1
|
Kukor Z. Nutrigenetic Investigations in Preeclampsia. Nutrients 2024; 16:3248. [PMID: 39408215 PMCID: PMC11478722 DOI: 10.3390/nu16193248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Preeclampsia is a leading cause of pregnancy-related maternal and fetal morbidity and mortality. Although its precise cause and prevention remain unclear, risk factors such as overweight and inadequate nutrient intake (e.g., calcium, folic acid, and vitamin D) are known to increase its incidence. Recent research has focused on the genetic predisposition to preeclampsia, identifying polymorphisms that may affect enzyme or receptor function. This study aims to review existing literature examining the relationship between genetic polymorphisms, BMI (body mass index), and nutrient levels in preeclampsia to develop more actionable therapeutic strategies. Methods: A systematic review was conducted to analyze studies on the nutrigenetic relationship between BMI, micronutrients, and preeclampsia. Results: A total of 17 studies investigating 12 genes related to BMI and 10 studies exploring 3 genes in relation to micronutrient levels were included in the analysis. Several polymorphisms associated with preeclampsia were found to be influenced by maternal BMI or serum vitamin levels. The interactions between certain gene variants and these factors suggest that both BMI and micronutrient status may modify the risk of developing preeclampsia in genetically predisposed individuals. Conclusions: Our findings emphasize the potential for reanalyzing existing data by categorizing based on genotype and nutrient levels. This approach could yield more personalized dietary and therapeutic recommendations for managing preeclampsia. In the future, genetic information may support the development of tailored nutritional counseling during pregnancy to mitigate preeclampsia risk.
Collapse
Affiliation(s)
- Zoltán Kukor
- Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
2
|
Conklin MB, Wells BM, Doe EM, Strother AM, Tarasiewicz MEB, Via ER, Conrad LB, Farias-Eisner R. Understanding Health Disparities in Preeclampsia: A Literature Review. Am J Perinatol 2024; 41:e1291-e1300. [PMID: 36603833 DOI: 10.1055/a-2008-7167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Preeclampsia is a multifactorial pathology with negative outcomes in affected patients in both the peripartum and postpartum period. Black patients in the United States, when compared to their White and Hispanic counterparts, have higher rates of preeclampsia. This article aims to review the current literature to investigate how race, social determinants of health, and genetic profiles influence the prevalence and outcomes of patients with preeclampsia. Published studies utilized in this review were identified through PubMed using authors' topic knowledge and a focused search through a Medline search strategy. These articles were thoroughly reviewed to explore the contributing biosocial factors, genes/biomarkers, as well as negative outcomes associated with disparate rates of preeclampsia. Increased rates of contributing comorbidities, including hypertension and obesity, which are largely associated with low access to care in Black patient populations lead to disparate rates of preeclampsia in this population. Limited research shows an association between increased rate of preeclampsia in Black patients and specific APOL1, HLA-G, and PP13 gene polymorphisms as well as factor V Leiden mutations. Further research is required to understand the use of certain biomarkers in predicting preeclampsia within racial populations. Understanding contributing biosocial factors and identifying genes that may predispose high-risk populations may help to address the disparate rates of preeclampsia in Black patients as described in this review. Further research is required to understand if serum, placental, or urine biomarkers may be used to predict individuals at risk of developing preeclampsia in pregnancy. KEY POINTS: · Prevalence of preeclampsia in the U.S. is higher in Black patients compared to other racial groups.. · Patients with preeclampsia are at risk for poorer health outcomes both during and after delivery.. · Limited research suggests specific biomarkers or gene polymorphisms contribute to this difference; however, explanations for this disparity are multifactorial and further investigation is necessary..
Collapse
Affiliation(s)
- Mary B Conklin
- School of Medicine, Creighton University, Omaha, Nebraska
- Department of Obstetrics and Gynecology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | | | - Emily M Doe
- School of Medicine, Creighton University, Omaha, Nebraska
| | | | | | - Emily R Via
- School of Medicine, Creighton University, Omaha, Nebraska
- Department of Obstetrics and Gynecology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Lesley B Conrad
- School of Medicine, Creighton University, Omaha, Nebraska
- Department of Obstetrics and Gynecology, School of Medicine, Creighton University, Omaha, Nebraska
- Lynch Comprehensive Cancer Research Center, School of Medicine, Creighton University, Omaha, Nebraska
| | - Robin Farias-Eisner
- School of Medicine, Creighton University, Omaha, Nebraska
- Department of Obstetrics and Gynecology, School of Medicine, Creighton University, Omaha, Nebraska
- Lynch Comprehensive Cancer Research Center, School of Medicine, Creighton University, Omaha, Nebraska
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Pomona, California
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, the University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
3
|
Bhati T, Ray A, Arora R, Siraj F, Parvez S, Rastogi S. Intronic variants of LGALS13 gene encoding placental protein (PP13) are linked with increased risk of infection-associated spontaneous preterm birth. Am J Reprod Immunol 2023; 90:e13759. [PMID: 37641375 DOI: 10.1111/aji.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023] Open
Abstract
PROBLEM Spontaneous preterm birth (sPTB) is a global health issue. Studies suggest infection and infection-based inflammatory responses are major risk factors for sPTB. Considering the important role of anti-inflammatory proteins in pregnancy, the study aimed to find the association between anti-inflammatory LGALS13 gene variants IVS2-22 A/G (rs2233706) and IVS3+72 T/A (rs2233708) and the risk of sPTB during Chlamydia trachomatis, Mycoplasma hominis and Ureaplasma urealyticum infection in Indian population. METHOD OF STUDY Placental samples of 160 sPTB and 160 term women were collected. Pathogens were detected by PCR. The genotyping of LGALS13 gene variants IVS2-22 A/G (rs2233706) and IVS3+72 T/A (rs2233708) was done by qualitative real-time PCR using allelic discrimination method (VIC- and FAM-labeled). RESULTS The frequency of AG or GG genotype of LGALS13 IVS2-22A/G polymorphism (rs2233706) was 75.5% in infected sPTB cases and 14.4% in uninfected sPTB cases and 7.3% in term birth controls (p < .0001), while the frequency of TA or AA genotype of LGALS13 IVS3+72T/A polymorphism (rs2233708) was 83.6% in infected sPTB cases and 18% in uninfected sPTB cases and 12.7% in term birth controls (p < .0001). The genotypic frequencies for both the variants of LGALS13 were statistically significant (p < .0001) in the infected sPTB versus uninfected sPTB and term birth controls. CONCLUSIONS Study reveals strong association between the presence of immunological gene variants LGALS13 IVS2-22 A/G (rs2233706) and LGALS13 IVS3+72 T/A (rs2233708) and risk of sPTB during C. trachomatis, M. hominis and U. urealyticum infection.
Collapse
Affiliation(s)
- Tanu Bhati
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| | - Ankita Ray
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| | - Renu Arora
- Department of Obstetrics and Gynaecology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Fouzia Siraj
- Pathology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Sangita Rastogi
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
4
|
Lu J, Zhu D, Zhang X, Wang J, Cao H, Li L. The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:137-150. [PMID: 36088513 DOI: 10.1007/s12094-022-02943-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have evoked considerable interest in recent years due to their critical functions in the regulation of disease processes. Abnormal expression of lncRNAs is found in multiple diseases, and lncRNAs have been exploited for diverse medical applications. The lncRNA MIR210HG is a recently discovered lncRNA that is widely dysregulated in human disease. MIR210HG was described to have biological functions with potential roles in disease development, including cell proliferation, invasion, migration, and energy metabolism. And MIR210HG dysregulation was confirmed to have promising clinical values in disease diagnosis, treatment, and prognosis. In this review, we systematically summarize the expression profiles, roles, underlying mechanisms, and clinical applications of MIR210HG in human disease.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
5
|
Oravecz O, Romero R, Tóth E, Kapitány J, Posta M, Gallo DM, Rossi SW, Tarca AL, Erez O, Papp Z, Matkó J, Than NG, Balogh A. Placental galectins regulate innate and adaptive immune responses in pregnancy. Front Immunol 2022; 13:1088024. [PMID: 36643922 PMCID: PMC9832025 DOI: 10.3389/fimmu.2022.1088024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Galectins are master regulators of maternal immune responses and placentation in pregnancy. Galectin-13 (gal-13) and galectin-14 (gal-14) are expressed solely by the placenta and contribute to maternal-fetal immune tolerance by inducing the apoptosis of activated T lymphocytes and the polarization of neutrophils toward an immune-regulatory phenotype.Furthermore, their decreased placental expression is associated with pregnancy complications, such as preeclampsia and miscarriage. Yet, our knowledge of the immunoregulatory role of placental galectins is incomplete. Methods This study aimed to investigate the effects of recombinant gal-13 and gal-14 on cell viability, apoptosis, and cytokine production of peripheral blood mononuclear cells (PBMCs) and the signaling pathways involved. Results Herein, we show that gal-13 and gal-14 bind to the surface of non-activated PBMCs (monocytes, natural killer cells, B cells, and T cells) and increase their viability while decreasing the rate of their apoptosis without promoting cell proliferation. We also demonstrate that gal-13 and gal-14 induce the production of interleukin (IL)-8, IL-10, and interferon-gamma cytokines in a concentration-dependent manner in PBMCs. The parallel activation of Erk1/2, p38, and NF-ĸB signaling evidenced by kinase phosphorylation in PBMCs suggests the involvement of these pathways in the regulation of the galectin-affected immune cell functions. Discussion These findings provide further evidence on how placenta-specific galectins assist in the establishment and maintenance of a proper immune environment during a healthy pregnancy.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States
| | - Eszter Tóth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Kapitány
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Dahiana M. Gallo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | | | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Zoltán Papp
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - János Matkó
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary,*Correspondence: Nándor Gábor Than,
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Sammar M, Apicella C, Altevogt P, Meiri H, Vaiman D. Modeling Preeclampsia In Vitro: Polymorphic Variants of STOX1-A/B Genes Can Downregulate CD24 in Trophoblast Cell Lines. Int J Mol Sci 2022; 23:ijms232415927. [PMID: 36555567 PMCID: PMC9783292 DOI: 10.3390/ijms232415927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
CD24 is a mucin-like immunosuppressing glycoprotein whose levels increase during pregnancy and decrease in the syncytio- and cytotrophoblasts in early and preterm preeclampsia. We used two modified cell lines that mimic in vitro features of preeclampsia to identify if this phenomenon could be reproduced. Our model was the immortalized placental-derived BeWo and JEG-3 cell lines that overexpress the STOX1 A/B transcription factor gene that was discovered in familial forms of preeclampsia. BeWo and JEG-3 cells stably transduced with the two major isoforms of STOX1-A/B or by an empty vector (control), were propagated, harvested, and analyzed. CD24 mRNA expression was determined by quantitative real-time polymerase nuclear chain reaction (qRT-PCR). CD24 protein levels were determined by Western blots. In STOX1-A/B overexpressing in BeWo cells, CD24 mRNA was downregulated by 91 and 85%, respectively, compared to the control, and by 30% and 74%, respectively in JEG-3 cells. A 67% and 82% decrease in CD24 protein level was determined by immunoblot in BeWo overexpressing STOX1-A/B, respectively, while the reduction in JEG-3 cells was between 47 and 62%. The immortalized BeWo and JEG-3 cell lines overexpressing STOX1-A/B had reduced CD24. Although both cell lines were affected, BeWo appears to be more susceptible to downregulation by STOX-1 than JEG-3, potentially because of their different cell origin and properties. These results strengthen the in vivo results of reduced CD24 levels found in early and preterm preeclampsia. Accordingly, it implies the importance of the reduced immune tolerance in preeclampsia, which was already demonstrated in vivo in the STOX1-A/B model of preeclampsia, and is now implied in the in vitro STOX-1 model, a subject that warrants further investigations.
Collapse
Affiliation(s)
- Marei Sammar
- Prof. Ephraim Katzir’s Department of Biotechnology Engineering, Braude College of Engineering, 51 Snunit St., Karmiel 2161002, Israel
- Correspondence: ; Tel.: +972-(04)-9901769; Fax: +972-(04)-99017
| | - Clara Apicella
- Institute Cochin, U1016, INSERM, UMR 8504 CNRS, Paris-Descartes Université, 75014 Paris, France
| | - Peter Altevogt
- Skin Cancer Unit, DKFZ and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Hamutal Meiri
- Hylabs, Rehovot and TeleMarpe, 21 Beit El St., Tel Aviv 6908742, Israel
| | - Daniel Vaiman
- Institute Cochin, U1016, INSERM, UMR 8504 CNRS, Paris-Descartes Université, 75014 Paris, France
| |
Collapse
|
7
|
Johnson JD, Louis JM. Does race or ethnicity play a role in the origin, pathophysiology, and outcomes of preeclampsia? An expert review of the literature. Am J Obstet Gynecol 2022; 226:S876-S885. [PMID: 32717255 DOI: 10.1016/j.ajog.2020.07.038] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
The burden of preeclampsia, a substantial contributor to perinatal morbidity and mortality, is not born equally across the population. Although the prevalence of preeclampsia has been reported to be 3% to 5%, racial and ethnic minority groups such as non-Hispanic Black women and American Indian or Alaskan Native women are widely reported to be disproportionately affected by preeclampsia. However, studies that add clarity to the causes of the racial and ethnic differences in preeclampsia are limited. Race is a social construct, is often self-assigned, is variable across settings, and fails to account for subgroups. Studies of the genetic structure of human populations continue to find more variations within racial groups than among them. Efforts to examine the role of race and ethnicity in biomedical research should consider these limitations and not use it as a biological construct. Furthermore, the use of race in decision making in clinical settings may worsen the disparity in health outcomes. Most of the existing data on disparities examine the differences between White and non-Hispanic Black women. Fewer studies have enough sample size to evaluate the outcomes in the Asian, American Indian or Alaskan Native, or mixed-race women. Racial differences are noted in the occurrence, presentation, and short-term and long-term outcomes of preeclampsia. Well-established clinical risk factors for preeclampsia such as obesity, diabetes, and chronic hypertension disproportionately affect non-Hispanic Black, American Indian or Alaskan Native, and Hispanic populations. However, with comparable clinical risk factors for preeclampsia among women of different race or ethnic groups, addressing modifiable risk factors has not been found to have the same protective effect for all women. Abnormalities of placental formation and development, immunologic factors, vascular changes, and inflammation have all been identified as contributing to the pathophysiology of preeclampsia. Few studies have examined race and the pathophysiology of preeclampsia. Despite attempts, a genetic basis for the disease has not been identified. A number of genetic variants, including apolipoprotein L1, have been identified as possible risk modifiers. Few studies have examined race and prevention of preeclampsia. Although low-dose aspirin for the prevention of preeclampsia is recommended by the US Preventive Service Task Force, a population-based study found racial and ethnic differences in preeclampsia recurrence after the implementation of low-dose aspirin supplementation. After implementation, recurrent preeclampsia reduced among Hispanic women (76.4% vs 49.6%; P<.001), but there was no difference in the recurrent preeclampsia in non-Hispanic Black women (13.7 vs 18.1; P=.252). Future research incorporating the National Institute on Minority Health and Health Disparities multilevel framework, specifically examining the role of racism on the burden of the disease, may help in the quest for effective strategies to reduce the disproportionate burden of preeclampsia on a minority population. In this model, a multilevel framework provides a more comprehensive approach and takes into account the influence of behavioral factors, environmental factors, and healthcare systems, not just on the individual.
Collapse
Affiliation(s)
- Jasmine D Johnson
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC
| | - Judette M Louis
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL.
| |
Collapse
|
8
|
Li F, Qin J, Zhang S, Chen L. Prevalence of hypertensive disorders in pregnancy in China: A systematic review and meta-analysis. Pregnancy Hypertens 2021; 24:13-21. [PMID: 33626437 DOI: 10.1016/j.preghy.2021.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Hypertensive disorders in pregnancy (HDP) are associated with various maternal and fetal adverse outcomes and become an increasingly significant threat to Chinese pregnant women. Yet, the prevalence of HDP in China is not clear. We conducted this meta-analysis to estimate the prevalence of HDP and specific subtypes in China. We searched PubMed, Embase, Web of Science, CNKI, Wangfang, and CMB for studies on prevalence of HDP and specific subtypes, published from 1990 to Jan 21, 2020, without language restrictions. We included all studies reported the prevalence of HDP and specific subtypes in Chinese pregnant women. We excluded qualitative studies, case reports, reviews, conference presentations, and studies only provided abstracts. We using a standard self-developed form to extract information from eligible studies. We did meta-analyses by random-effect models and estimated the pooled prevalence of HDP and specific subtypes. In order to explore potential sources of heterogeneity and subgroup effects, we did and meta-regression and subgroup analyses by pre-specified covariates. This study is registered with PROSPERO, number CRD42020166001. We initially identified 4179 records, of which 92 studies with 1,377,448 participants were eligible in the final systematic review and meta-analyses. The pooled prevalence (95% CI) of HDP, gestational hypertension, preeclampsia, mild preeclampsia, severe preeclampsia, eclampsia, chronic hypertension, and chronic hypertension with superimposed preeclampsia were 7.30% (6.60%-8.00%), 3.30% (2.90%-3.70%), 4.50% (4.00%-5.00%), 2.00% (1.70%-2.30%), 2.60% (2.10%-3.00%), 0.11% (0.08%-0.15%), 0.60% (0.30%-0.90%), and 0.60% (0.40%-0.80%), respectively. No publication bias was identified, although heterogeneity was high (I2 statistics: 92.0%-99.3%). High prevalence of HDP and the subtypes frequently reported in Western and Northern China. Pregnant women who were aged 35 years and above had high prevalence of HDP and subtypes; women who were overweight or obese had high prevalence of HDP, gestational hypertension and preeclampsia. The prevalence of HDP and the subtypes vary in different areas in China. Given to increasingly prevalent of the risk factors, such as overweight, obesity, and advance maternal age, strategies to prevent and manage HDP need to be improved, especially for women living in Western and Northern China.
Collapse
Affiliation(s)
- Fang Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Changsha, Hunan Province 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan Province 410078, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Changsha, Hunan Province 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan Province 410078, China
| | - Senmao Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Changsha, Hunan Province 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan Province 410078, China
| | - Lizhang Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Changsha, Hunan Province 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan Province 410078, China.
| |
Collapse
|
9
|
Sammar M, Drobnjak T, Mandala M, Gizurarson S, Huppertz B, Meiri H. Galectin 13 (PP13) Facilitates Remodeling and Structural Stabilization of Maternal Vessels during Pregnancy. Int J Mol Sci 2019; 20:ijms20133192. [PMID: 31261864 PMCID: PMC6651626 DOI: 10.3390/ijms20133192] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Galectins regulate cell growth, proliferation, differentiation, apoptosis, signal transduction, mRNA splicing, and interactions with the extracellular matrix. Here we focus on the galectins in the reproductive system, particularly on a group of six galectins that first appears in anthropoid primates in conjunction with the evolution of highly invasive placentation and long gestation. Of these six, placental protein 13 (PP13, galectin 13) interacts with glycoproteins and glycolipids to enable successful pregnancy. PP13 is related to the development of a major obstetric syndrome, preeclampsia, a life-threatening complication of pregnancy which affects ten million pregnant women globally. Preeclampsia is characterized by hypertension, proteinuria, and organ failure, and is often accompanied by fetal loss and major newborn disabilities. PP13 facilitates the expansion of uterine arteries and veins during pregnancy in an endothelial cell-dependent manner, via the eNOS and prostaglandin signaling pathways. PP13 acts through its carbohydrate recognition domain that binds to sugar residues of extracellular and connective tissue molecules, thus inducing structural stabilization of vessel expansion. Further, decidual PP13 aggregates may serve as a decoy that induces white blood cell apoptosis, contributing to the mother's immune tolerance to pregnancy. Lower first trimester PP13 level is one of the biomarkers to predict the subsequent risk to develop preeclampsia, while its molecular mutations/polymorphisms that are associated with reduced PP13 expression are accompanied by higher rates of preeclampsia We propose a targeted PP13 replenishing therapy to fight preeclampsia in carriers of these mutations.
Collapse
Affiliation(s)
- Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, 2161002 Karmiel, Israel.
| | - Tijana Drobnjak
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, 107 Reykjavik, Iceland
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87030 Rende, Italy
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, 107 Reykjavik, Iceland
| | - Berthold Huppertz
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Hamutal Meiri
- Hylabs Ltd., Rehovot, 7670606 and TeleMarpe Ltd., 6908742 Tel Aviv, Israel
| |
Collapse
|
10
|
Szenasi NL, Toth E, Balogh A, Juhasz K, Karaszi K, Ozohanics O, Gelencser Z, Kiraly P, Hargitai B, Drahos L, Hupuczi P, Kovalszky I, Papp Z, Than NG. Proteomic identification of membrane-associated placental protein 4 (MP4) as perlecan and characterization of its placental expression in normal and pathologic pregnancies. PeerJ 2019; 7:e6982. [PMID: 31259093 PMCID: PMC6589330 DOI: 10.7717/peerj.6982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
Background More than 50 human placental proteins were isolated and physico-chemically characterized in the 70–80s by Hans Bohn and co-workers. Many of these proteins turned to have important role in placental functions and diagnostic significance in pregnancy complications. Among these proteins was membrane-associated placental protein 4 (MP4), for which identity or function has not been identified yet. Our aim was to analyze the sequence and placental expression of this protein in normal and complicated pregnancies including miscarriage, preeclampsia and HELLP syndrome. Methods Lyophilized MP4 protein and frozen healthy placental tissue were analyzed using HPLC-MS/MS. Placental tissue samples were obtained from women with elective termination of pregnancy (first trimester controls, n = 31), early pregnancy loss (EPL) (n = 13), early preeclampsia without HELLP syndrome (n = 7) and with HELLP syndrome (n = 8), late preeclampsia (n = 8), third trimester early controls (n = 5) and third trimester late controls (n = 9). Tissue microarrays were constructed from paraffin-embedded placentas (n = 81). Slides were immunostained with monoclonal perlecan antibody and evaluated using light microscopy and virtual microscopy. Perlecan was also analyzed for its expression in placentas from normal pregnancies using microarray data. Results Mass spectrometry-based proteomics of MP4 resulted in the identification of basement membrane-specific heparan sulfate proteoglycan core protein also known as perlecan. Immunohistochemistry showed cytoplasmic perlecan localization in syncytiotrophoblast and cytotrophoblasts of the villi. Perlecan immunoscore decreased with gestational age in the placenta. Perlecan immunoscores were higher in EPL compared to controls. Perlecan immunoscores were higher in early preeclampsia without and with HELLP syndrome and lower in late preeclampsia than in respective controls. Among patients with preeclampsia, placental perlecan expression positively correlated with maternal vascular malperfusion and negatively correlated with placental weight. Conclusion Our findings suggest that an increased placental perlecan expression may be associated with hypoxic ischaemic injury of the placenta in miscarriages and in early preeclampsia with or without HELLP syndrome.
Collapse
Affiliation(s)
- Nikolett Lilla Szenasi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Karaszi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Medical Biochemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Gelencser
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Kiraly
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beata Hargitai
- West Midlands Perinatal Pathology, Birmingham Women's Hospital, Birmingham, UK
| | - Laszlo Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| |
Collapse
|
11
|
Balogh A, Toth E, Romero R, Parej K, Csala D, Szenasi NL, Hajdu I, Juhasz K, Kovacs AF, Meiri H, Hupuczi P, Tarca AL, Hassan SS, Erez O, Zavodszky P, Matko J, Papp Z, Rossi SW, Hahn S, Pallinger E, Than NG. Placental Galectins Are Key Players in Regulating the Maternal Adaptive Immune Response. Front Immunol 2019; 10:1240. [PMID: 31275299 PMCID: PMC6593412 DOI: 10.3389/fimmu.2019.01240] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1β, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.
Collapse
Affiliation(s)
- Andrea Balogh
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Katalin Parej
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diana Csala
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nikolett L Szenasi
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Istvan Hajdu
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arpad F Kovacs
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Offer Erez
- Division of Obstetrics and Gynecology, Maternity Department "D", Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Peter Zavodszky
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Eva Pallinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Gadde R, Cd D, Sheela SR. Placental protein 13: An important biological protein in preeclampsia. J Circ Biomark 2018; 7:1849454418786159. [PMID: 30023011 PMCID: PMC6047241 DOI: 10.1177/1849454418786159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/28/2018] [Indexed: 12/26/2022] Open
Abstract
Placental protein 13 (PP13), a glycan binding protein predominantly expressed in syncytiotrophoblast, dimeric in nature, lacks N-terminal signal peptide, bypasses the endoplasmic reticulum, and secretes into maternal circulation as exosomes or microvesicles. PP13 has jelly roll fold conformation with conserved carbohydrate recognition domain which specifically binds to β-galactosides of the glycan receptors during placentation. PP13 binds to glycosylated receptors on human erythrocytes and brings about hemagglutination by the property of lectin activity; other functions are immunoregulation and vasodilation during placentation and vascularization. The gene LGALS13 located on 19q13.2 comprising four exons expresses a 32-kDa protein with 139 amino acid residues, PP13. Impaired expression due to mutation in the gene leads to a nonfunctional truncated PP13. The low serum levels predict high risk for the onset of preeclampsia or obstetric complications. Hence, PP13 turned to be an early marker for risk assessment of preeclampsia. The recombinant PP13 and monoclonal antibodies availability help for replenishing PP13 in conditions with low serum levels and for detection and prevention of preeclampsia, respectively.
Collapse
Affiliation(s)
- Ranjeeta Gadde
- Department of Biochemistry, Sri Devaraj Urs Medical College, Kolar, India
| | - Dayanand Cd
- Department of Biochemistry, Sri Devaraj Urs Medical College, Kolar, India
| | - S R Sheela
- Department of Obstetrics and Gynecology, Sri Devaraj Urs Medical College, Kolar, India
| |
Collapse
|
13
|
Drobnjak T, Meiri H, Mandalá M, Huppertz B, Gizurarson S. Pharmacokinetics of placental protein 13 after intravenous and subcutaneous administration in rabbits. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1977-1983. [PMID: 30013317 PMCID: PMC6037268 DOI: 10.2147/dddt.s167926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction Human placental protein 13 (PP13) is a galectin predominantly expressed by the placenta. Low serum concentrations of PP13 in early pregnancy indicate a higher risk of developing preeclampsia. Methods The pharmacokinetic disposition and bioavailability of PP13 were determined by single intravenous and subcutaneous administration to 12 healthy New Zealand White rabbits. The serum pharmacokinetic values were determined by enzyme-linked immunosorbent assay, and are best described by a two-compartment model. Results Both volume of distribution and the area under the curve were dose dependent for the intravenous group (p<0.01). PP13 elimination half-life was also found to be different between the groups (p<0.01). The bioavailability of PP13 following subcutaneous administration was found to be 57%. Conclusion This study shows that the concentration of total PP13 released into the maternal circulation during pregnancy might be much higher than previously estimated.
Collapse
Affiliation(s)
- Tijana Drobnjak
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Reykjavik, Iceland,
| | - Hamutal Meiri
- Hy Laboratories, Rehovot, Israel.,TeleMarpe Ltd., Tel Aviv, Israel
| | - Maurizio Mandalá
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Berthold Huppertz
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Reykjavik, Iceland,
| |
Collapse
|
14
|
Meiri H, Osol G, Cetin I, Gizurarson S, Huppertz B. Personalized Therapy Against Preeclampsia by Replenishing Placental Protein 13 (PP13) Targeted to Patients With Impaired PP13 Molecule or Function. Comput Struct Biotechnol J 2017; 15:433-446. [PMID: 29034064 PMCID: PMC5633742 DOI: 10.1016/j.csbj.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/27/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022] Open
Abstract
Hypertensive disorders affect about one third of all people aged 20 and above, and are treated with anti-hypertensive drugs. Preeclampsia (PE) is one form of such disorders that only develops during pregnancy. It affects ten million pregnant women globally and additionally causes fetal loss and major newborn disabilities. The syndrome's origin is multifactorial, and anti-hypertensive drugs are ineffective in treating it. Biomarkers are helpful for predict its development. Generic drugs, such as low dose aspirin, were proven effective in preventing preterm PE. However, it does not cure the majority of cases and many studies are underway for fighting PE with extended use of additional generic drugs, or through new drug development programs. This review focuses on placental protein 13 (PP13). This protein is only expressed in the placenta. Impaired PP13 DNA structure and/or its reduced mRNA expression leads to lower blood PP13 level that predict a higher risk of developing PE. Two polymorphic PP13 variants have been identified: (1) The promoter PP13 variant with an "A/A" genotype in the -98 position (versus "A/C" or "C/C"). Having the "A/A" genotype is coupled to lower PP13 expression, mainly during placental syncytiotrophoblast differentiation and, if associated with obesity and history of previous preeclampsia, it accurately predicts higher risk for developing the disorder. (2) A thymidine deletion at position 221 causes a frame shift in the open reading frame, and the formation of an early stop codon resulting in the formation of DelT221, a truncated variant of PP13. In pregnant rodents, both short- and long- term replenishment of PP13 causes reversible hypotension and vasodilation of uterine vessels. Long-term exposure is also accompanied by the development of larger placentas and newborns. Also, only w/t PP13 is capable of inducing leukocyte apoptosis, providing maternal immune tolerance to pregnancy. Based on published data, we propose a targeted PP13 therapy to fight PE, and consider the design and conduct of animal studies to explore this hypothesis. Accordingly, a new targeted therapy can be implemented in humans combining prediction and prevention.
Collapse
Affiliation(s)
- Hamutal Meiri
- Hy Laboratories, Rehovot, and TeleMarpe, Tel Aviv, Israel
| | - George Osol
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, VT, USA
| | - Irene Cetin
- Department of Obstetrics and Gynecology, University of Milano, Italy
- Department of Mother and Child, Hospital Luigi Sacco, and Center for Fetal Research “Giorgio Pardi”, Milano, Italy
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, Reykjavik, Iceland
| | - Berthold Huppertz
- Institute of Cell Biology, Histology and Embryology & Biobank Graz, Medical University of Graz, Graz, Austria
| |
Collapse
|