1
|
Camargo LL, Denadai-Souza A, Yshii LM, Lima C, Teixeira SA, Cerqueira ARA, Gewehr MCF, Fernandes ES, Schenka AA, Muscará MN, Ferro ES, Costa SKP. The potential anti-inflammatory and anti-nociceptive effects of rat hemopressin (PVNFKFLSH) in experimental arthritis. Eur J Pharmacol 2021; 890:173636. [PMID: 33053380 DOI: 10.1016/j.ejphar.2020.173636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory arthritis, such as rheumatoid arthritis (RA), stands out as one of the main sources of pain and impairment to the quality of life. The use of hemopressin (PVNFKFLSH; Hp), an inverse agonist of type 1 cannabinoid receptor, has proven to be effective in producing analgesia in pain models, but its effect on neuro-inflammatory aspects of RA is limited. In this study, antigen-induced arthritis (AIA) was evoked by the intraarticular (i.art.) injection of methylated bovine serum albumin (mBSA) in male Sprague Dawley rats. Phosphate buffered saline (PBS)-injected ipsilateral knee joints or AIA contralateral were used as control. Nociceptive and inflammatory parameters such as knee joint oedema and leukocyte influx and histopathological changes were carried out in addition to the local measurement of interleukins (IL) IL-6, IL-1β, tumor necrosis factor-α and the immunoreactivity of the neuropeptides substance P (SP) and calcitonin gene related peptide (CGRP) in the spinal cord (lumbar L3-5 segments) of AIA rats. For 4 days, AIA rats were treated daily with a single administration of saline, Hp injected (10 or 20 μg/day, i.art.), Hp given orally (20 μg/Kg, p.o.) or indomethacin (Indo; 5 mg/Kg, i.p.). In comparison to the PBS control group, the induction of AIA produced a significant and progressive mono-arthritis condition. The degree of AIA severity progressively compromised the normal walking pattern and impaired mobility over the next four days in relation to PBS-injected rats or contralateral knee joints. In AIA rats, the reduction of the distance between footprints and disturbances of gait evidenced signs of nociception. This response worsened at day 4, and a loss of footprint from the ipsilateral hind paw was evident. Daily treatment of the animals with Hp either i.art. (10 and 20 μg/knee) or p.o. (20 μg/Kg) as well as Indo (5 mg/Kg, i.p.) ameliorated the impaired mobility in a time-dependent manner (P < 0.05). In parallel, the AIA-injected ipsilateral knee joints reach a peak of swelling 24 h after AIA induction, which persisted over the next four days in relation to PBS-injected rats or contralateral knee joints. There was a significant but not dose-dependent inhibitory effect produced by all dosages and routes of Hp treatments on AIA-induced knee joint swelling (P < 0.05). In addition, the increased synovial levels of MPO activity, total leukocytes number and IL-6, but not IL-1β, were significantly reduced by the lower i.art. dose of Hp. In conclusion, these results successfully demonstrate that Hp may represent a novel therapeutic strategy to treat RA, an effect which is unrelated to the proinflammatory actions of the neuropeptides CGRP and SP.
Collapse
Affiliation(s)
- Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom; Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Alexandre Denadai-Souza
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France; KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Laboratory for Intestinal Neuroimmune Interactions, Leuven, Belgium; Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Lidia M Yshii
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France; VIB Center for Brain & Disease Research and KU Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Carla Lima
- Special Laboratory of Applied Toxicology (CAT/CEPID), Butantan Institute, Avenue Vital Brazil, 1500, Butantan, 05503-009, Sao Paulo, Brazil
| | - Simone A Teixeira
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Anderson R A Cerqueira
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Mayara C F Gewehr
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Elizabeth S Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, 80250-060, PR, Brazil; Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, 80230-020, PR, Brazil
| | - André A Schenka
- Faculty of Medical Sciences- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo N Muscará
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil
| | - Emer S Ferro
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil; Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Soraia K P Costa
- Department of Pharmacology, Biomedical Sciences Institute (ICB-I), University of São Paulo (USP), São Paulo, 05508-900, SP, Brazil.
| |
Collapse
|
2
|
Fierascu I, Ungureanu C, Avramescu SM, Cimpeanu C, Georgescu MI, Fierascu RC, Ortan A, Sutan AN, Anuta V, Zanfirescu A, Dinu-Pirvu CE, Velescu BS. Genoprotective, antioxidant, antifungal and anti-inflammatory evaluation of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:3. [PMID: 29301523 PMCID: PMC5755145 DOI: 10.1186/s12906-017-2066-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Juniperus communis L. represents a multi-purpose crop used in the pharmaceutical, food, and cosmetic industry. Several studies present the possible medicinal properties of different Juniperus taxa native to specific geographical area. The present study aims to evaluate the genoprotective, antioxidant, antifungal and anti-inflammatory potential of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. METHODS The prepared hydroethanolic extract of Juniperus communis L. was characterized by GC-MS, HPLC, UV-Vis spectrometry and phytochemical assays. The antioxidant potential was evaluated using the DPPH assay, the antifungal effect was studied on Aspergillus niger ATCC 15475 and Penicillium hirsutum ATCC 52323, while the genoprotective effect was evaluated using the Allium cepa assay. The anti-inflammatory effect was evaluated in two inflammation experimental models (dextran and kaolin) by plethysmometry. Male Wistar rats were treated by gavage with distilled water (negative control), the microemulsion (positive control), diclofenac sodium aqueous solution (reference) and microemulsions containing juniper extract (experimental group). The initial paw volume and the paw volumes at 1, 2, 3, 4, 5 and 24 h were measured. RESULTS Total terpenoids, phenolics and flavonoids were estimated to be 13.44 ± 0.14 mg linalool equivalent, 19.23 ± 1.32 mg gallic acid equivalent, and 5109.6 ± 21.47 mg rutin equivalent per 100 g of extract, respectively. GC-MS characterization of the juniper extract identified 57 volatile compounds in the sample, while the HPLC analysis revealed the presence of the selected compounds (α-pinene, chlorogenic acid, rutin, apigenin, quercitin). The antioxidant potential of the crude extract was found to be 81.63 ± 0.38% (measured by the DPPH method). The results of the antifungal activity assay (for Aspergillus niger and Penicillium hirsutum) were 21.6 mm, respectively 17.2 mm as inhibition zone. Test results demonstrated the genoprotective potential of J. communis undiluted extract, inhibiting the mitodepressive effect of ethanol. The anti-inflammatory action of the juniper extract, administered as microemulsion in acute-dextran model was increased when compared to kaolin subacute inflammation induced model. CONCLUSION The hydroalcoholic extract obtained from wild-growing Juniperus communis native to Romanian southern sub-Carpathian hills has genoprotective, antioxidant, antifungal and anti-inflammatory properties.
Collapse
Affiliation(s)
- Irina Fierascu
- The National Institute for Research & Development in Chemistry and Petrochemistry, ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
| | - Camelia Ungureanu
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1 Polizu Str., 011061 Bucharest, Romania
| | - Sorin Marius Avramescu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
| | - Mihaela Ioana Georgescu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
| | - Radu Claudiu Fierascu
- The National Institute for Research & Development in Chemistry and Petrochemistry, ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
| | - Alina Ortan
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
| | - Anca Nicoleta Sutan
- Department of Natural Sciences, University of Pitesti, 1 Targu din Vale, 110040 Pitesti, Arges Romania
| | - Valentina Anuta
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristina Elena Dinu-Pirvu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Bruno Stefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
3
|
Kirkpatrick DR, McEntire DM, Smith TA, Dueck NP, Kerfeld MJ, Hambsch ZJ, Nelson TJ, Reisbig MD, Agrawal DK. Transmission pathways and mediators as the basis for clinical pharmacology of pain. Expert Rev Clin Pharmacol 2016; 9:1363-1387. [PMID: 27322358 PMCID: PMC5215101 DOI: 10.1080/17512433.2016.1204231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Mediators in pain transmission are the targets of a multitude of different analgesic pharmaceuticals. This review explores the most significant mediators of pain transmission as well as the pharmaceuticals that act on them. Areas covered: The review explores many of the key mediators of pain transmission. In doing so, this review uncovers important areas for further research. It also highlights agents with potential for producing novel analgesics, probes important interactions between pain transmission pathways that could contribute to synergistic analgesia, and emphasizes transmission factors that participate in transforming acute injury into chronic pain. Expert commentary: This review examines current pain research, particularly in the context of identifying novel analgesics, highlighting interactions between analgesic transmission pathways, and discussing factors that may contribute to the development of chronic pain after an acute injury.
Collapse
Affiliation(s)
- Daniel R. Kirkpatrick
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Dan M. McEntire
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Tyler A. Smith
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Nicholas P. Dueck
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Mitchell J. Kerfeld
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Zakary J. Hambsch
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Taylor J. Nelson
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Mark D. Reisbig
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Devendra K. Agrawal
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| |
Collapse
|
4
|
Borbély É, Sándor K, Markovics A, Kemény Á, Pintér E, Szolcsányi J, Quinn JP, McDougall JJ, Helyes Z. Role of capsaicin-sensitive nerves and tachykinins in mast cell tryptase-induced inflammation of murine knees. Inflamm Res 2016; 65:725-36. [PMID: 27251170 DOI: 10.1007/s00011-016-0954-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/10/2016] [Accepted: 05/18/2016] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE, DESIGN Mast cell tryptase (MCT) is elevated in arthritic joints, but its direct effects are not known. Here, we investigated MCT-evoked acute inflammatory and nociceptive mechanisms with behavioural, in vivo imaging and immunological techniques. MATERIAL AND SUBJECTS Neurogenic inflammation involving capsaicin-sensitive afferents, transient receptor potential vanilloid 1 receptor (TRPV1), substance P (SP), neurokinin A (NKA) and their NK1 tachykinin receptor were studied using gene-deleted mice compared to C57Bl/6 wildtypes (n = 5-8/group). TREATMENT MCT was administered intraarticularly or topically (20 μl, 12 μg/ml). Capsaicin-sensitive afferents were defunctionalized with the TRPV1 agonist resiniferatoxin (RTX; 30-70-100 μg/kg s.c. pretreatment). METHODS Knee diameter was measured with a caliper, synovial perfusion with laser Doppler imaging, mechanonociception with aesthesiometry and weight distribution with incapacitance tester over 6 h. Cytokines and neuropeptides were determined with immunoassays. RESULTS MCT induced synovial vasodilatation, oedema, impaired weight distribution and mechanical hyperalgesia, but cytokine or neuropeptide levels were not altered at the 6-h timepoint. Hyperaemia was reduced in RTX-treated and TRPV1-deleted animals, and oedema was absent in NK1-deficient mice. Hyperalgesia was decreased in SP/NKA- and NK1-deficient mice, weight bearing impairment in RTX-pretreated, TRPV1- and NK1-deficient animals. CONCLUSIONS MCT evokes synovial hyperaemia, oedema, hyperalgesia and spontaneous pain. Capsaicin-sensitive afferents and TRPV1 receptors are essential for vasodilatation, while tachykinins mediate oedema and pain.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Katalin Sándor
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary
| | - Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - John P Quinn
- School of Biomedical Sciences, Liverpool University, Liverpool, UK
| | - Jason J McDougall
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary. .,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary. .,MTA-PTE NAP B Chronic Pain Research Group, Pecs, Hungary.
| |
Collapse
|
5
|
Fernandes ES, Cerqueira ARA, Soares AG, Costa SKP. Capsaicin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:91-125. [PMID: 27771922 DOI: 10.1007/978-3-319-41342-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A significant number of experimental and clinical studies published in peer-reviewed journals have demonstrated promising pharmacological properties of capsaicin in relieving signs and symptoms of non-communicable diseases (chronic diseases). This chapter provides an overview made from basic and clinical research studies of the potential therapeutic effects of capsaicin, loaded in different application forms, such as solution and cream, on chronic diseases (e.g. arthritis, chronic pain, functional gastrointestinal disorders and cancer). In addition to the anti-inflammatory and analgesic properties of capsaicin largely recognized via, mainly, interaction with the TRPV1, the effects of capsaicin on different cell signalling pathways will be further discussed here. The analgesic, anti-inflammatory or apoptotic effects of capsaicin show promising results in arthritis, neuropathic pain, gastrointestinal disorders or cancer, since evidence demonstrates that the oral or local application of capsaicin reduce inflammation and pain in rheumatoid arthritis, promotes gastric protection against ulcer and induces apoptosis of the tumour cells. Sadly, these results have been paralleled by conflicting studies, which indicate that high concentrations of capsaicin are likely to evoke deleterious effects, thus suggesting that capsaicin activates different pathways at different concentrations in both human and rodent tissues. Thus, to establish effective capsaicin doses for chronic conditions, which can be benefited from capsaicin therapeutic effects, is a real challenge that must be pursued.
Collapse
Affiliation(s)
- E S Fernandes
- Programa de Pós-Graduação, Universidade Ceuma, São Luís-MA, Brazil.,Vascular Biology Section, Cardiovascular Division, King's College London, London, UK
| | - A R A Cerqueira
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil
| | - A G Soares
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil.
| |
Collapse
|