1
|
Mao L, Hong X, Hu M. Identifying neuroimaging biomarkers in major depressive disorder using machine learning algorithms and functional near-infrared spectroscopy (fNIRS) during verbal fluency task. J Affect Disord 2024; 365:9-20. [PMID: 39151759 DOI: 10.1016/j.jad.2024.08.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
One of the most prevalent psychiatric disorders is major depressive disorder (MDD), which increases the probability of suicidal ideation or untimely demise. Abnormal frontal hemodynamic changes detected by functional near-infrared spectroscopy (fNIRS) during verbal fluency task (VFT) have the potential to be used as an objective indicator for assessing clinical symptoms. However, comprehensive quantitative and objective assessment instruments for individuals who exhibit symptoms suggestive of depression remain undeveloped. Drawing from a total of 467 samples in a large-scale dataset comprising 289 MDD patients and 178 healthy controls, fNIRS measurements were obtained throughout the VFT. To identify unique MDD biomarkers, this research introduced a data representation approach for extracting spatiotemporal features from fNIRS signals, which were subsequently utilized as potential predictors. Machine learning classifiers (e.g., Gradient Boosted Decision Trees (GBDT) and Multilayer Perceptron) were implemented to assess the ability to predict selected features. The mean and standard deviation of the cross-validation indicated that the GBDT model, when combined with the 180-feature pattern, distinguishes patients with MDD from healthy controls in the most effective manner. The accuracy of correct classification for the test set was 0.829 ± 0.053, with an AUC of 0.895 (95 % CI: 0.864-0.925) and a sensitivity of 0.914 ± 0.051. Channels that made the most important contribution to the identification of MDD were identified using Shapley Additive Explanations method, located in the frontopolar area and the dorsolateral prefrontal cortex, as well as pars triangularis Broca's area. Assessment of abnormal prefrontal activity during the VFT in MDD serves as an objectively measurable biomarker that could be utilized to evaluate cognitive deficits and facilitate early screening for MDD. The model suggested in this research could be applied to large-scale case-control fNIRS datasets to detect unique characteristics of MDD and offer clinicians an objective biomarker-based analytical instrument to assist in the evaluation of suspicious cases.
Collapse
Affiliation(s)
- Lingyun Mao
- Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China; Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xin Hong
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Maorong Hu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Arrigo IV, da Silva PHR, Leoni RF. Functional and Effective Connectivity Underlying Semantic Verbal Fluency. Brain Topogr 2024; 37:1043-1054. [PMID: 38839695 DOI: 10.1007/s10548-024-01059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Semantic verbal fluency (SVF) impairment is present in several neurological disorders. Although activation in SVF-related areas has been reported, how these regions are connected and their functional roles in the network remain divergent. We assessed SVF static and dynamic functional connectivity (FC) and effective connectivity in healthy participants using functional magnetic resonance imaging. We observed activation in the inferior frontal (IFG), middle temporal (pMTG) and angular gyri (AG), anterior cingulate (AC), insular cortex, and regions of the superior, middle, and medial frontal gyri (SFG, MFG, MidFG). Our static FC analysis showed a highly interconnected task and resting state network. Increased connectivity of AC with the pMTG and AG was observed for the task. The dynamic FC analysis provided circuits with connections similarly modulated across time and regions related to category identification, language comprehension, word selection and recovery, word generation, inhibition of speaking, speech planning, and articulatory planning of orofacial movements. Finally, the effective connectivity analysis provided a network that best explained our data, starting at the AG and going to the pMTG, from which there was a division between the ventral and dorsal streams. The SFG and MFG regions were connected and modulated by the MidFG, while the inferior regions formed the ventral stream. Therefore, we successfully assessed the SVF network, exploring regions associated with the entire processing, from category identification to word generation. The methodological approach can be helpful for further investigation of the SVF network in neurological disorders.
Collapse
Affiliation(s)
- Isabella Velloso Arrigo
- InBrain, Department of Physics, FFCLRP, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto, Sao Paulo, 3900, 14040-901, Brazil
| | - Pedro Henrique Rodrigues da Silva
- InBrain, Department of Physics, FFCLRP, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto, Sao Paulo, 3900, 14040-901, Brazil
| | - Renata Ferranti Leoni
- InBrain, Department of Physics, FFCLRP, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto, Sao Paulo, 3900, 14040-901, Brazil.
| |
Collapse
|
3
|
Da H, Xiang N, Qiu M, Abbas S, Xiao Q, Zhang Y. Characteristics of oxyhemoglobin during the verbal fluency task in subthreshold depression: A multi-channel near-infrared spectroscopy study. J Affect Disord 2024; 356:88-96. [PMID: 38588729 DOI: 10.1016/j.jad.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE Subthreshold depression is an essential precursor and risk factor for major depressive disorder, and its accurate identification and timely intervention are important for reducing the prevalence of major depressive disorder. Therefore, we used functional near-infrared spectroscopic imaging (fNIRS) to explore the characteristics of the brain neural activity of college students with subthreshold depression in the verbal fluency task. METHODS A total of 72 subthreshold depressed college students (SDs) and 67 healthy college students (HCs) were recruited, and all subjects were subjected to a verbal fluency task (VFT) while a 53-channel fNIRS device was used to collect the subjects' cerebral blood oxygenation signals. RESULTS The results of the independent samples t-test showed that the mean oxyhemoglobin in the right dorsolateral prefrontal (ch34, ch42, ch45) and Broca's area (ch51, ch53) of SDs was lower than that of HCs. The peak oxygenated hemoglobin of SDs was lower in the right dorsolateral prefrontal (ch34) and Broca's area (ch51, ch53).The brain functional connectivity strength was lower than that of HCs. Correlation analysis showed that the left DLPFC and Broca's area were significantly negatively correlated with the depression level. CONCLUSION SDs showed abnormally low, inadequate levels of brain activation and weak frontotemporal brain functional connectivity. The right DLPFC has a higher sensitivity for the differentiation of depressive symptoms and is suitable as a biomarker for the presence of depressive symptoms. Dysfunction in Broca's area can be used both as a marker of depressive symptoms and as a biomarker, indicating the severity of depressive symptoms.
Collapse
Affiliation(s)
- Hui Da
- School of Education, Huazhong University of Science and Technology, Wuhan, China.
| | - Nian Xiang
- Hospital of Huazhong University of Science and Technology, Wuhan, China.
| | - Min Qiu
- Hospital of Huazhong University of Science and Technology, Wuhan, China.
| | - Sadia Abbas
- School of Education, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiang Xiao
- Hospital of Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Zhang
- School of Education, Huazhong University of Science and Technology, Wuhan, China; Research Center for Innovative Education and Critical Thinking, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Lyu H, Zhao M, Xu P, Li Y, Jiang C, Zhao H, Shen W, Hu X, Wang K, Xu Y, Huang M. Gender differences in brain region activation during verbal fluency task as detected by fNIRS in patients with depression. World J Biol Psychiatry 2024; 25:141-150. [PMID: 37998167 DOI: 10.1080/15622975.2023.2287735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Gender plays a role in the mechanisms of depression, but fewer studies have focused on gender differences in the abnormal activation of brain regions when patients perform specific cognitive tasks. METHODS A total of 110 major depressive disorder (MDD) patients and 106 healthy controls were recruited. The relative change in oxygen-haemoglobin (oxy-Hb) concentration during the verbal fluency task were measured by a 52-channel near-infra-red spectroscopy (NIRS) system. Differences in brain region activation between patients and healthy controls and between genders of depression patients were compared. RESULTS MDD patients demonstrated significantly decreased [oxy-Hb] changes in the right inferior frontal gyrus (p = 0.043) compared to healthy controls. A marked increase in leftward functional language lateralisation in the inferior frontal gyrus was observed in the MDD group in contrast to the HC group (p = 0.039). Furthermore, female patients in the MDD group exhibited significant reductions in [oxy-Hb] changes in the right frontal region (specifically, the superior and middle frontal gyrus; p = 0.037) compared with male patients. CONCLUSIONS Gender impacts depression-related brain activation during cognitive tasks, potentially influencing depression's pathogenesis.
Collapse
Affiliation(s)
- Hailong Lyu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute of Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Miaomiao Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute of Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Pengfeng Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute of Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Ying Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute of Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute of Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute of Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Wenjing Shen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Department of Psychiatry, The Second People's Hospital of Lishui, Lishui, China
| | - Xiaohan Hu
- Department of Psychiatry, Wen Zhou seventh People's Hospital, Wenzhou, China
| | - Kaiqi Wang
- Department of Psychiatry, Ningbo Psychiatric Hospital, Ningbo, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute of Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute of Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| |
Collapse
|
5
|
Stoyanov D, Paunova R, Dichev J, Kandilarova S, Khorev V, Kurkin S. Functional magnetic resonance imaging study of group independent components underpinning item responses to paranoid-depressive scale. World J Clin Cases 2023; 11:8458-8474. [PMID: 38188204 PMCID: PMC10768520 DOI: 10.12998/wjcc.v11.i36.8458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Our study expand upon a large body of evidence in the field of neuropsychiatric imaging with cognitive, affective and behavioral tasks, adapted for the functional magnetic resonance imaging (MRI) (fMRI) experimental environment. There is sufficient evidence that common networks underpin activations in task-based fMRI across different mental disorders. AIM To investigate whether there exist specific neural circuits which underpin differential item responses to depressive, paranoid and neutral items (DN) in patients respectively with schizophrenia (SCZ) and major depressive disorder (MDD). METHODS 60 patients were recruited with SCZ and MDD. All patients have been scanned on 3T magnetic resonance tomography platform with functional MRI paradigm, comprised of block design, including blocks with items from diagnostic paranoid (DP), depression specific (DS) and DN from general interest scale. We performed a two-sample t-test between the two groups-SCZ patients and depressive patients. Our purpose was to observe different brain networks which were activated during a specific condition of the task, respectively DS, DP, DN. RESULTS Several significant results are demonstrated in the comparison between SCZ and depressive groups while performing this task. We identified one component that is task-related and independent of condition (shared between all three conditions), composed by regions within the temporal (right superior and middle temporal gyri), frontal (left middle and inferior frontal gyri) and limbic/salience system (right anterior insula). Another component is related to both diagnostic specific conditions (DS and DP) e.g. It is shared between DEP and SCZ, and includes frontal motor/language and parietal areas. One specific component is modulated preferentially by to the DP condition, and is related mainly to prefrontal regions, whereas other two components are significantly modulated with the DS condition and include clusters within the default mode network such as posterior cingulate and precuneus, several occipital areas, including lingual and fusiform gyrus, as well as parahippocampal gyrus. Finally, component 12 appeared to be unique for the neutral condition. In addition, there have been determined circuits across components, which are either common, or distinct in the preferential processing of the sub-scales of the task. CONCLUSION This study has delivers further evidence in support of the model of trans-disciplinary cross-validation in psychiatry.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Rositsa Paunova
- Research Institute, Medical University, Plovdiv 4002, Bulgaria
| | - Julian Dichev
- Faculty of Medicine, Medical University, Plovdiv 4002, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University, Plovdiv 4002, Bulgaria
| | - Vladimir Khorev
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| | - Semen Kurkin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| |
Collapse
|
6
|
Xu H, Wang Y, Wang YM, Cao Y, Li P, Hu Y, Xia G. Insomniacs show greater prefrontal activation during verbal fluency task compared to non-insomniacs: a functional near-infrared spectroscopy investigation of depression in patients. BMC Psychiatry 2023; 23:217. [PMID: 36997897 PMCID: PMC10064712 DOI: 10.1186/s12888-023-04694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Previous studies have shown that insomnia affects human prefrontal function and that there are specific patterns of brain activation to counteract sleep and improve cognition. However, the effects of insomnia on the prefrontal cortex of MDD (major depressive disorder) patients and the patterns of activation to counteract sleep in MDD patients remain unclear. The aim of this study is to examine this using fNIRS (functional near-infrared spectroscopy). METHODS Eighty depressed patients and 44 healthy controls were recruited for this study. fNIRS was used to assess changes in the concentration of oxygenated hemoglobin ([oxy-Hb]) in the prefrontal cortex of all participants during the VFT (verbal fluency test) and to record the number of words created to assess cognitive ability. The Pittsburgh Sleep Quality Index was used to assess sleep quality, and the Hamilton Rating Scale for Depression (24-item) and Hamilton Rating Scale for Anxiety (14-item) were used to assess the severity of depression and anxiety. RESULTS When comparing patients, the healthy control group had significantly higher [oxy-Hb] values in the bilateral prefrontal cortex during VFT than the MDD group. In the MDD group, the [oxy-Hb] values in all brain regions except the right DLPFC were significantly higher in the group with insomnia than in the group without insomnia, but their VFT performance was significantly lower than in the group without insomnia and the healthy group. PSQI scores were positively correlated with [oxy-Hb] values in some left-brain regions, whereas HAMD and HAMA scores were not correlated with [oxy-Hb] values. CONCLUSION The PFC was significantly less active during VFT in those with MDD than in healthy controls. All brain regions, except the right DLPFC, were significantly more active in MDD patients with insomnia than in those without insomnia, suggesting that sleep quality needs to be an important indicator in fNIRS screening. In addition, there was a positive correlation between the severity of insomnia in the left VLPFC and the level of activation, suggesting a role for the left brain region in the neurophysiology of overcoming sleepiness in MDD patients. these findings may provide new ideas for the treatment of MDD patients in the future. TRIAL REGISTRATION Our experiment was registered in the China Clinical Trial Registry (registration number ChiCTR2200065622) on November 10.( The first patient was recruited in 10/11/2022.).
Collapse
Affiliation(s)
- HuaSen Xu
- Department of psychiatry, Affliated Hospital to Guizhou Medical University, Guizhou, China
| | - YuXing Wang
- Department of psychiatry, Affliated Hospital to Guizhou Medical University, Guizhou, China
| | - Yi Ming Wang
- Department of psychiatry, Affliated Hospital to Guizhou Medical University, Guizhou, China.
| | - YaQi Cao
- Department of psychiatry, Affliated Hospital to Guizhou Medical University, Guizhou, China
| | - PeiFan Li
- Department of psychiatry, Affliated Hospital to Guizhou Medical University, Guizhou, China
| | - YongXue Hu
- Department of psychiatry, Affliated Hospital to Guizhou Medical University, Guizhou, China
| | - GuangYuan Xia
- Department of psychiatry, Affliated Hospital to Guizhou Medical University, Guizhou, China
| |
Collapse
|
7
|
Xiao F, Caciagli L, Wandschneider B, Fleury M, Binding L, Giampiccolo D, Hill A, Galovic M, Foong J, Zhou D, Sander JW, Duncan JS, Koepp MJ. Verbal fluency functional magnetic resonance imaging detects anti-seizure effects and affective side effects of perampanel in people with focal epilepsy. Epilepsia 2023; 64:e9-e15. [PMID: 36524702 PMCID: PMC10107311 DOI: 10.1111/epi.17493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Perampanel, a noncompetitive antagonist of the postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor, is effective for controlling focal to bilateral tonic-clonic seizures but is also known to increase feelings of anger. Using statistical parametric mapping-derived measures of activation and task-modulated functional connectivity (psychophysiologic interaction), we investigated 14 people with focal epilepsy who had verbal fluency functional magnetic resonance imaging (fMRI) twice, before and after the add-on treatment of perampanel. For comparison, we included 28 people with epilepsy, propensity-matched for clinical characteristics, who had two scans but no change in anti-seizure medication (ASM) regimen in-between. After commencing perampanel, individuals had higher task-related activations in left orbitofrontal cortex (OFC), fewer task-related activations in the subcortical regions including the left thalamus and left caudate, and lower task-related thalamocaudate and caudate-subtantial nigra connectivity. Decreased task-related connectivity is observed between the left OFC and precuneus and left medial frontal lobe. Our results highlight the brain regions associated with the beneficiary therapeutic effects on focal to bilateral tonic-clonic seizures (thalamus and caudate) but also the undesired affective side effects of perampanel with increased anger and aggression (OFC).
Collapse
Affiliation(s)
- Fenglai Xiao
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Lorenzo Caciagli
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Britta Wandschneider
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, The Royal London Hospital, London, UK
| | - Marine Fleury
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Lawrence Binding
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Davide Giampiccolo
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Andrea Hill
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Marian Galovic
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Jaqueline Foong
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Stichting Epilepsie Instellingen Nederland - (SEIN), Heemstede, The Netherlands
| | - John S Duncan
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Matthias J Koepp
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| |
Collapse
|
8
|
Ma X, Liu P, Law S, Ravindran N, Xu B, Fan T, Feng K. Characteristics of psychomotor retardation distinguishes patients with depression using multichannel near-infrared spectroscopy and finger tapping task. J Affect Disord 2022; 318:255-262. [PMID: 36087791 DOI: 10.1016/j.jad.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Psychomotor retardation (PMR) is frequently noted as a characteristic feature of major depressive disorder (MDD). In patients with depression, it is characterized by retardation of speech, emotion, thinking, and cognition. This study explored the activation pattern of the prefrontal cortex (PFC) during the finger-tapping task (FTT) in subjects with MDD, aiming to provide additional understanding on the connection between PMR and PFC activation pattern in depression through the use of near-Infrared Spectroscopy (NIRS). We hypothesized that, through use of NIRS during the FTT, motor retardation in depression would generate a distinct PFC activation pattern, allowing for differentiation between patients with MDD and healthy controls (HCs). METHODS Thirty-five patients with MDD and thirty-nine HCs underwent NIRS evaluation during performance of the FTT. The FTT included both left-finger tapping and right-finger tapping performed by a computer screen. Each participant was assessed using a 45-channel NIRS and various clinical scales. FINDINGS During the left-FTT, the left orbitofrontal cortex (OFC) showed higher oxy-hemoglobin (Oxy-Hb) activation in the MDD group when compared to the HCs. During the right-FTT, the right dorsolateral prefrontal cortex (DLPFC) demonstrated lower Oxy-Hb activation, and the dorsomedial prefrontal cortex (DMPFC) showed higher Oxy-Hb activation in the MDD group versus the HC group. CONCLUSION Our results demonstrated different activation patterns of the PFC between the MDD and HC groups, using FTT as a motor performance task. In particular, the OFC, the DLPFC and the DMPFC areas hold promise as new useful sites for such differentiation in future investigations.
Collapse
Affiliation(s)
- Xiangyun Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Pozi Liu
- YuQuan Hospital, Tsinghua University, Beijing 10000, China
| | - Samuel Law
- Department of Psychiatry, University of Toronto, Canada
| | | | - Bo Xu
- YuQuan Hospital, Tsinghua University, Beijing 10000, China
| | - Tengteng Fan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Kun Feng
- YuQuan Hospital, Tsinghua University, Beijing 10000, China.
| |
Collapse
|
9
|
Wu H, Li T, Peng C, Yang C, Bian Y, Li X, Xiao Q, Wang P, Zhang Z, Zhang Y. The right prefrontal cortex (PFC) can distinguish anxious depression from non-anxious depression: A promising functional near infrared spectroscopy study (fNIRS). J Affect Disord 2022; 317:319-328. [PMID: 36007594 DOI: 10.1016/j.jad.2022.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Anxious depression is a serious mental disorder characterized by comorbidity of anxiety and depression, and its symptoms are similar to those of non-anxious depression. This study aimed to use functional near-infrared spectroscopy (fNIRS) as a tool to distinguish between patients with anxious and non-anxious depression based on differences in hemodynamic changes in the right prefrontal cortex during the verbal fluency task. It is helpful to improve the diagnostic accuracy of the two disorders to further promote their therapeutic effect and prognosis. METHODS A total of 105 subjects, comprising 39 patients with anxious depression, 32 patients with non-anxious depression, and 32 healthy controls, were evaluated using 53-channel fNIRS and the Depression and Anxiety Clinical Scale. RESULTS Hemodynamic activation was significantly enhanced in the right dorsolateral prefrontal cortex (DLPFC) and right frontopole cortex (FPC) in the anxious depressed group compared with the non-anxious depressed and healthy groups. LIMITATIONS First, Hospital Anxiety and Depression Scale (HADS) was used to evaluate the scores of anxiety and depression among the three groups in our study. Different scales may result in different research results. Therefore, other scales (HAM, the Montgomery Asberg Depression Rating Scale, or the Beck Depression Inventory) should be used for further verification. Second, although all the samples we have chosen were patients with the diagnosis of anxious depression or no-anxious depression, we did not distinguish between different severity of anxious depression or no-anxious depression. Third, pure anxiety was not included as the control condition in our study. CONCLUSIONS There are significant differences in activation patterns of the right DLPFC and right FPC areas between patients with and without anxious depression. Moreover, the right FPC area is promising as a brain region to assess the severity of anxious depression. fNIRS may be a potential tool to improve diagnostic accuracy for both disorders.
Collapse
Affiliation(s)
- Huifen Wu
- School of Education, Huazhong University of Science and Technology, Wuhan, China; School of Education, Hubei Engineering University, Xiaogan, China
| | - Taiping Li
- School of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Peng
- School of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Caihong Yang
- School of Psychology, Central China Normal University, Wuhan, China
| | - Yueran Bian
- School of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqin Li
- School of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Xiao
- Department of Psychiatry, Huazhong University of Science and Technology Hospital, Wuhan, China
| | - Pu Wang
- Department of Rehabilitation Medicine in The Seventh Affiliated Hospital (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Zhe Zhang
- Department of Humanities and Social Sciences, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Zhang
- School of Education, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Kamishikiryo T, Okada G, Itai E, Masuda Y, Yokoyama S, Takamura M, Fuchikami M, Yoshino A, Mawatari K, Numata S, Takahashi A, Ohmori T, Okamoto Y. Left DLPFC activity is associated with plasma kynurenine levels and can predict treatment response to escitalopram in major depressive disorder. Psychiatry Clin Neurosci 2022; 76:367-376. [PMID: 35543406 PMCID: PMC9544423 DOI: 10.1111/pcn.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/16/2022] [Accepted: 04/24/2022] [Indexed: 11/27/2022]
Abstract
AIM To establish treatment response biomarkers that reflect the pathophysiology of depression, it is important to use an integrated set of features. This study aimed to determine the relationship between regional brain activity at rest and blood metabolites related to treatment response to escitalopram to identify the characteristics of depression that respond to treatment. METHODS Blood metabolite levels and resting-state brain activity were measured in patients with moderate to severe depression (n = 65) before and after 6-8 weeks of treatment with escitalopram, and these were compared between Responders and Nonresponders to treatment. We then examined the relationship between blood metabolites and brain activity related to treatment responsiveness in patients and healthy controls (n = 36). RESULTS Thirty-two patients (49.2%) showed a clinical response (>50% reduction in the Hamilton Rating Scale for Depression score) and were classified as Responders, and the remaining 33 patients were classified as Nonresponders. The pretreatment fractional amplitude of low-frequency fluctuation (fALFF) value of the left dorsolateral prefrontal cortex (DLPFC) and plasma kynurenine levels were lower in Responders, and the rate of increase of both after treatment was correlated with an improvement in symptoms. Moreover, the fALFF value of the left DLPFC was significantly correlated with plasma kynurenine levels in pretreatment patients with depression and healthy controls. CONCLUSION Decreased resting-state regional activity of the left DLPFC and decreased plasma kynurenine levels may predict treatment response to escitalopram, suggesting that it may be involved in the pathophysiology of major depressive disorder in response to escitalopram treatment.
Collapse
Affiliation(s)
- Toshiharu Kamishikiryo
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Eri Itai
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Yoshikazu Masuda
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Satoshi Yokoyama
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Masahiro Takamura
- Department of Neurology, Faculty of MedicineShimane UniversityIzumo‐shiJapan
| | - Manabu Fuchikami
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Shusuke Numata
- Department of Psychiatry, Institute of Biomedical ScienceTokushima University Graduate SchoolTokushimaJapan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Tetsuro Ohmori
- Department of Psychiatry, Institute of Biomedical ScienceTokushima University Graduate SchoolTokushimaJapan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
11
|
Huang J, Zhang J, Zhang T, Wang P, Zheng Z. Increased Prefrontal Activation During Verbal Fluency Task After Repetitive Transcranial Magnetic Stimulation Treatment in Depression: A Functional Near-Infrared Spectroscopy Study. Front Psychiatry 2022; 13:876136. [PMID: 35444573 PMCID: PMC9013767 DOI: 10.3389/fpsyt.2022.876136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous studies have shown the clinical effect of 2 Hz repetitive transcranial magnetic stimulation (rTMS) for depression; however, its underlying neural mechanisms are poorly understood. The aim of this study was to examine the effects of rTMS on the activity of the prefrontal cortex in patients with depression, using functional near-infrared spectroscopy (fNIRS). METHODS Forty patients with major depressive disorder (MDD) and 40 healthy controls were enrolled in this study. Patients underwent 4 weeks of 2 Hz TMS delivered to the right dorsolateral prefrontal cortex (DLPFC). fNIRS was used to measure the changes in the concentration of oxygenated hemoglobin ([oxy-Hb]) in the prefrontal cortex during a verbal fluency task (VFT) in depressed patients before and after rTMS treatment. The severity of depression was assessed using the Hamilton Rating Scale for Depression-24 item (HAMD-24). RESULTS Prior to rTMS, depressed patients exhibited significantly smaller [oxy-Hb] values in the bilateral prefrontal cortex during the VFT compared with the healthy controls. After 4 weeks of 2 Hz right DLPFC rTMS treatment, increased [oxy-Hb] values in the bilateral frontopolar prefrontal cortex (FPPFC), ventrolateral prefrontal cortex (VLPFC) and left DLPFC during the VFT were observed in depressed patients. The increased [oxy-Hb] values from baseline to post-treatment in the right VLPFC in depressed patients were positively related to the reduction of HAMD score following rTMS. CONCLUSION These findings suggest that the function of the prefrontal cortex in depressed patients was impaired and could be recovered by 2 Hz rTMS. The fNIRS-measured prefrontal activation during a cognitive task is a potential biomarker for monitoring depressed patients' treatment response to rTMS.
Collapse
Affiliation(s)
- Jiaxi Huang
- Mental Health Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tingyu Zhang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, Guangzhou, China
| | - Zhong Zheng
- Mental Health Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Nakano T, Takamura M, Nishimura H, Machizawa MG, Ichikawa N, Yoshino A, Okada G, Okamoto Y, Yamawaki S, Yamada M, Suhara T, Yoshimoto J. Resting-state brain activity can predict target-independent aptitude in fMRI-neurofeedback training. Neuroimage 2021; 245:118733. [PMID: 34800664 DOI: 10.1016/j.neuroimage.2021.118733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/27/2021] [Accepted: 11/13/2021] [Indexed: 11/19/2022] Open
Abstract
Neurofeedback (NF) aptitude, which refers to an individual's ability to change brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical applications to screen patients suitable for NF treatment. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude, independent of NF-targeting brain regions. We combined the data from fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the multiple regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Subsequently, the reproducibility of the prediction model was validated using independent test data from another site. The identified FC model revealed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting that NF aptitude may be involved in the attentional mode-orientation modulation system's characteristics in task-free resting-state brain activity.
Collapse
Affiliation(s)
- Takashi Nakano
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan; School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Masahiro Takamura
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima 734-8551, Japan
| | - Haruki Nishimura
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Maro G Machizawa
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima 734-8551, Japan; Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Naho Ichikawa
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima 734-8551, Japan
| | - Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yasumasa Okamoto
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima 734-8551, Japan; Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima 734-8551, Japan
| | - Makiko Yamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Junichiro Yoshimoto
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
13
|
Hu S, Li XJ, Law S, Shen CY, Yao GQ, Zhang XQ, Li J, Chen GF, Xu B, Liu XM, Ma XY, Feng K, Liu PZ. Prefrontal cortex alterations in major depressive disorder, generalized anxiety disorder and their comorbidity during a verbal fluency task assessed by multi-channel near-infrared spectroscopy. Psychiatry Res 2021; 306:114229. [PMID: 34749225 DOI: 10.1016/j.psychres.2021.114229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023]
Abstract
Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are frequently comorbid with each other, and both associated with substantial cognitive impairments; however, it is still unclear whether their impairments are neurobiologically similar or distinct. This study aims to investigate the cognitive functions of the prefrontal cortex (PFC) in patients with MDD and GAD during the verbal fluency task (VFT) using functional near-infrared spectroscopy (fNIRS). Fifty-two patients with MDD, fifty-one patients with GAD, fifty-two patients with the comorbidity of MDD and GAD (CMG), and forty-seven healthy controls (HC) participated in the study. Significant hypoactivation in the left ventrolateral and the left dorsolateral PFC was common in all patient groups when compared to HCs, suggesting a shared etiology. Furthermore, MDD patients showed significant hypoactivation at the right frontal pole cortex (FPoC) when compared to HCs and significant hypoactivation at the middle FPoC when compared to the CMG patients. Our work is the first fNIRS study to reveal the shared and unique neurobiological profiles of MDD, GAD and their comorbidity under the same standard experimentation condition, suggesting fNIRS holds promise as an adjutant to assist clinical diagnosis.
Collapse
Affiliation(s)
- Shuang Hu
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiao-Jun Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Samuel Law
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada
| | - Chen-Yu Shen
- Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| | - Guan-Qun Yao
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiao-Qian Zhang
- Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| | - Juan Li
- School of Medicine, Tsinghua University, Beijing, China; Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| | - Gui-Fang Chen
- School of Medicine, Tsinghua University, Beijing, China; Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| | - Bo Xu
- Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| | - Xiao-Min Liu
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiang-Yun Ma
- Beijing Sixth Hospital, Peking University, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Beijing, China
| | - Kun Feng
- Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China.
| | - Po-Zi Liu
- School of Medicine, Tsinghua University, Beijing, China; Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Kandilarova S, Stoyanov DS, Paunova R, Todeva-Radneva A, Aryutova K, Maes M. Effective Connectivity between Major Nodes of the Limbic System, Salience and Frontoparietal Networks Differentiates Schizophrenia and Mood Disorders from Healthy Controls. J Pers Med 2021; 11:1110. [PMID: 34834462 PMCID: PMC8623155 DOI: 10.3390/jpm11111110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
This study was conducted to examine whether there are quantitative or qualitative differences in the connectome between psychiatric patients and healthy controls and to delineate the connectome features of major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BD), as well as the severity of these disorders. Toward this end, we performed an effective connectivity analysis of resting state functional MRI data in these three patient groups and healthy controls. We used spectral Dynamic Causal Modeling (spDCM), and the derived connectome features were further subjected to machine learning. The results outlined a model of five connections, which discriminated patients from controls, comprising major nodes of the limbic system (amygdala (AMY), hippocampus (HPC) and anterior cingulate cortex (ACC)), the salience network (anterior insula (AI), and the frontoparietal and dorsal attention network (middle frontal gyrus (MFG), corresponding to the dorsolateral prefrontal cortex, and frontal eye field (FEF)). Notably, the alterations in the self-inhibitory connection of the anterior insula emerged as a feature of both mood disorders and SCZ. Moreover, four out of the five connectome features that discriminate mental illness from controls are features of mood disorders (both MDD and BD), namely the MFG→FEF, HPC→FEF, AI→AMY, and MFG→AMY connections, whereas one connection is a feature of SCZ, namely the AMY→SPL connectivity. A large part of the variance in the severity of depression (31.6%) and SCZ (40.6%) was explained by connectivity features. In conclusion, dysfunctions in the self-regulation of the salience network may underpin major mental disorders, while other key connectome features shape differences between mood disorders and SCZ, and can be used as potential imaging biomarkers.
Collapse
Affiliation(s)
- Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (D.S.S.); (R.P.); (A.T.-R.); (K.A.); (M.M.)
| | - Drozdstoy St. Stoyanov
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (D.S.S.); (R.P.); (A.T.-R.); (K.A.); (M.M.)
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (D.S.S.); (R.P.); (A.T.-R.); (K.A.); (M.M.)
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (D.S.S.); (R.P.); (A.T.-R.); (K.A.); (M.M.)
| | - Katrin Aryutova
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (D.S.S.); (R.P.); (A.T.-R.); (K.A.); (M.M.)
| | - Michael Maes
- Department of Psychiatry and Medical Psychology and Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (D.S.S.); (R.P.); (A.T.-R.); (K.A.); (M.M.)
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Komatsu H, Watanabe E, Fukuchi M. Psychiatric Neural Networks and Precision Therapeutics by Machine Learning. Biomedicines 2021; 9:403. [PMID: 33917863 PMCID: PMC8068267 DOI: 10.3390/biomedicines9040403] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Learning and environmental adaptation increase the likelihood of survival and improve the quality of life. However, it is often difficult to judge optimal behaviors in real life due to highly complex social dynamics and environment. Consequentially, many different brain regions and neuronal circuits are involved in decision-making. Many neurobiological studies on decision-making show that behaviors are chosen through coordination among multiple neural network systems, each implementing a distinct set of computational algorithms. Although these processes are commonly abnormal in neurological and psychiatric disorders, the underlying causes remain incompletely elucidated. Machine learning approaches with multidimensional data sets have the potential to not only pathologically redefine mental illnesses but also better improve therapeutic outcomes than DSM/ICD diagnoses. Furthermore, measurable endophenotypes could allow for early disease detection, prognosis, and optimal treatment regime for individuals. In this review, decision-making in real life and psychiatric disorders and the applications of machine learning in brain imaging studies on psychiatric disorders are summarized, and considerations for the future clinical translation are outlined. This review also aims to introduce clinicians, scientists, and engineers to the opportunities and challenges in bringing artificial intelligence into psychiatric practice.
Collapse
Affiliation(s)
- Hidetoshi Komatsu
- Medical Affairs, Kyowa Pharmaceutical Industry Co., Ltd., Osaka 530-0005, Japan
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya City 464-8602, Japan
| | - Emi Watanabe
- Interactive Group, Accenture Japan Ltd., Tokyo 108-0073, Japan;
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Gunma 370-0033, Japan;
| |
Collapse
|
16
|
Setoyama D, Yoshino A, Takamura M, Okada G, Iwata M, Tsunetomi K, Ohgidani M, Kuwano N, Yoshimoto J, Okamoto Y, Yamawaki S, Kanba S, Kang D, Kato TA. Personality classification enhances blood metabolome analysis and biotyping for major depressive disorders: two-species investigation. J Affect Disord 2021; 279:20-30. [PMID: 33038697 DOI: 10.1016/j.jad.2020.09.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 09/27/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The relationship between depression and personality has long been suggested, however, biomarker investigations for depression have mostly overlooked this connection. METHODS We collected personality traits from 100 drug-free patients with major depressive disorders (MDD) and 100 healthy controls based on the Five-Factor Model (FFM) such as Neuroticism (N) and Extraversion (E), and also obtained 63 plasma metabolites profiles by LCMS-based metabolome analysis. RESULTS Partitional clustering analysis using the NEO-FFI data classified all subjects into three major clusters. Eighty-six subjects belonging to Cluster 1 (C1: less personality-biased group) constituted half of MDD patients and half of healthy controls. C2 constituted 50 subjects mainly MDD patients (N high + E low), and C3 constituted 64 subjects mainly healthy subjects (N low + E high). Using metabolome information, the machine learning model was optimized to discriminate MDD patients from healthy controls among all subjects and C1, respectively. The performance of the model for all subjects was moderate (AUC = 0. 715), while the performance was extremely improved when limited to C1 (AUC = 0. 907). Tryptophan-pathway plasma metabolites including tryptophan, serotonin and kynurenine were significantly lower in MDD patients especially among C1. We also validated metabolomic findings using a social-defeat mice model of stress-induced depression. LIMITATIONS A case-control study design and sample size is not large. CONCLUSIONS Our results suggest that personality classification enhances blood biomarker analysis for MDD patients and further translational investigations should be conducted to clarify the biological relationship between personality traits, stress and depression.
Collapse
Affiliation(s)
- Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan
| | - Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Kyohei Tsunetomi
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan
| | - Nobuki Kuwano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan
| | - Junichiro Yoshimoto
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
17
|
Kakanakova A, Popov S, Maes M. Immunological Disturbances and Neuroimaging Findings in Major Depressive Disorder (MDD) and Alcohol Use Disorder (AUD) Comorbid Patients. Curr Top Med Chem 2021; 20:759-769. [PMID: 32108009 DOI: 10.2174/1568026620666200228093935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023]
Abstract
Mood disorders and Major Depressive Disorder, in particular, appear to be some of the most common psychiatric disorders with a high rate of comorbidity most frequently of anxiety or substance abuse disorders (alcohol use disorder). In both cases - MDD and AUD, a number of immunological disturbances are observed, such as chronic mild inflammation response, increased level of cytokines, hypercortisolaemia, which lead to specific changes in brain neurotransmitter functions. Some of the contemporary brain imaging techniques are functional magnetic resonance imaging (fMRI) and magnetic spectroscopy which are most commonly used to assess the brain metabolism and functional connectivity changes such as altered responses to emotional stimuli in MDD or overactivation of ventromedial prefrontal areas during delayed and underactivation of dorsolateral prefrontal regions during impulsive reward decisions in AUD and dysfunction of gamma-aminobutyric acid (GABA) and/or glutamate neurotransmitter systems, low NAA and myo-Inositol in both MDD and AUD.
Collapse
Affiliation(s)
- Andriana Kakanakova
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Faculty of Medicine, Plovdiv, Bulgaria
| | - Stefan Popov
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Faculty of Medicine, Plovdiv, Bulgaria
| | | |
Collapse
|
18
|
Struckmann W, Persson J, Gingnell M, Weigl W, Wass C, Bodén R. Unchanged Cognitive Performance and Concurrent Prefrontal Blood Oxygenation After Accelerated Intermittent Theta-Burst Stimulation in Depression: A Sham-Controlled Study. Front Psychiatry 2021; 12:659571. [PMID: 34276437 PMCID: PMC8278060 DOI: 10.3389/fpsyt.2021.659571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
Aim: Intermittent theta-burst stimulation (iTBS) delivered over the dorsomedial prefrontal cortex (DMPFC) has shown promise as a treatment for anhedonia and amotivation in patients with depression. Here, we investigated whether this protocol modulates cognitive performance and concurrent prefrontal blood oxygenation. We also examined whether depressed patients exhibit cognitive dysfunction and prefrontal hypoactivity at baseline compared to healthy controls. Methods: This sham-controlled study comprises 52 patients randomized to either active or sham accelerated iTBS over the DMPFC (applied twice daily) for 10 consecutive treatment days, and 55 healthy controls. Cognitive performance was assessed at baseline and once again 4 weeks later using a cognitive test battery targeting attention, inhibitory control, and numerical, verbal, and visual working memory. Concurrent prefrontal oxygenated hemoglobin (oxy-Hb) was captured with functional near-infrared spectroscopy. Results: Active iTBS over DMPFC did not affect cognitive performance or concurrent oxy-Hb change compared to sham iTBS in patients with depression. Compared to controls, patients at baseline showed impaired performance in the Trail Making Test, the Rey Auditory Verbal Learning Test, the Animal Naming Test, and the Digit Symbol Substitution Test, however no difference in prefrontal oxy-Hb was observed. Conclusion: Patients with treatment-resistant depression displayed cognitive deficits, however without prefrontal hypoactivity, compared to healthy controls at baseline. iTBS treatment did not alter cognitive performance, nor concurrent prefrontal blood oxygenation, in patients. Taken together, iTBS can likely be considered a cognitively safe treatment option in this sample of patients.
Collapse
Affiliation(s)
- Wiebke Struckmann
- Psychiatry, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jonas Persson
- Psychiatry, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Malin Gingnell
- Psychiatry, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Wojciech Weigl
- Anaesthesiology and Intensive Care, Department of Surgical Science, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Caroline Wass
- Department of Pharmacology, University of Gothenburg, Göteborg, Sweden
| | - Robert Bodén
- Psychiatry, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Takamura M, Okamoto Y, Shibasaki C, Yoshino A, Okada G, Ichikawa N, Yamawaki S. Antidepressive effect of left dorsolateral prefrontal cortex neurofeedback in patients with major depressive disorder: A preliminary report. J Affect Disord 2020; 271:224-227. [PMID: 32479320 DOI: 10.1016/j.jad.2020.03.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/22/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
Background Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) have recently attracted attention as a novel, individualized treatment method for major depressive disorder (MDD). In this study, the antidepressant effect of neurofeedback training for left dorsolateral prefrontal cortex (DLPFC) activity was examined. Methods Six patients with MDD completed 5 days of neurofeedback training sessions. In each session, the patients observed a BOLD signal within their left DLPFC as a line graph, and attempted to up-regulate the signal using the graphical cue. Primary outcome measures were clinical scales of severity of depression and rumination. Results After neurofeedback training, the clinical measures were improved significantly. In addition, patient proficiency for neurofeedback training was related significantly to the improvement of the rumination symptom. Limitations Study limitations include the lack of a control group or condition, the lack of transfer run, and the small number of participants. Conclusions This small sample study suggests the possible efficacy of DLPFC activity regulation training for the treatment of MDD. As a next step, a sham-controlled randomized clinical trial is needed to confirm the antidepressive effect of left DLPFC neurofeedback.
Collapse
Affiliation(s)
- Masahiro Takamura
- Brain, Mind and KANSEI Sciences Research Center, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chiyo Shibasaki
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuo Yoshino
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naho Ichikawa
- Brain, Mind and KANSEI Sciences Research Center, Hiroshima University, Hiroshima, Japan
| | - Shigeto Yamawaki
- Brain, Mind and KANSEI Sciences Research Center, Hiroshima University, Hiroshima, Japan; Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
20
|
Ichikawa N, Lisi G, Yahata N, Okada G, Takamura M, Hashimoto RI, Yamada T, Yamada M, Suhara T, Moriguchi S, Mimura M, Yoshihara Y, Takahashi H, Kasai K, Kato N, Yamawaki S, Seymour B, Kawato M, Morimoto J, Okamoto Y. Primary functional brain connections associated with melancholic major depressive disorder and modulation by antidepressants. Sci Rep 2020; 10:3542. [PMID: 32103088 PMCID: PMC7044159 DOI: 10.1038/s41598-020-60527-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
The limited efficacy of available antidepressant therapies may be due to how they affect the underlying brain network. The purpose of this study was to develop a melancholic MDD biomarker to identify critically important functional connections (FCs), and explore their association to treatments. Resting state fMRI data of 130 individuals (65 melancholic major depressive disorder (MDD) patients, 65 healthy controls) were included to build a melancholic MDD classifier, and 10 FCs were selected by our sparse machine learning algorithm. This biomarker generalized to a drug-free independent cohort of melancholic MDD, and did not generalize to other MDD subtypes or other psychiatric disorders. Moreover, we found that antidepressants had a heterogeneous effect on the identified FCs of 25 melancholic MDDs. In particular, it did impact the FC between left dorsolateral prefrontal cortex (DLPFC)/inferior frontal gyrus (IFG) and posterior cingulate cortex (PCC)/precuneus, ranked as the second 'most important' FC based on the biomarker weights, whilst other eight FCs were normalized. Given that left DLPFC has been proposed as an explicit target of depression treatments, this suggest that the limited efficacy of antidepressants might be compensated by combining therapies with targeted treatment as an optimized approach in the future.
Collapse
Affiliation(s)
- Naho Ichikawa
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Giuseppe Lisi
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Noriaki Yahata
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Takashi Yamada
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Makiko Yamada
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Youth Mental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Ben Seymour
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan. .,Computational and Biological Learning Lab, Cambridge University, Cambridge, UK.
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Jun Morimoto
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
21
|
Thai M, Başgöze Z, Klimes-Dougan B, Mueller BA, Fiecas M, Lim KO, Albott CS, Cullen KR. Neural and Behavioral Correlates of Clinical Improvement to Ketamine in Adolescents With Treatment Resistant Depression. Front Psychiatry 2020; 11:820. [PMID: 33013493 PMCID: PMC7461781 DOI: 10.3389/fpsyt.2020.00820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
Treatment-resistant depression (TRD) is a serious problem in adolescents. Development and optimization of novel interventions for these youth will require a deeper knowledge of the neurobiology of depression. A well-established phenomenon of depression is an attention bias toward negativity and away from positivity that is evidenced behaviorally and neurally, but it is unclear how symptom reduction is related to changes to this bias. Neurobiological research using a treatment probe has promise to help discover the neural changes that accompany symptom improvement. Ketamine has utility for such research because of its known rapid and strong antidepressant effects in the context of TRD. Our previous study of six open-label ketamine infusions in 11 adolescents with TRD showed variable response, ranging from full remission, partial response, non-response, or clinical worsening. In this study, we examined the performance of these participants on Word Face Stroop (WFS) fMRI task where they indicated the valence of affective words superimposed onto either congruent or incongruent emotional faces before and after the ketamine infusions. Participants also completed a clinical assessment (including measurement of depression symptomology and anhedonia/pleasure) before and after the ketamine infusions. Following ketamine treatment, better WFS performance correlated with self-reported decreased depressive symptoms and increased pleasure. Analyses of corticolimbic, corticostriatal and default mode (DMN) networks showed that across networks, decreased activation during all conditions (congruent negative, congruent positive, incongruent negative, and incongruent positive) correlated with decreases in depressive symptoms and with increases in pleasure. These findings suggest that in adolescents with TRD, clinical improvement may require an attenuation of the negativity bias and re-tuning of these three critical neural networks to attenuate DMN and limbic regions activation and allow more efficient recruitment of the reward network. Lower activation across conditions may facilitate shifting across different salient emotional stimuli rather than getting trapped in downward negative spirals.
Collapse
Affiliation(s)
- Michelle Thai
- Psychology Department, College of Liberal Arts, University of Minnesota, Twin Cities, MN, United States
| | - Zeynep Başgöze
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Bonnie Klimes-Dougan
- Psychology Department, College of Liberal Arts, University of Minnesota, Twin Cities, MN, United States
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Mark Fiecas
- Biostatistics Department, School of Public Health, University of Minnesota, Twin Cities, MN, United States
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Minnesota, Twin Cities, MN, United States
| | - C Sophia Albott
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Minnesota, Twin Cities, MN, United States
| | - Kathryn R Cullen
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Minnesota, Twin Cities, MN, United States
| |
Collapse
|
22
|
Kondo A, Shoji Y, Morita K, Sato M, Ishii Y, Yanagimoto H, Nakano S, Uchimura N. Characteristics of oxygenated hemoglobin concentration change during pleasant and unpleasant image-recall tasks in patients with depression: Comparison with healthy subjects. Psychiatry Clin Neurosci 2018; 72:611-622. [PMID: 29808572 DOI: 10.1111/pcn.12684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/09/2018] [Accepted: 05/13/2018] [Indexed: 11/29/2022]
Abstract
AIM Patients with major depressive disorder (MDD) have been reported to show cognitive impairment in attention, cognition control, and motivation. The prefrontal cortex plays an important role in the pathophysiology of depression. Neurophysiological abnormalities have been examined in MDD patients by several neuroimaging studies. However, the underlying neural mechanism is still unclear. We evaluated brain function during pleasant and unpleasant image-recall tasks using multichannel near-infrared spectroscopy (NIRS) in MDD patients. METHODS The subjects were 25 MDD patients and 25 age- and sex-matched healthy controls. Patients were classified according to DSM-IV-TR criteria. We measured the oxygenated hemoglobin concentration change (δoxyHb) in the forehead and temporal lobe during image-recall task with pleasant (e.g., puppy) and unpleasant (e.g., snake) images using NIRS. To check whether all subjects understood the task, they were asked to draw pictures of both image tasks after NIRS measurement. RESULTS The δoxyHb in the healthy group was significantly higher than that in the MDD group in the bilateral frontal region during the unpleasant condition. A significant negative correlation between the Hamilton Rating Scale for Depression score and δoxyHb was observed in the left frontal region during the unpleasant condition. CONCLUSION We suggest that image-recall tasks related to emotion measured by NIRS might be a visually useful psychophysiological marker to understand the decrease in the frontal lobe function in MDD patients. In particular, we suggest that the decrease in δoxyHb in the left frontal lobe is related to the severity of depression.
Collapse
Affiliation(s)
- Akihiko Kondo
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume, Japan
| | - Yoshihisa Shoji
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume, Japan.,Department of Neuropsychiatry, Kurume University School of Medicine, Kurume, Japan
| | - Kiichiro Morita
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume, Japan.,Department of Neuropsychiatry, Kurume University School of Medicine, Kurume, Japan
| | - Mamoru Sato
- Department of Neuropsychiatry, Kurume University School of Medicine, Kurume, Japan
| | - Youhei Ishii
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume, Japan
| | - Hiroko Yanagimoto
- Department of Neuropsychiatry, Kurume University School of Medicine, Kurume, Japan
| | - Shinya Nakano
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume, Japan
| | - Naohisa Uchimura
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume, Japan.,Department of Neuropsychiatry, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
23
|
Hypofunction of left dorsolateral prefrontal cortex in depression during verbal fluency task: A multi-channel near-infrared spectroscopy study. J Affect Disord 2018; 231:83-90. [PMID: 29455100 DOI: 10.1016/j.jad.2018.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Previous functional neuroimaging studies of depression have demonstrated frontotemporal dysfunction, including the dorsolateral prefrontal cortex, while patients perform working memory and language comprehension tasks. Recent near-infrared spectroscopy (NIRS) studies have shown frontotemporal hypofunction in depression by verbal fluency task, but the regions of impairment affecting respective depressive symptoms still remain unclear. We investigated frontotemporal function during word production task in depression with multi-channel NIRS. Further, we aimed to clarify whether any depressive symptoms affect frontotemporal dysfunction. METHODS One hundred seventy-seven major depressive patients and 50 healthy control volunteers participated in this study. Their cerebral activations were compared during verbal fluency task. RESULTS Although performance was not significantly different, hypoactivation in the bilateral frontotemporal regions was significantly observed in depressed patients, compared with controls. Left lateral frontotemporal activation was significantly reduced in the group with mandatory symptom, which is depressed mood, or loss of interest or pleasure, compared with the group that still has residual depressive symptoms in spite MDD having been remitted. LIMITATION the MDD group had significantly higher age and education level than the controls. Conclusions Our findings indicate hypofunction of the bilateral frontotemporal regions in depression during verbal fluency task. Further, hypofunction of these regions in the left hemisphere by this task could reflect whether the subjects recovered from depressed mood, or loss of interest or pleasure.
Collapse
|
24
|
|
25
|
Distinctive pretreatment features of bilateral nucleus accumbens networks predict early response to antidepressants in major depressive disorder. Brain Imaging Behav 2017; 12:1042-1052. [DOI: 10.1007/s11682-017-9773-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|