1
|
Li Y, Lu F, Zhang C, Xu H, Yang S. Dynamic susceptibility contrast-enhanced MRI with USPIO in evaluating angiogenesis of the peri-infarction zones in subacute ischemic stroke in a permanent middle cerebral artery occlusion rat model. Acta Radiol 2024:2841851241290646. [PMID: 39449316 DOI: 10.1177/02841851241290646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) can reflect the angiogenesis of ischemic stroke. PURPOSE To investigate the value of DSC-MRI with ultrasmall superparamagnetic particles of iron oxides (USPIO) in evaluating angiogenesis in the peri-infarction zones in subacute ischemic stroke in a permanent middle cerebral artery occlusion (pMCAO) rat model. MATERIAL AND METHODS A total of 21 Sprague-Dawley rats were randomly divided into the pMCAO and sham operation groups. Every rat in each group underwent DSC-MRI with USPIO at 3, 5, and 7 days. DSC-MRI parameters of the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), relative mean transit time (rMTT), and relative time to peak (rTTP) were measured, calculated, and compared among the different times. Sequential correlations were analyzed among the histopathological indexes with the microvascular density (MVD) and percentage of vascular area (%VA), the serum factors with vascular endothelial growth factor (VEGF), vascular cell adhesion molecule 1 (VCAM-1), and perfusion parameters, respectively. RESULTS The rCBV and rCBF in the peri-infarction area of pMCAO rats were significantly higher on day 7 than on day 3, whereas no significant changes in rMTT and rTTP were observed at 3, 5, and 7 days. Significantly positive correlations were found between rCBV and MVD, %VA, VEGF, VCAM-1, between rCBF and MVD, %VA, VEGF, and VCAM-1 at 3, 5, and 7 days in the pMCAO group. CONCLUSION The rCBV and rCBF deriving from USPIO-DSC may be potentially useful for evaluating the angiogenesis of the peri-infarction zones in the subacute phase of ischemic stroke.
Collapse
Affiliation(s)
- Yuanchao Li
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Cheng Zhang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Huihui Xu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Shuohui Yang
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
2
|
Gerken ALH, Sigl M, Israel E, Weiß C, Reißfelder C, Schwenke K. The Effect of Revascularization on Lower Limb Circulation Parameters in Symptomatic Peripheral Arterial Disease. J Clin Med 2024; 13:3991. [PMID: 38999555 PMCID: PMC11242648 DOI: 10.3390/jcm13133991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Background: The prevalence of peripheral arterial disease and the number of revascularization procedures performed in symptomatic patients are steadily increasing. However, uncertainties remain regarding hemodynamic monitoring after revascularization and the prediction of clinical outcomes. This study aimed to investigate hemodynamic parameters with a focus on the microvasculature. Methods: This prospective, single-center study included 29 patients (15 with intermittent claudication [IC] and 14 with chronic limb-threatening ischemia [CLTI]). Before and after the revascularization procedure, in addition to the ankle-brachial index (ABI), microperfusion parameters, including microvascular blood flow, capillary oxygen saturation (SO2), and relative hemoglobin content (rHb), were assessed with lightguide spectrophotometry combined with laser Doppler flowmetry using an oxygen-to-see (O2C) device in the horizontal and elevated leg positions. Results: At baseline, SO2 in the elevated leg position was significantly lower in patients with CLTI than in those with IC (p = 0.0189), whereas the other microcirculatory parameters and ABI values were not significantly different. Patients with diabetes mellitus had a higher flow rate than those without in the horizontal leg position (p = 0.0162) but not in the elevated leg position. After successful revascularization, the flow increased immediately and significantly in both positions, whereas SO2, rHb, and the ABI did not. Conclusions: Elevated leg SO2 was significantly lower in CLTI than in clinically compensated peripheral arterial disease, whereas microvascular flow was a suitable surrogate parameter indicating successful revascularization. In studies using surgical or interventional revascularization procedures, noninvasive hemodynamic monitoring of the microcirculation at the foot level might be beneficial.
Collapse
Affiliation(s)
- Andreas L H Gerken
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Martin Sigl
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Elisa Israel
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christel Weiß
- Department of Medical Statistics and Biomathematics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christoph Reißfelder
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Kay Schwenke
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
3
|
Xu B, Wu H, Guo W, Hussain SA, Wang T. Voacangine mitigates oxidative stress and neuroinflammation in middle cerebral artery occlusion-induced cerebral ischemia/reperfusion injury by averting the NF-κBp65/MAPK signaling pathways in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:4004-4013. [PMID: 38606816 DOI: 10.1002/tox.24274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Ischemic stroke is a leading cause of human mortality. Cerebral ischemia-reperfusion injury (CI/RI) is a primary cause of stroke. Ischemia-reperfusion (I/R) resulting in oxidative stress and inflammatory events may lead to severe neuronal impairments. Thus, anti-oxidative and anti-inflammatory mediators that can alleviate post-I/R neuronal injuries are required for the treatment of CI/RI. An alkaloid, voacangine (VCG) is a recognized antioxidant, anti-inflammatory, and anticancer agent. Hence, the current study intended to explore the neuroprotective potential and the principal mechanisms of VCG in CI/RI. The experimental rats were divided into four sets: control, I/R-induced, I/R + VCG (2.5 mg/kg), I/R + VCG (5 mg/kg). CI/RI was induced by implanting a thread into the middle cerebral artery occlusion (MCAO) model. Brain damages were assessed on the basis of brain edema, brain infarct volume, neurological deficit score, histopathology, oxidative stress, and neuroinflammation. Results revealed that VCG inhibited the triggering of NLRP3 inflammasome, pro-inflammatory cytokines, lipid peroxidation, but enhanced the antioxidant status in MCAO rats. Furthermore, VCG treatment averted brain damage by I/R, neuroinflammation, and oxidative stress by suppressing NF-κBp65/MAPK pathways. The results of the study provide pertinent insights pertaining to the role of VCG as a potential neuroprotective agent against ischemic stroke.
Collapse
Affiliation(s)
- Bo Xu
- Department of General Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Hua Wu
- Shaanxi Provincial Center for Diseases Control and Prevention, Xi'an, China
| | - Wei Guo
- Department of General Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tian Wang
- Department of Geratology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
4
|
Ferdous J, Bhuia MS, Chowdhury R, Rakib AI, Aktar MA, Al Hasan MS, Melo Coutinho HD, Islam MT. Pharmacological Activities of Plant-Derived Fraxin with Molecular Mechanisms: A Comprehensive Review. Chem Biodivers 2024; 21:e202301615. [PMID: 38506600 DOI: 10.1002/cbdv.202301615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Fruits and vegetables serve not only as sources of nutrition but also as medicinal agents for the treatment of diverse diseases and maladies. These dietary components are significant resources of phytochemicals that demonstrate therapeutic properties against many illnesses. Fraxin is a naturally occurring coumarin glycoside mainly present in various species of Fraxinus genera, having a multitude of therapeutic uses against various diseases and disorders. This study focuses to investigate the pharmacological activities, botanical sources, and biopharmaceutical profile of the phytochemical fraxin based on different preclinical and non-clinical studies to show the scientific evidence and to evaluate the underlying molecular mechanisms of the therapeutic effects against various ailments. For this, data was searched and collected (as of February 15, 2024) in a variety of credible electronic databases, including PubMed/Medline, Scopus, Springer Link, ScienceDirect, Wiley Online, Web of Science, and Google Scholar. The findings demonstrated favorable outcomes in relation to a range of diseases or medical conditions, including inflammation, neurodegenerative disorders such as cerebral ischemia-reperfusion (I/R) and depression, viral infection, as well as diabetic nephropathy. The phytochemical also showed protective effects such as osteoprotective, renoprotective, pulmoprotective, hepatoprotective, and gastroprotective effects due to its antioxidant capacity. Fraxin has a great capability to diminish oxidative stress-related damage in different organs by stimulating the antioxidant enzymes, downregulating nuclear factor kappa B and NLRP3, and triggering the Nrf2/ARE signaling pathways. Fraxin exhibited poor oral bioavailability because of reduced absorption and a wide distribution into tissues of different organs. However, extensive research is required to decipher the biopharmaceutical profiles, and clinical studies are necessary to establish the efficacy of the natural compound as a reliable therapeutic agent.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Mst Asma Aktar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
5
|
Sforza M, Bianchini E, Alivernini D, Spalloni A, Teresi V, Madonia I, Salvetti M, Pontieri FE, Sette G. Cerebral hemodynamics and cognitive functions in the acute and subacute stage of mild ischemic stroke: a longitudinal pilot study. Neurol Sci 2024; 45:2097-2105. [PMID: 38114853 DOI: 10.1007/s10072-023-07260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
The association between cerebral hemodynamics and cognitive impairment has been reported in neurodegenerative and cerebrovascular disorders (CVD). However, it is still unclear whether changes occur in the acute phase of CVD. Here we investigated cognitive and hemodynamic parameters and their association in patients with CVD during the acute and subacute phases. Seventy-three patients with mild stroke, not undergoing endovascular treatment, were recruited. All subjects were devoid of intracranial or external carotid stenosis, significant chronic cerebrovascular pathology, dementia or non-compensated cardiovascular diseases. Patients were evaluated within 7 days from symptoms onset (T1) and after 3 months (T2). Clinical and demographic data were collected. NIHSS, MoCA, FAB, and Word-Color Stroop test (WCST) were used to evaluate disease severity and cognitive functions. Basal hemodynamic parameters in the middle cerebral artery were measured with transcranial Doppler. Differences between T2 and T1, correlations between cognitive and hemodynamic variables at T1 and T2, as well as correlations between the T2-T1 variation in cognitive and hemodynamic parameters were assessed. At T1, cognitive performance of MoCA, FAB, and WCST was lower compared with T2; and pulsatility index, a parameter reflecting distal vascular resistance, was higher. However, no correlations between the changes in cognitive and hemodynamic variables were found; therefore, the two seems to be independent phenomena. In the acute phase, the linear association between cerebral blood flow and cognitive performances was lost, probably due to a differential effect of microenvironment changes and vascular-specific phenomena on cognition and cerebral hemodynamics. This relationship was partially restored in the subacute phase.
Collapse
Affiliation(s)
- Michela Sforza
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
| | - Edoardo Bianchini
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
| | - Diletta Alivernini
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
| | | | - Valentina Teresi
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
| | - Irene Madonia
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
- INM Neuromed IRCCS, Pozzilli, IS, Italy
| | - Francesco E Pontieri
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy
- Sant'Andrea University Hospital, Rome, Italy
| | - Giuliano Sette
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via Di Grottarossa, 1035-00189, Rome, Italy.
- Sant'Andrea University Hospital, Rome, Italy.
| |
Collapse
|
6
|
Sperring CP, Savage WM, Argenziano MG, Leifer VP, Alexander J, Echlov N, Spinazzi EF, Connolly ES. No-Reflow Post-Recanalization in Acute Ischemic Stroke: Mechanisms, Measurements, and Molecular Markers. Stroke 2023; 54:2472-2480. [PMID: 37534511 DOI: 10.1161/strokeaha.123.044240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Acute ischemic stroke remains the primary cause of disability worldwide. For patients with large vessel occlusions, intravenous thrombolysis followed by mechanical thrombectomy remains the standard of care. Revascularization of the large vessel is typically successful. However, despite reopening of the occluded vessel, many patients fail to return to independence. Functional failure, despite macrovascular recanalization, is often referred to as the no-reflow phenomenon. Even with an extensive characterization of reperfusion in animal models, numerous mechanisms may explain no-reflow. Further, uniform measurements of this microvascular dysfunction and prognostic markers associated with no-reflow are lacking. In this review, we highlight a number of mechanisms that may explain no-reflow, characterize current multimodal measurements, and assess its molecular markers.
Collapse
Affiliation(s)
- Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - Valia P Leifer
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - Julia Alexander
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - Nicolas Echlov
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital
| |
Collapse
|
7
|
Xie Q, Lu D, Yuan J, Ren M, Li Y, Wang J, Ma R, Wang J. l-borneol promotes neurovascular unit protection in the subacute phase of transient middle cerebral artery occlusion rats: p38-MAPK pathway activation, anti-inflammatory, and anti-apoptotic effect. Phytother Res 2023; 37:4166-4184. [PMID: 37310024 DOI: 10.1002/ptr.7878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/14/2023]
Abstract
Our previous study showed l-borneol reduced cerebral infarction in the acute stage after cerebral ischemia, but there is little about the study of subacute phase. We herein investigated the cerebral protective effects of l-borneol on neurovascular units (NVU) in the subacute phase after transient middle cerebral artery occlusion (t-MCAO). The t-MCAO model was prepared by the line embolus method. Zea Longa, mNss, HE, and TTC staining were used to evaluate the effect of l-borneol. We evaluated the mechanisms of l-borneol on inflammation, p38 MAPK pathway, and apoptosis, etc. through various technologies. l-borneol 0.2, 0.1, 0.05 g·kg-1 could significantly reduce cerebral infarction rate, alleviate the pathological injury, and inhibit inflammation reaction. l-borneol could also significantly increase brain blood supply, Nissl bodies, and the expression of GFAP. Additionally, l-borneol activated the p38 MAPK signaling pathway, inhibited cell apoptosis, and maintained BBB integrity. l-borneol had a neuroprotective effect, which was related to activating the p38 MAPK signaling pathway, inhibiting inflammatory response and apoptosis, and improving cerebral blood supply to protect BBB and stabilize and remodel NVU. The study will provide a reference for the use of l-borneol in the treatment of ischemic stroke in the subacute phase.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Foshan University, Foshan, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Foshan University, Foshan, China
- South China University of Technology, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Kang X, Liu L, Wang W, Wang Y. Effects of different doses of dopamine receptor agonist pramipexole on neurobehaviors and changes of mitochondrial membrane potentials in rats with global cerebral ischemia-reperfusion injury. J Stroke Cerebrovasc Dis 2023; 32:107142. [PMID: 37105127 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE To explore the effects of different doses of dopamine receptor agonist pramipexole on neurobehaviors and changes of mitochondrial membrane potential in rats with global cerebral ischemia-reperfusion injury. METHODS A total of 75 SPF Sprague-Dawley male rats were randomly divided into sham group (n=20), model group (n=20), pramipexole administration group (n=35). The rat model of global cerebral ischemia-reperfusion injury was prepared by the modified Pulsinelli's four-vessel occlusion method. Pramipexole administration group was administered intraperitoneally in rats with global cerebral ischemia-reperfusion injury at different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, 2 mg/kg, once a day for 14 consecutive days. Based on the results of modified neurological severity scores, open field test and morphology by Nissl's staining to determine the optimal dose of pramipexole. Mitochondrial membrane potential in the optimal dose of pramipexole administration group were measured by the JC-1 fluorescent probe staining method. RESULTS 1. Different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, and 2 mg/kg, were used as drug administration in rats with global cerebral ischemia-reperfusion injury for 14 consecutive days, and we found that all four doses of pramipexole could improve the modified neurological severity scores of rats with global cerebral ischemia-reperfusion injury to varying degrees, but only 0.5 mg/kg pramipexole at 1, 3, 7 and 14 days consistently reduced modified neurological severity scores and improved neurological function in rats with global cerebral ischemia-reperfusion injury. In the open-field test, only 0.5 mg/kg pramipexole increased the number of entries into the central zone, duration spent in the central zone, total distance travelled in the open field and average velocity, which improved the spontaneous activities and reduced anxiety and depression of rats with global cerebral ischemia-reperfusion injury. 2. Different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, and 2 mg/kg for 14 consecutive days significantly increased the number of surviving neurons in the hippocampal CA1 subfield in rats with global cerebral ischemia-reperfusion injury to varying degrees. Based on these results, we tentatively found that 0.5 mg/kg pramipexole may be the optimal dose in all of the above. 3. We found that 0.5 mg/kg pramipexole significantly increased the mitochondrial membrane potential in rats after global cerebral ischemia-reperfusion injury. CONCLUSION Different doses of dopamine receptor agonist pramipexole improved neurological function of rats with global cerebral ischemia-reperfusion injury to varying degrees, and 0.5 mg/kg pramipexole may be the optimal dose in all of the above. Pramipexole may produce neuroprotective effects by protecting neurons in the hippocampus and improving the mitochondrial membrane potential after global cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiaoyu Kang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Boai hospital, China Rehabilitation Research Center, No. 10, Jiao Men Bei Road, Fengtai District, 100068 Beijing, China
| | - Lixu Liu
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Boai hospital, China Rehabilitation Research Center, No. 10, Jiao Men Bei Road, Fengtai District, 100068 Beijing, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.
| | - Wenzhu Wang
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China; Institute of Rehabilitation Medicine of China, Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, China
| | - Yunlei Wang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Boai hospital, China Rehabilitation Research Center, No. 10, Jiao Men Bei Road, Fengtai District, 100068 Beijing, China
| |
Collapse
|
9
|
Ekpo MD, Boafo GF, Gambo SS, Hu Y, Liu X, Xie J, Tan S. Cryopreservation of Animals and Cryonics: Current Technical Progress, Difficulties and Possible Research Directions. Front Vet Sci 2022; 9:877163. [PMID: 35754544 PMCID: PMC9219731 DOI: 10.3389/fvets.2022.877163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The basis of cryonics or medical cryopreservation is to safely store a legally dead subject until a time in the future when technology and medicine will permit reanimation after eliminating the disease or cause of death. Death has been debunked as an event occurring after cardiac arrest to a process where interjecting its progression can allow for reversal when feasible. Cryonics technology artificially halts further damages and injury by restoring respiration and blood circulation, and rapidly reducing temperature. The body can then be preserved at this extremely low temperature until the need for reanimation. Presently, the area has attracted numerous scientific contributions and advancement but the practice is still flooded with challenges. This paper presents the current progression in cryonics research. We also discuss obstacles to success in the field, and identify the possible solutions and future research directions.
Collapse
Affiliation(s)
- Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Suleiman Shafiu Gambo
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jingxian Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
10
|
He T, Yang GY, Zhang Z. Crosstalk of Astrocytes and Other Cells during Ischemic Stroke. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060910. [PMID: 35743941 PMCID: PMC9228674 DOI: 10.3390/life12060910] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Astrocytes structurally compose tripartite synapses, blood–brain barrier, and the neurovascular unit and perform multiple functions through cell-to-cell signaling of neurons, glial cells, and vasculature. The crosstalk of astrocytes and other cells is complicated and incompletely understood. Here we review the role of astrocytes in response to ischemic stroke, both beneficial and detrimental, from a cell–cell interaction perspective. Reactive astrocytes provide neuroprotection through antioxidation and antiexcitatory effects and metabolic support; they also contribute to neurorestoration involving neurogenesis, synaptogenesis, angiogenesis, and oligodendrogenesis by crosstalk with stem cells and cell lineage. In the meantime, reactive astrocytes also play a vital role in neuroinflammation and brain edema. Glial scar formation in the chronic phase hinders functional recovery. We further discuss astrocyte enriched microRNAs and exosomes in the regulation of ischemic stroke. In addition, the latest notion of reactive astrocyte subsets and astrocytic activity revealed by optogenetics is mentioned. This review discusses the current understanding of the intimate molecular conversation between astrocytes and other cells and outlines its potential implications after ischemic stroke. “Neurocentric” strategies may not be sufficient for neurological protection and recovery; future therapeutic strategies could target reactive astrocytes.
Collapse
Affiliation(s)
- Tingting He
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| |
Collapse
|
11
|
Wang Y, Chen W, Zhou J, Wang Y, Wang H, Wang Y. Nitrate Metabolism and Ischemic Cerebrovascular Disease: A Narrative Review. Front Neurol 2022; 13:735181. [PMID: 35309590 PMCID: PMC8927699 DOI: 10.3389/fneur.2022.735181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Inorganic and organic nitrates are present in vivo and in vitro. Inorganic nitrate is considered a pool of nitric oxide (NO), but it can be converted into nitrite and NO through various mechanisms. It plays an important role in the regulation of complex physiological and biochemical reactions, such as anti-inflammatory processes and the inhibition of platelet aggregation, which are closely related to the pathology and treatment of cerebrovascular disease. Ischemic cerebrovascular disease is characterized by high incidence, recurrence, and disability rates. Nitrate, nitrite, and NO were recently found to be involved in cerebrovascular disease. In this review, we describe the relationship between cerebrovascular disease and nitrate metabolism to provide a basis for further advances in laboratory and clinical medicine.
Collapse
Affiliation(s)
- Yicong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- School of Stomatology, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Wang
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hao Wang
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing, China
- Yilong Wang
| |
Collapse
|
12
|
Huang S, Tan Z, Cai J, Wang Z, Tian Y. Myrtenol improves brain damage and promotes angiogenesis in rats with cerebral infarction by activating the ERK1/2 signalling pathway. PHARMACEUTICAL BIOLOGY 2021; 59:584-593. [PMID: 34010584 PMCID: PMC8143630 DOI: 10.1080/13880209.2021.1917626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Cerebral ischaemia/reperfusion (I/R) injury has a high disability and fatality worldwide. Myrtenol has protective effects on myocardial I/R injury through antioxidant and anti-apoptotic effects. OBJECTIVE This study investigated the effect of myrtenol on cerebral ischaemia/reperfusion (I/R) injury and the underlying mechanism. MATERIALS AND METHODS Cerebral I/R injury was induced in adult Sprague-Dawley rats by middle cerebral artery occlusion (MCAO) for 90 min. MCAO rats were treated with or without myrtenol (10, 30, or 50 mg/kg/day) or/and U0126 (10 μL) intraperitoneally for 7 days. RESULTS In the present study, myrtenol had no toxicity at concentrations up to 1.3 g/kg. Myrtenol treatment improved neurological function of MCAO rats, with significantly (p < 0.05) improved neurological deficits (4.31 ± 1.29 vs. 0.00) and reduced brain edoema (78.95 ± 2.27% vs. 85.48 ± 1.24%). Myrtenol extenuated brain tissue injury and neuronal apoptosis, with increased Bcl-2 expression (0.48-fold) and decreased Bax expression (2.02-fold) and caspase-3 activity (1.36-fold). Myrtenol promoted angiogenesis in the brain tissues of MCAO rats, which was reflected by increased VEGF (0.86-fold) and FGF2 (0.51-fold). Myrtenol promoted the phosphorylation of MEK1/2 (0.80-fold) and ERK1/2 (0.97-fold) in MCAO rats. U0126, the inhibitor of ERK1/2 pathway, reversed the protective effects of myrtenol on brain tissue damage and angiogenesis in MCAO rats. DISCUSSION AND CONCLUSIONS Myrtenol reduced brain damage and angiogenesis through activating the ERK1/2 signalling pathway, which may provide a novel alternative strategy for preventing cerebral I/R injury. Further in vitro work detailing its mechanism-of-action for improving ischaemic cerebral infarction is needed.
Collapse
Affiliation(s)
- Shengming Huang
- Department of Neurology, Luohe Central Hospital, Luohe City, China
| | - Zhanguo Tan
- Department of Neurosurgery, Luohe Central Hospital, Luohe City, China
| | - Jirui Cai
- Department of Cardiology, Luohe Central Hospital, Luohe City, China
| | - Zhiping Wang
- Institute of Urology, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuejun Tian
- Department of Neurology, Luohe Central Hospital, Luohe City, China
- Institute of Urology, Second Hospital of Lanzhou University, Lanzhou, China
- CONTACT Yuejun Tian Department of Neurology, Luohe Central Hospital, Luohe City462000, China; Institute of Urology, Second Hospital of Lanzhou University, Lanzhou730030, China
| |
Collapse
|
13
|
Artery diameter ratio after recanalization in endovascular therapy for acute ischemic stroke: a new predictor of clinical outcomes. Neuroradiology 2021; 64:785-793. [PMID: 34708259 DOI: 10.1007/s00234-021-02841-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study aimed to investigate the relationship between the artery diameter ratio (ADR) after recanalization and clinical outcomes. METHODS Patients with middle cerebral artery occlusion confirmed by DSA from 1 January 2018, to 31 December 2019, were retrospectively analyzed. All patients confirmed TICI grade 2b or 3. The ADR was calculated as M2 segment diameter/M1 segment diameter. Multivariate regression analysis was used to describe clinical outcomes of two groups (ADR < 0.6 and ≥ 0.6). ROC curves were used to compare different models and find the best cutoff. RESULTS A total of 143 patients were included in the study, including 77 males and 66 females, with an average age of 67.79 ± 12 years. The NIHSS at discharge was significantly higher in the ADR < 0.6 group than another group (mean, 16.37 vs. 6.19, P < 0.001). At 90 days, the cases of functional independence was significantly less in the ADR < 0.6 group (20.97% vs. 83.95%, OR 0.05, 95% CI 0.02-0.12, P < 0.001). The ADR < 0.6 group had a higher incidence of cerebral edema (P = 0.027) and sICH (P = 0.038). The ADR had the strongest power to distinguish mRS > 2 (AUC = 0.851) and DC (AUC = 0.805), and the best cutoff value are 0.6 (specificity 85.19%, sensitivity 75.81%) and 0.58 (specificity 65.96%, sensitivity 100%), respectively. CONCLUSION The low ADR is associated with poor outcomes. The decrease in ADR may be an indirect manifestation of the loss of cerebrovascular autoregulation.
Collapse
|
14
|
Liu H, Li S, Xu Y, Wang X, Ren R, Zhu H, Zhang S. Engeletin protects against cerebral ischemia/reperfusion injury by modulating the VEGF/vasohibin and Ang-1/Tie-2 pathways. ACTA ACUST UNITED AC 2021; 54:e11028. [PMID: 34287581 PMCID: PMC8289342 DOI: 10.1590/1414-431x2020e11028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
Engeletin is a natural derivative of Smilax glabra rhizomilax that exhibits anti-inflammatory activity and suppresses lipid peroxidation. In the present study, we sought to elucidate the mechanistic basis for the neuroprotective and pro-angiogenic activity of engeltin in a human umbilical vein endothelial cells (HUVECs) oxygen-glucose deprivation and reoxygenation (OGD/R) model system and a middle cerebral artery occlusion (MCAO) rat model of cerebral ischemia and reperfusion injury. These analyses revealed that engeletin (10, 20, or 40 mg/kg) was able to reduce the infarct volume, increase cerebral blood flow, improve neurological function, and bolster the expression of vascular endothelial growth factor (VEGF), vasohibin-2 (Vash-2), angiopoietin-1 (Ang-1), phosphorylated human angiopoietin receptor tyrosine kinase 2 (p-Tie2), and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) in MCAO rats. Similarly, engeletin (100, 200, or 400 nM) markedly enhanced the migration, tube formation, and VEGF expression of HUVECs in an OGD/R model system, while the VEGF receptor (R) inhibitor axitinib reversed the observed changes in HUVEC tube formation activity and Vash-2, VEGF, and CD31 expression. These data suggested that engeletin exhibited significant neuroprotective effects against cerebral ischemia and reperfusion injury in rats, and improved cerebrovascular angiogenesis by modulating the VEGF/vasohibin and Ang-1/Tie-2 pathways.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Shucui Li
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Yangyang Xu
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xin Wang
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Rui Ren
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Haibo Zhu
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Shuping Zhang
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
15
|
Yang K, Zeng L, Ge A, Chen Y, Wang S, Zhu X, Ge J. Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.- Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury's Biological Network Based on Systematic Pharmacology. Front Pharmacol 2021; 12:601846. [PMID: 34248611 PMCID: PMC8267578 DOI: 10.3389/fphar.2021.601846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound (HCC) has definite curative effect on cerebral ischemic diseases, such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its mechanism for treating cerebral ischemia is still not fully explained. Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. The CIR genes were obtained from Genecards and OMIM and the protein-protein interaction (PPI) data of HCC’s targets and IS genes were obtained from String database. After that, the DAVID platform was applied for Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. Finally, a series of animal experiments were carried out to further explore the mechanism of HCC intervention in CIR. Results: The prediction results of systematic pharmacology showed that HCC can regulate CIR-related targets (such as AKT1, MAPK1, CASP3, EGFR), biological processes (such as angiogenesis, neuronal axonal injury, blood coagulation, calcium homeostasis) and signaling pathways (such as HIF-1, VEGF, Ras, FoxO signaling). The experiments showed that HCC can improve the neurological deficit score, decrease the volume of cerebral infarction and up-regulate the expression of HIF-1α/VEGF and VEGFR protein and mRNA (p < 0.05). Conclusion: HCC may play a therapeutic role by regulating CIR-related targets, biological processes and signaling pathways found on this study.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- Galactophore Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yi Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaofei Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,School of Graduate, Central South University, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Shaoyang University, Shaoyang, China
| |
Collapse
|
16
|
Wang Y, Xu M. miR-380-5p facilitates NRF2 and attenuates cerebral ischemia/reperfusion injury-induced neuronal cell death by directly targeting BACH1. Transl Neurosci 2021; 12:210-217. [PMID: 34046217 PMCID: PMC8134798 DOI: 10.1515/tnsci-2020-0172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Background This study aimed to explore the role of miR-380-5p in cerebral ischemia/reperfusion (CIR) injury-induced neuronal cell death and the potential signaling pathway involved. Methodology Human neuroblastoma cell line SH-SY5Y cells were used in this study. Oxygen and glucose deprivation/reperfusion (OGD/R) model was used to mimic ischemia/reperfusion injury. CCK-8 assay and flow cytometry were used to examine cell survival. Quantitative real time PCR (RT-qPCR) assay and Western blotting were used to measure the change of RNA and protein expression, respectively. TargetScan and Luciferase assay was used to confirm the target of miR-380-5p. Malondialdehyde (MDA) superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) were measured using commercial kits. Results miR-380-5p was downregulated in SH-SY5Y cells after OGD/R. Cell viability was increased by miR-380-5p, while cell apoptosis was reduced by miR-380-5p mimics. MDA was reduced by miR-380-5p mimics, while SOD and GSHPx were increased by miR-380-5p. Results of TargetScan and luciferase assay have showed that BACH1 is the direct target of miR-380-5p. Expression of NRF2 was upregulated after OGD/R, but was not affected by miR-380-5p. mRNA expression of HO-1 and NQO1 and ARE activity were increased by miR-380-5p. Overexpression of BACH1 reversed the antioxidant and neuroprotective effects of miR-380-5p. Conclusion miR-380-5p inhibited cell death induced by CIR injury through target BACH1 which also facilitated the activation of NRF2, indicating the antioxidant and neuroprotective effects of miR-380-5p.
Collapse
Affiliation(s)
- Yibiao Wang
- Department of Neurosurgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, 570311, China
| | - Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, No. 189 Chaoyang Road, Kunshan City, Jiangsu Province, 215300, China
| |
Collapse
|
17
|
Zhang R, Liu C, Li Y, Chen L, Xiang J. Tenacissoside H promotes neurological recovery of cerebral ischaemia/reperfusion injury in mice by modulating inflammation and oxidative stress via TrkB pathway. Clin Exp Pharmacol Physiol 2021; 48:757-769. [PMID: 32799328 DOI: 10.1111/1440-1681.13398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
Cerebral ischaemia/reperfusion (I/R)-induced acute brain injury remains a troublesome condition in clinical practice. The present study aimed to investigate the protective effect of tenacissoside H (TH) on I/R-induced cerebral injury in mice. Here, a mouse model of middle cerebral artery occlusion (MCAO) was established by an improved Longa-Zea method. TH was given by intraperitoneal injection once a day within 1 week before establishing the mouse MCAO model. The neurological functions of mice were evaluated and the apoptosis of neurons was also detected by the TUNEL method and Nissl's staining. ELISA and western blot were used to detect the expression of inflammatory factors, oxidation factors and proteins in the cerebral ischaemic cortex. The results revealed that TH dose-dependently reduced neurological impairment, neuron apoptosis and brain oedema induced by MCAO. Furthermore, TH attenuated the expression of pro-inflammatory cytokines (including interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α), iNOS and nuclear factor (NF)-κB while increased production of anti-inflammatory cytokines (IL-4, IL-10 and BDNF) and proteins of tropomyosin-related kinase receptor B (TrkB) and PPARγ. Nevertheless, after the addition of TrkB inhibitor, the effects of TH above were mostly restrained. In conclusion, TH can protect mice against I/R-induced neurological impairments via modulating inflammation and oxidative stress through TrkB signalling.
Collapse
Affiliation(s)
- Rui Zhang
- Department of NICU, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Li
- Department of NICU, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liang Chen
- Interventional Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus (Shanghai Fengxian District Central Hospital), Shanghai, China
| | - Jianfeng Xiang
- Interventional Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus (Shanghai Fengxian District Central Hospital), Shanghai, China
| |
Collapse
|
18
|
Padmavathi G, Ramkumar KM. MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Arch Biochem Biophys 2021; 698:108725. [PMID: 33326800 DOI: 10.1016/j.abb.2020.108725] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/21/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion injury (IRI) initiates from oxidative stress caused by lack of blood supply and subsequent reperfusion. It is often associated with sterile inflammation, cell death and microvascular dysfunction, which ultimately results in myocardial, cerebral and hepatic IRIs. Reportedly, deregulation of Nrf2 pathway plays a significant role in the oxidative stress-induced IRIs. Further, microRNAs (miRNAs/miRs) are proved to regulate the expression and activation of Nrf2 by targeting either the 3'-UTR or the upstream regulators of Nrf2. Additionally, compounds (crocin, ZnSO4 and ginsenoside Rg1) that modulate the levels of the Nrf2-regulating miRNAs were found to exhibit a protective effect against IRIs of different organs. Therefore, the current review briefs the impact of ischemia reperfusion (I/R) pathogenesis in various organs, role of miRNAs in the regulation of Nrf2 and the I/R protective effect of compounds that alter their expression.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
19
|
Wang T, Chen H, Xia S, Chen X, Sun H, Xu Z. Ameliorative Effect of Parishin C Against Cerebral Ischemia-Induced Brain Tissue Injury by Reducing Oxidative Stress and Inflammatory Responses in Rat Model. Neuropsychiatr Dis Treat 2021; 17:1811-1823. [PMID: 34113111 PMCID: PMC8187103 DOI: 10.2147/ndt.s309065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Gastrodia elata Blume (Orchidaceae) is a widely used traditional Chinese herbal medicine in the clinical practice of China, to treat nervous headache, convulsions, dizziness, neurasthenia, and so on. Parishin C (Par C), one of the major bioactive components of Gastrodia elata Blume, is known to exert many different biological activities, including antipsychotic and neuroprotective effects. However, there is little research about its neuroprotective effect in an ischemic stroke model. The objective of the present study is thus to investigate the neuroprotective effects of Par C against cerebral ischemia damage. METHODS Rats were pretreated with Par C (25, 50, or 100 mg/kg/day, i.p.) for 21 days, then subjected to 2 h of middle cerebral artery occlusion (MCAO) and 22 h of reperfusion. Neurological deficient scores, brain water content, histopathology, TCC staining were performed to assess the neuroprotective effects of Par C. Meanwhile, the oxidative stress, inflammation and apoptosis-related markers of brain tissue were evaluated by corresponding assay kits. Besides, the antioxidant and pro-inflammatory expression was measured by real-time quantification PCR (RT-qPCR). RESULTS Our findings indicated that the pre-treatment with Par C improved nerve function, suppressed oxidative stress, and pro-inflammatory factors release in rats with cerebral ischemia damage. Besides, Par C significantly increased antioxidant expression and declined pro-inflammatory cytokines expression. CONCLUSION Par C is shown to exert neuroprotective effects partly via inhibiting oxidative stress and inflammation in a rat model of MCAO.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Haibo Chen
- Department of Blood Transfusion, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Shuyun Xia
- Department of Respiratory Medicine, Pingdu People's Hospital, Pingdu, Shandong, 266700, People's Republic of China
| | - Xiaofang Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Hu Sun
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Zhixin Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| |
Collapse
|
20
|
Intravenous Administration of Coenzyme Q10 in Acute Period of Cerebral Ischemia Decreases Mortality by Reducing Brain Necrosis and Limiting Its Increase within 4 Days in Rat Stroke Model. Antioxidants (Basel) 2020; 9:antiox9121240. [PMID: 33297323 PMCID: PMC7762283 DOI: 10.3390/antiox9121240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress plays a key role in the pathogenesis of ischemic stroke. Coenzyme Q10 has a multi-targeting effect and may protect the brain against ischemic damage. The aim of our study was to evaluate the neuroprotective potential of ubiquinol by its intravenous administration. The study was performed on rats; a stroke was modeled by occlusion of the middle cerebral artery. On days 1 and 4 after ischemia, the neurological deficit and volume of the brain lesion were determined by MRI and TTC staining. Intravenous administration of coenzyme Q10 led to a decrease in rat mortality rate, improvement in neurological status, and decrease in the brain necrosis area in acute and delayed period after cerebral ischemia. A single intravenous administration of ubiquinol led to a limitation of the size of the brain damage for at least four days after ischemia. Thus, intravenous administration of coenzyme Q10 has a persistent neuroprotective potential. This finding suggests a possible therapeutic role of ubiquinol in acute ischemic conditions.
Collapse
|
21
|
Yang Y, Hu F, Yang G, Meng Q. Lack of sphingomyelin synthase 2 reduces cerebral ischemia/reperfusion injury by inhibiting microglial inflammation in mice. Exp Ther Med 2020; 20:241. [PMID: 33178339 PMCID: PMC7651782 DOI: 10.3892/etm.2020.9371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Recanalization of blood flow after ischemia can lead to ischemia/reperfusion injury, and inflammation plays an important role in the mechanisms behind cerebral ischemia/reperfusion injury. Sphingomyelin synthase 2 (SMS2) deficiency reduces inflammation; however, the effect and mechanism of action of SMS2 on the inflammatory response after cerebral ischemia/reperfusion injury are still unclear. Wild-type (WT) and SMS2 knockout C57BL/6 mice were used to establish a model of cerebral ischemia/reperfusion. The neurological deficit score was evaluated with Longa's method, and infarct volume was evaluated by magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining. Neurological deficit and infarct volume were used to evaluate the degree of cerebral ischemia/reperfusion injury in mice. Western blotting, reverse transcription-quantitative PCR and immunofluorescence were used to detect the expression profiles. The neurological deficit score of SMS2-/- mice was significantly lower than that of WT mice at 72 h after cerebral ischemia/reperfusion injury (P=0.027), but not significantly different at 24 h (P=0.064). Compared with WT mice at 24 and 72 h after cerebral ischemia/reperfusion, the infarct volume of SMS2-/- mice was decreased, the expression of pro-inflammatory cytokines galectin 3 and interleukin-1β were decreased, the activation of microglia was decreased, and the nuclear translocation of NF-κB p65 was decreased, but the expression of the anti-inflammatory factor arginase 1 was increased. Lack of SMS2 in mice can help to reduce the inflammatory reaction by inhibiting the activation of NF-κB signaling pathway, further attenuating cerebral ischemia/reperfusion injury in mice.
Collapse
Affiliation(s)
- Yu Yang
- Department of Radiology, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Fengxian Hu
- Department of Radiology, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Guifeng Yang
- Department of Radiology, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Qingmei Meng
- Department of Radiology, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
22
|
Quelhas P, Baltazar G, Cairrao E. Characterization of culture from smooth muscle cells isolated from rat middle cerebral arteries. Tissue Cell 2020; 66:101400. [PMID: 32933705 DOI: 10.1016/j.tice.2020.101400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Although human brain represents only 2% of the body mass, it uses around 20 % of the organism energy. Due to the brain's limited energy storage, the oxygen and glucose necessary to support brain functions depends on the correct blood supply. The main components of the arteries are smooth muscle cells, which are considered the main regulators of vascular tone and blood flow distribution. The information currently available on the functioning of the cerebral arteries and their cell constituents is extremely scarce. Thus, the aim of this work was to develop an in vitro model of smooth muscle cells derived from rat middle cerebral artery. Explants were collected from rat middle cerebral artery and adhered to collagen-coated culture dishes. Immunocytochemical analysis showed that the cells present in the culture expressed α-actin, a protein characteristic of the contractile phenotype of these cells. In addition, these cells did not express the endothelial marker, vWF. To evaluate the functionality of these cells the response to contractile agents, serotonin and noradrenaline, and to relaxing agent, sodium nitroprusside was determine by Planar Cell Surface Area analysis. Together the data obtained show that the cell culture obtained through the procedure described resulted in cells presenting the markers characteristic of smooth muscle cells and maintaining the usual contractile response, indicating that the cells obtained through this may be used as a model for characterization and study of functional behavior of the middle cerebral artery, as well as interaction studies between vascular and neuronal system.
Collapse
Affiliation(s)
- Patricia Quelhas
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Graça Baltazar
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
23
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
24
|
Neuroprotection of Intermedin Against Cerebral Ischemia/Reperfusion Injury Through Cerebral Microcirculation Improvement and Apoptosis Inhibition. J Mol Neurosci 2020; 71:767-777. [PMID: 32910355 DOI: 10.1007/s12031-020-01697-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/01/2020] [Indexed: 01/06/2023]
Abstract
Ischemic stroke is the primary cause of disability and mortality worldwide. Ischemia/reperfusion (I/R)-induced microcirculatory dysfunction and organ injury generally occur after ischemic stroke. Several studies have shown that intermedin (IMD) has a regulating function on cerebral microcirculation and blood-brain barrier via relaxing cerebral vessels and improving the local blood supply after cerebral ischemia. However, a unified conclusion has not been reached, and the underlying mechanism remains unclear. To observe and analyze the changes of cerebral microcirculation perfusion of cerebral IRI by IMD post-treatment in the rats and further explore the mechanism underlying the beneficial effect of IMD on cerebral IRI. Thirty-nine rats were divided into three groups: sham, I/R, and I/R + IMD groups. After IMD ischemia post-treatment, the rat cerebral infarction rate and the degree of neurological deficit were evaluated by TTC staining and neurological function score; the changes in the amount of cerebral microcirculation implantation on the injured side of the rats were observed by laser Doppler; the pathological changes and cell ultrastructure of rat cortex and hippocampus were observed by HE staining and transmission electron microscopy; the neuron apoptosis in the rat cortex and hippocampus was detected by TUNEL staining and immunohistochemical staining. Impaired neurological function, abnormal cortical/hippocampal neuron morphology, and the proportion of cerebral infarction were significantly improved in the IMD group compared with the I/R group, which suggested a possible neuroprotective role of IMD. IMD treatment also increased the average perfusion of cerebral surface microcirculation in rats by astonished 42.7 times. Finally, IMD administration decreased the caspase-3- and Bax-positive cell numbers and apoptotic cell ratio. IMD has a significant protective effect on neuronal damage caused by cerebral I/R in rats by improving cerebral microcirculation and inhibiting apoptosis.
Collapse
|
25
|
Intraoperative Imaging of Cortical Blood Flow by Camera-Based Photoplethysmography at Green Light. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intraoperative evaluation of blood perfusion in the brain cortex is an important but hitherto unresolved problem. Our aim was to demonstrate the feasibility of cerebral microcirculation assessment during open brain surgery by using camera-based photoplethysmography (cbPPG) synchronized with an electrocardiograph. Cortical blood flow was monitored in five patients with different diagnoses. Two cases (tumor resection and extra-intracranial bypass grafting) are presented in detail. Blood-flow parameters were visualized after processing cortex images recorded under green-light illumination before and after surgical intervention. In all cases, blood flow was successfully visualized in >95% of open brain. Distributions of blood pulsation amplitude, a parameter related to cortical blood perfusion; pulse arrival time; and blood-pressure-pulse shape were calculated with high spatial resolution (in every pixel). Changes in cerebral blood supply caused by surgical intervention were clearly revealed. We have shown that the temporal spread of pulse arrival time and the spatiotemporal variability of pulse shape are very sensitive markers of brain circulatory disturbances. The green-light cbPPG system offers a new approach to objective assessment of blood-flow changes in the brain during surgical intervention. The proposed system allows for contactless monitoring of cortex blood flow in real time with high resolution, thus providing useful information for surgery optimization and minimization of brain tissue damage.
Collapse
|
26
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
27
|
Ghali MGZ, Marchenko V, Yaşargil MG, Ghali GZ. Structure and function of the perivascular fluid compartment and vertebral venous plexus: Illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer's, cerebral small vessel, and neurodegenerative diseases. Neurobiol Dis 2020; 144:105022. [PMID: 32687942 DOI: 10.1016/j.nbd.2020.105022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/13/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Blood dynamically and richly supplies the cerebral tissue via microvessels invested in pia matter perforating the cerebral substance. Arteries penetrating the cerebral substance derive an investment from one or two successive layers of pia mater, luminally apposed to the pial-glial basal lamina of the microvasculature and abluminally apposed to a series of aquaporin IV-studded astrocytic end feet constituting the soi-disant glia limitans. The full investment of successive layers forms the variably continuous walls of the periarteriolar, pericapillary, and perivenular divisions of the perivascular fluid compartment. The pia matter disappears at the distal periarteriolar division of the perivascular fluid compartment. Plasma from arteriolar blood sequentially transudates into the periarteriolar division of the perivascular fluid compartment and subarachnoid cisterns in precession to trickling into the neural interstitium. Fluid from the neural interstitium successively propagates into the venules through the subarachnoid cisterns and perivenular division of the perivascular fluid compartment. Fluid fluent within the perivascular fluid compartment flows gegen the net direction of arteriovenular flow. Microvessel oscillations at the central tendency of the cerebral vasomotion generate corresponding oscillations of within the surrounding perivascular fluid compartment, interposed betwixt the abluminal surface of the vessels and internal surface of the pia mater. The precise microanatomy of this most fascinating among designable spaces has eluded the efforts of various investigators to interrogate its structure, though most authors non-consensusly concur the investing layers effectively and functionally segregate the perivascular and subarachnoid fluid compartments. Enlargement of the perivascular fluid compartment in a variety of neurological disorders, including senile dementia of the Alzheimer's type and cerebral small vessel disease, may alternately or coordinately constitute a correlative marker of disease severity and a possible cause implicated in the mechanistic pathogenesis of these conditions. Venular pressures modulating oscillatory dynamic flow within the perivascular fluid compartment may similarly contribute to the development of a variety among neurological disorders. An intimate understanding of subtle features typifying microanatomy and microphysiology of the investing structures and spaces of the cerebral microvasculature may powerfully inform mechanistic pathophysiology mediating a variety of neurovascular ischemic, neuroinfectious, neuroautoimmune, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Street, San Francisco, CA 94143, United States; Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States.
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States; Department of Neurophysiology, Bogomoletz Institute, Kyiv, Ukraine; Department of Neuroscience, Московский государственный университет имени М. В., Ломоносова GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - M Gazi Yaşargil
- Department of Neurosurgery, University Hospital Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - George Zaki Ghali
- United States Environmental Protection Agency, Arlington, Virginia, USA; Emeritus Professor of Toxicology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
28
|
Structural and chemical changes in glial cells in the rat neocortex induced by constant occlusion of the middle cerebral artery. Acta Histochem 2020; 122:151573. [PMID: 32622419 DOI: 10.1016/j.acthis.2020.151573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Stroke-induced changes in neuroglia determine the basic conditions for the survival and damage of neurons in the ischemic core. Here, we studied the immunolocalization of glial cell line-derived neurotrophic factor (GDNF), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba-1), and S-100β in the rat parietal cortex after constant occlusion of the middle cerebral artery. These cytoplasmic proteins are specific for different glial cell types. They are used as indicators of activated microglia and astrocytes in immunocytochemical studies. The distribution pattern of all markers changed dramatically with time. GFAP- and S-100β-positive astrocytes were observed in the penumbra zone and marked its boundaries. In days 1-8 after surgery, in the ischemic core, the number of S-100β-immunoreactive astrocytes decreased, and individual pyramidal cells appeared. S-100β-expressing pyramidal cells were localized in cortical layers III and V. They were only found in the ischemic core. Their proportion to the total number of cells was 37.3 ± 3.9 %, 22.2 ± 1.2 %, 16.3 ± 2.3 %, and 5.4 ± 0.3 % on days 1, 3, 8, and 14 after surgery. On day 21, no S-100β-expressing pyramidal cells were observed. The spatial density of GFAP- and S-100β-positive astrocytes increased in the penumbra region adjacent to the ischemic core and decreased in the penumbral periphery. As a result, the width of the perifocal penumbra zone decreased substantially at later stages of the stroke. In the penumbra, on days 1-3 after ischemic injury, GDNF immunoreactivity was mainly localized in neurons, while later on (days 8-21) it was mainly constrained to astrocyte glia. In intact rats, GDNF-positive neurons were situated in cortical layers II/III and V/VI and made up 52 ± 4.5 % of the total neuron population. Their proportion to the total number of neurons was 29 ± 2.1 %, 13.8 ± 0.6 %, and 3.1 ± 0.2 % on days 1, 8, and 21 after surgery. The number of GDNF-positive astrocytes, on the opposite, increased with time after ischemic injury. Iba-1-reactive microglia was mainly localized to the ischemic core. Microglial cells appeared activated as evidenced by their increased size and decreased number of processes and branching density. The spatial density of microglia reached a peak on day 8 after ischemic injury both in the ischemic core and penumbra. An increase in the number of Iba-1-reactive microglia in the ischemic core correlated with a decrease of the number of GFAP-positive astrocytes. The results are discussed in the context of participation of neuroglia in regulation of various neuroprotective and destructive processes.
Collapse
|
29
|
Li L, Yu M, Pang H, Chen L, Liu J, Hou S. NLRC5 protects neurons from oxygen-glucose deprivation-induced injury through activating the Nrf2/HO-1 pathway. J Recept Signal Transduct Res 2020; 41:53-58. [PMID: 32605461 DOI: 10.1080/10799893.2020.1786840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
NLRC5 is a member of the Nod-like receptor (NLR) family that has been found to be associated with the hepatic ischemia/reperfusion (I/R) injury. However, the role of NLRC5 in cerebral I/R has not been fully understood. The aim of the current study was to evaluate the effects of NLRC5 on primary hippocampal neuronal cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R). Our results showed that the mRNA and protein levels of NLRC5 were significantly decreased in OGD/R-induced neurons. Overexpression of NLRC5 caused significant increase in cell viability, as well as decrease in ROS level. The bax expression was significantly decreased, while bcl-2 expression was increased in NLRC5-overexpressing neurons. Furthermore, increased nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression levels were observed in neurons transfected with pcDNA3.0-NLRC5. The mRNA levels of HO-1, NAD(P)H:quinone oxidoreductase 1 (NQO-1) and glutathione peroxidase 3 (GPx-3) were induced by NLRC5 overexpression in OGD/R-induced hippocampal neurons. Additionally, inhibition of Nrf2/HO-1 pathway abolished the protective effect of NLRC5 on cerebral I/R injury. In conclusion, these results indicated that NLRC5 protected hippocampal neurons from OGD/R-induced injury. The protective effects of NLRC5 were mediated by the Nrf2/HO-1 pathway. Thus, NLRC5 might serve as an effective target for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Linlin Li
- The Third Ward of Nerve Center, Suining Central Hospital, Suining, China
| | - Ming Yu
- The Third Ward of Nerve Center, Suining Central Hospital, Suining, China
| | - Hongbo Pang
- The Third Ward of Nerve Center, Suining Central Hospital, Suining, China
| | - Ling Chen
- Nursing Department, Shaanxi Province Friendship Hospital, Xi'an, China
| | - Junya Liu
- Pharmacy Intravenous Admixture Service, Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shiqing Hou
- Nursing Department, Shaanxi Province Friendship Hospital, Xi'an, China
| |
Collapse
|
30
|
Jing M, Yi Y, Jinniu Z, Xiuli K, Jianxian W. Rehabilitation training improves nerve injuries by affecting Notch1 and SYN. Open Med (Wars) 2020; 15:387-395. [PMID: 33335999 PMCID: PMC7712290 DOI: 10.1515/med-2020-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/18/2019] [Accepted: 01/31/2020] [Indexed: 11/26/2022] Open
Abstract
Objective The aim of this study was to investigate the effects of rehabilitation training on Notch1 and synaptophysin (SYN) levels in brain tissues of rats with chronic cerebral ischemia. Methods Eighty-one male Sprague-Dawley rats were divided into nine groups: three Sham groups, three Model groups, and three training groups. There were nine rats in each group. At different time points, the apoptosis cell rate was analyzed by the TUNEL assay, and the expression levels of Notch1 and SYN in brain tissues were analyzed by immunohistochemical staining and RT-qPCR assay. Results The apoptosis cell rate of training groups was significantly higher on day 28 (P < 0.05). The protein and mRNA levels of both Noth1 and SYN in training groups were significantly higher on day 28 (P < 0.05). Conclusion Rehabilitation training could improve nerve cell apoptosis by increasing the expression of both Notch1 and SYN.
Collapse
Affiliation(s)
- Mao Jing
- Department of Rehabilitation Medicine, The second hospital of Anhui Medical University, Hefei, Anhui, China, 230601
| | - Yang Yi
- Department of Pathology, Basic Medical College, Anhui Medical University, Hefei, Anhui, China, 230032
| | - Zhang Jinniu
- Department of Rehabilitation Medicine, The second hospital of Anhui Medical University, Hefei, Anhui, China, 230601
| | - Kan Xiuli
- Department of Rehabilitation Medicine, The second hospital of Anhui Medical University, Hefei, Anhui, China, 230601
| | - Wu Jianxian
- Department of Rehabilitation Medicine, The second hospital of Anhui Medical University, Hefei, Anhui, China, 230601
| |
Collapse
|
31
|
McCrary MR, Jesson K, Wei ZZ, Logun M, Lenear C, Tan S, Gu X, Jiang MQ, Karumbaiah L, Ping Yu S, Wei L. Cortical Transplantation of Brain-Mimetic Glycosaminoglycan Scaffolds and Neural Progenitor Cells Promotes Vascular Regeneration and Functional Recovery after Ischemic Stroke in Mice. Adv Healthc Mater 2020; 9:e1900285. [PMID: 31977165 PMCID: PMC7358896 DOI: 10.1002/adhm.201900285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Stroke causes significant mortality and morbidity. Currently, there are no treatments which can regenerate brain tissue lost to infarction. Neural progenitor cells (NPCs) are at the forefront of preclinical studies for regenerative stroke therapies. NPCs can differentiate into and replace neurons and promote endogenous recovery mechanisms such as angiogenesis via trophic factor production and release. The stroke core is hypothetically the ideal location for replacement of neural tissue since it is in situ and develops into a potential space where injections may be targeted with minimal compression of healthy peri-infarct tissue. However, the compromised perfusion and tissue degradation following ischemia create an inhospitable environment resistant to cellular therapy. Overcoming these limitations is critical to advancing cellular therapy. In this work, the therapeutic potential of mouse-induced pluripotent stem cell derived NPCs is tested encapsulated in a basic fibroblast growth factor (bFGF) binding chondroitin sulfate-A (CS-A) hydrogel transplanted into the infarct core in a mouse sensorimotor cortex mini-stroke model. It is shown that CS-A encapsulation significantly improves vascular remodeling, cortical blood flow, and sensorimotor behavioral outcomes after stroke. It is found these improvements are negated by blocking bFGF, suggesting that the sustained trophic signaling endowed by the CS-A hydrogel combined with NPC transplantation can promote tissue repair.
Collapse
Affiliation(s)
- Myles R. McCrary
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Kaleena Jesson
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Zheng Z. Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Meghan Logun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Christopher Lenear
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Stephen Tan
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Michael Q. Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
32
|
Lv MH, Li S, Jiang YJ, Zhang W. The Sphkl/SlP pathway regulates angiogenesis via NOS/NO synthesis following cerebral ischemia-reperfusion. CNS Neurosci Ther 2019; 26:538-548. [PMID: 31814336 PMCID: PMC7163582 DOI: 10.1111/cns.13275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022] Open
Abstract
Aims Sphingosine kinase 1 (Sphk1) and the signaling molecule sphingosine‐1‐phosphate (S1P) are known to be key regulators of a variety of important biological processes, such as neovascularization. Nitric oxide (NO) is also known to play a role in vasoactive properties, whether Sphk1/S1P signaling is able to alter angiogenesis in the context of cerebral ischemia‐reperfusion injury (IRI), and whether such activity is linked with NO production, however, remains uncertain. Methods We used immunofluorescence to detect the expression of Sphk1 and NOS in cerebral epithelial cells (EC) after IR or oxygen‐glucose deprivation (OGDR). Western blotting was used to detect the Sphk1 and NOS protein levels in brain tissues or HBMECs. Adenovirus transfection was used to inhibit Sphk1 and NOS. An NO kit was used to detect NO contents in brain tissues and epithelial cells. Tube formation assays were conducted to measure angiogenesis. Results We determined that EC used in a model of cerebral IRI expressed Sphk1, and that inhibiting this expression led to decreased expression of two isoforms of NO synthase (eNOS and iNOS), as well as to decrease neovascularization density and NO production following injury. In HBMECs, knocking down Sphk1 markedly reduced NO production owing to reduced eNOS activity, and inhibiting eNOS directly similarly decreased NO production in a manner which could be reversed via exogenously treating cells with S1P. We further found that knocking down Sphk1 reduced HBMEC eNOS expression, in addition to decreasing the adhesion, migration, and tube formation abilities of these cells under OGDR conditions. Conclusions Based on these results, we therefore postulate that Sphk1/S1P signaling is able to mediate angiogenesis following cerebral IRI via the regulation of eNOS activity and NO production. As such, targeting these pathways may potentially represent a novel means of improving patient prognosis in those suffering from cerebral IRI.
Collapse
Affiliation(s)
- Man-Hua Lv
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Li
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Jia Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Effects of mesencephalic astrocyte-derived neurotrophic factor on cerebral angiogenesis in a rat model of cerebral ischemia. Neurosci Lett 2019; 715:134657. [PMID: 31785307 DOI: 10.1016/j.neulet.2019.134657] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum stress-related protein that exhibits neuroprotective effects. Recent studies have shown that MANF promotes poststroke functional recovery in rats. However, the underlying mechanisms have not yet been fully understood. Here, we examined the effects of MANF on cerebral angiogenesis in a permanent middle cerebral artery occlusion model in rats. Recombinant human MANF was administered intracerebroventricularly 24 h after stroke. We performed neurobehavioral tests and assessed microvessel density, functional microvessels, and regional cerebral blood flow (rCBF), as well as detected angiogenic factors in the peri-infarct cerebral cortex. Results showed that MANF ameliorated neurobehavioral scores, promoted rCBF, upregulated the expression of CD34, as well as the total vessel surface area and the number of microvessel branch points, and activated the vascular endothelial growth factor (VEGF) pathway. In conclusion, our findings provide insight into the mechanisms of MANF in promoting functional recovery from ischemic stroke. Our results suggest that MANF improves neurobehavioral recovery from cerebral ischemic injury, and that this effect is mediated partly by its proangiogenic effects and augmentation of rCBF, which are possibly associated with VEGF.
Collapse
|
34
|
Zhu Z, Zheng L, Li Y, Huang T, Chao YC, Pan L, Zhu H, Zhao Y, Yu W, Li P. Potential Immunotherapeutic Targets on Myeloid Cells for Neurovascular Repair After Ischemic Stroke. Front Neurosci 2019; 13:758. [PMID: 31447626 PMCID: PMC6696904 DOI: 10.3389/fnins.2019.00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Neurological deficits and cognitive dysfunctions caused by acute ischemic stroke pose enormous burden to the stroke families and the communities. Restoration of the normal function of the neurovascular unit following ischemic stroke is critical for improving neurological recovery and cognitive functions after stroke. Recent evidence suggests that the myeloid cells including both the resident microglia and infiltrating monocytes/macrophages and neutrophils are highly plastic in response to the environmental cues. They intimately interact with multiple components of the neurovascular unit in response to the alarmins, danger associated pattern molecules (DAMPs) and other signals released from the ischemic brain. The aim of this review is to discuss the reciprocal interactions between the myeloid cells and the ischemic neurovascular unit during the late repair phase of cerebral ischemic stroke. We also summarize potential immunotherapeutic targets on myeloid cells and new therapeutic approaches targeting myeloid cells, such as cell transplantation, mitochondrial dynamic and extracellular vesicles-based therapy et al to enhance neurovascular repair for better stroke recovery.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Chieh Chao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lijun Pan
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanhua Zhao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
35
|
The expression of cerebrospinal fluid exosomal miR-630 plays an important role in the dysfunction of endothelial cells after subarachnoid hemorrhage. Sci Rep 2019; 9:11510. [PMID: 31395931 PMCID: PMC6687820 DOI: 10.1038/s41598-019-48049-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to evaluate the relationship of brain microvascular endothelial cell (BMECs) function and the exosomal miR-630 expression after subarachnoid hemorrhage (SAH). We evaluated the effects of blood cerebrospinal fluid (BCSF) on proliferation of BMECs by MTT at 0, 1, 3, 7 and 12 days and performed cell cycle analysis after BCSF treatment for 48 h. The expression of endothelial adhesion molecules (ICAM-1, VCAM-1 and ZO-1) were detected by qRT-PCR and immunofluorescent staining after BCSF treatment. NO produced by BMECs was also evaluated by Griess assay. The expression of exosomal miR-630 was analyzed by qRT-PCR in BCSF treated cell cultu normal cell culture medium andre medium. We further compared the exosomal miR-630 of clinical patients between aSAH and normal hydrocephalus. The adhesion molecules expression was further detected after co-incubation with exosomes transfected by miR-630 mimics. We found that BCSF significantly reduced the cell vitality in a time-dependent manner (p < 0.05) and the growth inhibition ratio reached 78.34 ± 9.22% on the 12th day. BCSF induced cell cycle arrest in G0/G1 phase in BMECs (p < 0.01). The expression of ICAM-1, VCAM-1, ZO-1 and the NO produced by BMECs were markedly reduced following incubation with BCSF. Then we demonstrated that the expression of exosomal miR-630 was markedly reduced in the BCSF treated BMECs and the same phenomenon occurred in aSAH patients compared with normal hydrocephalus. The expression of ICAM-1, VCAM-1 and ZO-1 were then increased in BMECs cocultured with exosomes transfected by miR-630 mimics. In conclusion, the low expression of exosomal miR-630 in CSF was closely related to endothelial function in BCSF endothelial cell injury model and clinical patients.
Collapse
|
36
|
Yu H, Wang L, Zhang H, Wei W, Chen Y, Tang W, Wan Z. Effect of mild hypothermia on cerebral microcirculation in a murine cardiopulmonary resuscitation model. Microcirculation 2019; 26:e12537. [PMID: 30801897 DOI: 10.1111/micc.12537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/10/2019] [Accepted: 02/20/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND We hypothesized that mild hypothermia may improve brain microcirculation by reducing cerebral microvascular endothelial cells apoptosis, and this effect may be maximized by moving up the initiation of mild hypothermia from after return of spontaneous circulation (ROSC) to the start of cardiopulmonary resuscitation (CPR). METHODS A total of 35 rats were randomized into the intra-arrest hypothermia group (IAH), post-resuscitation hypothermia group (PRH), normothermia group (NT), or the sham control group. A craniotomy exposed the parietal cortex for visualization of microcirculation. Ventricular fibrillation was electrically induced and untreated for 8 minutes, followed by 8 minutes of precordial compression and mechanical ventilation. Hypothermia (33 ± 0.5°C) in the IAH and PRH group was induced and maintained for 6 hours at the beginning of CPR or after ROSC, respectively. At baseline, 1, 3, and 6 hours, hemodynamic parameters were measured and the pial microcirculations were visualized with a sidestream dark field imaging video microscope. Microvascular flow index and perfused microvessel density (PMD) were calculated. Rats were euthanized, and brain tissues were removed at 3 and 6 hours separately. Expression of Bax, Bcl-2, and Caspase 3 in brain microvascular endothelial cells was examined by Western blot. RESULTS Microvascular flow index and PMD were significantly reduced after cardiac arrest and resuscitation (all P < 0.05), and the former was largely preserved by hypothermia regardless when the hypothermia treatment was induced (P < 0.05). Bax and Caspase 3 increased and Bcl-2 decreased significantly after resuscitation, and hypothermia treatment reversed the trend partly (all P < 0.05). A moderate correlation was observed between MFI and those proteins (Bcl-2/BAX: 3 hours: r = 0.730, P = 0.002; 6 hours: r = 0.743, P = 0.002). CONCLUSION Mild hypothermia improves cerebral microcirculatory blood supply, partly by inhibiting endothelial cell apoptosis. Mild hypothermia induced simultaneously with CPR has shown no additional benefit in microcirculation or endothelial cell apoptosis.
Collapse
Affiliation(s)
- Haifang Yu
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.,Weil Institute of Emergency and Critical Care Medicine, Richmond, Virginia
| | - Lin Wang
- Department of Cardiology, Chengdu ShangjinNanfu Hospital, Chengdu, China
| | - Haihong Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wei
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Medicine, Richmond, Virginia
| | - Zhi Wan
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Tian Y, Di Y, Zhang J, Chen X, Feng T, Adu-Nti F, Shi M, Fan J, Zhang J, Zhang P, Liu Y. Angiogenic Gene Profiles in Laser-Microdissected Microvessels and Neurons from Ischemic Penumbra of Rat Brain. J Mol Neurosci 2019; 67:643-653. [PMID: 30840225 DOI: 10.1007/s12031-019-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 11/30/2022]
Abstract
Angiogenesis is induced immediately after cerebral ischemia and plays a pivotal role in the strategy against ischemic injury. We hypothesized that the coordinated interaction between microvessels and neurons was altered immediately after stroke, and microvessels and neurons would show the temporal specificity of angiogenic gene profiles after cerebral ischemia. Microvessels and neurons were harvested in the ischemic penumbra of rat brain using the PixCell II laser capture microdissection (LCM) instrument. After RNA isolation, T7 and gene-specific primer RNA linear amplification were performed, and angiogenic functional grouping cDNA profiling was analyzed in LCM samples. cDNA microarray results showed there were 35 (36.46%) and 27 (28.13%) genes expression changes in the microvessels, while 25 (26.04%) and 31 (32.29%) genes were changed in the neurons at 2 h and 24 h after cerebral ischemia. Members of growth factors and receptors, cytokines and chemokines, adhesion molecules, matrix proteins, proteases, and inhibitors showed temporal and spatial differentiation in the microvessels and neurons after cerebral ischemia. This finding will help to understand the coordination and interaction between microvessels and neurons, and to elucidate the molecular mechanisms of angiogenesis after brain ischemic injury.
Collapse
Affiliation(s)
- Yingfang Tian
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, 710062, Shaanxi, China. .,College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Yuanyuan Di
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jianshui Zhang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xinlin Chen
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ting Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Frank Adu-Nti
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Meimei Shi
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, 710062, Shaanxi, China
| | - Juan Fan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Junfeng Zhang
- Department of Anatomy, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Pengbo Zhang
- Department of Anesthesia of the Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710004, Shaanxi, China
| | - Yong Liu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
38
|
Surugiu R, Glavan D, Popescu M, Margaritescu O, Eugen R, Popa-Wagner A. Vasculature Remodeling in a Rat Model of Cerebral Ischemia. The Fate of the BrdU-Labeled Cells Prior to Stroke. Front Neurol 2018; 9:1014. [PMID: 30542320 PMCID: PMC6277782 DOI: 10.3389/fneur.2018.01014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022] Open
Abstract
Despite the clinical significance of post-stroke angiogenesis, a detailed phenotypic analysis of pre-stroke vascular remodeling and post-stroke angiogenesis had not yet been done in a model of focal ischemia. In this study, using BrdU-labeling of proliferating cells and immunofluorescence of pre- and post-stroke rats, we found that, (i) BrdU administered before stroke was incorporated preferentially into the nuclei of endothelial cells lining the lumen of existing blood vessels and newly born neurons in the dentate gyrus but not in the subventricular zone or proliferating microglia, (ii) BrdU injection prior to stroke led to the patchy distribution of the newly incorporated endothelial cells into existing blood vessels of the adult rat brain, (iii) BrdU injection prior to stroke specifically labeled neuronal precursors cells in a region of soft tissue beyond the inhibitory scar, which seems to be permissive to regenerative events, (iv) BrdU injection after stroke led to labeling of endothelial cells crossing or detaching from the disintegrating blood vessels and their incorporation into new blood vessels in the stroke region, scar tissue and the region beyond, (v) BrdU injection after stroke led to specific incorporation of BrdU-positive nuclei into the "pinwheel" architecture of the ventricular epithelium, (vi) blood vessels in remote areas relative to the infarct core and in the contralateral non-lesioned cortex, showed co-labeled BrdU/RECA+ endothelial cells shortly after the BrdU injection, which strongly suggests a bone marrow origin of the endothelial cells. In the damaged cortex, a BrdU/prolyl 4-hydroxylase beta double labeling in the close proximity to collagen IV-labeled basement membrane, suggests that, in addition to bone marrow derived endothelial cells, the disintegrating vascular wall itself could also be a source of proliferating endothelial cells, (vii) By day 28 after stroke, new blood vessels were observed in the perilesional area and the scar tissue region, which is generally considered to be resistant to regenerative events. Finally, (viii) vigorous angiogenesis was also detected in a region of soft tissue, also called "islet of regeneration," located next to the inhibitory scar. Conclusion: BrdU administered prior to, and after stroke, allows to investigate brain vasculature remodeling in the adult brain.
Collapse
Affiliation(s)
- Roxana Surugiu
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Glavan
- Psychiatry Clinic Hospital, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Mircea Popescu
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Otilia Margaritescu
- Department of Neurosurgery, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Radu Eugen
- Molecular Biology and Pathology Research Lab, University Hospital Bucharest, Bucharest, Romania
| | - Aurel Popa-Wagner
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Griffith University School of Medicine, Southport, QLD, Australia
| |
Collapse
|
39
|
Khoradmehr A, Mazaheri F, Anvari M, Tamadon A. A Simple Technique for Three-Dimensional Imaging and Segmentation of Brain Vasculature U sing Fast Free-of-Acrylamide Clearing Tissue in Murine. CELL JOURNAL 2018; 21:49-56. [PMID: 30507088 PMCID: PMC6275429 DOI: 10.22074/cellj.2019.5684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/30/2018] [Indexed: 12/26/2022]
Abstract
Objective Fast Free-of-Acrylamide Clearing Tissue (FACT) is a recently developed protocol for the whole tissue
three-dimensional (3D) imaging. The FACT protocol clears lipids using sodium dodecyl sulfate (SDS) to increase the
penetration of light and reflection of fluorescent signals from the depth of cleared tissue. The aim of the present study
was using FACT protocol in combination with imaging of auto-fluorescency of red blood cells in vessels to image the
vasculature of a translucent mouse tissues.
Materials and Methods In this experimental study, brain and other tissues of adult female mice or rats were dissected
out without the perfusion. Mice brains were sliced for vasculature imaging before the clearing. Brain slices and other
whole tissues of rodent were cleared by the FACT protocol and their clearing times were measured. After 1 mm of the
brain slice clearing, the blood vessels containing auto-fluorescent red blood cells were imaged by a z-stack motorized
epifluorescent microscope. The 3D structures of the brain vessels were reconstructed by Imaris software.
Results Auto-fluorescent blood vessels were 3D imaged by the FACT in mouse brain cortex. Clearing tissues of
mice and rats were carried out by the FACT on the brain slices, spinal cord, heart, lung, adrenal gland, pancreas, liver,
esophagus, duodenum, jejunum, ileum, skeletal muscle, bladder, ovary, and uterus.
Conclusion The FACT protocol can be used for the murine whole tissue clearing. We highlighted that the 3D imaging
of cortex vasculature can be done without antibody staining of non-perfused brain tissue, rather by a simple auto-
fluorescence.
Collapse
Affiliation(s)
- Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fahime Mazaheri
- Research and Clinical Center for Infertility, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Anvari
- Research and Clinical Center for Infertility, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Electronic Address:
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran. Electronic Address:
| |
Collapse
|
40
|
Sheikh AM, Yano S, Mitaki S, Haque MA, Yamaguchi S, Nagai A. A Mesenchymal stem cell line (B10) increases angiogenesis in a rat MCAO model. Exp Neurol 2018; 311:182-193. [PMID: 30291853 DOI: 10.1016/j.expneurol.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/29/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
A human mesenchymal stem cell line (B10) transplantation has been shown to improve ischemia-induced neurological deficits in animal stroke models. To understand the underlying mechanism, we have investigated the effects of B10 transplantation on cerebral angiogenesis in a rat middle cerebral artery occlusion (MCAO) model. B10 cells were transplanted intravenously 24 h after MCAO. Immunofluorescence staining results showed that compared to PBS-groups, vWF positive vessel and endoglin positive new vessels were increased in B10-transplanted MCAO groups in the lesion areas. The mRNA of angiogenesis factors including placental growth factor and hypoxia inducible factor (HIF)-1α were increased 3 days after MCAO in the core and IBZ areas of B10-transplanted group. Angiopoetin1 mRNA was increased only in the IBZ. Western blotting results showed that HIF-1α and vascular endothelial growth factor (VEGF) proteins were increased in B10-transplanted group. Both HIF-1α and VEGF were expressed in macrophage/microglia in the core area. In the IBZ, however, HIF-1α was expressed both in astrocytes and macrophage/microglia, while VEGF was expressed only in macrophage/microglia. Moreover, TGFβ protein levels were found to be increased in B10-transplanted group in the core and IBZ regions. Cell culture experiments using a human microglia cell line (HMO6) and B10 showed that IL-1β induced VEGF mRNA expression in both cell types. IL-1β was found to be highly expressed in B10 cells, and its co-culture with HMO6 further increased that in B10. Co-culture increased VEGF mRNA in both B10 and HMO6. In the rat brains, IL-1β was expressed in macrophage/microglia and transplanted-B10 cells in the core. IL-1β positive cell number was increased slightly, but significantly in B10-transplanted rats. To explore further, IL-1β expression was silenced in B10 cells by transfecting mRNA specific siRNA, and then transplanted in MCAO rats. Immunostaining result showed that endoglin positive area was decreased in IL-1β-silenced B10 transplanted groups compared to nonsilenced-B10 transplanted groups. Interestingly, vessel-like structure appeared as early as 3 days after MCAO in IL-1β-silenced B10-transplanted group. Thus our results demonstrated that B10 cells increased angiogenesis in MCAO rat model, through the regulation of HIF-1α and VEGF expression, where IL-1β might play a role.
Collapse
Affiliation(s)
- Abdullah Md Sheikh
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Shozo Yano
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Shingo Mitaki
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Md Ahsanul Haque
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Shuhei Yamaguchi
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Atsushi Nagai
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan.
| |
Collapse
|
41
|
Hanhart J, Comaneshter DS, Vinker S. Mortality after a cerebrovascular event in age-related macular degeneration patients treated with bevacizumab ocular injections. Acta Ophthalmol 2018; 96:e732-e739. [PMID: 29660843 DOI: 10.1111/aos.13731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE To analyse the mortality associated with intravitreal injections of bevacizumab for age-related macular degeneration (AMD) in patients previously diagnosed with stroke or transient ischaemic attack (TIA). METHODS We reviewed bevacizumab-treated AMD patients with a diagnosis of stroke or TIA prior to their first bevacizumab injection (n = 948). Those patients, naïve to any anti-vascular endothelial growth factor (anti-VEGF) at the time of stroke/TIA, were then compared to age- and gender-matched patients who had a stroke/TIA at the same time and had never been exposed to anti-VEGF. Survival analysis was performed using adjusted Cox regression. The main outcome measure was survival. Adjusted variables were age, smoking, alcohol abuse, hypertension, diabetes mellitus, obesity, ischaemic heart disease, congestive heart failure and liver cancer. RESULTS Age and gender distribution of bevacizumab-treated patients and controls were similar (mean age: 83.4 versus 83.7 years, p = 0.3; 51.7% males versus 52.5% males, p = 0.7). The adjusted mortality in patients who received bevacizumab within 3 months after stroke/TIA was significantly different than in patients non-exposed to bevacizumab (OR = 6.92, 95%, CI 1.88-25.43, p < 0.01). Within 6 months after stroke/TIA, the difference in adjusted mortality showed a strong trend (OR = 2.00, 95%, CI 0.96-4.16, p = 0.064). Within 12 months, it was insignificant (OR = 1.30, 95%, CI 0.75-2.26, p = 0.348). CONCLUSION We found increased mortality within three months after a cerebrovascular event in patients treated with bevacizumab for AMD compared to patients for whom there was no record of a prescription to any anti-VEGF agent.
Collapse
Affiliation(s)
- Joel Hanhart
- Department of Ophthalmology; Shaare Zedek Medical Center; Jerusalem Israel
| | | | - Shlomo Vinker
- Central Headquarters; Clalit Health Services; Tel Aviv Israel
- Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
42
|
Di Giovanna AP, Tibo A, Silvestri L, Müllenbroich MC, Costantini I, Allegra Mascaro AL, Sacconi L, Frasconi P, Pavone FS. Whole-Brain Vasculature Reconstruction at the Single Capillary Level. Sci Rep 2018; 8:12573. [PMID: 30135559 PMCID: PMC6105658 DOI: 10.1038/s41598-018-30533-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/27/2018] [Indexed: 02/03/2023] Open
Abstract
The distinct organization of the brain’s vascular network ensures that it is adequately supplied with oxygen and nutrients. However, despite this fundamental role, a detailed reconstruction of the brain-wide vasculature at the capillary level remains elusive, due to insufficient image quality using the best available techniques. Here, we demonstrate a novel approach that improves vascular demarcation by combining CLARITY with a vascular staining approach that can fill the entire blood vessel lumen and imaging with light-sheet fluorescence microscopy. This method significantly improves image contrast, particularly in depth, thereby allowing reliable application of automatic segmentation algorithms, which play an increasingly important role in high-throughput imaging of the terabyte-sized datasets now routinely produced. Furthermore, our novel method is compatible with endogenous fluorescence, thus allowing simultaneous investigations of vasculature and genetically targeted neurons. We believe our new method will be valuable for future brain-wide investigations of the capillary network.
Collapse
Affiliation(s)
- Antonino Paolo Di Giovanna
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| | - Alessandro Tibo
- Department of Information Engineering (DINFO), University of Florence, Via di S. Marta 3, Florence, 50139, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy.,National Institute of Optics, National Research Council, Largo Fermi 6, Florence, 50125, Italy
| | - Marie Caroline Müllenbroich
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy.,National Institute of Optics, National Research Council, Largo Fermi 6, Florence, 50125, Italy
| | - Irene Costantini
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy.,Neuroscience Institute, National Research Council, Via Giuseppe Moruzzi 1, Pisa, 56125, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy.,National Institute of Optics, National Research Council, Largo Fermi 6, Florence, 50125, Italy
| | - Paolo Frasconi
- Department of Information Engineering (DINFO), University of Florence, Via di S. Marta 3, Florence, 50139, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy. .,National Institute of Optics, National Research Council, Largo Fermi 6, Florence, 50125, Italy. .,Department of Physics and Astronomy, University of Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
43
|
Gardner A, Menon D. Moving to human trials for argon neuroprotection in neurological injury: a narrative review. Br J Anaesth 2018; 120:453-468. [DOI: 10.1016/j.bja.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
|
44
|
Zhao H, Zhang Y, Zhang Y, Shen Y, Zhang Y, Bi F, Xiao B, Zhang H, Ye W, Zhang H, Liao Y. NGF/FAK signal pathway is implicated in angiogenesis after acute cerebral ischemia in rats. Neurosci Lett 2018; 672:96-102. [PMID: 29458087 DOI: 10.1016/j.neulet.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 01/02/2023]
Abstract
Neurogenesis in the cerebral infarction after an ischemic event is important to the rehabilitation of patients. However, the mechanism of angiogenesis around cerebral ischemia is not clear. Our study designed to test whether the nerve growth factor (NGF)-P-focal adhesion kinase (FAK) signaling pathway for associations with angiogenesis plays a key role in post-acute cerebral ischemia of rats. Firstly, we implanted the Matrigel, a carrier of basement membrane matrix, into the abdominal skin of rats to identify the relevant components of the NGF-P-FAK signaling pathway related to angiogenesis. Secondly, we used a model established by ligation of the middle cerebral artery (MCA) to observe the effect of the same signal pathway on angiogenesis in the subventricular and subgranular zones of the dentate gyrus(SVG and SGZ). The results showed that the tissue scores was significantly increased by NGF. However, the tissue scores was signifcaintly decreased by FAK inhibitor TAE226. Furthermore, CD31 and α-SMA were significantly increased by NGF and were decreased by anti-NGF and TAE226 in Matrigel. The P-FAK protein expression in Matrigel was markedly increased by NGF and decreased by TAE226. In the SVZ and SVG of cerebral ischemia, the numbers of BrdU-positive cells were significantly increased by NGF and decreased by TAE226, respectively. Our findings suggest that the therapy targeting the NGF-P-FAK signaling pathway may be an option for patients suffering from cerebral ischemia.
Collapse
Affiliation(s)
- Haiting Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuhu Zhang
- Department of Emergency, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yinghui Zhang
- School of Chemical and Environment Engineering, Wu Yi University, Jiangmen, Guangdong, China
| | - Yue Shen
- Department of Anesthesia, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yidan Zhang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Fangfang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurology, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Ye
- Department of Anesthesia, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Honghai Zhang
- Department of Anesthesia, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
45
|
Dong B, Zhang Z, Xie K, Yang Y, Shi Y, Wang C, Yu Y. Hemopexin promotes angiogenesis via up-regulating HO-1 in rats after cerebral ischemia-reperfusion injury. BMC Anesthesiol 2018; 18:2. [PMID: 29298658 PMCID: PMC5751849 DOI: 10.1186/s12871-017-0466-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/21/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) is a critical pathophysiological change of ischemic stroke. Heme-oxygenase-1 (HO-1) is a rate-limiting enzyme of eliminating excessive free heme by combining with hemopexin (HPX), a plasma protein contributing to alleviating infarct size due to ischemia stroke. This study was to investigate whether HPX could improve angiogenesis after cerebral ischemia-reperfusion via up-regulating HO-1. METHODS Rats were randomly divided into five groups: sham, MCAO, MCAO + Vehicle, MCAO + HPX and MCAO + HPX + protoporphyrin IX (ZnPPIX, an HO-1 inhibitor). Cerebral I/R was induced by MCAO. Saline, vehicle, HPX and HPX + ZnPPIX were respectively given to MCAO group, MCAO + Vehicle group, MCAO + HPX group and MCAO + HPX + ZnPPIX group at the moment after reperfusion by intracerebroventricular injection. Neurological behavioral scores(NBS) was assessed at 24 h and 7d after I/R. Real-time polymerase chain reaction (RT-PCR) was used to analyze the mRNA level of HO-1. Angiogenesis in penumbra area was assessed by immunofluorescence detection at 7d after I/R. Serum endothelial nitric oxide synthase (eNOS) was assessed by enzyme linked immunosorbent assay (ELISA) at 24 h and 7d after I/R. RESULTS Compared with sham group, the NBS and the mRNA levels of HO-1 at 24 h and 7d after I/R in MCAO group decreased notably (P < 0.05), the new vessel density in ischemia penumbra increased notably at 7d after I/R (P < 0.05), the serum eNOS level increased at 24 h and 7d after I/R (P < 0.05). MCAO group and MCAO + Vehicle group showed no significant differences (P > 0.05). In the MCAO + HPX group, compared with MCAO + Vehicle group, the NBS and the mRNA levels of HO-1 increased drastically at 24 h and 7d after I/R (P < 0.05), the new vessel density in ischemia penumbra increased significantly at 7d after I/R (P < 0.05), the serum eNOS level at 24 h and 7d after I/R ascended notably (P < 0.05). Compared with MCAO + HPX group, the NBS assessment, new vessel density and serum eNOS level decreased at corresponding time points after I/R in MCAO + HPX+ ZnPPIX group (P < 0.05). CONCLUSION HPX can promote angiogenesis after cerebral ischemia-reperfusion injury in rats via up-regulating HO-1.
Collapse
Affiliation(s)
- Beibei Dong
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Zhishen Zhang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| | - Yongyan Yang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Yuan Shi
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Chenxu Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
46
|
Lee HI, Lee SW, Kim NG, Park KJ, Choi BT, Shin YI, Shin HK. Low-level light emitting diode therapy promotes long-term functional recovery after experimental stroke in mice. JOURNAL OF BIOPHOTONICS 2017; 10:1761-1771. [PMID: 28464523 DOI: 10.1002/jbio.201700038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/06/2017] [Accepted: 03/10/2017] [Indexed: 06/07/2023]
Abstract
We aimed to investigate the effects of low-level light emitting diode therapy (LED-T) on the long-term functional outcomes after cerebral ischemia, and the optimal timing of LED-T initiation for achieving suitable functional recovery. Focal cerebral ischemia was induced in mice via photothrombosis. These mice were assigned to a sham-operated (control), ischemic (vehicle), or LED-T group [initiation immediately (acute), 4 days (subacute) or 10 days (delayed) after ischemia, followed by once-daily treatment for 7 days]. Behavioral outcomes were assessed 21 and 28 days post-ischemia, and histopathological analysis was performed 28 days post-ischemia. The acute and subacute LED-T groups showed a significant improvement in motor function up to 28 days post-ischemia, although no brain atrophy recovery was noted. We observed proliferating cells (BrdU+ ) in the ischemic brain, and significant increases in BrdU+ /GFAP+ , BrdU+ /DCX+ , BrdU+ /NeuN+ , and CD31+ cells in the subacute LED-T group. However, the BrdU+ /Iba-1+ cell count was reduced in the subacute LED-T group. Furthermore, the brain-derived neurotrophic factor (BDNF) was significantly upregulated in the subacute LED-T group. We concluded that LED-T administered during the subacute stage had a positive impact on the long-term functional outcome, probably via neuron and astrocyte proliferation, blood vessel reconstruction, and increased BDNF expression. Picture: The rotarod test for motor coordination showed that acute and subacute LED-T improves long-term functional recovery after cerebral ischemia.
Collapse
Affiliation(s)
- Hae In Lee
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Sae-Won Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Nam Gyun Kim
- Medical Research Center of Color Seven, Seoul, 06719, Republic of Korea
| | - Kyoung-Jun Park
- Medical Research Center of Color Seven, Seoul, 06719, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| |
Collapse
|
47
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 575] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
48
|
Dyer EL, Gray Roncal W, Prasad JA, Fernandes HL, Gürsoy D, De Andrade V, Fezzaa K, Xiao X, Vogelstein JT, Jacobsen C, Körding KP, Kasthuri N. Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography. eNeuro 2017; 4:ENEURO.0195-17.2017. [PMID: 29085899 PMCID: PMC5659258 DOI: 10.1523/eneuro.0195-17.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022] Open
Abstract
Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts.
Collapse
Affiliation(s)
- Eva L. Dyer
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332
| | - William Gray Roncal
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723
- Dept. of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218
| | - Judy A. Prasad
- Dept. of Neurobiology, University of Chicago, Chicago, IL, 60637
| | - Hugo L. Fernandes
- Dept. of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, 60611
| | - Doga Gürsoy
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
| | | | - Kamel Fezzaa
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
| | - Xianghui Xiao
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
| | - Joshua T. Vogelstein
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205
- Institute of Computational Medicine, The Johns Hopkins University, Baltimore, MD, 21218
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
- Department of Physics and Astronomy, Northwestern University, Chicago, IL, 60208
| | - Konrad P. Körding
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Narayanan Kasthuri
- Dept. of Neurobiology, University of Chicago, Chicago, IL, 60637
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439
| |
Collapse
|
49
|
Xiao B, Chai Y, Lv S, Ye M, Wu M, Xie L, Fan Y, Zhu X, Gao Z. Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury. Int J Mol Med 2017; 40:1201-1209. [PMID: 28849073 PMCID: PMC5593464 DOI: 10.3892/ijmm.2017.3106] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022] Open
Abstract
Cerebral ischemia is a leading cause of death and disability. A previous study indicated that remote ischemic postconditioning (RIP) in the treatment of cerebral ischemia reduces ischemia/reperfusion (I/R) injury. However, the underlying mechanism is not well understood. In the present study, the authors hypothesized that the protective effect of RIP on neurological damage is mediated by exosomes that are released by endothelial cells in femoral arteries. To test this, right middle cerebral artery occlusion/reperfusion with RIP was performed in rats. In addition, an I/R injury cell model was tested that included human umbilical vein endothelial cells (HUVECs) and SH-SY5Y cells. Both the in vivo and in vitro models were examined for injury. Markers of exosomes (CD63, HSP70 and TSG101) were assessed by immunohistochemistry, western blot analysis and flow cytometry. Exosomes were extracted from both animal serum and HUVEC culture medium and identified by electron microscopy. They investigated the role of endothelial cell-derived exosomes in the proliferation, apoptosis, cell cycle, migration and invasion of I/R-injured SH-SY5Y cells. In addition, apoptosis-related molecules caspase-3, Bax and Bcl-2 were detected. RIP was determined to increase the number of exosomes and the expression levels of CD63, HSP70 and TSG101 in plasma, but not in brain hippocampal tissue. The size of exosomes released after I/R in HUVECs was similar to the size of exosomes released in rats subjected to RIP. Endothelial cell-derived exosomes partly suppressed the I/R-induced cell cycle arrest and apoptosis, and inhibited cell proliferation, migration and invasion in SH-SY5Y nerve cells. Endothelial cell-derived exosomes directly protect nerve cells against I/R injury, and are responsible for the protective role of RIP in I/R.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Chai
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shigang Lv
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Minhua Ye
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Miaojing Wu
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Liyuan Xie
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanghua Fan
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ziyun Gao
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
50
|
Ginsberg MD. The cerebral collateral circulation: Relevance to pathophysiology and treatment of stroke. Neuropharmacology 2017; 134:280-292. [PMID: 28801174 DOI: 10.1016/j.neuropharm.2017.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 12/29/2022]
Abstract
The brain's collateral circulation consists of arterial anastomotic channels capable of providing nutrient perfusion to brain regions whose normal sources of flow have become compromised, as occurs in acute ischemic stroke. Modern CT-based neuroimaging is capable of providing detailed information as to collateral extent and sufficiency and is complemented by magnetic resonance-based methods. In the present era of standard-of-care IV thrombolysis for acute ischemic stroke, and following the recent therapeutic successes of randomized clinical trials of acute endovascular intervention, the sufficiency of the collateral circulation has been convincingly established as a key factor influencing the likelihood of successful reperfusion and favorable clinical outcome. This article reviews the features of the brain's collateral circulation; methods for its evaluation in the acute clinical setting; the relevance of collateral circulation to prognosis in acute ischemic stroke; the specific insights into the collateral circulation learned from recent trials of endovascular intervention; and the major influence of genetic factors. Finally, we emphasize the need to develop therapeutic approaches to augment collateral perfusion as an adjunctive strategy to be employed along with, or prior to, thrombolysis and endovascular interventions, and we highlight the possible potential of inhaled nitric oxide, albumin, and other approaches. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Myron D Ginsberg
- Department of Neurology, University of Miami Miller School of Medicine, Clinical Research Center, Room 1331, 1120 NW 14th Street, Miami, FL 33136, USA.
| |
Collapse
|