’ activity.
Collapse
|
11
|
Żelechowska P, Brzezińska-Błaszczyk E, Różalska S, Agier J, Kozłowska E. Native and IgE-primed rat peritoneal mast cells exert pro-inflammatory activity and migrate in response to yeast zymosan upon Dectin-1 engagement. Immunol Res 2021; 69:176-188. [PMID: 33704666 PMCID: PMC8106611 DOI: 10.1007/s12026-021-09183-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 01/12/2023]
Abstract
Mast cells (MCs) play an essential role in host defense, primarily because of their location, their ability to pathogen destruction via several mechanisms, and the pattern recognition receptors they express. Even though most data is available regarding MC activation by various bacteria- or virus-derived molecules, those cells' activity in response to constituents associated with fungi is not recognized enough. Our research aimed to address whether Saccharomyces cerevisiae-derived zymosan, i.e., β-(1,3)-glucan containing mannan particles, impacts MC activity aspects. Overall, the obtained results indicate that zymosan has the potential to elicit a pro-inflammatory response of rat peritoneal MCs. For the first time ever, we provided evidence that zymosan induces fully mature MC migration, even in the absence of extracellular matrix (ECM) proteins. Moreover, the zymosan-induced migratory response of MCs is almost entirely a result of directional migration, i.e., chemotaxis. We found that zymosan stimulates MCs to degranulate and generate lipid mediators (cysLTs), cytokines (IFN-α, IFN-β, IFN-γ, GM-CSF, TNF), and chemokine (CCL2). Zymosan also upregulated mRNA transcripts for several cytokines/chemokines with pro-inflammatory/immunoregulatory activity. Moreover, we documented that zymosan activates MCs to produce reactive oxygen species (ROS). Lastly, we established that the zymosan-induced MC response is mediated through activation of the Dectin-1 receptor. In general, our results strongly support the notion that MCs contribute to innate antifungal immunity and bring us closer to elucidate their role in host-pathogenic fungi interactions. Besides, provided findings on IgE-sensitized MCs appear to indicate that exposure to fungal zymosan could affect the severity of IgE-dependent disorders, including allergic ones.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|
12
|
Xu H, Alzhrani RF, Warnken ZN, Thakkar SG, Zeng M, Smyth HDC, Williams RO, Cui Z. Immunogenicity of Antigen Adjuvanted with AS04 and Its Deposition in the Upper Respiratory Tract after Intranasal Administration. Mol Pharm 2020; 17:3259-3269. [PMID: 32787271 DOI: 10.1021/acs.molpharmaceut.0c00372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adjuvant system 04 (AS04) is in injectable human vaccines. AS04 contains two known adjuvants, 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and insoluble aluminum salts. Data from previous studies showed that both MPL and insoluble aluminum salts have nasal mucosal vaccine adjuvant activity. The present study was designed to test the feasibility of using AS04 as an adjuvant to help nasally administered antigens to induce specific mucosal and systemic immunity as well as to evaluate the deposition of antigens in the upper respiratory tract when adjuvanted with AS04. Alhydrogel, an aluminum (oxy)hydroxide suspension, was mixed with MPL to form AS04, which was then mixed with ovalbumin (OVA) or 3× M2e-HA2, a synthetic influenza virus hemagglutinin fusion protein, as an antigen to prepare OVA/AS04 and 3× M2e-HA2/AS04 vaccines, respectively. In mice, AS04 enabled antigens, when given intranasally, to induce specific IgA response in nasal and lung mucosal secretions as well as specific IgG response in the serum samples of the immunized mice, whereas subcutaneous injection of the same vaccine induced specific antibody responses only in the serum samples but not in the mucosal secretions. Splenocytes isolated from mice intranasally immunized with the OVA/AS04 also proliferated and released cytokines (i.e., IL-4 and IFN-γ) after in vitro stimulation with the antigen. In the immunogenicity test, intranasal OVA/AS04 was not more effective than intranasal OVA/MPL at the dosing regimens tested. However, when compared to OVA/MPL, OVA/AS04 showed a different atomized droplet size distribution and more importantly a more favorable OVA deposition profile when atomized into a nasal cast that was 3-D printed based on the computer tomography scan of the nose of a child. It is concluded that AS04 has mucosal adjuvant activity when given intranasally. In addition, there is a reason to be optimistic about using AS04 as an adjuvant to target an antigen of interest to the right region of the nasal cavity in humans for immune response induction.
Collapse
Affiliation(s)
- Haiyue Xu
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Riyad F Alzhrani
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary N Warnken
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sachin G Thakkar
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mingtao Zeng
- Department of Molecular and Translational Medicine, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, United States
| | - Hugh D C Smyth
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert O Williams
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengrong Cui
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Qiu C, Li J, Luo D, Chen X, Qu R, Liu T, Li F, Liu Y. Cortistatin protects against inflammatory airway diseases through curbing CCL2 and antagonizing NF-κB signaling pathway. Biochem Biophys Res Commun 2020; 531:595-601. [PMID: 32811643 DOI: 10.1016/j.bbrc.2020.07.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022]
Abstract
Asthma is a chronic inflammatory disease affecting millions of people around the world, yet much remains unknown about its underlying mechanisms. Cortistatin (CST) is a neuropeptide which is reported to be a potential endogenous anti-inflammatory factor in several conditions. To testify the potential involvement of CST in airway inflammatory reaction, an ovalbumin (OVA)-induced mice model was established in wild-type (WT) as well as CST-knockout (Cort-/-) mice. Thereafter, lung tissue or cell samples were gathered in each group, and histological analysis as well as cell counting assay indicated that Cort-/- mice exhibited exaggeration of asthma compared with WT control group. Moreover, mRNA sequencing assay revealed that CCL2 was a potential target of CST in asthma, and administration of CCL2 inhibitor alleviated airway inflammation of asthma in Cort-/- mice. Moreover, NF-κB signaling pathway might be closely associated with the protective function of CST in asthma, as enhanced activation of NF-κB signaling pathway was observed in OVA-induced asthma model of Cort-/- mice, and SN50, an inhibitor of NF-κB signaling pathway, antagonized asthma development in Cort-/- mice. In summary, CST might represent as a promising target for the treatment of asthma through interacting with CCL2 and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Cheng Qiu
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jiayi Li
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Dan Luo
- College of Stomatology, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Xiaomin Chen
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Ruize Qu
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Tianyi Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Feng Li
- Department of Medical Imaging, First People's Hospital of Jinan, Jinan, Shandong, 250011, PR China.
| | - Yansong Liu
- Department of Breast Surgery, Shandong Cancer Hospital, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
14
|
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in premature infants, and is associated with the development of severe lung inflammation. The pathogenesis of NEC-induced lung injury remains unknown, yet infiltrating immune cells may play a role. In support of this possibility, we now show that NEC in mice and humans was associated with the development of profound lung injury that was characterized by an influx of Th17 cells and a reduction in T regulatory lymphocytes (Tregs). Importantly, the adoptive transfer of CD4 T cells isolated from lungs of mice with NEC into the lungs of immune incompetent mice (Rag1 mice) induced profound inflammation in the lung, while the depletion of Tregs exacerbated NEC induced lung injury, demonstrating that imbalance of Th17/Treg in the lung is required for the induction of injury. In seeking to define the mechanisms involved, the selective deletion of toll-like receptor 4 (TLR4) from the Sftpc1 pulmonary epithelial cells reversed lung injury, while TLR4 activation induced the Th17 recruiting chemokine (C-C motif) ligand 25 (CCL25) in the lungs of mice with NEC. Strikingly, the aerosolized inhibition of both CCL25 and TLR4 and the administration of all trans retinoic acid restored Tregs attenuated NEC-induced lung injury. In summary, we show that TLR4 activation in Surfactant protein C-1 (Sftpc1) cells disrupts the Treg/Th17 balance in the lung via CCL25 leading to lung injury after NEC and reveal that inhibition of TLR4 and stabilization of Th17/Treg balance in the neonatal lung may prevent this devastating complication of NEC.
Collapse
|
15
|
Huang CH, Lu SY, Tsai WC. Relevant fecal microbes isolated from mice with food allergy elicited intestinal cytokine/chemokine network and T-cell immune responses. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:234-242. [PMID: 33117622 PMCID: PMC7573112 DOI: 10.12938/bmfh.2020-014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
The objective of this study was to identify the relevant fecal microbes from mice with
food allergy and investigate the impact of these microbes on intestinal epithelial cells
and allergen-specific T-cell responses. A murine model of ovalbumin (OVA)-induced food
allergy was employed. The profile of fecal microbiota was evaluated by the traditional
plating method and next-generation sequencing (NGS) of the 16S ribosomal RNA gene. The
density of fecal bacteria growth on RCM, TSA and LB plates was elevated in mice with food
allergy, whereas the diversity of fecal bacteria was decreased. Additionally, the relative
abundances of Prevotellaceae and Prevotella were increased. The isolated
fecal strains, mostly belonging to Enterococcus, Streptococcus and
Vagococcus, significantly reduced the viability of intestinal Caco-2
cells but increased the production of interleukin (IL)-8, C-C motif chemokine ligand
(CCL)-2, CCL-5, CCL-20 and C-X-C motif chemokine ligand (CXCL)-1. Moreover, cell expansion
and secretion of IL-2, interferon (IFN)-γ, IL-4 and IL-17 by mesenteric lymph node (MLN)
cells were augmented, whereas the production of IL-10 and transforming growth factor
(TGF)-β was diminished. Although individual fecal strains had varying degrees of impact on
Caco-2 cells and MLN cells, these results precisely indicate a different profile of fecal
microbiota between normal mice and allergic mice. Most important, the relevant fecal
microbes involved in allergen-induced dysbiosis have the potential to induce intestinal
cytokine/chemokine network and T-cell immune responses.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC
| | - Shueh-Yu Lu
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC
| | - Wei-Chung Tsai
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC
| |
Collapse
|
16
|
Gallou I, Erb B, Marti M, Nuzzo GL, Jager A, Seeger M, Chassagne P, Aronow J, Cortes-Clerget M, Gallou F. Development of a Robust Protocol for the Synthesis of 6-Hydroxybenzofuran-3-carboxylic Acid. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Isabelle Gallou
- Chemical & Analytical Development, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Bernhard Erb
- Chemical & Analytical Development, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Michael Marti
- Chemical & Analytical Development, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Gian-Luca Nuzzo
- Chemical & Analytical Development, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Andreas Jager
- Chemical & Analytical Development, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Manuela Seeger
- Chemical & Analytical Development, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Pierre Chassagne
- Chemical & Analytical Development, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Jonas Aronow
- Chemical & Analytical Development, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | | | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, CH-4056 Basel, Switzerland
| |
Collapse
|
17
|
Dual dose-related effects evoked by CCL4 on thermal nociception after gene delivery or exogenous administration in mice. Biochem Pharmacol 2020; 175:113903. [DOI: 10.1016/j.bcp.2020.113903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
|
18
|
Youngblood BA, Brock EC, Leung J, Falahati R, Bochner BS, Rasmussen HS, Peterson K, Bebbington C, Tomasevic N. Siglec-8 antibody reduces eosinophils and mast cells in a transgenic mouse model of eosinophilic gastroenteritis. JCI Insight 2019; 4:126219. [PMID: 31465299 DOI: 10.1172/jci.insight.126219] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/23/2019] [Indexed: 01/18/2023] Open
Abstract
Aberrant accumulation and activation of eosinophils and potentially mast cells (MCs) contribute to the pathogenesis of eosinophilic gastrointestinal diseases (EGIDs), including eosinophilic esophagitis (EoE), gastritis (EG), and gastroenteritis (EGE). Current treatment options, such as diet restriction and corticosteroids, have limited efficacy and are often inappropriate for chronic use. One promising new approach is to deplete eosinophils and inhibit MCs with a monoclonal antibody (mAb) against sialic acid-binding immunoglobulin-like lectin 8 (Siglec-8), an inhibitory receptor selectively expressed on MCs and eosinophils. Here, we characterize MCs and eosinophils from human EG and EoE biopsies using flow cytometry and evaluate the effects of an anti-Siglec-8 mAb using a potentially novel Siglec-8-transgenic mouse model in which EG/EGE was induced by ovalbumin sensitization and intragastric challenge. MCs and eosinophils were significantly increased and activated in human EG and EoE biopsies compared with healthy controls. Similar observations were made in EG/EGE mice. In Siglec-8-transgenic mice, anti-Siglec-8 mAb administration significantly reduced eosinophils and MCs in the stomach, small intestine, and mesenteric lymph nodes and decreased levels of inflammatory mediators. In summary, these findings suggest a role for both MCs and eosinophils in EGID pathogenesis and support the evaluation of anti-Siglec-8 as a therapeutic approach that targets both eosinophils and MCs.
Collapse
Affiliation(s)
| | | | - John Leung
- Allakos, Inc., Redwood City, California, USA
| | | | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Kathryn Peterson
- Division of Gastroenterology, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
19
|
Jiang S, Wang Q, Wang Y, Song X, Zhang Y. Blockade of CCL2/CCR2 signaling pathway prevents inflammatory monocyte recruitment and attenuates OVA-Induced allergic asthma in mice. Immunol Lett 2019; 214:30-36. [PMID: 31454522 DOI: 10.1016/j.imlet.2019.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Abstract
Recent studies have reported recruitment of inflammatory monocytes by cytokines including chemokine (C-C motif) ligand 2 (CCL2) are critical in allergic responses. We aimed to investigate the role of inflammatory monocytes and CCL2 in mouse model with ovalbumin (OVA)-induced allergic asthma. Mice were sensitized with OVA to induce allergic asthma. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) and peritoneal lavage fluid (PLF) were measured by flow cytometry. The expression of CCL2 and CCL2 receptor (CCR2) were determined by qPCR and western blot. The concentrations of Type 1 helper T (Th1) and Type 2 helper T (Th2) cytokines in PLF were detected by ELISA. Inflammatory monocytes are recruited in PLF, and expression of CCL2 and CCR2 were elevated in OVA-induced mice. In addition, transfer of CCR2 knockdown inflammatory monocytes decreased the levels of allergic asthma biomarkers. Injection of anti-CCL2 or anti-CCR2 antibody decreased the proportion of eosinophils and inflammatory monocytes in BALF. Blockade of CCL2/CCR2 signaling pathway suppressed the allergen-induced Th2 cytokines and enhanced the levels of Th1-associated cytokines. Blockade of CCL2/CCR2 signaling pathway in sensitization-recruited inflammatory monocytes exhibits protective effects in mouse model of OVA-induced allergic asthma by inhibiting the Th2 inflammatory responses.
Collapse
Affiliation(s)
- Shaohong Jiang
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, 264000, Shandong, China.
| | - Qiang Wang
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, 264000, Shandong, China.
| | - Yuxin Wang
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Xicheng Song
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, 264000, Shandong, China.
| | - Yu Zhang
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, 264000, Shandong, China
| |
Collapse
|
20
|
Ferko B, Romanova J, Rydlovskaya AV, Kromova TA, Proskurina OV, Amelina AN, Schmutz H, Renner A, Nebolsin VE. A Novel Oral Glutarimide Derivative XC8 Suppresses Sephadex-Induced Lung Inflammation in Rats and Ovalbumin-induced Acute and Chronic Asthma in Guinea Pigs. Curr Pharm Biotechnol 2019; 20:146-156. [PMID: 30767739 DOI: 10.2174/1389201020666190215103505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/11/2018] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Corticosteroids are the preferred option to treat asthma, however, they possess serious side effects and are inefficient in 10% of patients. Thus, new therapeutic approaches for asthma treatment are required. OBJECTIVE To study the efficacy of a novel glutarimide derivative XC8 in a Sephadex-induced lung inflammation in rats as well as in acute and chronic ovalbumin-induced allergic asthma in guinea pigs. METHOD Rats were treated with 0.18-18 mg/kg of XC8 intragastrically 4 times (24 h and 1 h prior to and 24 h and 45 h after endotracheal administration of Sephadex). The number of inflammatory cells in bronchoalveaolar lavages (BAL) was determined. Guinea pigs were treated with 0.045 -1.4 mg/kg (acute asthma) or with 1.4 and 7.0 mg/kg of XC8 (chronic asthma) intragastrically following the sensitization with ovalbumin and during aerosol challenge. Lung inflammation, numbers of eosinophils (BAL and lung tissue), goblet cells, degranulating mast cells and specific airway resistance (sRAW) were determined. The comparator steroid drug budesonide (0.5 mg/kg for rats and 0.16 mg/kg for guinea pigs) was administered by inhalation. RESULTS XC8 reduced influx of eosinophils into BAL in Sephadex-induced lung inflammation model in rats (by 2.6-6.4 times). Treatment of acute asthma in guinea pigs significantly reduced eosinophils in guinea pigs in BAL (from 55% to 30%-39% of the total cell count) and goblet cells in lung tissue. In a model of acute and chronic asthma, XC8 reduced significantly the number of eosinophils and degranulating mast cells in the lung tissue. Treatment with XC8 but not with budesonide decreased the specific airway resistance in acute and chronic asthma model up to the level of naive animals. CONCLUSION XC8 induced a profound anti-inflammatory effect by reducing eosinophils in BAL and eosinophils and degranulating mast cell numbers in the airway tissue. The anti-asthmatic effect of XC8 is comparable to that of budesonide. Moreover, in contrast to budesonide, XC8 was capable to reduce goblet cells and airway resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andreas Renner
- Karl Landsteiner Institute for Clinical and Experimental Pneumology, Hietzing Hospital, Vienna, Austria
| | | |
Collapse
|
21
|
Ihrie MD, Taylor-Just AJ, Walker NJ, Stout MD, Gupta A, Richey JS, Hayden BK, Baker GL, Sparrow BR, Duke KS, Bonner JC. Inhalation exposure to multi-walled carbon nanotubes alters the pulmonary allergic response of mice to house dust mite allergen. Inhal Toxicol 2019; 31:192-202. [PMID: 31345048 DOI: 10.1080/08958378.2019.1643955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Increasing evidence from rodent studies indicates that inhaled multi-walled carbon nanotubes (MWCNTs) have harmful effects on the lungs. In this study, we examined the effects of inhalation exposure to MWCNTs on allergen-induced airway inflammation and fibrosis. We hypothesized that inhalation pre-exposure to MWCNTs would render mice susceptible to developing allergic lung disease induced by house dust mite (HDM) allergen. Methods: Male B6C3F1/N mice were exposed by whole-body inhalation for 6 h a day, 5 d a week, for 30 d to air control or 0.06, 0.2, and 0.6 mg/m3 of MWCNTs. The exposure atmospheres were agglomerates (1.4-1.8 µm) composed of MWCNTs (average diameter 16 nm; average length 2.4 µm; 0.52% Ni). Mice then received 25 µg of HDM extract by intranasal instillation 6 times over 3 weeks. Necropsy was performed at 3 and 30 d after the final HDM dose to collect serum, bronchoalveolar lavage fluid (BALF), and lung tissue for histopathology. Results: MWCNT exposure at the highest dose inhibited HDM-induced serum IgE levels, IL-13 protein levels in BALF, and airway mucus production. However, perivascular and peribronchiolar inflammatory lesions were observed in the lungs of mice at 3 d with MWCNT and HDM, but not MWCNT or HDM alone. Moreover, combined HDM and MWCNT exposure increased airway fibrosis in the lungs of mice. Conclusions: Inhalation pre-exposure to MWCNTs inhibited HDM-induced TH2 immune responses, yet this combined exposure resulted in vascular inflammation and airway fibrosis, indicating that MWCNT pre-exposure alters the immune response to allergens.
Collapse
Affiliation(s)
- Mark D Ihrie
- a Department of Biological Sciences, North Carolina State University , Raleigh , NC , USA
| | - Alexia J Taylor-Just
- a Department of Biological Sciences, North Carolina State University , Raleigh , NC , USA
| | - Nigel J Walker
- b National Institute of Environmental Health Sciences , Durham , NC , USA
| | - Matthew D Stout
- b National Institute of Environmental Health Sciences , Durham , NC , USA
| | - Amit Gupta
- c Battelle Biomedical Research Centre , Columbus , OH , USA
| | - Jamie S Richey
- c Battelle Biomedical Research Centre , Columbus , OH , USA
| | - Barry K Hayden
- c Battelle Biomedical Research Centre , Columbus , OH , USA
| | | | | | - Katherine S Duke
- a Department of Biological Sciences, North Carolina State University , Raleigh , NC , USA
| | - James C Bonner
- a Department of Biological Sciences, North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
22
|
Wang XZ, Zhang HH, Qian YL, Tang LF. Sonic hedgehog (Shh) and CC chemokine ligand 2 signaling pathways in asthma. J Chin Med Assoc 2019; 82:343-350. [PMID: 31058710 DOI: 10.1097/jcma.0000000000000094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways in which many cells are involved, including mast cells, eosinophils, T lymphocytes, and so on. During the process, many chemokines and mediators are released to engage in recruiting and activating eosinophils and other inflammatory cells. Also, some signaling pathways are involved in the pathobiology of asthma. Sonic hedgehog (Shh) is one of the members of hedgehog gene families. Shh signaling plays a critical role in the embryonic development, including the lung. Previous findings from our team reveal that Shh is involved in the asthma pathogenesis. Recombinant Shh could induce the CC chemokine ligand 2 (CCL2) overexpressing and Smo inhibitor GDC-O449 could inhibit CCL2 expression in airway epithelial cells, monocytes, or macrophages. Hence, we reviewed the effects of Shh and CCL2 signaling pathways, and the interaction between signaling pathways in asthma.
Collapse
Affiliation(s)
- Xiang-Zhi Wang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hang-Hu Zhang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Pediatrics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Yu-Ling Qian
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lan-Fang Tang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Histological Chorioamnionitis Induces Differential Gene Expression in Human Cord Blood Mononuclear Leukocytes from Term Neonates. Sci Rep 2019; 9:5862. [PMID: 30971730 PMCID: PMC6458165 DOI: 10.1038/s41598-019-42205-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
Histological chorioamnionitis (HCA) is an infection of fetal membranes and complicates 5.2% to 28.5% of all live births. HCA is associated with increased mortality and morbidity in both premature and term neonates. Exposure to HCA may have long-term consequences, including an increased risk for allergic disorders and asthma later in childhood, the mechanism(s) of which are still not yet well understood. The objective of this study was to determine the mRNA transcriptome of cord blood mononuclear leukocytes from term neonates to identify key genes and pathways involved in HCA. We found 366 differentially expressed probe IDs with exposure to HCA (198 upregulated, 168 downregulated). These transcriptomes included novel genes and pathways associated with exposure to HCA. The differential gene expression included key genes regulating inflammatory, immune, respiratory and neurological pathways, which may contribute to disorders in those pathways in neonates exposed to HCA. Our data may lead to understanding of the role of key genes and pathways identified on the long-term sequelae related to exposure to HCA, as well as to identifying potential markers and therapies to prevent HCA-associated complications.
Collapse
|
24
|
Arakawa S, Suzukawa M, Watanabe K, Kobayashi K, Matsui H, Nagai H, Nagase T, Ohta K. Secretory immunoglobulin A induces human lung fibroblasts to produce inflammatory cytokines and undergo activation. Clin Exp Immunol 2019; 195:287-301. [PMID: 30570135 DOI: 10.1111/cei.13253] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Immunoglobulin (Ig)A is the most abundant immunoglobulin in humans, and in the airway mucosa secretory IgA (sIgA) plays a pivotal role in first-line defense against invading pathogens and antigens. IgA has been reported to also have pathogenic effects, including possible worsening of the prognosis of idiopathic pulmonary fibrosis (IPF). However, the precise effects of IgA on lung fibroblasts remain unclear, and we aimed to elucidate how IgA activates human lung fibroblasts. We found that sIgA, but not monomeric IgA (mIgA), induced interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production by normal human lung fibroblasts (NHLFs) at both the protein and mRNA levels. sIgA also promoted proliferation of NHLFs and collagen gel contraction comparable to with transforming growth factor (TGF)-β, which is involved in fibrogenesis in IPF. Also, Western blot analysis and real-time quantitative polymerase chain reaction (PCR) revealed that sIgA enhanced production of α-smooth muscle actin (α-SMA) and collagen type I (Col I) by NHLFs. Flow cytometry showed that NHLFs bound sIgA, and among the known IgA receptors, NHLFs significantly expressed CD71 (transferrin receptor). Transfection of siRNA targeting CD71 partially but significantly suppressed cytokine production by NHLFs co-cultured with sIgA. Our findings suggest that sIgA may promote human lung inflammation and fibrosis by enhancing production of inflammatory or fibrogenic cytokines as well as extracellular matrix, inducing fibroblast differentiation into myofibroblasts and promoting human lung fibroblast proliferation. sIgA's enhancement of cytokine production may be due partially to its binding to CD71 or the secretory component.
Collapse
Affiliation(s)
- S Arakawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - M Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - K Watanabe
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - K Kobayashi
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - H Matsui
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - H Nagai
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - T Nagase
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - K Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
25
|
CXCR6 +ST2 + memory T helper 2 cells induced the expression of major basic protein in eosinophils to reduce the fecundity of helminth. Proc Natl Acad Sci U S A 2018; 115:E9849-E9858. [PMID: 30275296 DOI: 10.1073/pnas.1714731115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Memory T helper (mTh) cells play important roles in the reinfection of pathogens and drive the pathogenesis of diseases. While recent studies have characterized the pathogenic mTh2 cell subpopulations driving allergic inflammation, those that induce immune responses against helminth infection remain unknown. We found that IL-5-producing CXCR6+ST2+CD44+ mTh2 cells play a crucial role in the IL-33-dependent inhibition of the fecundity of helminth, whereas other ST2- mTh2 cells do not. Although both cell types induced the infiltration of granulocytes, especially eosinophils, into the lungs in response to helminth infection, the ST2+ mTh2 cell-induced eosinophils expressed higher levels of major basic protein (MBP), which is important for reducing the fecundity of Nippostrongylus brasiliensis (Nb), than ST2- mTh2 cell-induced ones. Notably, we also found that ST2+ Treg cells but not ST2- Treg cells suppressed CXCR6+ST2+ mTh2 cell-mediated immune responses. Taken together, these findings show that we identified a mechanism against helminth elicited by a subpopulation of IL-5-producing mTh2 cells through the accumulation of eosinophils strongly expressing MBP in the lungs.
Collapse
|
26
|
MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells. Leukemia 2017; 32:1003-1015. [PMID: 29158557 PMCID: PMC5886056 DOI: 10.1038/leu.2017.336] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/05/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) have a key role in regulating tumor immunity, tumor cell growth and drug resistance. We hypothesized that multiple myeloma (MM) cells might recruit and reprogram DCs to a tumor-permissive phenotype by changes within their microRNA (miRNA) network. By analyzing six different miRNA-profiling data sets, miR-29b was identified as the only miRNA upregulated in normal mature DCs and significantly downregulated in tumor-associated DCs. This finding was validated in primary DCs co-cultured in vitro with MM cell lines and in primary bone marrow DCs from MM patients. In DCs co-cultured with MM cells, enforced expression of miR-29b counteracted pro-inflammatory pathways, including signal transducer and activator of transcription 3 and nuclear factor-κB, and cytokine/chemokine signaling networks, which correlated with patients' adverse prognosis and development of bone disease. Moreover, miR-29b downregulated interleukin-23 in vitro and in the SCID-synth-hu in vivo model, and antagonized a Th17 inflammatory response. All together, these effects translated into strong anti-proliferative activity and reduction of genomic instability of MM cells. Our study demonstrates that MM reprograms the DCs functional phenotype by downregulating miR-29b whose reconstitution impairs DCs ability to sustain MM cell growth and survival. These results underscore miR-29b as an innovative and attractive candidate for miRNA-based immune therapy of MM.
Collapse
|
27
|
Chen H, Xu X, Cheng S, Xu Y, Xuefei Q, Cao Y, Xie J, Wang CY, Xu Y, Xiong W. Small interfering RNA directed against microRNA-155 delivered by a lentiviral vector attenuates asthmatic features in a mouse model of allergic asthma. Exp Ther Med 2017; 14:4391-4396. [PMID: 29104649 DOI: 10.3892/etm.2017.5093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/15/2017] [Indexed: 01/21/2023] Open
Abstract
Asthma is a chronic T helper type 2 (Th2) cell-mediated inflammatory disease characterized by airway hyperresponsiveness (AHR) and airway inflammation. Although the majority of patients with asthma can achieve a good level of control with existing treatments, asthma runs a chronic course and the effectiveness of current treatment is not satisfactory for certain patients. MicroRNAs (miRNAs) are short noncoding RNAs that suppress gene expression at the post-transcriptional level; their role in regulating allergic inflammation remains largely unknown. The present study aimed to explore the role of miRNA-155 in the pathogenesis of asthma and its potential as a target for treatment. The expression of miRNA-155 increased in ovalbumin-sensitized and challenged mice compared with control mice, and lentiviral vector-delivered small interfering (si)RNA targeting miRNA-155 resulted in reduced AHR, airway inflammation and Th2 cytokine production. The data from the present study indicate that miRNA-155 serves an important role in the pathogenesis of asthma, and that lentiviral vector-delivered siRNA targeting miRNA-155 may serve as a novel approach for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Huilong Chen
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiangqin Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sheng Cheng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuzhu Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qi Xuefei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yong Cao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Cong-Yi Wang
- Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
28
|
Abstract
Globally, as a leading agent of acute respiratory tract infections in children <5 years of age and the elderly, the human metapneumovirus (HMPV) has gained considerable attention. As inferred from studies comparing vaccinated and experimentally infected mice, the acquired immune response elicited by this pathogen fails to efficiently clear the virus from the airways, which leads to an exaggerated inflammatory response and lung damage. Furthermore, after disease resolution, there is a poor development of T and B cell immunological memory, which is believed to promote reinfections and viral spread in the community. In this article, we discuss the molecular mechanisms that shape the interactions of HMPV with host tissues that lead to pulmonary pathology and to the development of adaptive immunity that fails to protect against natural infections by this virus.
Collapse
|
29
|
Wang Y, Zhu J, Zhang L, Zhang Z, He L, Mou Y, Deng Y, Cao Y, Yang P, Su Y, Zhao J, Zhang S, Yu Q, Hu J, Chen Z, Ning Q, Xiang X, Xu Y, Wang CY, Xiong W. Role of C/EBP homologous protein and endoplasmic reticulum stress in asthma exacerbation by regulating the IL-4/signal transducer and activator of transcription 6/transcription factor EC/IL-4 receptor α positive feedback loop in M2 macrophages. J Allergy Clin Immunol 2017; 140:1550-1561.e8. [PMID: 28238747 DOI: 10.1016/j.jaci.2017.01.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 12/30/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND C/EBP homologous protein (Chop), a marker of endoplasmic reticulum (ER) stress, exhibits aberrant expression patterns during asthma development. However, its exact role in asthma pathogenesis is not fully understood. OBJECTIVES We aimed to determine the function and mechanism of Chop in the pathogenesis of allergic asthma in patients and animals. METHODS Studies were conducted in asthmatic patients and Chop-/- mice to dissect the role of Chop and ER stress in asthma pathogenesis. An ovalbumin (OVA)-induced allergic airway inflammation model was used to address the effect of Chop deficiency on asthma development. Next, the effect of Chop deficiency on macrophage polarization and related signaling pathways was investigated to demonstrate the underlying mechanisms. RESULTS Asthmatic patients and mice after OVA induction exhibited aberrant Chop expression along with ER stress. Specifically, Chop was noted to be specifically overexpressed in macrophages, and mice deficient in Chop were protected from OVA-induced allergic airway inflammation, as manifested by attenuated airway inflammation, remodeling, and hyperresponsiveness. Chop was found to exacerbate allergic airway inflammation by enhancing M2 programming in macrophages. Mechanistic studies characterized an IL-4/signal transducer and activator of transcription 6/transcription factor EC (Tfec)/IL-4 receptor α positive feedback regulatory loop, in which IL-4 induces Chop expression, which then promotes signal transducer and activator of transcription 6 signaling to transcribe Tfec expression. Finally, Tfec transcribes IL-4 receptor α expression to promote M2 programming in macrophages. CONCLUSIONS Chop and ER stress are implicated in asthma pathogenesis, which involves regulation of M2 programming in macrophages.
Collapse
Affiliation(s)
- Yi Wang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China
| | - Jianghui Zhu
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Lei Zhang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China
| | - Zhijun Zhang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Long He
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Yong Mou
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China
| | - Yanhan Deng
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China
| | - Yong Cao
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China
| | - Ping Yang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Ga
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China
| | - Shu Zhang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Qilin Yu
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Jifa Hu
- Department of Sponsored Program Administration, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zhishui Chen
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China; Department of Sponsored Program Administration, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xudong Xiang
- Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjian Xu
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China
| | - Cong-Yi Wang
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China; Department of Sponsored Program Administration, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Weining Xiong
- Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China.
| |
Collapse
|
30
|
Lavender N, Yang J, Chen SC, Sai J, Johnson CA, Owens P, Ayers GD, Richmond A. The Yin/Yan of CCL2: a minor role in neutrophil anti-tumor activity in vitro but a major role on the outgrowth of metastatic breast cancer lesions in the lung in vivo. BMC Cancer 2017; 17:88. [PMID: 28143493 PMCID: PMC5286656 DOI: 10.1186/s12885-017-3074-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/18/2017] [Indexed: 01/15/2023] Open
Abstract
Background The role of the chemokine CCL2 in breast cancer is controversial. While CCL2 recruits and activates pro-tumor macrophages, it is also reported to enhance neutrophil-mediated anti-tumor activity. Moreover, loss of CCL2 in early development enhances breast cancer progression. Methods To clarify these conflicting findings, we examined the ability of CCL2 to alter naïve and tumor entrained neutrophil production of ROS, release of granzyme-B, and killing of tumor cells in multiple mouse models of breast cancer. CCL2 was delivered intranasally in mice to elevate CCL2 levels in the lung and effects on seeding and growth of breast tumor cells were evaluated. The TCGA data base was queried for relationship between CCL2 expression and relapse free survival of breast cancer patients and compared to subsets of breast cancer patients. Results Even though each of the tumor cell lines studied produced approximately equal amounts of CCL2, exogenous delivery of CCL2 to co-cultures of breast tumor cells and neutrophils enhanced the ability of tumor-entrained neutrophils (TEN) to kill the less aggressive 67NR variant of 4T1 breast cancer cells. However, exogenous CCL2 did not enhance naïve or TEN neutrophil killing of more aggressive 4T1 or PyMT breast tumor cells. Moreover, this anti-tumor activity was not observed in vivo. Intranasal delivery of CCL2 to BALB/c mice markedly enhanced seeding and outgrowth of 67NR cells in the lung and increased the recruitment of CD4+ T cells and CD8+ central memory T cells into lungs of tumor bearing mice. There was no significant increase in the recruitment of CD19+ B cells, or F4/80+, Ly6G+ and CD11c + myeloid cells. CCL2 had an equal effect on CD206+ and MHCII+ populations of macrophages, thus balancing the pro- and anti-tumor macrophage cell population. Analysis of the relationship between CCL2 levels and relapse free survival in humans revealed that overall survival is not significantly different between high CCL2 expressing and low CCL2 expressing breast cancer patients grouped together. However, examination of the relationship between high CCL2 expressing basal-like, HER2+ and luminal B breast cancer patients revealed that higher CCL2 expressing tumors in these subgroups have a significantly higher probability of surviving longer than those expressing low CCL2. Conclusions While our in vitro data support a potential anti-tumor role for CCL2 in TEN neutrophil- mediated tumor killing in poorly aggressive tumors, intranasal delivery of CCL2 increased CD4+ T cell recruitment to the pre-metastatic niche of the lung and this correlated with enhanced seeding and growth of tumor cells. These data indicate that effects of CCL2/CCR2 antagonists on the intratumoral leukocyte content should be monitored in ongoing clinical trials using these agents. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3074-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Lavender
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Jinming Yang
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Sheau-Chiann Chen
- Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA.,Division of Cancer Biostatistics, Department of Biostatistics, Center for Quantitative Sciences, Nashville, TN, USA
| | - Jiqing Sai
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - C Andrew Johnson
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Philip Owens
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA.,Division of Cancer Biostatistics, Department of Biostatistics, Center for Quantitative Sciences, Nashville, TN, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA. .,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
31
|
Salamon P, Shefler I, Hershko AY, Mekori YA. The Involvement of Protein Kinase D in T Cell-Induced Mast Cell Activation. Int Arch Allergy Immunol 2017; 171:203-208. [DOI: 10.1159/000452625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022] Open
|
32
|
Marshall EA, Ng KW, Kung SHY, Conway EM, Martinez VD, Halvorsen EC, Rowbotham DA, Vucic EA, Plumb AW, Becker-Santos DD, Enfield KSS, Kennett JY, Bennewith KL, Lockwood WW, Lam S, English JC, Abraham N, Lam WL. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol Cancer 2016; 15:67. [PMID: 27784305 PMCID: PMC5082389 DOI: 10.1186/s12943-016-0551-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. Lung cancer risk factors, including smoking and exposure to environmental carcinogens, have been linked to chronic inflammation. An integral feature of inflammation is the activation, expansion and infiltration of diverse immune cell types, including CD4+ T cells. Within this T cell subset are immunosuppressive regulatory T (Treg) cells and pro-inflammatory T helper 17 (Th17) cells that act in a fine balance to regulate appropriate adaptive immune responses.In the context of lung cancer, evidence suggests that Tregs promote metastasis and metastatic tumor foci development. Additionally, Th17 cells have been shown to be an integral component of the inflammatory milieu in the tumor microenvironment, and potentially involved in promoting distinct lung tumor phenotypes. Studies have shown that the composition of Tregs and Th17 cells are altered in the tumor microenvironment, and that these two CD4+ T cell subsets play active roles in promoting lung cancer progression and metastasis.We review current knowledge on the influence of Treg and Th17 cells on lung cancer tumorigenesis, progression, metastasis and prognosis. Furthermore, we discuss the potential biological and clinical implications of the balance among Treg/Th17 cells in the context of the lung tumor microenvironment and highlight the potential prognostic function and relationship to metastasis in lung cancer.
Collapse
Affiliation(s)
- Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Kevin W Ng
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Sonia H Y Kung
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada. .,British Columbia Cancer Research Centre Centre, Vancouver, Canada.
| | - Emma M Conway
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Elizabeth C Halvorsen
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - David A Rowbotham
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Adam W Plumb
- Departments of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Zoology, University of British Columbia, Vancouver, Canada
| | | | - Katey S S Enfield
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Jennifer Y Kennett
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Kevin L Bennewith
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - John C English
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ninan Abraham
- Departments of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada. .,British Columbia Cancer Research Centre Centre, Vancouver, Canada.
| |
Collapse
|
33
|
Kobayashi K, Koyama K, Suzukawa M, Igarashi S, Hebisawa A, Nagase T, Ohta K. Epithelial-mesenchymal transition promotes reactivity of human lung adenocarcinoma A549 cells to CpG ODN. Allergol Int 2016; 65 Suppl:S45-52. [PMID: 27475623 DOI: 10.1016/j.alit.2016.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is reported to promote airway remodeling in asthmatics, which is the main histological change that causes complex and severe symptoms in asthmatics. However, little is known about whether EMT also plays a role in acute exacerbations of asthma evoked by respiratory tract infections. METHODS A human lung adenocarcinoma line, A549, was incubated with TGF-β1 at 10 ng/ml to induce EMT. Then the cells were stimulated with CpG ODN. Expression of surface and intracellular molecules was analyzed by flow cytometry. IL-6, IL-8 and MCP-1 in the culture supernatant were measured by Cytometric Bead Assay, and the expression of mRNA was quantitated by real-time PCR. CpG ODN uptake was analyzed by flow cytometry. RESULTS The culture supernatant levels of IL-6, IL-8 and MCP-1 and the expression of mRNA for these cytokines in CpG ODN-stimulated A549 cells that had undergone EMT was significantly higher compared to those that had not. Addition of ODN H154, a TLR9-inhibiting DNA, significantly suppressed the CpG ODN-induced production of those cytokines. However, flow cytometry found the level of TLR9 expression to be slightly lower in A549 cells that had undergone EMT compared to those that had not. On the other hand, CpG ODN uptake was increased in cells that had undergone EMT. CONCLUSIONS EMT induction of A549 cells enhanced CpG ODN uptake and CpG ODN-induced production of IL-6, IL-8 and MCP-1. These results suggest that EMT plays an important role in exacerbation in asthmatics with airway remodeling by enhancing sensitivity to extrinsic pathogens.
Collapse
Affiliation(s)
- Koichi Kobayashi
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Kazuya Koyama
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan.
| | - Sayaka Igarashi
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Akira Hebisawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
34
|
Kratzer B, Pickl WF. Years in Review: Recent Progress in Cellular Allergology. Int Arch Allergy Immunol 2016; 169:1-12. [PMID: 26953825 PMCID: PMC7058417 DOI: 10.1159/000444753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This review highlights the recent key advances in the biology of CD4+ effector T cells, antigen-presenting cells, Th17 and T regulatory cells, as well as immediate effector cells, such as mast cells, basophils and eosinophils, which are critically contributing to the better understanding of the pathophysiology of allergic diseases and are helping to improve their diagnosis and therapy. Some of the key advances with a direct impact on allergic asthma research and treatment are summarized.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
35
|
Heck S, Nguyen J, Le DD, Bals R, Dinh QT. Pharmacological Therapy of Bronchial Asthma: The Role of Biologicals. Int Arch Allergy Immunol 2016; 168:241-52. [PMID: 26895179 DOI: 10.1159/000443930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
Bronchial asthma is a heterogeneous, complex, chronic inflammatory and obstructive pulmonary disease driven by various pathways to present with different phenotypes. A small proportion of asthmatics (5-10%) suffer from severe asthma with symptoms that cannot be controlled by guideline therapy with high doses of inhaled steroids plus a second controller, such as long-acting β2 agonists (LABA) or leukotriene receptor antagonists, or even systemic steroids. The discovery and characterization of the pathways that drive different asthma phenotypes have opened up new therapeutic avenues for asthma treatment. The approval of the humanized anti-IgE antibody omalizumab for the treatment of severe allergic asthma has paved the way for other cytokine-targeting therapies, particularly those targeting interleukin (IL)-4, IL-5, IL-9, IL-13, IL-17, and IL-23 and the epithelium-derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin. Knowledge of the molecular basis of asthma phenotypes has helped, and continues to help, the development of novel biologicals that target a diverse array of phenotype-specific molecular targets in patients suffering from severe asthma. This review summarizes potential therapeutic approaches that are likely to show clinical efficacy in the near future, focusing on biologicals as promising novel therapies for severe asthma.
Collapse
Affiliation(s)
- Sebastian Heck
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
36
|
Himes BE, Koziol-White C, Johnson M, Nikolos C, Jester W, Klanderman B, Litonjua AA, Tantisira KG, Truskowski K, MacDonald K, Panettieri RA, Weiss ST. Vitamin D Modulates Expression of the Airway Smooth Muscle Transcriptome in Fatal Asthma. PLoS One 2015; 10:e0134057. [PMID: 26207385 PMCID: PMC4514847 DOI: 10.1371/journal.pone.0134057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/03/2015] [Indexed: 01/20/2023] Open
Abstract
Globally, asthma is a chronic inflammatory respiratory disease affecting over 300 million people. Some asthma patients remain poorly controlled by conventional therapies and experience more life-threatening exacerbations. Vitamin D, as an adjunct therapy, may improve disease control in severe asthma patients since vitamin D enhances glucocorticoid responsiveness and mitigates airway smooth muscle (ASM) hyperplasia. We sought to characterize differences in transcriptome responsiveness to vitamin D between fatal asthma- and non-asthma-derived ASM by using RNA-Seq to measure ASM transcript expression in five donors with fatal asthma and ten non-asthma-derived donors at baseline and with vitamin D treatment. Based on a Benjamini-Hochberg corrected p-value <0.05, 838 genes were differentially expressed in fatal asthma vs. non-asthma-derived ASM at baseline, and vitamin D treatment compared to baseline conditions induced differential expression of 711 and 867 genes in fatal asthma- and non-asthma-derived ASM, respectively. Functional gene categories that were highly represented in all groups included extracellular matrix, and responses to steroid hormone stimuli and wounding. Genes differentially expressed by vitamin D also included cytokine and chemokine activity categories. Follow-up qPCR and individual analyte ELISA experiments were conducted for four cytokines (i.e. CCL2, CCL13, CXCL12, IL8) to measure TNFα-induced changes by asthma status and vitamin D treatment. Vitamin D inhibited TNFα-induced IL8 protein secretion levels to a comparable degree in fatal asthma- and non-asthma-derived ASM even though IL8 had significantly higher baseline levels in fatal asthma-derived ASM. Our findings identify vitamin D-specific gene targets and provide transcriptomic data to explore differences in the ASM of fatal asthma- and non-asthma-derived donors.
Collapse
Affiliation(s)
- Blanca E. Himes
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cynthia Koziol-White
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Martin Johnson
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Christina Nikolos
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - William Jester
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | - Augusto A. Litonjua
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kevin Truskowski
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kevin MacDonald
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Reynold A. Panettieri
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Scott T. Weiss
- Partners Personalized Medicine, Boston, MA, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|