1
|
Lakli M, Onnée M, Carrez T, Becq F, Falguières T, Fanen P. ABC transporters involved in respiratory and cholestatic diseases: From rare to very rare monogenic diseases. Biochem Pharmacol 2024; 229:116468. [PMID: 39111603 DOI: 10.1016/j.bcp.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. These proteins, most of them being transmembrane, allow the active transport of an important variety of substrates across biological membranes, using ATP hydrolysis as an energy source. For an important proportion of these ABC transporters, genetic variations of the loci encoding them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases (variations in ABCB4 and ABCB11). In this review, we first describe these ABC transporters and how their molecular dysfunction may lead to human diseases. Then, we propose a classification of the genetic variants according to their molecular defect (expression, traffic, function and/or stability), which may be considered as a general guideline for all ABC transporters' variants. Finally, we discuss recent progress in the field of targeted pharmacotherapy, which aim to correct specific molecular defects using small molecules. In conclusion, we are opening the path to treatment repurposing for diseases involving similar deficiencies in other ABC transporters.
Collapse
Affiliation(s)
- Mounia Lakli
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Marion Onnée
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France
| | - Thomas Carrez
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France; ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Frédéric Becq
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France
| | - Thomas Falguières
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France; AP-HP, Département de Génétique Médicale, Hôpital Henri Mondor, F-94010, Créteil, France.
| |
Collapse
|
2
|
Song Y, Song Q, Tan F, Wang Y, Li C, Liao S, Yu K, Mei Z, Lv L. Seliciclib alleviates ulcerative colitis by inhibiting ferroptosis and improving intestinal inflammation. Life Sci 2024; 351:122794. [PMID: 38866218 DOI: 10.1016/j.lfs.2024.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, recurrent, non-specific inflammatory disease, and the pathogenesis of the disease remains unclear. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which are simultaneously closely related to reactive oxygen species (ROS). Although seliciclib is highly effective against immune inflammation, its mechanism on colitis is unclear. This study demonstrated that seliciclib administration partially inhibited ferroptosis, alleviating symptoms and inflammation in experimental colitis. METHODS The mouse UC model was induced by 3.0 % dextran sodium sulfate (DSS) for 7 days and treated with seliciclib (10 mg/kg) for 5 days. In the in vitro model, LPS (100 μg/mL) was used for induction and seliciclib (10 μM) was applied for 2 h. Meanwhile, appropriate histopathology, inflammatory response, oxidative stress, and ferroptosis regulators were measured. RESULTS This study primarily investigated the role of seliciclib in regulating ferroptosis in UC. Bioinformatics analysis indicated that Dual oxidase 2 (DUOX2) may serve a role involved in the ferroptosis of UC. The experimental findings demonstrated that seliciclib alleviates symptoms and inflammation in DSS-induced UC mice and partially mitigates the occurrence of ferroptosis both in vivo and in vitro, possibly through the modulation of DUOX2. CONCLUSIONS Ferroptosis is strongly associated with the development of colitis, and seliciclib plays an essential role in ferroptosis and inflammation in UC. The suppression of ferroptosis in the intestinal epithelium could be a therapeutic approach for UC.
Collapse
Affiliation(s)
- Ya Song
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Qian Song
- The Second College of Clinical Medicine, Chongqing Medical University, 1 Yixue Road, Yuzhong, 400016 Chongqing, China.
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Yanhui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Keqi Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| |
Collapse
|
3
|
Martin C, Dhôte T, Ladjemi MZ, Andrieu M, Many S, Karunanithy V, Pène F, Da Silva J, Burgel PR, Witko-Sarsat V. Specific circulating neutrophils subsets are present in clinically stable adults with cystic fibrosis and are further modulated by pulmonary exacerbations. Front Immunol 2022; 13:1012310. [PMID: 36248793 PMCID: PMC9560797 DOI: 10.3389/fimmu.2022.1012310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
The progressive lung destruction in cystic fibrosis (CF) is tightly associated with chronic bacterial infection and neutrophil-dominated airway inflammation. CF pulmonary disease is complicated by episodes of acute exacerbations, contributing to irreversible lung damage. We hypothesized that circulating subsets of neutrophils from clinically stable adults with CF present some phenotypic specificities that could amplify their activation during an infectious episode. The aim of the present study was to examine the different neutrophil subsets in whole blood and in the low density neutrophils (LDN) that co-purify with peripheral blood mononuclear cells (PBMC) in clinically stable adults with CF and in CF adults during pulmonary exacerbations compared to healthy donors. Blood samples were obtained from 22 adults with CF (16 in stable state and 6 during pulmonary exacerbations) and from 20 healthy donors. Flow cytometry analysis of 13 different markers related to lineage (CD45, CD15), maturity (CD16, CD10, and CD33), activation (CD62L, CD11b, CD66b, and CD114), metabolism (GLUT-1, LOX1) and immunosuppression (PD1, PD-L1) was carried out within whole blood and within the LDN fraction. Unsupervised analysis of flow cytometry data was performed using visual t-distributed stochastic neighbor embedding (vi-tSNE). A significant increase in the CD11b expression in neutrophils from CF patients during exacerbations was observed compared to neutrophils from stable CF patients or to healthy donors, indicative of a circulating activation state due to an infectious status. The percentage of LDN was not increased in stable CF patients but increased during exacerbations. Analysis of neutrophil subsets using the double CD16/CD62L labeling revealed a significant increase in the CD16high/CD62Llow subset in all CF patients compared to healthy donors. In contrast, an increase in the CD16low/CD62Lhigh subset was observed only in CF patients during exacerbations. Unsupervised analysis identified a PD-L1high/CD114high population that was present in stable CF patients and as well as in CF patients during exacerbations.
Collapse
Affiliation(s)
- Clémence Martin
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- Service de Pneumologie & Centre de Référence Maladies Rares Mucoviscidose, site coordonnateur, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Théo Dhôte
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- Service de Pneumologie & Centre de Référence Maladies Rares Mucoviscidose, site coordonnateur, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Maha Zohra Ladjemi
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- Service de Médecine intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Muriel Andrieu
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | - Souganya Many
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | - Vaarany Karunanithy
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | - Frédéric Pène
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- Service de Médecine intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Jennifer Da Silva
- Service de Pneumologie & Centre de Référence Maladies Rares Mucoviscidose, site coordonnateur, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Pierre-Régis Burgel
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- Service de Pneumologie & Centre de Référence Maladies Rares Mucoviscidose, site coordonnateur, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Véronique Witko-Sarsat
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- *Correspondence: Véronique Witko-Sarsat,
| |
Collapse
|
4
|
Matthaiou EI, Chiu W, Conrad C, Hsu J. Macrophage Lysosomal Alkalinization Drives Invasive Aspergillosis in a Mouse Cystic Fibrosis Model of Airway Transplantation. J Fungi (Basel) 2022; 8:751. [PMID: 35887506 PMCID: PMC9321820 DOI: 10.3390/jof8070751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) lung transplant recipients (LTRs) exhibit a disproportionately high rate of life-threatening invasive aspergillosis (IA). Loss of the cystic fibrosis transmembrane conductance regulator (CFTR-/-) in macrophages (mφs) has been associated with lyosomal alkalinization. We hypothesize that this alkalinization would persist in the iron-laden post-transplant microenvironment increasing the risk of IA. To investigate our hypothesis, we developed a murine CF orthotopic tracheal transplant (OTT) model. Iron levels were detected by immunofluorescence staining and colorimetric assays. Aspergillus fumigatus (Af) invasion was evaluated by Grocott methenamine silver staining. Phagocytosis and killing of Af conidia were examined by flow cytometry and confocal microscopy. pH and lysosomal acidification were measured by LysoSensorTM and LysotrackerTM, respectively. Af was more invasive in the CF airway transplant recipient compared to the WT recipient (p < 0.05). CFTR-/- mφs were alkaline at baseline, a characteristic that was increased with iron-overload. These CFTR-/- mφs were unable to phagocytose and kill Af conidia (p < 0.001). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles acidified lysosomes, restoring the CFTR-/- mφs’ ability to clear conidia. Our results suggest that CFTR-/- mφs’ alkalinization interacts with the iron-loaded transplant microenvironment, decreasing the CF-mφs’ ability to kill Af conidia, which may explain the increased risk of IA. Therapeutic pH modulation after transplantation could decrease the risk of IA.
Collapse
Affiliation(s)
- Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| | - Wayland Chiu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Conrad
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Joe Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| |
Collapse
|
5
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
6
|
Meijer L, Hery-Arnaud G, Leven C, Nowak E, Hillion S, Renaudineau Y, Durieu I, Chiron R, Prevotat A, Fajac I, Hubert D, Murris-Espin M, Huge S, Danner-Boucher I, Ravoninjatovo B, Leroy S, Macey J, Urban T, Rault G, Mottier D, Berre RL. Safety and pharmacokinetics of Roscovitine (Seliciclib) in cystic fibrosis patients chronically infected with Pseudomonas aeruginosa, a randomized, placebo-controlled study. J Cyst Fibros 2021; 21:529-536. [PMID: 34961705 DOI: 10.1016/j.jcf.2021.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND The orally available kinase inhibitor R-roscovitine has undergone clinical trials against various cancers and is currently under clinical evaluation against Cushing disease and rheumatoid arthritis. Roscovitine displays biological properties suggesting potential benefits in CF: it partially corrects F508del-CFTR trafficking, stimulates the bactericidal properties of CF alveolar macrophages, and displays anti-inflammatory properties and analgesic effects. METHODS A phase 2 trial study (ROSCO-CF) was launched to evaluate the safety and effects of roscovitine in Pseudomonas aeruginosa infected adult CF patients carrying two CF causing mutations (at least one F508del-CFTR mutation) and harboring a FEV1 ≥40%. ROSCO-CF was a multicenter, double-blind, placebo-controlled, dose-ranging study (200, 400, 800 mg roscovitine, orally administered daily for 4 days/week/4 weeks). RESULTS Among the 34 volunteers enrolled, randomization assigned 11/8/8/7 to receive the 0 (placebo)/ 200/400/800 mg roscovitine doses, respectively. In these subjects with polypharmacy, roscovitine was relatively safe and well-tolerated, with no significant adverse effects (AEs) other than five serious AEs (SAEs) possibly related to roscovitine. Pharmacokinetics of roscovitine were rather variable among subjects. No significant efficacy, at the levels of inflammation, infection, spirometry, sweat chloride, pain and quality of life, was detected in roscovitine-treated groups compared to the placebo-treated group. CONCLUSION Roscovitine was relatively safe and well-tolerated in CF patients especially at the 200 and 400 mg doses. However, there were 5 subject withdrawals due to SAEs in the roscovitine group and none in the placebo group. The lack of evidence for efficacy of roscovitine (despite encouraging cellular and animal results) may be due to high pharmacokinetics variability, short duration of treatment, and/or inappropriate dosing protocol.
Collapse
Affiliation(s)
- Laurent Meijer
- ManRos Therapeutics, Presqu'île de Perharidy, Roscoff 29680, France.
| | - Geneviève Hery-Arnaud
- Unité de Bactériologie, Hôpital de la Cavale Blanche, CHRU Brest, Brest cedex 29609, France; Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest 29200, France
| | - Cyril Leven
- Département de Biochimie et Pharmaco-Toxicologie, CHRU Brest, Brest cedex 29609, France; Univ Brest, EA 3878, GETBO, Brest 29200, France
| | - Emmanuel Nowak
- INSERM CIC 1412, Brest University Hospital, Brest cedex 29609, France
| | - Sophie Hillion
- Laboratoire d'Immunologie et Immunothérapie, CHRU de Brest, INSERM U1227, 2 avenue Foch, BP824, 29609 Brest cedex, France
| | - Yves Renaudineau
- Laboratoire d'Immunologie et Immunothérapie, CHRU de Brest, INSERM U1227, 2 avenue Foch, BP824, 29609 Brest cedex, France
| | - Isabelle Durieu
- Research on Healthcare Performance (RESHAPE), INSERM U1290, Claude Bernard Lyon 1 University, 8 Avenue Rockefeller, 69003 Lyon, France; Department of Internal Medicine, Cystic Fibrosis Center, Hospices Civils de Lyon, Pierre-Bénite 69495, France
| | - Raphaël Chiron
- CHU Montpellier, Maladies Respiratoires, Hôpital Arnaud de Villeneuve, 371, avenue du Doyen Gaston Giraud, Montpellier 34295, France
| | - Anne Prevotat
- Service de pneumologie, CHR - Hôpital Calmette, Boulevard du Pr. Leclercq, Lille 59037, France
| | - Isabelle Fajac
- APHP.Centre - Université de Paris, 27 rue du Faubourg Saint-Jacques, Paris 75014, France
| | - Dominique Hubert
- APHP.Centre - Université de Paris, 27 rue du Faubourg Saint-Jacques, Paris 75014, France
| | - Marlène Murris-Espin
- CHU Toulouse, CRCM adulte, Service de Pneumologie, Clinique des Voies Respiratoires. Hôpital Larrey, 24 chemin de Pouvourville, Toulouse 31059, France
| | - Sandrine Huge
- Centre Hospitalier Bretagne Atlantique, CRCM Mixte 56, 20 Boulevard du général Maurice Guillaudot, Vannes cedex 56017, France
| | - Isabelle Danner-Boucher
- CHU de Nantes, Service de Pneumologie, Hôpital Nord Laennec, Boulevard Jacques-Monod, Nantes 44093, Saint-Herblain, France
| | - Bruno Ravoninjatovo
- Centre de Ressources et de Compétences de la Mucoviscidose, Maladies Respiratoires et Allergiques, Hôpital Maison Blanche - CHU Reims, 45 rue Cognacq-Jay, 51100 Reims, France
| | - Sylvie Leroy
- CHU de Nice, Hôpital Pasteur, Service de Pneumologie, Oncologie Thoracique et Soins Intensifs Respiratoires, 30 Voie Romaine, CS 51069, Nice cedex 1 06001, France
| | - Julie Macey
- CHU Bordeaux, Hôpital Haut-Lévêque, Service de Pneumologie, Avenue de Magellan, Pessac cedex 33604, France
| | - Thierry Urban
- Département de Pneumologie, CHU Angers, Site de Larrey, 4 rue de Larrey, Angers cedex 49933, France
| | - Gilles Rault
- Fondation Ildys, Centre de Perharidy, Roscoff cedex 29684, France
| | - Dominique Mottier
- Département de Biochimie et Pharmaco-Toxicologie, CHRU Brest, Brest cedex 29609, France
| | - Rozenn Le Berre
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest 29200, France; Département de Médecine Interne et Pneumologie, CHRU Brest, Brest cedex 29609, France
| |
Collapse
|
7
|
Sano H, Namekata K, Niki M, Semba K, Murao F, Harada T, Mitamura Y. Ocular expression of cyclin-dependent kinase 5 in patients with proliferative diabetic retinopathy. J Diabetes Investig 2021; 13:628-637. [PMID: 34693664 PMCID: PMC9017639 DOI: 10.1111/jdi.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Aims/Introduction Inhibition of peroxisome proliferator‐activated receptor gamma (PPARγ) phosphorylation mediated by cyclin‐dependent kinase 5 (Cdk5) is one of the main mechanisms of action of antidiabetic drugs. In this study, we analyzed the ocular expression and activation of Cdk5 in patients with proliferative diabetic retinopathy (PDR). Materials and Methods The concentrations of PPARγ, Cdk5 and its activating subunit (p35) were determined in the vitreous body of 24 PDR and 63 control eyes by enzyme‐linked immunosorbent assay. In addition, the messenger ribonucleic acid and protein expression levels of PPARγ, Cdk5 and p35 were measured in proliferative neovascular membranes from seven PDR eyes and non‐neovascular epiretinal membranes from five control eyes by quantitative real‐time polymerase chain reaction and immunohistochemical analysis. Results PPARγ, Cdk5 and p35 concentrations in the vitreous body were significantly higher in the PDR group compared with the control group. There was also a positive significant correlation of Cdk5 with PPARγ and p35 in the PDR group. Furthermore, the messenger ribonucleic acid expression levels of PPARγ, Cdk5 and p35 in proliferative neovascular membranes were significantly higher in the PDR group compared with the control group. Immunostaining showed increased protein expression levels of PPARγ, Cdk5 and p35 in proliferative neovascular membranes in the PDR group compared with the control group. Conclusions Cdk5 activation is involved in PDR pathogenesis through PPARγ expression, and inhibition of Cdk5‐mediated PPARγ phosphorylation might be a new therapeutic target for treatment of PDR.
Collapse
Affiliation(s)
- Hiroki Sano
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masanori Niki
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kentaro Semba
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fumiko Murao
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
8
|
The cyclin dependent kinase inhibitor Roscovitine prevents diet-induced metabolic disruption in obese mice. Sci Rep 2021; 11:20365. [PMID: 34645915 PMCID: PMC8514475 DOI: 10.1038/s41598-021-99871-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Most strategies to treat obesity-related disorders have involved prevention of diet-induced weight gain in lean mice. Treatment of obese individuals will require therapies that reverse the detrimental effects of excess body weight. Cyclin-dependent kinases have been shown to contribute to obesity and its adverse complications. Here, we show that roscovitine; a an orally available cyclin-dependent kinase inhibitor; given to male mice during the last six weeks of a 19-week high fat diet, reduced weight gain and prevented accompanying insulin resistance, hepatic steatosis, visceral adipose tissue (eWAT) inflammation/fibrosis as well as restored insulin secretion and enhanced whole body energy expenditure. Proteomics and phosphoproteomics analysis of eWAT demonstrated that roscovitine suppressed expression of peptides and phosphopeptides linked to inflammation and extracellular matrix proteins. It also identified 17 putative protein kinases perturbed by roscovitine, including CMGC kinases, AGC kinases and CAMK kinases. Pathway enrichment analysis showed that lipid metabolism, TCA cycle, fatty acid beta oxidation and creatine biosynthesis are enriched following roscovitine treatment. For brown adipose tissue (BAT), analysis of upstream kinases controlling the phosphoproteome revealed two major kinase groups, AGC and CMGC kinases. Among the top enriched pathways were insulin signaling, regulation of lipolysis in adipocytes, thyroid hormone signaling, thermogenesis and cAMP-PKG signaling. We conclude that roscovitine is effective at preventing prolonged diet-induced metabolic disruption and restoring mitochondrial activity in BAT and eWAT.
Collapse
|
9
|
Rasheed S, Rehman K, Akash MSH. An insight into the risk factors of brain tumors and their therapeutic interventions. Biomed Pharmacother 2021; 143:112119. [PMID: 34474351 DOI: 10.1016/j.biopha.2021.112119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Brain tumors are an abnormal growth of cells in the brain, also known as multifactorial groups of neoplasm. Incidence rates of brain tumors increase rapidly, and it has become a leading cause of tumor related deaths globally. Several factors have potential risks for intracranial neoplasm. To date, the International Agency for Research on Cancer has classified the ionizing radiation and the N-nitroso compounds as established carcinogens and probable carcinogens respectively. Diagnosis of brain tumors is based on histopathology and suitable imaging techniques. Labeled amino acids and fluorodeoxyglucose with or without contrast-enhanced MRI are used for the evaluation of tumor traces. T2-weighted MRI is an advanced diagnostic implementation, used for the detection of low-grade gliomas. Treatment decisions are based on tumor size, location, type, patient's age and health status. Conventional therapeutic approaches for tumor treatment are surgery, radiotherapy and chemotherapy. While the novel strategies may include targeted therapy, electric field treatments and vaccine therapy. Inhibition of cyclin-dependent kinase inhibitors is an attractive tumor mitigation strategy for advanced-stage cancers; in the future, it may prove to be a useful targeted therapy. The blood-brain barrier poses a major hurdle in the transport of therapeutics towards brain tissues. Moreover, nanomedicine has gained a vital role in cancer therapy. Nano drug delivery system such as liposomal drug delivery has been widely used in the cancer treatment. Liposome encapsulated drugs have improved therapeutic efficacy than free drugs. Numerous treatment therapies for brain tumors are in advanced clinical research.
Collapse
Affiliation(s)
- Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
10
|
Giraud F, Pereira E, Anizon F, Moreau P. Recent Advances in Pain Management: Relevant Protein Kinases and Their Inhibitors. Molecules 2021; 26:molecules26092696. [PMID: 34064521 PMCID: PMC8124620 DOI: 10.3390/molecules26092696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
The purpose of this review is to underline the protein kinases that have been established, either in fundamental approach or clinical trials, as potential biological targets in pain management. Protein kinases are presented according to their group in the human kinome: TK (Trk, RET, EGFR, JAK, VEGFR, SFK, BCR-Abl), CMGC (p38 MAPK, MEK, ERK, JNK, ASK1, CDK, CLK2, DYRK1A, GSK3, CK2), AGC (PKA, PKB, PKC, PKMζ, PKG, ROCK), CAMK, CK1 and atypical/other protein kinases (IKK, mTOR). Examples of small molecule inhibitors of these biological targets, demonstrating an analgesic effect, are described. Altogether, this review demonstrates the fundamental role that protein kinase inhibitors could play in the development of new pain treatments.
Collapse
|
11
|
Cyclin-dependent kinase inhibitor roscovitine attenuates liver inflammation and fibrosis by influencing initiating steps of liver injury. Clin Sci (Lond) 2021; 135:925-941. [PMID: 33786590 DOI: 10.1042/cs20201111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022]
Abstract
Liver diseases present a significant public health burden worldwide. Although the mechanisms of liver diseases are complex, it is generally accepted that inflammation is commonly involved in the pathogenesis. Ongoing inflammatory responses exacerbate liver injury, or even result in fibrosis and cirrhosis. Here we report that roscovitine, a cyclin-dependent kinase (CDK) inhibitor, exerts beneficial effects on acute and chronic liver inflammation as well as fibrosis. Animal models of lipopolysaccharide (LPS)/d-galactosamine- and acute or chronic CCl4-induced liver injury showed that roscovitine administration markedly attenuated liver injury, inflammation and histological damage in LPS/d-galactosamine- and CCl4-induced acute liver injury models, which is consistent with the results in vitro. RNA sequencing (RNA-seq) analysis showed that roscovitine treatment repressed the transcription of a broad set of pro-inflammatory genes involved in many aspects of inflammation, including cytokine production and immune cell proliferation and migration, and inhibited the TGF-β signaling pathway and the biological process of tissue remodeling. For further validation, the beneficial effect of roscovitine against inflammation was evaluated in chronic CCl4-challenged mice. The anti-inflammation effect of roscovitine was observed in this model, accompanied with reduced liver fibrosis. The anti-fibrotic mechanism involved inhibition of profibrotic genes and blocking of hepatic stellate cell (HSC) activation. Our data show that roscovitine administration protects against liver diseases through inhibition of macrophage inflammatory actions and HSC activation at the onset of liver injury.
Collapse
|
12
|
Dysfunctional Inflammation in Cystic Fibrosis Airways: From Mechanisms to Novel Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22041952. [PMID: 33669352 PMCID: PMC7920244 DOI: 10.3390/ijms22041952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.
Collapse
|
13
|
Cellular and Molecular Mechanisms of R/S-Roscovitine and CDKs Related Inhibition under Both Focal and Global Cerebral Ischemia: A Focus on Neurovascular Unit and Immune Cells. Cells 2021; 10:cells10010104. [PMID: 33429982 PMCID: PMC7827530 DOI: 10.3390/cells10010104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is the second leading cause of death worldwide. Following ischemic stroke, Neurovascular Unit (NVU) inflammation and peripheral leucocytes infiltration are major contributors to the extension of brain lesions. For a long time restricted to neurons, the 10 past years have shown the emergence of an increasing number of studies focusing on the role of Cyclin-Dependent Kinases (CDKs) on the other cells of NVU, as well as on the leucocytes. The most widely used CDKs inhibitor, (R)-roscovitine, and its (S) isomer both decreased brain lesions in models of global and focal cerebral ischemia. We previously showed that (S)-roscovitine acted, at least, by modulating NVU response to ischemia. Interestingly, roscovitine was shown to decrease leucocytes-mediated inflammation in several inflammatory models. Specific inhibition of roscovitine majors target CDK 1, 2, 5, 7, and 9 showed that these CDKs played key roles in inflammatory processes of NVU cells and leucocytes after brain lesions, including ischemic stroke. The data summarized here support the investigation of roscovitine as a potential therapeutic agent for the treatment of ischemic stroke, and provide an overview of CDK 1, 2, 5, 7, and 9 functions in brain cells and leucocytes during cerebral ischemia.
Collapse
|
14
|
Noseykina EM, Schepetkin IA, Atochin DN. Molecular Mechanisms for Regulation of Neutrophil Apoptosis under Normal and Pathological Conditions. J EVOL BIOCHEM PHYS+ 2021; 57:429-450. [PMID: 34226754 PMCID: PMC8245921 DOI: 10.1134/s0022093021030017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Neutrophils are one of the main cells of innate immunity that perform a key effector and regulatory function in the development of the human inflammatory response. Apoptotic forms of neutrophils are important for regulating the intensity of inflammation and restoring tissue homeostasis. This review summarizes current data on the molecular mechanisms of modulation of neutrophil apoptosis by the main regulatory factors of the inflammatory response-cytokines, integrins, and structural components of bacteria. Disturbances in neutrophil apoptosis under stress are also considered, molecular markers of changes in neutrophil lifespan associated with various diseases and pathological conditions are presented, and data on pharmacological agents for modulating apoptosis as potential therapeutics are also discussed.
Collapse
Affiliation(s)
| | - I. A. Schepetkin
- Tomsk Polytechnic University, Tomsk, Russia ,Department of Microbiology
and Immunology, Montana State University, Bozeman, MT, USA
| | - D. N. Atochin
- Tomsk Polytechnic University, Tomsk, Russia ,Cardiovascular Research Center,
Cardiology Division, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
15
|
Shrestha CL, Zhang S, Wisniewski B, Häfner S, Elie J, Meijer L, Kopp BT. (R)-Roscovitine and CFTR modulators enhance killing of multi-drug resistant Burkholderia cenocepacia by cystic fibrosis macrophages. Sci Rep 2020; 10:21700. [PMID: 33303916 PMCID: PMC7728753 DOI: 10.1038/s41598-020-78817-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by chronic bacterial infections and heightened inflammation. Widespread ineffective antibiotic use has led to increased isolation of drug resistant bacterial strains from respiratory samples. (R)-roscovitine (Seliciclib) is a unique drug that has many benefits in CF studies. We sought to determine roscovitine’s impact on macrophage function and killing of multi-drug resistant bacteria. Human blood monocytes were isolated from CF (F508del/F508del) and non-CF persons and derived into macrophages (MDMs). MDMs were infected with CF clinical isolates of B. cenocepacia and P. aeruginosa. MDMs were treated with (R)-roscovitine or its main hepatic metabolite (M3). Macrophage responses to infection and subsequent treatment were determined. (R)-roscovitine and M3 significantly increased killing of B. cenocepacia and P. aeruginosa in CF MDMs in a dose-dependent manner. (R)-roscovitine-mediated effects were partially dependent on CFTR and the TRPC6 channel. (R)-roscovitine-mediated killing of B. cenocepacia was enhanced by combination with the CFTR modulator tezacaftor/ivacaftor and/or the alternative CFTR modulator cysteamine. (R)-roscovitine also increased MDM CFTR function compared to tezacaftor/ivacaftor treatment alone. (R)-roscovitine increases CF macrophage-mediated killing of antibiotic-resistant bacteria. (R)-roscovitine also enhances other macrophage functions including CFTR-mediated ion efflux. Effects of (R)-roscovitine are greatest when combined with CFTR modulators or cysteamine, justifying further clinical testing of (R)-roscovitine or optimized derivatives.
Collapse
Affiliation(s)
- Chandra L Shrestha
- Division of Pulmonary Medicine, Center for Microbial Pathogenesis, The Abigail Wexner Research Institute At Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Shuzhong Zhang
- Division of Pulmonary Medicine, Center for Microbial Pathogenesis, The Abigail Wexner Research Institute At Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Benjamin Wisniewski
- Division of Pulmonary Medicine, Center for Microbial Pathogenesis, The Abigail Wexner Research Institute At Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Stephanie Häfner
- Rudolf-Boehm-Institut F. Pharmakologie U. Toxikologie Medizinische Fakultät, Universität Leipzig, Leipzig, Germany
| | - Jonathan Elie
- ManRos Therapeutics, Perharidy Peninsula, Roscoff, France
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Peninsula, Roscoff, France
| | - Benjamin T Kopp
- Division of Pulmonary Medicine, Center for Microbial Pathogenesis, The Abigail Wexner Research Institute At Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
16
|
Non-Linear Pharmacokinetics of Oral Roscovitine (Seliciclib) in Cystic Fibrosis Patients Chronically Infected with Pseudomonas aeruginosa: A Study on Population Pharmacokinetics with Monte Carlo Simulations. Pharmaceutics 2020; 12:pharmaceutics12111087. [PMID: 33198319 PMCID: PMC7696167 DOI: 10.3390/pharmaceutics12111087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Roscovitine (Seliciclib), a new protein kinase inhibitor, was administered orally to adult patients with cystic fibrosis for the first time in the ROSCO-CF trial, a dose-escalation, phase IIa, randomized, controlled trial. Extensive pharmacokinetic sampling was performed up to 12 h after the first oral dose. Roscovitine and its main metabolite M3 were quantified by liquid chromatography coupled with tandem mass spectrometry. The pharmacokinetics analyses were performed by non-linear mixed effects modelling. Monte Carlo simulations were performed to assess the impact of dose on the pharmacokinetics of oral roscovitine. Twenty-three patients received oral doses ranging from 200 to 800 mg of roscovitine and 138 data points were available for both roscovitine and M3 concentrations. The pharmacokinetics was best described by a two-compartment parent-metabolite model, with a complex saturable absorption process modelled as the sum of Gaussian inverse density functions. The Monte Carlo simulations showed a dose-dependent and saturable first-pass effect leading to pre-systemic formation of M3. The treatment with proton-pump inhibitors reduced the rate of absorption of oral roscovitine. The pharmacokinetics of oral roscovitine in adult patients with cystic fibrosis was non-linear and showed significant inter-individual variability. A repeat-dose study will be required to assess the inter-occasional variability of its pharmacokinetics.
Collapse
|
17
|
Giacalone VD, Dobosh BS, Gaggar A, Tirouvanziam R, Margaroli C. Immunomodulation in Cystic Fibrosis: Why and How? Int J Mol Sci 2020; 21:ijms21093331. [PMID: 32397175 PMCID: PMC7247557 DOI: 10.3390/ijms21093331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by unconventional mechanisms of inflammation, implicating a chronic immune response dominated by innate immune cells. Historically, therapeutic development has focused on the mutated cystic fibrosis transmembrane conductance regulator (CFTR), leading to the discovery of small molecules aiming at modulating and potentiating the presence and activity of CFTR at the plasma membrane. However, treatment burden sustained by CF patients, side effects of current medications, and recent advances in other therapeutic areas have highlighted the need to develop novel disease targeting of the inflammatory component driving CF lung damage. Furthermore, current issues with standard treatment emphasize the need for directed lung therapies that could minimize systemic side effects. Here, we summarize current treatment used to target immune cells in the lungs, and highlight potential benefits and caveats of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Brian S. Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
- Pulmonary Section, Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| | - Camilla Margaroli
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
| |
Collapse
|
18
|
Tejero R, Balk S, Franco-Espin J, Ojeda J, Hennlein L, Drexl H, Dombert B, Clausen JD, Torres-Benito L, Saal-Bauernschubert L, Blum R, Briese M, Appenzeller S, Tabares L, Jablonka S. R-Roscovitine Improves Motoneuron Function in Mouse Models for Spinal Muscular Atrophy. iScience 2020; 23:100826. [PMID: 31981925 PMCID: PMC6992996 DOI: 10.1016/j.isci.2020.100826] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/08/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022] Open
Abstract
Neurotransmission defects and motoneuron degeneration are hallmarks of spinal muscular atrophy, a monogenetic disease caused by the deficiency of the SMN protein. In the present study, we show that systemic application of R-Roscovitine, a Cav2.1/Cav2.2 channel modifier and a cyclin-dependent kinase 5 (Cdk-5) inhibitor, significantly improved survival of SMA mice. In addition, R-Roscovitine increased Cav2.1 channel density and sizes of the motor endplates. In vitro, R-Roscovitine restored axon lengths and growth cone sizes of Smn-deficient motoneurons corresponding to enhanced spontaneous Ca2+ influx and elevated Cav2.2 channel cluster formations independent of its capability to inhibit Cdk-5. Acute application of R-Roscovitine at the neuromuscular junction significantly increased evoked neurotransmitter release, increased the frequency of spontaneous miniature potentials, and lowered the activation threshold of silent terminals. These data indicate that R-Roscovitine improves Ca2+ signaling and Ca2+ homeostasis in Smn-deficient motoneurons, which is generally crucial for motoneuron differentiation, maturation, and function. R-Roscovitine prolongs survival of SMA mice R-Roscovitine increases Ca2+ influx and growth cone size of SMA motoneurons R-Roscovitine beneficially affects neurotransmission in SMA motor nerve terminals R-Roscovitine wakes up dormant synapses of SMA motoneurons
Collapse
Affiliation(s)
- Rocio Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Stefanie Balk
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Julio Franco-Espin
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Jorge Ojeda
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Hans Drexl
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Benjamin Dombert
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Jan-Dierk Clausen
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Laura Torres-Benito
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | | | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany; Core Unit SysMed, University of Würzburg, 97080 Würzburg, Germany
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain.
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
19
|
Wang S, Zhou Y, Zhang Y, He X, Zhao X, Zhao H, Liu W. Roscovitine attenuates renal interstitial fibrosis in diabetic mice through the TGF-β1/p38 MAPK pathway. Biomed Pharmacother 2019; 115:108895. [DOI: 10.1016/j.biopha.2019.108895] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023] Open
|
20
|
Vauthier V, Ben Saad A, Elie J, Oumata N, Durand-Schneider AM, Bruneau A, Delaunay JL, Housset C, Aït-Slimane T, Meijer L, Falguières T. Structural analogues of roscovitine rescue the intracellular traffic and the function of ER-retained ABCB4 variants in cell models. Sci Rep 2019; 9:6653. [PMID: 31040306 PMCID: PMC6491434 DOI: 10.1038/s41598-019-43111-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate binding cassette transporter, subfamily B member 4 (ABCB4) is the transporter of phosphatidylcholine at the canalicular membrane of hepatocytes. ABCB4 deficiency, due to genetic variations, is responsible for progressive familial intrahepatic cholestasis type 3 (PFIC3) and other rare biliary diseases. Roscovitine is a molecule in clinical trial that was shown to correct the F508del variant of cystic fibrosis transmembrane conductance regulator (CFTR), another ABC transporter. In the present study, we hypothesized that roscovitine could act as a corrector of ABCB4 traffic-defective variants. Using HEK and HepG2 cells, we showed that roscovitine corrected the traffic and localisation at the plasma membrane of ABCB4-I541F, a prototypical intracellularly retained variant. However, roscovitine caused cytotoxicity, which urged us to synthesize non-toxic structural analogues. Roscovitine analogues were able to correct the intracellular traffic of ABCB4-I541F in HepG2 cells. Importantly, the phospholipid secretion activity of this variant was substantially rescued by three analogues (MRT2-235, MRT2-237 and MRT2-243) in HEK cells. We showed that these analogues also triggered the rescue of intracellular traffic and function of two other intracellularly retained ABCB4 variants, i.e. I490T and L556R. Our results indicate that structural analogues of roscovitine can rescue genetic variations altering the intracellular traffic of ABCB4 and should be considered as therapeutic means for severe biliary diseases caused by this class of variations.
Collapse
Affiliation(s)
- Virginie Vauthier
- Inserm, Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA), UMR_S 938, Institute of Cardiometabolism and Nutrition (ICAN), F-75012, Paris, France
| | - Amel Ben Saad
- Inserm, Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA), UMR_S 938, Institute of Cardiometabolism and Nutrition (ICAN), F-75012, Paris, France
| | - Jonathan Elie
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, F-29680, Roscoff, France
| | - Nassima Oumata
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, F-29680, Roscoff, France
| | - Anne-Marie Durand-Schneider
- Inserm, Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA), UMR_S 938, Institute of Cardiometabolism and Nutrition (ICAN), F-75012, Paris, France
| | - Alix Bruneau
- Inserm, Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA), UMR_S 938, Institute of Cardiometabolism and Nutrition (ICAN), F-75012, Paris, France
| | - Jean-Louis Delaunay
- Inserm, Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA), UMR_S 938, Institute of Cardiometabolism and Nutrition (ICAN), F-75012, Paris, France
| | - Chantal Housset
- Inserm, Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA), UMR_S 938, Institute of Cardiometabolism and Nutrition (ICAN), F-75012, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence des Maladies Rares - Maladies Inflammatoires des Voies Biliaires & Service d'Hépatologie, F-75012, Paris, France
| | - Tounsia Aït-Slimane
- Inserm, Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA), UMR_S 938, Institute of Cardiometabolism and Nutrition (ICAN), F-75012, Paris, France
| | - Laurent Meijer
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, F-29680, Roscoff, France
| | - Thomas Falguières
- Inserm, Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA), UMR_S 938, Institute of Cardiometabolism and Nutrition (ICAN), F-75012, Paris, France.
| |
Collapse
|
21
|
Cartwright JA, Lucas CD, Rossi AG. Inflammation Resolution and the Induction of Granulocyte Apoptosis by Cyclin-Dependent Kinase Inhibitor Drugs. Front Pharmacol 2019; 10:55. [PMID: 30886578 PMCID: PMC6389705 DOI: 10.3389/fphar.2019.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a necessary dynamic tissue response to injury or infection and it's resolution is essential to return tissue homeostasis and function. Defective or dysregulated inflammation resolution contributes significantly to the pathogenesis of many, often common and challenging to treat human conditions. The transition of inflammation to resolution is an active process, involving the clearance of inflammatory cells (granulocytes), a change of mediators and their receptors, and prevention of further inflammatory cell infiltration. This review focuses on the use of cyclin dependent kinase inhibitor drugs to pharmacologically target this inflammatory resolution switch, specifically through inducing granulocyte apoptosis and phagocytic clearance of apoptotic cells (efferocytosis). The key processes and pathways required for granulocyte apoptosis, recruitment of phagocytes and mechanisms of engulfment are discussed along with the cumulating evidence for cyclin dependent kinase inhibitor drugs as pro-resolution therapeutics.
Collapse
Affiliation(s)
- Jennifer A. Cartwright
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Christopher D. Lucas
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Adriano G. Rossi
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options in Lung Disease. Pharmaceuticals (Basel) 2019; 12:ph12010023. [PMID: 30717260 PMCID: PMC6469169 DOI: 10.3390/ph12010023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
The lungs are essential for gas exchange and serve as the gateways of our body to the external environment. They are easily accessible for drugs from both sides, the airways and the vasculature. Recent literature provides evidence for a role of Transient Receptor Potential (TRP) channels as chemosensors and essential members of signal transduction cascades in stress-induced cellular responses. This review will focus on TRP channels (TRPA1, TRPC6, TRPV1, and TRPV4), predominantly expressed in non-neuronal lung tissues and their involvement in pathways associated with diseases like asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), lung fibrosis, and edema formation. Recently identified specific modulators of these channels and their potential as new therapeutic options as well as strategies for a causal treatment based on the mechanistic understanding of molecular events will also be evaluated.
Collapse
|
23
|
Roesch EA, Nichols DP, Chmiel JF. Inflammation in cystic fibrosis: An update. Pediatr Pulmonol 2018; 53:S30-S50. [PMID: 29999593 DOI: 10.1002/ppul.24129] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Inflammation plays a critical role in cystic fibrosis (CF) lung pathology and disease progression making it an active area of research and important therapeutic target. In this review, we explore the most recent research on the major contributors to the exuberant inflammatory response seen in CF as well as potential therapeutics to combat this response. Absence of functional cystic fibrosis transmembrane conductance regulator (CFTR) alters anion transport across CF airway epithelial cells and ultimately results in dehydration of the airway surface liquid. The dehydrated airway surface liquid in combination with abnormal mucin secretion contributes to airway obstruction and subsequent infection that may serve as a trigger point for inflammation. There is also evidence to suggest that airway inflammation may be excessive and sustained relative to the infectious stimuli. Studies have shown dysregulation of both pro-inflammatory mediators such as IL-17 and pro-resolution mediators including metabolites of the eicosanoid pathway. Recently, CFTR potentiators and correctors have garnered much attention in the CF community. Although these modulators address the underlying defect in CF, their impact on downstream consequences such as inflammation are not known. Here, we review pre-clinical and clinical data on the impact of CFTR modulators on inflammation. In addition, we examine other cell types including neutrophils, macrophages, and T-lymphocytes that express CFTR and contribute to the CF inflammatory response. Finally, we address challenges in developing anti-inflammatory therapies and highlight some of the most promising anti-inflammatory drugs under development for CF.
Collapse
Affiliation(s)
- Erica A Roesch
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - David P Nichols
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - James F Chmiel
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
24
|
Chatfield SM, Thieblemont N, Witko-Sarsat V. Expanding Neutrophil Horizons: New Concepts in Inflammation. J Innate Immun 2018; 10:422-431. [PMID: 30257246 DOI: 10.1159/000493101] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
Research into neutrophil biology in the last 10 years has uncovered a number of unexpected aspects of this still mysterious innate immune cell. Advances in technology have allowed visualisation of neutrophil trafficking to sites of inflammation, and, remarkably, neutrophils have been observed to depart from the scene in what has been termed reverse migration. There has also been increasing appreciation of the heterogeneity of neutrophils with ongoing categorisation of neutrophil subsets, including myeloid-derived suppressor cells and low-density granulocytes. Newly recognised neutrophil functions include the ability to release novel immune mediators such as extracellular DNA and microvesicles. Finally, studies of neutrophil cell death, both apoptotic and non-apoptotic, have revealed remarkable differences compared to other cell types. This review will highlight important discoveries in these facets of neutrophil biology and how the new findings will inform treatment of diseases where neutrophils are implicated.
Collapse
|
25
|
Tosco A, Villella VR, Castaldo A, Kroemer G, Maiuri L, Raia V. Repurposing therapies for the personalised treatment of cystic fibrosis. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1483231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Antonella Tosco
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Valeria R. Villella
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Alice Castaldo
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Guido Kroemer
- Equipe11 labellisée Ligue Nationale Contrele Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Paris, Sorbonne Paris Cité, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, HôpitalEuropéen Georges Pompidou, AP-HP, Paris, France
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
26
|
Marlier Q, Jibassia F, Verteneuil S, Linden J, Kaldis P, Meijer L, Nguyen L, Vandenbosch R, Malgrange B. Genetic and pharmacological inhibition of Cdk1 provides neuroprotection towards ischemic neuronal death. Cell Death Discov 2018; 4:43. [PMID: 29581894 PMCID: PMC5856839 DOI: 10.1038/s41420-018-0044-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/24/2018] [Indexed: 01/16/2023] Open
Abstract
Cell cycle proteins are mainly expressed by dividing cells. However, it is well established that these molecules play additional non-canonical activities in several cell death contexts. Increasing evidence shows expression of cell cycle regulating proteins in post-mitotic cells, including mature neurons, following neuronal insult. Several cyclin-dependent kinases (Cdks) have already been shown to mediate ischemic neuronal death but Cdk1, a major cell cycle G2/M regulator, has not been investigated in this context. We therefore examined the role of Cdk1 in neuronal cell death following cerebral ischemia, using both in vitro and in vivo genetic and pharmacological approaches. Exposure of primary cortical neurons cultures to 4 h of oxygen–glucose deprivation (OGD) resulted in neuronal cell death and induced Cdk1 expression. Neurons from Cdk1-cKO mice showed partial resistance to OGD-induced neuronal cell death. Addition of R-roscovitine to the culture medium conferred neuroprotection against OGD-induced neuronal death. Transient 1-h occlusion of the cerebral artery (MCAO) also leads to Cdk1 expression and activation. Cdk1-cKO mice displayed partial resistance to transient 1-h MCAO. Moreover, systemic delivery of R-roscovitine was neuroprotective following transient 1-h MCAO. This study demonstrates that promising neuroprotective therapies can be considered through inhibition of the cell cycle machinery and particularly through pharmacological inhibition of Cdk1.
Collapse
Affiliation(s)
- Quentin Marlier
- 1Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| | - Florian Jibassia
- 1Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| | - Sébastien Verteneuil
- 1Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| | - Jérôme Linden
- 2Department of Psychology, University of Liege, B32, 4000 Liège, Belgium
| | - Philipp Kaldis
- 3Institute of Molecular and Cell Biology (IMCB), ASTAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore, 138673 Republic of Singapore.,4Department of Biochemistry, National University of Singapore (NUS), Singapore, 117597 Republic of Singapore
| | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy, 29680 Roscoff, France
| | - Laurent Nguyen
- 6Laboratory of Molecular Regulation of Neurogenesis, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| | - Renaud Vandenbosch
- 1Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| | - Brigitte Malgrange
- 1Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, C.H.U. B36, 4000 Liège, Belgium
| |
Collapse
|
27
|
Billot K, Coquil C, Villiers B, Josselin-Foll B, Desban N, Delehouzé C, Oumata N, Le Meur Y, Boletta A, Weimbs T, Grosch M, Witzgall R, Saunier S, Fischer E, Pontoglio M, Fautrel A, Mrug M, Wallace D, Tran PV, Trudel M, Bukanov N, Ibraghimov-Beskrovnaya O, Meijer L. Casein kinase 1ε and 1α as novel players in polycystic kidney disease and mechanistic targets for (R)-roscovitine and (S)-CR8. Am J Physiol Renal Physiol 2018. [PMID: 29537311 DOI: 10.1152/ajprenal.00489.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Following the discovery of (R)-roscovitine's beneficial effects in three polycystic kidney disease (PKD) mouse models, cyclin-dependent kinases (CDKs) inhibitors have been investigated as potential treatments. We have used various affinity chromatography approaches to identify the molecular targets of roscovitine and its more potent analog (S)-CR8 in human and murine polycystic kidneys. These methods revealed casein kinases 1 (CK1) as additional targets of the two drugs. CK1ε expression at the mRNA and protein levels is enhanced in polycystic kidneys of 11 different PKD mouse models as well as in human polycystic kidneys. A shift in the pattern of CK1α isoforms is observed in all PKD mouse models. Furthermore, the catalytic activities of both CK1ε and CK1α are increased in mouse polycystic kidneys. Inhibition of CK1ε and CK1α may thus contribute to the long-lasting attenuating effects of roscovitine and (S)-CR8 on cyst development. CDKs and CK1s may constitute a dual therapeutic target to develop kinase inhibitory PKD drug candidates.
Collapse
Affiliation(s)
- Katy Billot
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| | | | | | - Béatrice Josselin-Foll
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Nathalie Desban
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Claire Delehouzé
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Nassima Oumata
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| | - Yannick Le Meur
- Service de Néphrologie, Centre Hospitalier Universitaire La Cavale Blanche, Rue Tanguy Prigent, Brest Cedex, France
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, DIBIT San Raffaele Scientific Institute , Milan , Italy
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara , Santa Barbara, California
| | - Melanie Grosch
- University of Regensburg, Institute for Molecular and Cellular Anatomy, Universitätsstr 31, Regensburg , Germany
| | - Ralph Witzgall
- University of Regensburg, Institute for Molecular and Cellular Anatomy, Universitätsstr 31, Regensburg , Germany
| | | | - Evelyne Fischer
- "Expression Génique, Développement et Maladies", Equipe 26/INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Institut Cochin, Département Génétique & Développement, Paris , France
| | - Marco Pontoglio
- "Expression Génique, Développement et Maladies", Equipe 26/INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Institut Cochin, Département Génétique & Développement, Paris , France
| | - Alain Fautrel
- Université de Rennes 1, H2P2 Histopathology Core Facility, Rennes Cedex, France
| | - Michal Mrug
- Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| | - Darren Wallace
- University of Kansas Medical Center, The Jared Grantham Kidney Institute , Kansas City, Kansas
| | - Pamela V Tran
- University of Kansas Medical Center, The Jared Grantham Kidney Institute , Kansas City, Kansas.,University of Kansas Medical Center, Department of Anatomy and Cell Biology , Kansas City, Kansas
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Montreal, Quebec , Canada
| | - Nikolay Bukanov
- Sanofi Genzyme, Rare Renal and Bone Diseases, Framingham, Massachusetts
| | | | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| |
Collapse
|
28
|
Law SM, Gray RD. Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review. J Inflamm (Lond) 2017; 14:29. [PMID: 29299029 PMCID: PMC5745605 DOI: 10.1186/s12950-017-0176-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/14/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cystic Fibrosis (CF) is a devastating genetic disease characterised primarily by unrelenting lung inflammation and infection resulting in premature death and significant morbidity. Neutrophil Extracellular Traps (NETs) are possibly key to inflammation in the disease. This review aims to draw together existing research investigating NETs in the context of a dysfunctional innate immune system in CF. MAIN BODY NETs have a limited anti-microbial role in CF and studies have shown they are present in higher numbers in CF airways and their protein constituents correlate with lung function decline. Innate immune system cells express CFTR and myeloid-specific CFTR KO mice have greater neutrophil recruitment and higher pro-inflammatory cytokine production to both sterile and bacterial inflammatory challenges. CFTR KO neutrophils have impaired anti-microbial capacity and intrinsic abnormalities in the pH of their cytoplasm, abnormal protein trafficking, increased neutrophil elastase and myeloperoxidase function, and decreased hypochlorite concentrations in their phagolysosomes. Furthermore, neutrophils from CF patients have less intrinsic apoptosis and may be therefore more likely to make NETs. CFTR KO macrophages have high intraphagolysosomal pH and increased toll-like receptor 4 on their cell surface membranes, which inhibit their anti-microbial capacity and render them hyper-responsive to inflammatory stimuli, respectively. Pharmacological treatments for CF target these intrinsic abnormalities of immune dysfunction. Emerging evidence suggests that the absence of CFTR from neutrophils affects NETosis and the interaction of NETs with macrophages. CONCLUSION Current evidence suggests that NETs contribute to inflammation and lung destruction rather than working effectively in their anti-microbial capacity. Further studies focussing on the pro-inflammatory nature of NET constituents are required to identify the exact mechanistic role of NETs in CF and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sheonagh M. Law
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Robert D. Gray
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| |
Collapse
|
29
|
Wu M, White HV, Boehm BA, Meriney CJ, Kerrigan K, Frasso M, Liang M, Gotway EM, Wilcox MR, Johnson JW, Wipf P, Meriney SD. New Cav2 calcium channel gating modifiers with agonist activity and therapeutic potential to treat neuromuscular disease. Neuropharmacology 2017; 131:176-189. [PMID: 29246857 DOI: 10.1016/j.neuropharm.2017.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 11/28/2017] [Accepted: 12/10/2017] [Indexed: 12/13/2022]
Abstract
Voltage-gated calcium channels (VGCCs) are critical regulators of many cellular functions, including the activity-dependent release of chemical neurotransmitter from nerve terminals. At nerve terminals, the Cav2 family of VGCCs are closely positioned with neurotransmitter-containing synaptic vesicles. The relationship between calcium ions and transmitter release is such that even subtle changes in calcium flux through VGCCs have a strong influence on the magnitude of transmitter released. Therefore, modulators of the calcium influx at nerve terminals have the potential to strongly affect transmitter release at synapses. We have previously developed novel Cav2-selective VGCC gating modifiers (notably GV-58) that slow the deactivation of VGCC current, increasing total calcium ion flux. Here, we describe ten new gating modifiers based on the GV-58 structure that extend our understanding of the structure-activity relationship for this class of molecules and extend the range of modulation of channel activities. In particular, we show that one of these new compounds (MF-06) was more efficacious than GV-58, another (KK-75) acts more quickly on VGCCs than GV-58, and a third (KK-20) has a mix of increased speed and efficacy. A subset of these new VGCC agonist gating modifiers can increase transmitter release during action potentials at neuromuscular synapses, and as such, show potential as therapeutics for diseases with a presynaptic deficit that results in neuromuscular weakness. Further, several of these new compounds can be useful tool compounds for the study of VGCC gating and function.
Collapse
Affiliation(s)
- Man Wu
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Hayley V White
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Blake A Boehm
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Christopher J Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Kaylan Kerrigan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Michael Frasso
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Mary Liang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Erika M Gotway
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Madeleine R Wilcox
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jon W Johnson
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
30
|
Bystander Cells Taking Action. J Innate Immun 2017; 9:527-528. [PMID: 29131042 DOI: 10.1159/000484305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
El Hage K, Piquemal JP, Oumata N, Meijer L, Galons H, Gresh N. A Simple Isomerization of the Purine Scaffold of a Kinase Inhibitor, Roscovitine, Affords a Four- to Seven-Fold Enhancement of Its Affinity for Four CDKs. Could This Be Traced Back to Conjugation-Induced Stiffenings/Loosenings of Rotational Barriers? ACS OMEGA 2017; 2:3467-3474. [PMID: 30023695 PMCID: PMC6044500 DOI: 10.1021/acsomega.7b00471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/28/2017] [Indexed: 06/08/2023]
Abstract
Roscovitine is an antitumor purine inhibitor of cyclin-dependent kinase CDK5, for which it displays submicromolar affinity. It reached phase IIb clinical trials in 2007. The search for analogues with improved kinase affinities led recently to an isomer, finisterine, having a nearly 10-fold greater affinity for both CDK5 and CDK9. It solely differs by the displacement of one nitrogen atom in the purine ring, from position 6 to position 9. This has no incidence on the intermolecular interaction of either drug with the neighboring sites that anchor the ring in the recognition site. Quantum chemistry calculations combined with conformational and topological analyses of the impact of the purine ring isomerization of roscovitine and finisterine on its conformational stability show that the modified electronic conjugation, on the other hand, results in a stiffening of the rotational barrier around the extracyclic C-NH bond of finisterine, vicinal to N9, and to which an aryl ring is connected, along with a loosening of the barrier around an extracyclic C6-C bond connecting to a shorter, hydrophobic arm. The first effect is proposed to lead to a lesser hydration entropy of solvation in the case of finisterine, thus to a facilitated desolvation term in the overall energy balances.
Collapse
Affiliation(s)
- Krystel El Hage
- Chemistry
and Biology Nucleo(s)tides and Immunology for Therapy (CBNIT), UMR 8601 CNRS, UFR Biomédicale, Paris 75006, France
- Centre
d’Analyses et de Recherche, UR EGFEM, LSIM, Faculté
des Sciences, Saint Joseph University of
Beirut, B.P. 11-514 Riad
El Solh, Beirut 1107 2050, Lebanon
| | - Jean-Philip Piquemal
- Laboratoire
de Chimie Théorique, Sorbonne Universités,
UPMC, UMR7616 CNRS, Paris 75005, France
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Nassima Oumata
- ManRos
Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff 29680, France
| | - Laurent Meijer
- ManRos
Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff 29680, France
| | - Hervé Galons
- ManRos
Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff 29680, France
- Unité
de Technologies Chimiques et Biologiques pour la Santé, Université Paris Descartes UMR-S 1022 Inserm, 4 avenue de l’Observatoire, Paris 75006, France
| | - Nohad Gresh
- Chemistry
and Biology Nucleo(s)tides and Immunology for Therapy (CBNIT), UMR 8601 CNRS, UFR Biomédicale, Paris 75006, France
- Laboratoire
de Chimie Théorique, Sorbonne Universités,
UPMC, UMR7616 CNRS, Paris 75005, France
| |
Collapse
|
32
|
Marteyn BS, Burgel PR, Meijer L, Witko-Sarsat V. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by Pseudomonas aeruginosa: Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis. Front Cell Infect Microbiol 2017; 7:243. [PMID: 28713772 PMCID: PMC5492487 DOI: 10.3389/fcimb.2017.00243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
More than two decades after cloning the cystic fibrosis transmembrane regulator (CFTR) gene, the defective gene in cystic fibrosis (CF), we still do not understand how dysfunction of this ion channel causes lung disease and the tremendous neutrophil burden which persists within the airways; nor why chronic colonization by Pseudomonas aeruginosa develops in CF patients who are thought to be immunocompetent. It appears that the microenvironment within the lung of CF patients provides favorable conditions for both P. aeruginosa colonization and neutrophil survival. In this context, the ability of bacteria to induce hypoxia, which in turn affects neutrophil survival is an additional level of complexity that needs to be accounted for when controlling neutrophil fate in CF. Recent studies have underscored the importance of neutrophils in innate immunity and their functions appear to extend far beyond their well-described role in antibacterial defense. Perhaps a disturbance in neutrophil reprogramming during the course of an infection severely modulates the inflammatory response in CF. Furthermore there is an emerging concept that the CFTR itself may be an immune modulator and stimulating CFTR function in CF patients could promote neutrophil and macrophages antimicrobial function. Fostering the resolution of inflammation by favoring neutrophil apoptosis could preserve their microbicidal activities but decrease their proinflammatory potential. In this context, triggering neutrophil apoptosis with roscovitine may be a potential therapeutic option and this is currently being evaluated in CF patients. In the present review we discuss how neutrophils functions are disturbed in CF and how this may relate to chronic infection with P. aeuginosa and we propose novel research directions aimed at modulating neutrophil survival, dampening lung inflammation and ultimately leading to an amelioration of the lung disease.
Collapse
Affiliation(s)
- Benoît S Marteyn
- Unité de Pathogénie Microbienne Moléculaire, Institut PasteurParis, France.,Institut National de la Santé et de la Recherche Médicale, U12021202Paris, France.,Institut Gustave RoussyVillejuif, France
| | - Pierre-Régis Burgel
- Université Paris Descartes, Sorbonne Paris CitéParis, France.,Pneumology Department, Hôpital CochinParis, France
| | | | - Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut CochinParis, France.,Centre National de la Recherche Scientifique-UMR 8104Paris, France.,Center of Excellence, Labex InflamexParis, France
| |
Collapse
|
33
|
Matalonga L, Gort L, Ribes A. Small molecules as therapeutic agents for inborn errors of metabolism. J Inherit Metab Dis 2017; 40:177-193. [PMID: 27966099 DOI: 10.1007/s10545-016-0005-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023]
Abstract
Most inborn errors of metabolism (IEM) remain without effective treatment mainly due to the incapacity of conventional therapeutic approaches to target the neurological symptomatology and to ameliorate the multisystemic involvement frequently observed in these patients. However, in recent years, the therapeutic use of small molecules has emerged as a promising approach for treating this heterogeneous group of disorders. In this review, we focus on the use of therapeutically active small molecules to treat IEM, including readthrough agents, pharmacological chaperones, proteostasis regulators, substrate inhibitors, and autophagy inducers. The small molecules reviewed herein act at different cellular levels, and this knowledge provides new tools to set up innovative treatment approaches for particular IEM. We review the molecular mechanism underlying therapeutic properties of small molecules, methodologies used to screen for these compounds, and their applicability in preclinical and clinical practice.
Collapse
Affiliation(s)
- Leslie Matalonga
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain.
| | - Laura Gort
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain
| | - Antonia Ribes
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain
| |
Collapse
|
34
|
Öz HH, Hartl D. Innate Immunity in Cystic Fibrosis: Novel Pieces of the Puzzle. J Innate Immun 2016; 8:529-530. [PMID: 27537521 DOI: 10.1159/000448285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Hasan-Halit Öz
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
35
|
Vij N, Min T, Bodas M, Gorde A, Roy I. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2415-2427. [PMID: 27381067 DOI: 10.1016/j.nano.2016.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/13/2023]
Abstract
The success of drug delivery to target airway cell(s) remains a significant challenge due to the limited ability of nanoparticle (NP) systems to circumvent protective airway-defense mechanisms. The size, density, surface and physical-chemical properties of nanoparticles are the key features that determine their ability to navigate across the airway-barrier. We evaluated here the efficacy of a PEGylated immuno-conjugated PLGA-nanoparticle (PINP) to overcome this challenge and selectively deliver drug to specific inflammatory cells (neutrophils). We first characterized the size, shape, surface-properties and neutrophil targeting using dynamic laser scattering, transmission electron microscopy and flow cytometry. Next, we assessed the efficacy of neutrophil-targeted PINPs in transporting through the airway followed by specific binding and release of drug to neutrophils. Finally, our results demonstrate the efficacy of PINP mediated non-steroidal anti-inflammatory drug-(ibuprofen) delivery to neutrophils in murine models of obstructive lung diseases, based on its ability to control neutrophilic-inflammation and resulting lung disease.
Collapse
Affiliation(s)
- Neeraj Vij
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD; College of Medicine, Central Michigan University, Mt Pleasant, MI.
| | - Taehong Min
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD; Genentech, 1 DNA Way, San Francisco, CA
| | - Manish Bodas
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD; College of Medicine, Central Michigan University, Mt Pleasant, MI
| | - Aakruti Gorde
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Indrajit Roy
- Department of Chemistry, State University of New York, Buffalo, NY
| |
Collapse
|
36
|
Witko-Sarsat V. From Starfish Oocytes to Inflammation: The Unforeseeable Destiny of Roscovitine in Cystic Fibrosis. J Innate Immun 2016; 8:327-9. [PMID: 27111672 DOI: 10.1159/000445967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Véronique Witko-Sarsat
- INSERM U1016, Institut Cochin, and CNRS-UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, and Center of Excellence, Labex Inflamex, Paris, France
| |
Collapse
|