1
|
Niu L, Wang S, Xu Y, Zu X, You X, Zhang Q, Zhuang P, Jiang M, Gao J, Hou X, Zhang Y, Bai G, Deng J. Honokiol targeting ankyrin repeat domain of TRPV4 ameliorates endothelial permeability in mice inflammatory bowel disease induced by DSS. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117825. [PMID: 38296175 DOI: 10.1016/j.jep.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classic traditional Chinese medicine, Magnolia officinalis (M. officinalis) is widely used in digestive diseases. It has rich gastrointestinal activity including inflammatory bowel disease (IBD) treatment, but the mechanism is not clear. AIM OF THE STUDY In recent years, there has been a growing interest in investigating the regulatory effects of herbal compounds on transient receptor potential (TRP) channel proteins. Transient receptor potential vanilloid 4 (TRPV4), a subtype involved in endothelial permeability regulation, was discussed as the target of M. officinalis in the treatment of IBD in the study. Based on the targeting effect of TRPV4, this study investigated the active ingredients and mechanism of M. officinalis extract in treating IBD. MATERIALS AND METHODS To reveal the connection between the active ingredients in M. officinalis and TRPV4, a bioactivity-guided high performance liquid chromatography system coupled with mass spectrometry identification was utilized to screen for TRPV4 antagonists. TRPV4 siRNA knockdown experiment was employed to validate the significance of TRPV4 as a crucial target in regulating endothelial permeability by honokiol (HON). The interaction of the active ingredient representing HON with TRPV4 was confirmed by molecular docking, fluorescence-based thermal shift and live cell calcium imaging experiments. The potential binding sites and inhibitory mechanisms of HON in TRPV4 were analyzed by molecular dynamics simulation and microscale thermophoresis. The therapeutic effect of HON based on TRPV4 was discussed in DSS-IBD mice. RESULTS Our finding elucidated that the inhibitory activity of M. officinalis against TRPV4 is primarily attributed to HON analogues. The knockdown of TRPV4 expression significantly impaired the calcium regulation and permeability protection in endothelial cells. The mechanism study revealed that HON specifically targets the Q239 residue located in the ankyrin repeat domain of TRPV4, and competitively inhibits channel opening with adenosine triphosphate (ATP) binding. The immunofluorescence assay demonstrated that the administration of HON enhances the expression and location of VE-Cadherin to protect the endothelial barrier and attenuates immune cell infiltration. CONCLUSIONS The finding suggested that HON alleviates IBD by improving endothelial permeability through TRPV4. The discovery provides valuable insights into the potential therapeutic strategy of active natural products for alleviating IBD.
Collapse
Affiliation(s)
- Lin Niu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shilong Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yanyan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xingwang Zu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xinyu You
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuyang Zhang
- Thompson Rivers University, Manna, British Columbia, Canada
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanjun Zhang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China; Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China.
| | - Jiagang Deng
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
2
|
Effects of Electroacupuncture on Gastrointestinal Motility Function, Pain, and Inflammation via Transient Receptor Potential Vanilloid 1 in a Rat Model after Colonic Anastomoses. DISEASE MARKERS 2022; 2022:5113473. [PMID: 35845135 PMCID: PMC9277154 DOI: 10.1155/2022/5113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Background. Complications after colon surgery are a major obstacle to postoperative recovery. The purpose of this study was to investigate the effect of electroacupuncture (EA) at Zusanli (ST36) on gastrointestinal motility in rats after colonic anastomosis and the mechanism of transient receptor potential vanillin 1 (TRPV1) channel in regulating gastrointestinal motility, pain, and inflammation. Methods. The rats were randomly divided into six groups, including the control, model, EA, sham-EA, capsaicin, and capsaicin+EA groups, with preoperative capsaicin pretreatment and EA treatment at ST36 acupoint after surgery. Rats were treated using EA at ST36 or sham acupoints after surgery for 5 days. Capsaicin was intraperitoneally injected into rats 3 hours before surgery. Gastrointestinal motility was assessed by measuring the gastric residue, small intestinal propulsion in vivo, contractile tension, and frequency of isolated muscle strips in vitro. The mechanical withdrawal threshold (MWT) of abdominal incision skin and spontaneous nociceptive scores were observed and recorded in rats after colon anastomosis. The expressions of TRPV1, substance P (SP), neurokinin 1 (NK1) receptor, nuclear factor kappa-B (NF-κB), interleukin- (IL-) 6, L-1β, and tumor necrosis factor- (TNF-) α were determined. Results. Compared with the model group, electroacupuncture at ST36 point could significantly reduce the residual rate of stomach in rats after operation and increase the propulsive force of the small intestine and the contraction tension of the isolated smooth muscle. Electroacupuncture also increased postoperative day 3 MWT values and decreased postoperative spontaneous nociception scores. In addition, electroacupuncture treatment downregulated the expressions of IL-6, IL-1β, TNF-α, TRPV1, NF-κB, SP, and NK1 receptors in the colon tissue of rats after colonic anastomosis. Conclusions. Our study showed that electroacupuncture at ST36 acupoint could improve gastrointestinal motility in rats after colonic anastomosis and relieve intestinal inflammation and pain. The mechanism may be to inhibit the activation of NF-κB and SP/NK1 receptor signaling pathways by inhibiting TRPV1.
Collapse
|
3
|
Antinozzi M, Giffi M, Sini N, Gallè F, Valeriani F, De Vito C, Liguori G, Romano Spica V, Cattaruzza MS. Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review. Biomedicines 2022; 10:biomedicines10020510. [PMID: 35203720 PMCID: PMC8962244 DOI: 10.3390/biomedicines10020510] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022] Open
Abstract
The intestinal microbiota is a crucial regulator of human health and disease because of its interactions with the immune system. Tobacco smoke also influences the human ecosystem with implications for disease development. This systematic review aims to analyze the available evidence, until June 2021, on the relationship between traditional and/or electronic cigarette smoking and intestinal microbiota in healthy human adults. Of the 2645 articles published in PubMed, Scopus, and Web of Science, 13 were included in the review. Despite differences in design, quality, and participants’ characteristics, most of the studies reported a reduction in bacterial species diversity, and decreased variability indices in smokers’ fecal samples. At the phylum or genus level, the results are very mixed on bacterial abundance both in smokers and non-smokers with two exceptions. Prevotella spp. appears significantly increased in smokers and former smokers but not in electronic cigarette users, while Proteobacteria showed a progressive increase in Desulfovibrio with the number of pack-years of cigarette (p = 0.001) and an increase in Alphaproteobacteria (p = 0.04) in current versus never smokers. This attempt to systematically characterize the effects of tobacco smoking on the composition of gut microbiota gives new perspectives on future research in smoking cessation and on a new possible use of probiotics to contrast smoke-related dysbiosis.
Collapse
Affiliation(s)
- Martina Antinozzi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.G.); (N.S.); (C.D.V.); (M.S.C.)
| | - Monica Giffi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.G.); (N.S.); (C.D.V.); (M.S.C.)
| | - Nicolò Sini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.G.); (N.S.); (C.D.V.); (M.S.C.)
| | - Francesca Gallè
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy;
- Correspondence: (F.G.); (F.V.)
| | - Federica Valeriani
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy;
- Correspondence: (F.G.); (F.V.)
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.G.); (N.S.); (C.D.V.); (M.S.C.)
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy;
| | - Maria Sofia Cattaruzza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.G.); (N.S.); (C.D.V.); (M.S.C.)
| |
Collapse
|
4
|
Traini C, Nistri S, Calosi L, Vannucchi MG. Chronic Exposure to Cigarette Smoke Affects the Ileum and Colon of Guinea Pigs Differently. Relaxin (RLX-2, Serelaxin) Prevents Most Local Damage. Front Pharmacol 2022; 12:804623. [PMID: 35095510 PMCID: PMC8793690 DOI: 10.3389/fphar.2021.804623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Cigarette smoking (CS) is the cause of several organ and apparatus diseases. The effects of smoke in the gut are partially known. Accumulating evidence has shown a relationship between smoking and inflammatory bowel disease, prompting us to investigate the mechanisms of action of smoking in animal models. Despite the role played by neuropeptides in gut inflammation, there are no reports on their role in animal models of smoking exposure. The hormone relaxin has shown anti-inflammatory properties in the intestine, and it might represent a putative therapy to prevent gut damage caused by smoking. Presently, we investigate the effects of chronic smoke exposure on inflammation, mucosal secretion, and vasoactive intestinal peptide (VIP) and substance P (SP) expressions in the ileum and colon of guinea pigs. We also verify the ability of relaxin to counter the smoke-induced effects. Smoke impacted plasma carbon monoxide (CO). In the ileum, it induced inflammatory infiltrates, fibrosis, and acidic mucin production; reduced the blood vessel area; decreased c-kit-positive mast cells and VIP-positive neurons; and increased the SP-positive nerve fibers. In the colon, it reduced the blood vessel area and the goblet cell area and decreased c-kit-positive mast cells, VIP-positive neurons, and SP-positive nerve fibers. Relaxin prevented most of the smoking-induced changes in the ileum, while it was less effective in the colon. This study shows the diverse sensitivity to CS between the ileum and the colon and demonstrates that both VIP and SP are affected by smoking. The efficacy of relaxin proposes this hormone as a potential anti-inflammatory therapeutic to counteract gut damage in humans affected by inflammatory bowel diseases.
Collapse
Affiliation(s)
- Chiara Traini
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Laura Calosi
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Maria Giuliana Vannucchi
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Abstract
Chemotherapy-induced gastrointestinal dysfunction is a common occurrence associated with many different classes of chemotherapeutic agents. Gastrointestinal toxicity includes mucositis, diarrhea, and constipation, and can often be a dose-limiting complication, induce cessation of treatment and could be life threatening. The gastrointestinal epithelium is rich in rapidly dividing cells and hence is a prime target for chemotherapeutic drugs. The incidence of gastrointestinal toxicity, including diarrhea and mucositis, is extremely high for a wide array of chemotherapeutic and radiation regimens. In fact, 60%-100% of patients on high-dose chemotherapy suffer from gastrointestinal side effects. Unfortunately, treatment options are limited, and therapy is often restricted to palliative care. Therefore, there is a great unmet therapeutic need for preventing and treating chemotherapy-induced gastrointestinal toxicities in the clinic. In this review, we discuss our current understanding of the mechanisms underlying chemotherapy-induced diarrhea and mucositis, and emerging mechanisms involving the enteric nervous system, smooth muscle cells and enteric immune cells. Recent evidence has also implicated gut dysbiosis in the pathogenesis of not only chemotherapy-induced mucositis and diarrhea, but also chemotherapy-induced peripheral neuropathy. Oxidative stress induced by chemotherapeutic agents results in post-translational modification of ion channels altering neuronal excitability. Thus, investigating how chemotherapy-induced changes in the gut- microbiome axis may lead to gut-related toxicities will be critical in the discovery of new drug targets for mitigating adverse gastrointestinal effects associated with chemotherapy treatment.
Collapse
Affiliation(s)
- Hamid I Akbarali
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| | - Karan H Muchhala
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Donald K Jessup
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Stanley Cheatham
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
6
|
Fouad A, Matsumoto K, Amagase K, Yasuda H, Tominaga M, Kato S. Protective Effect of TRPM8 against Indomethacin-Induced Small Intestinal Injury via the Release of Calcitonin Gene-Related Peptide in Mice. Biol Pharm Bull 2021; 44:947-957. [PMID: 34193690 DOI: 10.1248/bpb.b21-00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a non-selective cation channel activated by mild cooling and chemical agents including menthol. Nonsteroidal anti-inflammatory drugs have antipyretic, analgesic effects, and they can cause stomach and small intestinal injury. The current study investigated the role of TRPM8 in the pathogenesis of indomethacin-induced small intestinal injury. In male TRPM8-deficient (TRPM8KO) and wild-type (WT) mice, intestinal injury was induced via the subcutaneous administration of indomethacin. In addition, the effect of WS-12, a specific TRPM8 agonist, was examined in TRPM8KO and WT mice with indomethacin-induced intestinal injury. TRPM8KO mice had a significantly higher intestinal ulcerogenic response to indomethacin than WT mice. The repeated administration of WS-12 significantly attenuated the severity of intestinal injury in WT mice. However, this response was abrogated in TRPM8KO mice. Furthermore, in TRPM8-enhanced green fluorescent protein (EGFP) transgenic mice, which express EGFP under the direction of TRPM8 promoter, the EGFP signals in the indomethacin-treated intestinal mucosa were upregulated. Further, the EGFP signals were commonly found in calcitonin gene-related peptide (CGRP)-positive sensory afferent neurons and partly colocalized with substance P (SP)-positive neurons in the small intestine. The intestinal CGRP-positive neurons were significantly upregulated after the administration of indomethacin in WT mice. Nevertheless, this response was abrogated in TRPM8KO mice. In contrast, indomethacin increased the expression of intestinal SP-positive neurons in not only WT mice but also TRPM8KO mice. Thus, TRPM8 has a protective effect against indomethacin-induced small intestinal injury. This response may be mediated by the upregulation of CGRP, rather than SP.
Collapse
Affiliation(s)
- Aliaa Fouad
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
- Laboratory of Pharmacology and Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Hiroyuki Yasuda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences)
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| |
Collapse
|
7
|
Capsaicin and Gut Microbiota in Health and Disease. Molecules 2020; 25:molecules25235681. [PMID: 33276488 PMCID: PMC7730216 DOI: 10.3390/molecules25235681] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Capsaicin is a widespread spice known for its analgesic qualities. Although a comprehensive body of evidence suggests pleiotropic benefits of capsaicin, including anti-inflammatory, antioxidant, anti-proliferative, metabolic, or cardioprotective effects, it is frequently avoided due to reported digestive side-effects. As the gut bacterial profile is strongly linked to diet and capsaicin displays modulatory effects on gut microbiota, a new hypothesis has recently emerged about its possible applicability against widespread pathologies, such as metabolic and inflammatory diseases. The present review explores the capsaicin–microbiota crosstalk and capsaicin effect on dysbiosis, and illustrates the intimate mechanisms that underlie its action in preventing the onset or development of pathologies like obesity, diabetes, or inflammatory bowel diseases. A possible antimicrobial property of capsaicin, mediated by the beneficial alteration of microbiota, is also discussed. However, as data are coming mostly from experimental models, caution is needed in translating these findings to humans.
Collapse
|
8
|
Nagpal R, Mishra SK, Deep G, Yadav H. Role of TRP Channels in Shaping the Gut Microbiome. Pathogens 2020; 9:pathogens9090753. [PMID: 32947778 PMCID: PMC7559121 DOI: 10.3390/pathogens9090753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential (TRP) channel family proteins are sensors for pain, which sense a variety of thermal and noxious chemicals. Sensory neurons innervating the gut abundantly express TRPA1 and TRPV1 channels and are in close proximity of gut microbes. Emerging evidence indicates a bi-directional gut–brain cross-talk in several entero-neuronal pathologies; however, the direct evidence of TRP channels interacting with gut microbial populations is lacking. Herein, we examine whether and how the knockout (KO) of TRPA1 and TRPV1 channels individually or combined TRPA1/V1 double-knockout (dKO) impacts the gut microbiome in mice. We detect distinct microbiome clusters among the three KO mouse models versus wild-type (WT) mice. All three TRP-KO models have reduced microbial diversity, harbor higher abundance of Bacteroidetes, and a reduced proportion of Firmicutes. Specifically distinct arrays in the KO models are determined mainly by S24-7, Bacteroidaceae, Clostridiales, Prevotellaceae, Helicobacteriaceae, Rikenellaceae, and Ruminococcaceae. A1KO mice have lower Prevotella, Desulfovibrio, Bacteroides, Helicobacter and higher Rikenellaceae and Tenericutes; V1KO mice demonstrate higher Ruminococcaceae, Lachnospiraceae, Ruminococcus, Desulfovibrio and Mucispirillum; and A1V1dKO mice exhibit higher Bacteroidetes, Bacteroides and S24-7 and lower Firmicutes, Ruminococcaceae, Oscillospira, Lactobacillus and Sutterella abundance. Furthermore, the abundance of taxa involved in biosynthesis of lipids and primary and secondary bile acids is higher while that of fatty acid biosynthesis-associated taxa is lower in all KO groups. To our knowledge, this is the first study demonstrating distinct gut microbiome signatures in TRPA1, V1 and dKO models and should facilitate prospective studies exploring novel diagnostic/ therapeutic modalities regarding the pathophysiology of TRP channel proteins.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Santosh Kumar Mishra
- Department of Molecular Biomedical Sciences, NC State Veterinary Medicine, Raleigh, NC 27606, USA;
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-713-5049
| |
Collapse
|
9
|
Morita T, Mitsuyama K, Yamasaki H, Mori A, Yoshimura T, Araki T, Morita M, Tsuruta K, Yamasaki S, Kuwaki K, Yoshioka S, Takedatsu H, Torimura T. Gene Expression of Transient Receptor Potential Channels in Peripheral Blood Mononuclear Cells of Inflammatory Bowel Disease Patients. J Clin Med 2020; 9:jcm9082643. [PMID: 32823895 PMCID: PMC7547374 DOI: 10.3390/jcm9082643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022] Open
Abstract
We examined the expression profile of transient receptor potential (TRP) channels in peripheral blood mononuclear cells (PBMCs) from patients with inflammatory bowel disease (IBD). PBMCs were obtained from 41 ulcerative colitis (UC) patients, 34 Crohn's disease (CD) patients, and 30 normal subjects. mRNA levels of TRP channels were measured using the quantitative real-time polymerase chain reaction, and correlation tests with disease ranking, as well as laboratory parameters, were performed. Compared with controls, TRPV2 and TRPC1 mRNA expression was lower, while that of TRPM2, was higher in PBMCs of UC and CD patients. Moreover, TRPV3 mRNA expression was lower, while that of TRPV4 was higher in CD patients. TRPC6 mRNA expression was higher in patients with CD than in patients with UC. There was also a tendency for the expression of TRPV2 mRNA to be negatively correlated with disease activity in patients with UC and CD, while that of TRPM4 mRNA was negatively correlated with disease activity only in patients with UC. PBMCs from patients with IBD exhibited varying mRNA expression levels of TRP channel members, which may play an important role in the progression of IBD.
Collapse
Affiliation(s)
- Taku Morita
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| | - Keiichi Mitsuyama
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
- Correspondence: ; Tel.: +81-942-31-7561
| | - Hiroshi Yamasaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Atsushi Mori
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Tetsuhiro Yoshimura
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Toshihiro Araki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Masaru Morita
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Kozo Tsuruta
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Sayo Yamasaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| | - Kotaro Kuwaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Shinichiro Yoshioka
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Hidetoshi Takedatsu
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Takuji Torimura
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| |
Collapse
|
10
|
Translational research into the effects of cigarette smoke on inflammatory mediators and epithelial TRPV1 in Crohn's disease. PLoS One 2020; 15:e0236657. [PMID: 32760089 PMCID: PMC7410291 DOI: 10.1371/journal.pone.0236657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023] Open
Abstract
Crohn's disease is a pathological condition of the gastro-intestinal tract, causing severe transmural inflammation in the ileum and/or colon. Cigarette smoking is one of the best known environmental risk factors for the development of Crohn's disease. Nevertheless, very little is known about the effect of prolonged cigarette smoke exposure on inflammatory modulators in the gut. We examined the effect of cigarette smoke on cytokine profiles in the healthy and inflamed gut of human subjects and in the trinitrobenzene sulphonic acid mouse model, which mimics distal Crohn-like colitis. In addition, the effect of cigarette smoke on epithelial expression of transient receptor potential channels and their concurrent increase with cigarette smoke-augmented cytokine production was investigated. Active smoking was associated with increased IL-8 transcription in ileum of controls (p < 0,001; n = 18-20/group). In the ileum, TRPV1 mRNA levels were decreased in never smoking Crohn's disease patients compared to healthy subjects (p <0,001; n = 20/group). In the colon, TRPV1 mRNA levels were decreased (p = 0,046) in smoking healthy controls (n = 20/group). Likewise, healthy mice chronically exposed to cigarette smoke (n = 10/group) showed elevated ileal Cxcl2 (p = 0,0075) and colonic Kc mRNA levels (p = 0,0186), whereas TRPV1 mRNA and protein levels were elevated in the ileum (p = 0,0315). Although cigarette smoke exposure prior to trinitrobenzene sulphonic acid administration did not alter disease activity, increased pro-inflammatory cytokine production was observed in the distal colon (Kc: p = 0,0273; Cxcl2: p = 0,104; Il1-β: p = 0,0796), in parallel with the increase of Trpv1 mRNA (p < 0,001). We infer that CS affects pro-inflammatory cytokine expression in healthy and inflamed gut, and that the simultaneous modulation of TRPV1 may point to a potential involvement of TRPV1 in cigarette smoke-induced production of inflammatory mediators.
Collapse
|
11
|
Papoutsopoulou S, Satsangi J, Campbell BJ, Probert CS. Review article: impact of cigarette smoking on intestinal inflammation-direct and indirect mechanisms. Aliment Pharmacol Ther 2020; 51:1268-1285. [PMID: 32372449 DOI: 10.1111/apt.15774] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The inflammatory bowel diseases, Crohn's disease and ulcerative colitis are related multifactorial diseases. Their pathogenesis is influenced by each individual's immune system, the environmental factors within exposome and genetic predisposition. Smoking habit is the single best-established environmental factor that influences disease phenotype, behaviour and response to therapy. AIM To assess current epidemiological, experimental and clinical evidence that may explain how smoking impacts on the pathogenesis of inflammatory bowel disease. METHODS A Medline search for 'cigarette smoking', in combination with terms including 'passive', 'second-hand', 'intestinal inflammation', 'Crohn's disease', 'ulcerative colitis', 'colitis'; 'intestinal epithelium', 'immune system', 'intestinal microbiota', 'tight junctions', 'mucus', 'goblet cells', 'Paneth cells', 'autophagy'; 'epigenetics', 'genes', 'DNA methylation', 'histones', 'short noncoding/long noncoding RNAs'; 'carbon monoxide/CO' and 'nitric oxide/NO' was performed. RESULTS Studies found evidence of direct and indirect effects of smoking on various parameters, including oxidative damage, impairment of intestinal barrier and immune cell function, epigenetic and microbiota composition changes, that contribute to the pathogenesis of inflammatory bowel disease. CONCLUSIONS Cigarette smoking promotes intestinal inflammation by affecting the function and interactions among intestinal epithelium, immune system and microbiota/microbiome.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Chris S Probert
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Vrablicova Z, Soltys K, Krajcovicova A, Stuchlikova K, Sturdik I, Koller T, Huorka M, Payer J, Killinger Z, Jackuliak P, Tkacik M, Stuchlik S, Sekac J, Hlavaty T. Impact of smoking cigarette on the mRNA expression of cytokines in mucosa of inflammatory bowel disease. Physiol Res 2020; 68:S183-S192. [PMID: 31842582 DOI: 10.33549/physiolres.934301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is well known that smoking is the risk factor in the development and clinical course of Crohn s disease (CD), but on the other hand, smoking is a protective factor against ulcerative colitis (UC). The pathways that are influenced by smoking in CD and UC are poorly understood. The aim of our study was to analyse the influence of smoking on the mRNA expression of cytokines in mucosa in patients with CD and UC. We performed a cross-sectional study. The cohort consisted of 86 IBD patients (48 CD patients and 38 UC patients) and took place at the IBD Centre at the University Hospital Bratislava-Ružinov. We took the demographic and clinical data of each patient, including information about their smoking habits. We performed a colonoscopy on each patient and took biopsies from both inflamed and non-inflamed sigma (CD, UC) and terminal ileum (CD). mRNA was extracted from mucosal biopsy samples for each cytokine and was normalized to a housekeeping gene (GAPDH). Finally, we compared the mRNA expression of target cytokines in the mucosa of smokers and non-smokers in IBD patients. Smokers with Crohn s disease have a significantly higher mRNA expression of pro-inflammatory cytokine TNF ? (p=0.003) in inflamed mucosa in sigma compared with non-smokers. In smokers with ulcerative colitis, we observed significantly higher mRNA expression of anti-inflammatory cytokine IL 10 (p=0.022) in non-inflamed mucosa of sigma. Similarly, smokers with UC have a significantly decreased mRNA expression of cytokine TLR 2 (p=0.024) and CCR1 (p=0.049) in non-inflamed mucosa of sigma. Based on our results, smoking has a positive influence on cessation and the clinical course of UC due to the stimulation of anti-inflammatory cytokine IL 10 in mucosa. On the other hand, smokers with CD have a higher expression of pro-inflammatory cytokine TNF ?, which could be associated with a worsening of the disease and response to therapy.
Collapse
Affiliation(s)
- Z Vrablicova
- 5th Department of Internal Medicine, Sub-department of Gastroenterology and Hepatology, Faculty of Medicine, Comenius University Bratislava, University Hospital Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen Y, Mu J, Zhu M, Mukherjee A, Zhang H. Transient Receptor Potential Channels and Inflammatory Bowel Disease. Front Immunol 2020; 11:180. [PMID: 32153564 PMCID: PMC7044176 DOI: 10.3389/fimmu.2020.00180] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
The transient receptor potential (TRP) cation channels are present in abundance across the gastrointestinal (GI) tract, serving as detectors for a variety of stimuli and secondary transducers for G-protein coupled receptors. The activation of TRP channels triggers neurogenic inflammation with related neuropeptides and initiates immune reactions by extra-neuronally regulating immune cells, contributing to the GI homeostasis. However, under pathological conditions, such as inflammatory bowel disease (IBD), TRP channels are involved in intestinal inflammation. An increasing number of human and animal studies have indicated that TRP channels are correlated to the visceral hypersensitivity (VHS) and immune pathogenesis in IBD, leading to an exacerbation or amelioration of the VHS or intestinal inflammation. Thus, TRP channels are a promising target for novel therapeutic methods for IBD. In this review, we comprehensively summarize the functions of TRP channels, especially their potential roles in immunity and IBD. Additionally, we discuss the contradictory findings of prior studies and offer new insights with regard to future research.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jingxi Mu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
15
|
Inoue R, Kurahara LH, Hiraishi K. TRP channels in cardiac and intestinal fibrosis. Semin Cell Dev Biol 2018; 94:40-49. [PMID: 30445149 DOI: 10.1016/j.semcdb.2018.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
It is now widely accepted that advanced fibrosis underlies many chronic inflammatory disorders and is the main cause of morbidity and mortality of the modern world. The pathogenic mechanism of advanced fibrosis involves diverse and intricate interplays between numerous extracellular and intracellular signaling molecules, among which the non-trivial roles of a stress-responsive Ca2+/Na+-permeable cation channel superfamily, the transient receptor potential (TRP) protein, are receiving growing attention. Available evidence suggests that several TRP channels such as TRPC3, TRPC6, TRPV1, TRPV3, TRPV4, TRPA1, TRPM6 and TRPM7 may play central roles in the progression and/or prevention of fibroproliferative disorders in vital visceral organs such as lung, heart, liver, kidney, and bowel as well as brain, blood vessels and skin, and may contribute to both acute and chronic inflammatory processes involved therein. This short paper overviews the current knowledge accumulated in this rapidly growing field, with particular focus on cardiac and intestinal fibrosis, which are tightly associated with the pathogenesis of atrial fibrillation and inflammatory bowel diseases such as Crohn's disease.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Lin-Hai Kurahara
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan
| | - Keizo Hiraishi
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
16
|
Berkowitz L, Schultz BM, Salazar GA, Pardo-Roa C, Sebastián VP, Álvarez-Lobos MM, Bueno SM. Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation: Opposing Effects in Crohn's Disease and Ulcerative Colitis. Front Immunol 2018; 9:74. [PMID: 29441064 PMCID: PMC5797634 DOI: 10.3389/fimmu.2018.00074] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/11/2018] [Indexed: 01/06/2023] Open
Abstract
Cigarette smoking is a major risk factor for gastrointestinal disorders, such as peptic ulcer, Crohn’s disease (CD), and several cancers. The mechanisms proposed to explain the role of smoking in these disorders include mucosal damage, changes in gut irrigation, and impaired mucosal immune response. Paradoxically, cigarette smoking is a protective factor for the development and progression of ulcerative colitis (UC). UC and CD represent the two most important conditions of inflammatory bowel diseases, and share several clinical features. The opposite effects of smoking on these two conditions have been a topic of great interest in the last 30 years, and has not yet been clarified. In this review, we summarize the most important and well-understood effects of smoking in the gastrointestinal tract; and particularly, in intestinal inflammation, discussing available studies that have addressed the causes that would explain the opposite effects of smoking in CD and UC.
Collapse
Affiliation(s)
- Loni Berkowitz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Pardo-Roa
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Sebastián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel M Álvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Khasawneh M, Spence AD, Addley J, Allen PB. The role of smoking and alcohol behaviour in the management of inflammatory bowel disease. Best Pract Res Clin Gastroenterol 2017; 31:553-559. [PMID: 29195675 DOI: 10.1016/j.bpg.2017.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/11/2017] [Accepted: 10/20/2017] [Indexed: 02/09/2023]
Abstract
In the era of increasing use of immunosuppressive and biologic therapy for inflammatory bowel disease, environmental influences remain important independent risk factors to modify the course of the disease, affect the need for surgery and recurrence rates post-surgical resection. The effect of smoking on inflammatory bowel disease has been established over the decades, however the exact mechanism of how smoking affects remains as area of research. Alcohol is also among the socio-environmental factors which has been recognised to cause a flare of symptoms in inflammatory bowel disease patients. Nonetheless, the exact relation to date is not fully understood, and various paradoxical results from different studies are still a point of controversy.
Collapse
Affiliation(s)
- Mais Khasawneh
- South Eastern Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Andrew D Spence
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Jennifer Addley
- South Eastern Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Patrick B Allen
- South Eastern Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
18
|
Song JX, Ren H, Gao YF, Lee CY, Li SF, Zhang F, Li L, Chen H. Dietary Capsaicin Improves Glucose Homeostasis and Alters the Gut Microbiota in Obese Diabetic ob/ob Mice. Front Physiol 2017; 8:602. [PMID: 28890700 PMCID: PMC5575157 DOI: 10.3389/fphys.2017.00602] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022] Open
Abstract
Background: The effects of capsaicin on obesity and glucose homeostasis are still controversial and the mechanisms underlying these effects remain largely unknown. This study aimed to investigate the potential relationship between the regulation of obesity and glucose homeostasis by dietary capsaicin and the alterations of gut microbiota in obese diabetic ob/ob mice. Methods: The ob/ob mice were subjected to a normal, low-capsaicin (0.01%), or high-capsaicin (0.02%) diet for 6 weeks, respectively. Obesity phenotypes, glucose homeostasis, the gut microbiota structure and composition, short-chain fatty acids, gastrointestinal hormones, and pro-inflammatory cytokines were measured. Results: Both the low- and high-capsaicin diets failed to prevent the increase in body weight, adiposity index, and Lee's obesity index. However, dietary capsaicin at both the low and high doses significantly inhibited the increase of fasting blood glucose and insulin levels. These inhibitory effects were comparable between the two groups. Similarly, dietary capsaicin resulted in remarkable improvement in glucose and insulin tolerance. In addition, neither the low- nor high-capsaicin diet could alter the α-diversity and β-diversity of the gut microbiota. Taxonomy-based analysis showed that both the low- and high-capsaicin diets, acting in similar ways, significantly increased the Firmicutes/Bacteroidetes ratio at the phylum level as well as increased the Roseburia abundance and decreased the Bacteroides and Parabacteroides abundances at the genus level. Spearman's correlation analysis revealed that the Roseburia abundance was negatively while the Bacteroides and Parabacteroides abundances were positively correlated to the fasting blood glucose level and area under the curve by the oral glucose tolerance test. Finally, the low- and high-capsaicin diets significantly increased the fecal butyrate and plasma total GLP-1 levels, but decreased plasma total ghrelin, TNF-α, IL-1β, and IL-6 levels as compared with the normal diet. Conclusions: The beneficial effects of dietary capsaicin on glucose homeostasis are likely associated with the alterations of specific bacteria at the genus level. These alterations in bacteria induced by dietary capsaicin contribute to improved glucose homeostasis through increasing short-chain fatty acids, regulating gastrointestinal hormones and inhibiting pro-inflammatory cytokines. However, our results should be interpreted cautiously due to the lower caloric intake at the initial stage after capsaicin diet administration.
Collapse
Affiliation(s)
- Jun-Xian Song
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Hui Ren
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Yuan-Feng Gao
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Chong-You Lee
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Su-Fang Li
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Feng Zhang
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Long Li
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| |
Collapse
|