1
|
Ebeyer-Masotta M, Eichhorn T, Fischer MB, Weber V. Impact of production methods and storage conditions on extracellular vesicles in packed red blood cells and platelet concentrates. Transfus Apher Sci 2024; 63:103891. [PMID: 38336556 DOI: 10.1016/j.transci.2024.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The use of blood and blood products can be life-saving, but there are also certain risks associated with their administration and use. Packed red blood cells (pRBCs) and platelet concentrates are the most commonly used blood products in transfusion medicine to treat anemia or acute and chronic bleeding disorders, respectively. During the production and storage of blood products, red blood cells and platelets release extracellular vesicles (EVs) as a result of the storage lesion, which may affect product quality. EVs are subcellular structures enclosed by a lipid bilayer and originate from the endosomal system or from the plasma membrane. They play a pivotal role in intercellular communication and are emerging as important regulators of inflammation and coagulation. Their cargo and their functional characteristics depend on the cell type from which they originate, as well as on their microenvironment, influencing their capacity to promote coagulation and inflammatory responses. Hence, the potential involvement of EVs in transfusion-related adverse events is increasingly recognized and studied. Here, we review the knowledge regarding the effect of production and storage conditions of pRBCs and platelet concentrates on the release of EVs. In this context, the mode of processing and anticoagulation, the influence of additive solutions and leukoreduction, as well as the storage duration will be addressed, and we discuss potential implications of EVs for the clinical outcome of transfusion.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Michael B Fischer
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria; Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria.
| |
Collapse
|
2
|
Raeven P, Karlhofer K, Sztulman LS, Brugger J, Hoetzenecker K, Domenig C, Leitner G, Posch M, Baron DM, Spittler A. Red blood cell transfusion-related dynamics of extracellular vesicles in intensive care patients: a prospective subanalysis. Sci Rep 2024; 14:911. [PMID: 38195728 PMCID: PMC10776840 DOI: 10.1038/s41598-023-48251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2024] Open
Abstract
Extracellular vesicles (EVs) accumulate during packed red blood cell (PRBC) storage. To date, the involvement of EVs in transfusion-related immunomodulation (TRIM) has not been prospectively evaluated in intensive care unit (ICU) patients. This was a prospective subanalysis of a recent observational feasibility study in postoperative ICU patients after: (1) open aortic surgery (Aorta), (2) bilateral lung transplantation (LuTx), and (3) other types of surgery (Comparison). Patient plasma was collected three times each before and after leukoreduced PRBC transfusion at 30-min intervals. The total number of EVs and EVs derived from erythrocytes (EryEVs), total platelets (total PEVs), activated platelets, granulocytes (GEVs), monocytes, and myeloid cells in PRBC samples and patient plasma were analyzed by flow cytometry. Statistical analysis was performed by Spearman's correlation test, linear mixed models and pairwise comparisons by Wilcoxon matched-pairs test. Twenty-three patients (Aorta n = 5, LuTx n = 9, Comparison n = 9) were included in the final analysis. All EV subgroups analyzed were detectable in all PRBCs samples (n = 23), but concentrations did not correlate with storage time. Moreover, all EVs analyzed were detectable in all plasma samples (n = 138), and EV counts were consistent before transfusion. Concentrations of total EVs, EryEVs, total PEVs, and GEVs increased after transfusion compared with baseline in the entire cohort but not in specific study groups. Furthermore, the change in plasma EV counts (total EVs and EryEVs) after transfusion correlated with PRBC storage time in the entire cohort. Extracellular vesicles were detectable in all PRBC and plasma samples. Individual EV subtypes increased after transfusion in the entire cohort, and in part correlated with storage duration. Future clinical studies to investigate the role of EVs in TRIM are warranted and should anticipate a larger sample size.Trial registration: Clinicaltrials.gov: NCT03782623.
Collapse
Affiliation(s)
- Pierre Raeven
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care, and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Katharina Karlhofer
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care, and Pain Management, Medical University of Vienna, Vienna, Austria
- Division of Visceral Surgery, Department of Surgery, and Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Larissa S Sztulman
- Division of Visceral Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Jonas Brugger
- Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Domenig
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerda Leitner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Posch
- Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - David M Baron
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care, and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Division of Visceral Surgery, Department of Surgery, and Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Ma SR, Xia HF, Gong P, Yu ZL. Red Blood Cell-Derived Extracellular Vesicles: An Overview of Current Research Progress, Challenges, and Opportunities. Biomedicines 2023; 11:2798. [PMID: 37893171 PMCID: PMC10604118 DOI: 10.3390/biomedicines11102798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Red blood cell-derived extracellular vesicles (RBC EVs) are small, spherical fragments released from red blood cells. These vesicles, similar to EVs derived from other cell types, are crucial for intercellular communication processes and have been implicated in various physiological and pathological processes. The diagnostic and therapeutic potential of RBC EVs has garnered increasing attention in recent years, revealing their valuable role in the field of medicine. In this review, we aim to provide a comprehensive analysis of the current research status of RBC EVs. We summarize existing studies and highlight the progress made in understanding the characteristics and functions of RBC EVs, with a particular focus on their biological roles in different diseases. We also discuss their potential utility as diagnostic and prognostic biomarkers in diseases and as vectors for drug delivery. Furthermore, we emphasize the need for further research to achieve selective purification of RBC EVs and unravel their heterogeneity, which will allow for a deeper understanding of their diverse functions and exploration of their potential applications in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Si-Rui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ping Gong
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
4
|
Meng Y, Zhang Y, Bühler M, Wang S, Asghari M, Stürchler A, Mateescu B, Weiss T, Stavrakis S, deMello AJ. Direct isolation of small extracellular vesicles from human blood using viscoelastic microfluidics. SCIENCE ADVANCES 2023; 9:eadi5296. [PMID: 37801500 PMCID: PMC10558121 DOI: 10.1126/sciadv.adi5296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Small extracellular vesicles (sEVs; <200 nm) that contain lipids, nucleic acids, and proteins are considered promising biomarkers for a wide variety of diseases. Conventional methods for sEV isolation from blood are incompatible with routine clinical workflows, significantly hampering the utilization of blood-derived sEVs in clinical settings. Here, we present a simple, viscoelastic-based microfluidic platform for label-free isolation of sEVs from human blood. The separation performance of the device is assessed by isolating fluorescent sEVs from whole blood, demonstrating purities and recovery rates of over 97 and 87%, respectively. Significantly, our viscoelastic-based microfluidic method also provides for a remarkable increase in sEV yield compared to gold-standard ultracentrifugation, with proteomic profiles of blood-derived sEVs purified by both methods showing similar protein compositions. To demonstrate the clinical utility of the approach, we isolate sEVs from blood samples of 20 patients with cancer and 20 healthy donors, demonstrating that elevated sEV concentrations can be observed in blood derived from patients with cancer.
Collapse
Affiliation(s)
- Yingchao Meng
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Yanan Zhang
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Marcel Bühler
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Shuchen Wang
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Mohammad Asghari
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Alessandra Stürchler
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Bogdan Mateescu
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Kuebler WM, William N, Post M, Acker JP, McVey MJ. Extracellular vesicles: effectors of transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L327-L341. [PMID: 37310760 DOI: 10.1152/ajplung.00040.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nishaka William
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jason P Acker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Mark J McVey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Sangha GS, Weber CM, Sapp RM, Setua S, Thangaraju K, Pettebone M, Rogers SC, Doctor A, Buehler PW, Clyne AM. Mechanical stimuli such as shear stress and piezo1 stimulation generate red blood cell extracellular vesicles. Front Physiol 2023; 14:1246910. [PMID: 37719461 PMCID: PMC10502313 DOI: 10.3389/fphys.2023.1246910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Generating physiologically relevant red blood cell extracellular vesicles (RBC-EVs) for mechanistic studies is challenging. Herein, we investigated how to generate and isolate high concentrations of RBC-EVs in vitro via shear stress and mechanosensitive piezo1 ion channel stimulation. Methods: RBC-EVs were generated by applying shear stress or the piezo1-agonist yoda1 to RBCs. We then investigated how piezo1 RBC-EV generation parameters (hematocrit, treatment time, treatment dose), isolation methods (membrane-based affinity, ultrafiltration, ultracentrifugation with and without size exclusion chromatography), and storage conditions impacted RBC-EV yield and purity. Lastly, we used pressure myography to determine how RBC-EVs isolated using different methods affected mouse carotid artery vasodilation. Results: Our results showed that treating RBCs at 6% hematocrit with 10 µM yoda1 for 30 min and isolating RBC-EVs via ultracentrifugation minimized hemolysis, maximized yield and purity, and produced the most consistent RBC-EV preparations. Co-isolated contaminants in impure samples, but not piezo1 RBC-EVs, induced mouse carotid artery vasodilation. Conclusion: This work shows that RBC-EVs can be generated through piezo1 stimulation and may be generated in vivo under physiologic flow conditions. Our studies further emphasize the importance of characterizing EV generation and isolation parameters before using EVs for mechanistic analysis since RBC-EV purity can impact functional outcomes.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Ryan M Sapp
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Saini Setua
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kiruphagaran Thangaraju
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Morgan Pettebone
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Stephen C Rogers
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul W Buehler
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
7
|
Ghodsi M, Cloos AS, Mozaheb N, Van Der Smissen P, Henriet P, Pierreux CE, Cellier N, Mingeot-Leclercq MP, Najdovski T, Tyteca D. Variability of extracellular vesicle release during storage of red blood cell concentrates is associated with differential membrane alterations, including loss of cholesterol-enriched domains. Front Physiol 2023; 14:1205493. [PMID: 37408586 PMCID: PMC10318158 DOI: 10.3389/fphys.2023.1205493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Transfusion of red blood cell concentrates is the most common medical procedure to treat anaemia. However, their storage is associated with development of storage lesions, including the release of extracellular vesicles. These vesicles affect in vivo viability and functionality of transfused red blood cells and appear responsible for adverse post-transfusional complications. However, the biogenesis and release mechanisms are not fully understood. We here addressed this issue by comparing the kinetics and extents of extracellular vesicle release as well as red blood cell metabolic, oxidative and membrane alterations upon storage in 38 concentrates. We showed that extracellular vesicle abundance increased exponentially during storage. The 38 concentrates contained on average 7 × 1012 extracellular vesicles at 6 weeks (w) but displayed a ∼40-fold variability. These concentrates were subsequently classified into 3 cohorts based on their vesiculation rate. The variability in extracellular vesicle release was not associated with a differential red blood cell ATP content or with increased oxidative stress (in the form of reactive oxygen species, methaemoglobin and band3 integrity) but rather with red blood cell membrane modifications, i.e., cytoskeleton membrane occupancy, lateral heterogeneity in lipid domains and transversal asymmetry. Indeed, no changes were noticed in the low vesiculation group until 6w while the medium and the high vesiculation groups exhibited a decrease in spectrin membrane occupancy between 3 and 6w and an increase of sphingomyelin-enriched domain abundance from 5w and of phosphatidylserine surface exposure from 8w. Moreover, each vesiculation group showed a decrease of cholesterol-enriched domains associated with a cholesterol content increase in extracellular vesicles but at different storage time points. This observation suggested that cholesterol-enriched domains could represent a starting point for vesiculation. Altogether, our data reveal for the first time that the differential extent of extracellular vesicle release in red blood cell concentrates did not simply result from preparation method, storage conditions or technical issues but was linked to membrane alterations.
Collapse
Affiliation(s)
- Marine Ghodsi
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anne-Sophie Cloos
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Negar Mozaheb
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Patrick Van Der Smissen
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Patrick Henriet
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Christophe E. Pierreux
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | | | - Tomé Najdovski
- Service du Sang, Croix-Rouge de Belgique, Suarlée, Belgium
| | - Donatienne Tyteca
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
8
|
Giosheva I, Strijkova V, Komsa-Penkova R, Krumova S, Langari A, Danailova A, Taneva SG, Stoyanova T, Topalova L, Gartchev E, Georgieva G, Todinova S. Membrane Lesions and Reduced Life Span of Red Blood Cells in Preeclampsia as Evidenced by Atomic Force Microscopy. Int J Mol Sci 2023; 24:ijms24087100. [PMID: 37108270 PMCID: PMC10138579 DOI: 10.3390/ijms24087100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Preeclampsia (PE) presents with maternal de novo hypertension and significant proteinuria and is one of the leading causes of maternal and perinatal morbidity and mortality with unknown etiology. The disease is associated with inflammatory vascular response and severe red blood cell (RBC) morphology changes. This study examined the nanoscopic morphological changes of RBCs from PE women versus normotensive healthy pregnant controls (PCs) and non-pregnant controls (NPCs) applying atomic force microscopy (AFM) imaging. The results revealed that the membrane of fresh PE RBCs differed significantly from healthy ones by the presence of invaginations and protrusions and an increased roughness value (Rrms) (4.7 ± 0.8 nm for PE vs. 3.8 ± 0.5 nm and 2.9 ± 0.4 nm for PCs and NPCs, respectively). PE-cells aging resulted in more pronounced protrusions and concavities, with exponentially increasing Rrms values, in contrast to the controls, where the Rrms parameter decreased linearly with time. The Rrms, evaluated on a 2 × 2 µm2 scanned area, for senescent PE cells (13 ± 2.0 nm) was significantly higher (p < 0.01) than that of PCs (1.5 ± 0.2 nm) and NPCs (1.9 ± 0.2 nm). Furthermore, the RBCs from PE patients appeared fragile, and often only ghosts were observed instead of intact cells at 20-30 days of aging. Oxidative-stress simulation on healthy cells led to RBC membrane features similar to those observed for PE cells. The results demonstrate that the most pronounced effects on RBCs in PE patients are related to impaired membrane homogeneity and strongly altered roughness values, as well as to vesiculation and ghost formation in the course of cell aging.
Collapse
Affiliation(s)
- Ina Giosheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- University Obstetrics and Gynecology Hospital "Maichin Dom", 1431 Sofia, Bulgaria
| | - Velichka Strijkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Institute of Optical Materials and Technologies "Acad. Yordan Malinovski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ariana Langari
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Avgustina Danailova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefka G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Tanya Stoyanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lora Topalova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Emil Gartchev
- University Obstetrics and Gynecology Hospital "Maichin Dom", 1431 Sofia, Bulgaria
| | - Galya Georgieva
- Department of Biochemistry, Medical University-Pleven, 5800 Pleven, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
9
|
Yam GHF, Yang T, Geary ML, Santra M, Funderburgh M, Rubin E, Du Y, Sahel JA, Jhanji V, Funderburgh JL. Human corneal stromal stem cells express anti-fibrotic microRNA-29a and 381-5p - A robust cell selection tool for stem cell therapy of corneal scarring. J Adv Res 2023; 45:141-155. [PMID: 35623612 PMCID: PMC10006527 DOI: 10.1016/j.jare.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Corneal blindness due to scarring is treated with corneal transplantation. However, a global problem is the donor material shortage. Preclinical and clinical studies have shown that cell-based therapy using corneal stromal stem cells (CSSCs) suppresses corneal scarring, potentially mediated by specific microRNAs transported in extracellular vesicles (EVs). However, not every CSSC batch from donors achieves similar anti-scarring effects. OBJECTIVES To examine miRNA profiles in EVs from human CSSCs showing "healing" versus "non-healing" effects on corneal scarring and to design a tool to select CSSCs with strong healing potency for clinical applications. METHODS Small RNAs from CSSC-EVs were extracted for Nanostring nCounter Human miRNA v3 assay. MicroRNAs expressed > 20 folds in "healing" EVs (P < 0.05) were subject to enriched gene ontology (GO) term analysis. MiRNA groups with predictive regulation on inflammatory and fibrotic signalling were studied by mimic transfection to (1) mouse macrophages (RAW264.7) for M1 phenotype assay; (2) human corneal keratocytes for cytokine-induced fibrosis, and (3) human CSSCs for corneal scar prevention in vivo. The expression of miR-29a was screened in additional CSSC batches and the anti-scarring effect of cells was validated in mouse corneal wounds. RESULTS Twenty-one miRNAs were significantly expressed in "healing" CSSC-EVs and 9 miRNA groups were predicted to associate with inflammatory and fibrotic responses, and tissue regeneration (P <10-6). Overexpression of miR-29a and 381-5p significantly prevented M1 phenotype transition in RAW264.7 cells after lipopolysaccharide treatment, suppressed transforming growth factor β1-induced fibrosis marker expression in keratocytes, and reduced scarring after corneal injury. High miR-29a expression in EV fractions distinguished human CSSCs with strong healing potency, which inhibited corneal scarring in vivo. CONCLUSION We characterized the anti-inflammatory and fibrotic roles of miR-29a and 381-5p in CSSCs, contributing to scar prevention. MiR-29a expression in EVs distinguished CSSCs with anti-scarring quality, identifying good quality cells for a scarless corneal healing.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Tianbing Yang
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Moira L Geary
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Mithun Santra
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Martha Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Elizabeth Rubin
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jose A Sahel
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
10
|
Berndt M, Buttenberg M, Graw JA. Large Animal Models for Simulating Physiology of Transfusion of Red Cell Concentrates-A Scoping Review of The Literature. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1735. [PMID: 36556937 PMCID: PMC9787038 DOI: 10.3390/medicina58121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Background and Objectives: Transfusion of red cell concentrates is a key component of medical therapy. To investigate the complex transfusion-associated biochemical and physiological processes as well as potential risks for human recipients, animal models are of particular importance. This scoping review summarizes existing large animal transfusion models for their ability to model the physiology associated with the storage of erythrocyte concentrates. Materials and Methods: The electronic databases PubMed, EMBASE, and Web of Science were systematically searched for original studies providing information on the intravenous application of erythrocyte concentrates in porcine, ovine, and canine animal models. Results: A total of 36 studies were included in the analysis. The majority of porcine studies evaluated hemorrhagic shock conditions. Pig models showed high physiological similarities with regard to red cell physiology during early storage. Ovine and canine studies were found to model typical aspects of human red cell storage at 42 days. Only four studies provided data on 24 h in vivo survival of red cells. Conclusions: While ovine and canine models can mimic typical human erythrocyte storage for up to 42 days, porcine models stand out for reliably simulating double-hit pathologies such as hemorrhagic shock. Large animal models remain an important area of translational research since they have an impact on testing new pharmacological or biophysical interventions to attenuate storage-related adverse effects and allow, in a controlled environment, to study background and interventions in dynamic and severe disease conditions.
Collapse
Affiliation(s)
- Melanie Berndt
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Maximilian Buttenberg
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jan A. Graw
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
11
|
Roshanzamir F, Amini-Kafiabad S, Zarif MN, Arabkhazaeli A, Mohammadipour M. The potential effect of leukocyte filtration methods on erythrocyte-derived microvesicles: One step forward. Eur J Transl Myol 2022; 32. [PMID: 35916762 PMCID: PMC9580532 DOI: 10.4081/ejtm.2022.10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
By harmonizing the pre-preparation conditions and also removing some donors’ variations, the current study took one step forward to investigate whether different leukocyte filtration sets influence the quality of RBCs throughout the storage time. Twelve whole blood units were collected, and each unit was split into three equal parts. Thirty-six divided bags were filtered using three different leukocyte-filtration sets including Red Cell and Whole Blood Filters (12 units per filter). The prepared RBCs were refrigerated for up to 42 days and assessed for microvesicle count and size, clotting- and prothrombin time, hemolysis index, and biochemical parameters. A significant increment in erythrocytes microvesicle count (EMVs/μL) was observed during the time in the three filtration sets. The number of EMVs in WBF-RBCs was higher (~1.6 fold) than in F-RCF on day 42 (p=0.035). Interestingly the median fluorescence intensity of EMVs decreased during the storage. The size of MVs rose during the time without any significant differences among the filters. Coagulation time decreased in RBCs over the storage, with no significant differences among the filters. Hemolysis index and lactate concentration increased while glucose level decreased significantly throughout the time. The changes in WBF-RBCs were more drastic rather than RCF-RBCs. The only significant difference in the count of EMVs was between WBF and F-RCF components on day 42. Though the changes in WBF products were more drastic, all the values fell within the standard limits. Accordingly, all three filtration sets can be considered.
Collapse
Affiliation(s)
- Fateme Roshanzamir
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran.
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran.
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm.
| | - Ali Arabkhazaeli
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran.
| | - Mahshid Mohammadipour
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran.
| |
Collapse
|
12
|
Zhu C, Niu Q, Yuan X, Chong J, Ren L. NonFreezable Preservation of Human Red Blood Cells at -8 °C. ACS Biomater Sci Eng 2022; 8:2644-2653. [PMID: 35536888 DOI: 10.1021/acsbiomaterials.2c00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Red blood cell (RBC) preservation is very important in human health. The RBCs are usually preserved at 4 ± 2 °C without freezing or at a very low temperature (-80 °C or liquid nitrogen) with deep freezing. Herein, non freezable preservation of RBCs at a subzero temperature is reported to prolong the preservation time compared with that at 4 ± 2 °C. By adding glycerol and poly(ethylene glycol) (PEG) (average number molecular weight 400, PEG-400) into the preservation solution, the freezing point is decreased and the hemolysis is kept low. The cell metabolism of stored RBCs at -8 °C is reduced, and the shelf life of RBCs extends up to at least 70 days. At the end of preservation, the pH decreases a little bit to demonstrate the low metabolic rate of RBCs stored at subzero temperatures. After quick washing, the RBC survival rate is ca. 95%. The adenosine triphosphate, 2,3-diphosphoglycerate, and cell deformation ability of the washed RBCs are maintained at a high level, while the malondialdehyde is relatively low, which verifies the high quality of RBCs stored at this condition.
Collapse
Affiliation(s)
- Chenhui Zhu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | | | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
13
|
Gao Y, Jin H, Tan H, Cai X, Sun Y. Erythrocyte-derived extracellular vesicles aggravate inflammation by promoting the proinflammatory macrophage phenotype through TLR4-MyD88-NF-κB-MAPK pathway. J Leukoc Biol 2022; 112:693-706. [PMID: 35411633 DOI: 10.1002/jlb.3a0821-451rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/12/2022] [Indexed: 12/31/2022] Open
Abstract
Transfusion of stored erythrocytes is associated with the increased risk of morbidity and mortality in critical infections, but the mechanism is incompletely understood. Previous studies have suggested that RBC-derived extracellular vesicles (EVs) may be potential risk factors for the occurrence of transfusion-related immunomodulation. The purpose of our study was to evaluate the effects of RBC-derived EVs under inflammatory conditions and explore the underlying mechanisms. In vivo, the activity of EVs was evaluated in cecal ligation and puncture (CLP)-induced sepsis. Our results showed that EVs significantly aggravated the inflammatory response to sepsis in serum and lung tissue by promoting the production of the proinflammatory factors tumor necrosis factor-α (TNF-α)-interleukin-6(IL-6), and interleukin-1β (IL-1β) and reduced the survival rate of septic mice in vivo. Importantly, adoptive transfer of EVs-pretreated bone marrow-derived macrophages (BMDMs) obviously aggravated systemic proinflammatory factors in mice after CLP surgery. In vitro, the proinflammatory properties of EVs were shown to elevate TNF-α, IL-6, and IL-1β levels in lipopolysaccharide (LPS)-stimulated BMDMs. Moreover, EVs promoted LPS-induced macrophage polarization into a proinflammatory phenotype. The underlying mechanism might involve EV-mediated up-regulation of TLR4-MyD88-NF-κB-MAPK activity to favor macrophage cytokine production.
Collapse
Affiliation(s)
- Yuhan Gao
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hui Tan
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaodong Cai
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Robert M, Laperrousaz B, Piedrahita D, Gautier EF, Nemkov T, Dupuy F, Nader E, Salnot V, Mayeux P, D'Alessandro A, Lavazec C, Joly P, Scheer A, Connes P, Cibiel A. Multiparametric characterization of red blood cell physiology after hypotonic dialysis based drug encapsulation process. Acta Pharm Sin B 2022; 12:2089-2102. [PMID: 35847505 PMCID: PMC9279626 DOI: 10.1016/j.apsb.2021.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022] Open
Abstract
Red blood cells (RBCs) can act as carriers for therapeutic agents and can substantially improve the safety, pharmacokinetics, and pharmacodynamics of many drugs. Maintaining RBCs integrity and lifespan is important for the efficacy of RBCs as drug carrier. We investigated the impact of drug encapsulation by hypotonic dialysis on RBCs physiology and integrity. Several parameters were compared between processed RBCs loaded with l-asparaginase ("eryaspase"), processed RBCs without drug and non-processed RBCs. Processed RBCs were less hydrated and displayed a reduction of intracellular content. We observed a change in the metabolomic but not in the proteomic profile of processed RBCs. Encapsulation process caused moderate morphological changes and was accompanied by an increase of RBCs-derived Extracellular Vesicles release. Despite a decrease in deformability, processed RBCs were not mechanically retained in a spleen-mimicking device and had increased surface-to-volume ratio and osmotic resistance. Processed RBCs half-life was not significantly affected in a mouse model and our previous phase 1 clinical study showed that encapsulation of asparaginase in RBCs prolonged its in vivo half-life compared to free forms. Our study demonstrated that encapsulation by hypotonic dialysis may affect certain characteristics of RBCs but does not significantly affect the in vivo longevity of RBCs or their drug carrier function.
Collapse
Affiliation(s)
- Mélanie Robert
- Erytech Pharma, Lyon 69008, France
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69008, France
- Labex GR-Ex, Paris 75015, France
| | | | | | - Emilie-Fleur Gautier
- Labex GR-Ex, Paris 75015, France
- 3P5 proteom'IC facility, Université de Paris, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Travis Nemkov
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Omix Technologies, Inc., Aurora, CO 80045, USA
| | - Florian Dupuy
- Labex GR-Ex, Paris 75015, France
- Inserm U1016, CNRS 8104, Université de Paris, Institut Cochin, Paris 75014, France
| | - Elie Nader
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69008, France
- Labex GR-Ex, Paris 75015, France
| | - Virginie Salnot
- 3P5 proteom'IC facility, Université de Paris, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Patrick Mayeux
- Labex GR-Ex, Paris 75015, France
- 3P5 proteom'IC facility, Université de Paris, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Angelo D'Alessandro
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Omix Technologies, Inc., Aurora, CO 80045, USA
| | - Catherine Lavazec
- Labex GR-Ex, Paris 75015, France
- Inserm U1016, CNRS 8104, Université de Paris, Institut Cochin, Paris 75014, France
| | - Philippe Joly
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69008, France
- Labex GR-Ex, Paris 75015, France
- Laboratoire de Biochimie et de Biologie Moléculaire, UF de biochimie des pathologies érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron 69500, France
| | | | - Philippe Connes
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69008, France
- Labex GR-Ex, Paris 75015, France
| | | |
Collapse
|
15
|
Tzounakas VL, Anastasiadi AT, Lekka ME, Papageorgiou EG, Stamoulis K, Papassideri IS, Kriebardis AG, Antonelou MH. Deciphering the Relationship Between Free and Vesicular Hemoglobin in Stored Red Blood Cell Units. Front Physiol 2022; 13:840995. [PMID: 35211035 PMCID: PMC8861500 DOI: 10.3389/fphys.2022.840995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Red blood cells (RBCs) release hemoglobin (Hb)-containing extracellular vesicles (EVs) throughout their lifespan in the circulation, and especially during senescence, by spleen-facilitated vesiculation of their membrane. During ex vivo aging under blood bank conditions, the RBCs lose Hb, both in soluble form and inside EVs that accumulate as a part of storage lesion in the supernatant of the unit. Spontaneous hemolysis and vesiculation are increasingly promoted by the storage duration, but little is known about any physiological linkage between them. In the present study, we measured the levels of total extracellular and EV-enclosed Hb (EV-Hb) in units of whole blood (n = 36) or packed RBCs stored in either CPDA-1 (n = 99) or in CPD-SAGM additive solution (n = 46), in early, middle, and late storage. The spectrophotometry data were subjected to statistical analysis to detect possible correlation(s) between storage hemolysis and EV-Hb, as well as the threshold (if any) that determines the area of this dynamic association. It seems that the percentage of EV-Hb is negatively associated with hemolysis levels from middle storage onward by showing low to moderate correlation profiles in all strategies under investigation. Moreover, 0.17% storage hemolysis was determined as the potential cut-off, above which this inverse correlation is evident in non-leukoreduced CPDA units. Notably, RBC units with hemolysis levels > 0.17% are characterized by higher percentage of nanovesicles (<100 nm) over typical microvesicles (100–400 nm) compared with the lower hemolysis counterparts. Our results suggest an ordered loss of Hb during RBC accelerated aging that might fuel targeted research to elucidate its mechanistic basis.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Marilena E Lekka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | | | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H Antonelou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
16
|
Bebesi T, Kitka D, Gaál A, Szigyártó IC, Deák R, Beke-Somfai T, Koprivanacz K, Juhász T, Bóta A, Varga Z, Mihály J. Storage conditions determine the characteristics of red blood cell derived extracellular vesicles. Sci Rep 2022; 12:977. [PMID: 35046483 PMCID: PMC8770621 DOI: 10.1038/s41598-022-04915-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are released during the storage of red blood cell (RBC) concentrates and might play adverse or beneficial roles throughout the utilization of blood products (transfusion). Knowledge of EV release associated factors and mechanism amends blood product management. In the present work the impact of storage time and medium (blood preserving additive vs isotonic phosphate buffer) on the composition, size, and concentration of EVs was studied using attenuated total reflection infrared (ATR-IR) spectroscopy, microfluidic resistive pulse sensing (MRPS) and freeze-fraction combined transmission electron micrography (FF-TEM). The spectroscopic protein-to-lipid ratio based on amide and the C-H stretching band intensity ratio indicated the formation of various vesicle subpopulations depending on storage conditions. After short storage, nanoparticles with high relative protein content were detected. Spectral analysis also suggested differences in lipid and protein composition, too. The fingerprint region (from 1300 to 1000 cm-1) of the IR spectra furnishes additional information about the biomolecular composition of RBC-derived EVs (REVs) such as adenosine triphosphate (ATP), lactose, glucose, and oxidized hemoglobin. The difference between the vesicle subpopulations reveals the complexity of the REV formation mechanism. IR spectroscopy, as a quick, cost-effective, and label-free technique provides valuable novel biochemical insight and might be used complementary to traditional omics approaches on EVs.
Collapse
Affiliation(s)
- Tímea Bebesi
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, 1117 Budapest, Hungary ,grid.5591.80000 0001 2294 6276Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Diána Kitka
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, 1117 Budapest, Hungary ,grid.5591.80000 0001 2294 6276Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Anikó Gaál
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Imola Csilla Szigyártó
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Róbert Deák
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Tamás Beke-Somfai
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Kitti Koprivanacz
- grid.425578.90000 0004 0512 3755Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Tünde Juhász
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Attila Bóta
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
17
|
Chiangjong W, Netsirisawan P, Hongeng S, Chutipongtanate S. Red Blood Cell Extracellular Vesicle-Based Drug Delivery: Challenges and Opportunities. Front Med (Lausanne) 2021; 8:761362. [PMID: 35004730 PMCID: PMC8739511 DOI: 10.3389/fmed.2021.761362] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Recently, red blood cell-derived extracellular vesicles (RBCEVs) have attracted attention for clinical applications because of their safety and biocompatibility. RBCEVs can escape macrophages through the binding of CD47 to inhibitory receptor signal regulatory protein α. Furthermore, genetic materials such as siRNA, miRNA, mRNA, or single-stranded RNA can be encapsulated within RBCEVs and then released into target cells for precise treatment. However, their side effects, half-lives, target cell specificity, and limited large-scale production under good manufacturing practice remain challenging. In this review, we summarized the biogenesis and composition of RBCEVs, discussed the advantages and disadvantages of RBCEVs for drug delivery compared with synthetic nanovesicles and non-red blood cell-derived EVs, and provided perspectives for overcoming current limitations to the use of RBCEVs for clinical applications.
Collapse
Affiliation(s)
- Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pukkavadee Netsirisawan
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Ma X, Liu Y, Han Q, Han Y, Wang J, Zhang H. Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review). Int J Oncol 2021; 59:108. [PMID: 34841441 DOI: 10.3892/ijo.2021.5288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusions may have a negative impact on the prognosis of patients with cancer, where transfusion‑related immunomodulation (TRIM) may be a significant contributing factor. A number of components have been indicated to be associated with TRIM. Among these, the impact of extracellular vesicles (EVs) has been garnering increasing attention from researchers. EVs are defined as nano‑scale, cell‑derived vesicles that carry a variety of bioactive molecules, including proteins, nucleic acids and lipids, to mediate cell‑to‑cell communication and exert immunoregulatory functions. RBCs in storage constitutively secrete EVs, which serve an important role in TRIM in patients with cancer receiving a blood transfusion. Therefore, the present review aimed to first summarize the available information on the biogenesis and characterization of EVs. Subsequently, the possible mechanisms of TRIM in patients with cancer and the impact of EVs on TRIM were discussed, aiming to provide an outlook for future studies, specifically for formulating recommendations for managing patients with cancer receiving RBC transfusions.
Collapse
Affiliation(s)
- Xingyu Ma
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yanxi Liu
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qianlan Han
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hongwei Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
19
|
Barshtein G, Pajic-Lijakovic I, Gural A. Deformability of Stored Red Blood Cells. Front Physiol 2021; 12:722896. [PMID: 34690797 PMCID: PMC8530101 DOI: 10.3389/fphys.2021.722896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Red blood cells (RBCs) deformability refers to the cells’ ability to adapt their shape to the dynamically changing flow conditions so as to minimize their resistance to flow. The high red cell deformability enables it to pass through small blood vessels and significantly determines erythrocyte survival. Under normal physiological states, the RBCs are attuned to allow for adequate blood flow. However, rigid erythrocytes can disrupt the perfusion of peripheral tissues and directly block microvessels. Therefore, RBC deformability has been recognized as a sensitive indicator of RBC functionality. The loss of deformability, which a change in the cell shape can cause, modification of cell membrane or a shift in cytosol composition, can occur due to various pathological conditions or as a part of normal RBC aging (in vitro or in vivo). However, despite extensive research, we still do not fully understand the processes leading to increased cell rigidity under cold storage conditions in a blood bank (in vitro aging), In the present review, we discuss publications that examined the effect of RBCs’ cold storage on their deformability and the biological mechanisms governing this change. We first discuss the change in the deformability of cells during their cold storage. After that, we consider storage-related alterations in RBCs features, which can lead to impaired cell deformation. Finally, we attempt to trace a causal relationship between the observed phenomena and offer recommendations for improving the functionality of stored cells.
Collapse
Affiliation(s)
- Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
20
|
Larsson L, Ohlsson S, Derving J, Diedrich B, Sandgren P, Larsson S, Uhlin M. DEHT is a suitable plasticizer option for phthalate-free storage of irradiated red blood cells. Vox Sang 2021; 117:193-200. [PMID: 34268809 DOI: 10.1111/vox.13177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Due to increasing concerns about possible endocrine-disrupting properties, the use of the plasticizer di(2-ethylhexyl) phthalate (DEHP) will be banned in future blood storage. Di(2-ethylhexyl) terephthalate (DEHT) provides sufficient red blood cell (RBC) quality during conventional blood bank storage. It is important that a new plasticizer also maintains acceptable quality during exposure to high cell stress, such as irradiation, which is commonly used to prevent graft-versus-host disease. MATERIALS AND METHODS A total of 59 RBC units were collected and processed in polyvinyl chloride (PVC)-DEHT or PVC-DEHP blood bags combined with either saline-adenine-glucose-mannitol (SAGM) or phosphate-adenine-glucose-guanosine-saline-mannitol (PAGGSM) additive solution. All units were X-ray irradiated on day 2 post-collection. Sampling for assessment of parameters of storage lesion was performed on day 2 pre-irradiation and day 14 and 28 post-irradiation. RESULTS Though irradiation increased cell stress, DEHT/PAGGSM and current common European preference DEHP/SAGM were equally affected up to 14 days post-irradiation for all measured parameters. At day 28, haemolysis and microvesicle count were slightly increased in DEHT, whereas extracellular potassium ions, glucose, lactate, pH, mean corpuscular volume and microvesicle phosphatidylserine remained unaffected by plasticizer choice throughout storage. No individual unit exceeded 0.8% haemolysis, not even in DEHT/SAGM, the combination overall most affected by irradiation. Of the four combinations, membrane stability was least impacted in DEHP/PAGGSM. CONCLUSION We demonstrate that DEHT is a suitable plasticizer for storage of RBCs after X-ray irradiation cell stress. This strengthens the option of DEHT as a viable non-phthalate substitute for DEHP.
Collapse
Affiliation(s)
- Linda Larsson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Ohlsson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Derving
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Beatrice Diedrich
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Per Sandgren
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Stella Larsson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under "Quasi-Diabetic" Conditions? Biomolecules 2021; 11:biom11070992. [PMID: 34356616 PMCID: PMC8301930 DOI: 10.3390/biom11070992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland;
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence: ; Tel.: +972-2-6758309
| | - Dan Arbell
- Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hélène Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France;
| |
Collapse
|
22
|
Asaro RJ, Cabrales P. Red Blood Cells: Tethering, Vesiculation, and Disease in Micro-Vascular Flow. Diagnostics (Basel) 2021; 11:diagnostics11060971. [PMID: 34072241 PMCID: PMC8228733 DOI: 10.3390/diagnostics11060971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
The red blood cell has become implicated in the progression of a range of diseases; mechanisms by which red cells are involved appear to include the transport of inflammatory species via red cell-derived vesicles. We review this role of RBCs in diseases such as diabetes mellitus, sickle cell anemia, polycythemia vera, central retinal vein occlusion, Gaucher disease, atherosclerosis, and myeloproliferative neoplasms. We propose a possibly unifying, and novel, paradigm for the inducement of RBC vesiculation during vascular flow of red cells adhered to the vascular endothelium as well as to the red pulp of the spleen. Indeed, we review the evidence for this hypothesis that links physiological conditions favoring both vesiculation and enhanced RBC adhesion and demonstrate the veracity of this hypothesis by way of a specific example occurring in splenic flow which we argue has various renderings in a wide range of vascular flows, in particular microvascular flows. We provide a mechanistic basis for membrane loss and the formation of lysed red blood cells in the spleen that may mediate their turnover. Our detailed explanation for this example also makes clear what features of red cell deformability are involved in the vesiculation process and hence require quantification and a new form of quantitative indexing.
Collapse
Affiliation(s)
- Robert J. Asaro
- Department of Structural Engineering, University of California, San Diego, CA 92093, USA
- Correspondence: ; Tel.: +1-619-890-6888; Fax: +1-858-534-6373
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
23
|
Cappellano G, Raineri D, Rolla R, Giordano M, Puricelli C, Vilardo B, Manfredi M, Cantaluppi V, Sainaghi PP, Castello L, De Vita N, Scotti L, Vaschetto R, Dianzani U, Chiocchetti A. Circulating Platelet-Derived Extracellular Vesicles Are a Hallmark of Sars-Cov-2 Infection. Cells 2021; 10:cells10010085. [PMID: 33430260 PMCID: PMC7825711 DOI: 10.3390/cells10010085] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 12/26/2022] Open
Abstract
Sars-Cov-2 infection causes fever and cough that may rapidly lead to acute respiratory distress syndrome (ARDS). Few biomarkers have been identified but, unfortunately, these are individually poorly specific, and novel biomarkers are needed to better predict patient outcome. The aim of this study was to evaluate the diagnostic performance of circulating platelets (PLT)-derived extracellular vesicles (EVs) as biomarkers for Sars-Cov-2 infection, by setting a rapid and reliable test on unmanipulated blood samples. PLT-EVs were quantified by flow cytometry on two independent cohorts of Sars-CoV-2+ (n = 69), Sars-Cov-2- (n = 62) hospitalized patients, and healthy controls. Diagnostic performance of PLT-EVs was evaluated by receiver operating characteristic (ROC) curve. PLT-EVs count were higher in Sars-Cov-2+ compared to Sars-Cov-2- patients or HC. ROC analysis of the combined cohorts showed an AUC = 0.79 and an optimal cut-off value of 1472 EVs/μL, with 75% sensitivity and 74% specificity. These data suggest that PLT-EVs might be an interesting biomarker deserving further investigations to test their predictive power.
Collapse
Affiliation(s)
- Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (G.C.); (D.R.); (R.R.); (M.G.); (B.V.); (U.D.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.C.); (P.P.S.)
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (G.C.); (D.R.); (R.R.); (M.G.); (B.V.); (U.D.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.C.); (P.P.S.)
| | - Roberta Rolla
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (G.C.); (D.R.); (R.R.); (M.G.); (B.V.); (U.D.); (A.C.)
- Clinical Chemistry Unit, “Maggiore della Carità” University Hospital, 28100 Novara, Italy;
| | - Mara Giordano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (G.C.); (D.R.); (R.R.); (M.G.); (B.V.); (U.D.); (A.C.)
- Clinical Chemistry Unit, “Maggiore della Carità” University Hospital, 28100 Novara, Italy;
| | - Chiara Puricelli
- Clinical Chemistry Unit, “Maggiore della Carità” University Hospital, 28100 Novara, Italy;
| | - Beatrice Vilardo
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (G.C.); (D.R.); (R.R.); (M.G.); (B.V.); (U.D.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.C.); (P.P.S.)
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.C.); (P.P.S.)
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.C.); (N.D.V.); (L.S.)
| | - Vincenzo Cantaluppi
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.C.); (P.P.S.)
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.C.); (N.D.V.); (L.S.)
- Nephrology and Kidney Transplantation Unit, “Maggiore della Carità” University Hospital, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.C.); (P.P.S.)
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.C.); (N.D.V.); (L.S.)
- Immunorheumatology Unit, Division of Internal Medicine, “Maggiore della Carità” Univerisity Hospital, 28100 Novara, Italy
| | - Luigi Castello
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.C.); (N.D.V.); (L.S.)
- Emergency Department, “Maggiore della Carità” University Hospital, 28100 Novara, Italy
| | - Nello De Vita
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.C.); (N.D.V.); (L.S.)
| | - Lorenza Scotti
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.C.); (N.D.V.); (L.S.)
| | - Rosanna Vaschetto
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.C.); (N.D.V.); (L.S.)
- Correspondence: ; Tel.: +39-032-1373-3406
| | - Umberto Dianzani
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (G.C.); (D.R.); (R.R.); (M.G.); (B.V.); (U.D.); (A.C.)
- Clinical Chemistry Unit, “Maggiore della Carità” University Hospital, 28100 Novara, Italy;
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (G.C.); (D.R.); (R.R.); (M.G.); (B.V.); (U.D.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.C.); (P.P.S.)
| |
Collapse
|
24
|
Chatterjee V, Yang X, Ma Y, Wu MH, Yuan SY. Extracellular vesicles: new players in regulating vascular barrier function. Am J Physiol Heart Circ Physiol 2020; 319:H1181-H1196. [PMID: 33035434 PMCID: PMC7792704 DOI: 10.1152/ajpheart.00579.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have attracted rising interests in the cardiovascular field not only because they serve as serological markers for circulatory disorders but also because they participate in important physiological responses to stress and inflammation. In the circulation, these membranous vesicles are mainly derived from blood or vascular cells, and they carry cargos with distinct molecular signatures reflecting the origin and activation state of parent cells that produce them, thus providing a powerful tool for diagnosis and prognosis of pathological conditions. Functionally, circulating EVs mediate tissue-tissue communication by transporting bioactive cargos to local and distant sites, where they directly interact with target cells to alter their function. Recent evidence points to the critical contributions of EVs to the pathogenesis of vascular endothelial barrier dysfunction during inflammatory response to injury or infection. In this review, we provide a brief summary of the current knowledge on EV biology and advanced techniques in EV isolation and characterization. This is followed by a discussion focusing on the role and mechanisms of EVs in regulating blood-endothelium interactions and vascular permeability during inflammation. We conclude with a translational perspective on the diagnostic and therapeutic potential of EVs in vascular injury or infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
25
|
Assessment of extracellular vesicles using IFC for application in transfusion medicine. Transfus Apher Sci 2020; 59:102942. [PMID: 32943325 DOI: 10.1016/j.transci.2020.102942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) have been shown to be involved in various physiological and pathophysiological processes. With respect to Transfusion Medicine, the accumulation of EVs in blood products during hypothermic storage is an indicator of the storage lesion and reportedly correlates with adverse effects after transfusion, including but not limited to immunomodulation, activation of coagulation, endothelial activation, and others. To optimally reduce such an impact on blood product quality degradation and improve post-transfusion outcomes, better methods for detection, enumeration, characterisation by size and phenotype, and functional involvement of EVs in different pathophysiological and physiological processes are required. Currently, Imaging Flow Cytometry (IFC) technology provides the most comprehensive assessment of EV subsets in different body fluids. The unique ability of IFC to detect EVs of 20 nm size by registration of a single pixel of fluorescence signal makes this approach highly promising for comprehensive studies of EVs. In this review, we will focus on the recent breakthrough and advantages of using the ImageStreamX MKII IFC platform for the detection and characterisation of EVs and its future prospects for routine application of IFC in Transfusion Medicine.
Collapse
|
26
|
Guizouarn H, Barshtein G. Editorial: Red Blood Cell Vascular Adhesion and Deformability. Front Physiol 2020; 11:657. [PMID: 32670087 PMCID: PMC7331698 DOI: 10.3389/fphys.2020.00657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Gregory Barshtein
- Department of Biochemistry, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Cloos AS, Ghodsi M, Stommen A, Vanderroost J, Dauguet N, Pollet H, D'Auria L, Mignolet E, Larondelle Y, Terrasi R, Muccioli GG, Van Der Smissen P, Tyteca D. Interplay Between Plasma Membrane Lipid Alteration, Oxidative Stress and Calcium-Based Mechanism for Extracellular Vesicle Biogenesis From Erythrocytes During Blood Storage. Front Physiol 2020; 11:712. [PMID: 32719614 PMCID: PMC7350142 DOI: 10.3389/fphys.2020.00712] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
The shedding of extracellular vesicles (EVs) from the red blood cell (RBC) surface is observed during senescence in vivo and RBC storage in vitro. Two main models for EV shedding, respectively based on calcium rise and oxidative stress, have been proposed in the literature but the role of the plasma membrane lipid composition and properties is not understood. Using blood in K+/EDTA tubes stored for up to 4 weeks at 4°C as a relevant RBC vesiculation model, we showed here that the RBC plasma membrane lipid composition, organization in domains and biophysical properties were progressively modified during storage and contributed to the RBC vesiculation. First, the membrane content in cholesterol and linoleic acid decreased whereas lipid peroxidation and spectrin:membrane occupancy increased, all compatible with higher membrane rigidity. Second, phosphatidylserine surface exposure showed a first rapid rise due to membrane cholesterol decrease, followed by a second calcium-dependent increase. Third, lipid domains mainly enriched in GM1 or sphingomyelin strongly increased from the 1st week while those mainly enriched in cholesterol or ceramide decreased during the 1st and 4th week, respectively. Fourth, the plasmatic acid sphingomyelinase activity considerably increased upon storage following the sphingomyelin-enriched domain rise and potentially inducing the loss of ceramide-enriched domains. Fifth, in support of the shedding of cholesterol- and ceramide-enriched domains from the RBC surface, the number of cholesterol-enriched domains lost and the abundance of EVs released during the 1st week perfectly matched. Moreover, RBC-derived EVs were enriched in ceramide at the 4th week but depleted in sphingomyelin. Then, using K+/EDTA tubes supplemented with glucose to longer preserve the ATP content, we better defined the sequence of events. Altogether, we showed that EV shedding from lipid domains only represents part of the global vesiculation mechanistics, for which we propose four successive events (cholesterol domain decrease, oxidative stress, sphingomyelin/sphingomyelinase/ceramide/calcium alteration and phosphatidylserine exposure).
Collapse
Affiliation(s)
- Anne-Sophie Cloos
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Marine Ghodsi
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Amaury Stommen
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Juliette Vanderroost
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- GECE Unit and CYTF Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Hélène Pollet
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ludovic D'Auria
- NCHM Unit, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Eric Mignolet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Patrick Van Der Smissen
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
McVey MJ, Kuebler WM, Orbach A, Arbell D, Zelig O, Barshtein G, Yedgar S. Reduced deformability of stored red blood cells is associated with generation of extracellular vesicles. Transfus Apher Sci 2020; 59:102851. [PMID: 32571640 DOI: 10.1016/j.transci.2020.102851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/12/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
Throughout storage, red blood cells (RBCs) undergo detrimental changes in viability and their ability to effectively transport oxygen. RBC storage lesions are mediated, in part, by a progressive loss of cell deformability, and associated with the release of extracellular vesicles (EVs). Accumulation of EVs during the storage of RBCs correlates with a decrease in RBC surface area to volume ratio. Similarly, the loss of RBC-deformability is associated with loss of RBC surface area to volume ratio. In this study we thus tested whether loss of RBC-deformability is associated with increased RBC-EV production during blood storage. EVs obtained by differential centrifugation of stored RBCs (non-leukoreduced non-irradiated or leukoreduced γ-irradiated RBCs stored 35 or 28 days respectively) were enumerated by high-sensitivity flow cytometry. RBC deformability was quantified, using a cell-flow-properties-analyzer, by measuring the median cell elongation ratio (MER) and percentage of low and high deformable cells in the population (%, LDFC, and HDFC, respectively). The number of EVs was inversely correlated with the MER and positively correlated with the %LDFC with both measures showing highly significant logarithmic dependence with EV levels in stored RBCs. Considering how highly deformable cells did not correlate with EV formation as compared with low deformable RBCs we propose that the formation of EVs is a key factor leading to increased RBC-rigidity.
Collapse
Affiliation(s)
- M J McVey
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, United States; Departments of Physiology and Anesthesia, University of Toronto, Toronto, ON, United States; Hospital for Sick Children, Department of Anesthesia and Pain Medicine, United States; Department of Physics, Ryerson University, Toronto, ON, United States
| | - W M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, United States; Departments of Physiology and Surgery, University of Toronto, Toronto, ON, United States; Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - A Orbach
- Department of Biochemistry, Hebrew University, Faculty of Medicine, Jerusalem, Israel
| | - D Arbell
- Department of Pediatric Surgery, Hadassah- Hebrew University Hospital, Jerusalem, Israel
| | - O Zelig
- Blood Bank, Hadassah University Hospital, Jerusalem, Israel
| | - G Barshtein
- Department of Biochemistry, Hebrew University, Faculty of Medicine, Jerusalem, Israel.
| | - S Yedgar
- Department of Biochemistry, Hebrew University, Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
29
|
Gao Y, Jin H, Tan H, Wang Y, Wu J, Wang Y, Zhang J, Yang Y, Tian W, Hou R. The role of extracellular vesicles from stored RBC units in B lymphocyte survival and plasma cell differentiation. J Leukoc Biol 2020; 108:1765-1776. [PMID: 32421907 DOI: 10.1002/jlb.1a0220-666r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/22/2020] [Accepted: 03/28/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are small, double-membrane vesicles derived from erythrocytes, leukocytes, platelets, and cells of multiple tissues under physiologic or pathologic conditions. The role of EVs in stored RBC units is of great interest with respect to transfusion-related immunomodulation. The current study focuses on the quantity of EVs isolated from stored RBC units and their action on B cell-mediated immune responses. The in vitro experiment demonstrated that EVs exhibited a negative role in B cell survival, plasmacytic differentiation, and class switch recombination under LPS stimulation. Furthermore, LPS-induced antibody production was significantly decreased after EVs injection in vivo. Biochemical analysis revealed that EVs hampered the expression of Blimp-1 and IRF4 and the activation of NF-κB pathway in LPS-primed B cells. Overall, these data imply a vital role for EVs isolated from RBC units in B cell-mediated immune responses.
Collapse
Affiliation(s)
- Yuhan Gao
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hui Tan
- Guangdong Innovation Platform of Translational Research for Cerebrovascular Diseases, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yan Wang
- Department of Immunology, and Key Laboratory of Medical Immunology of Ministry of Public Health, Peking University Health Science Center, Beijing, China
| | - Jia Wu
- Department of Immunology, and Key Laboratory of Medical Immunology of Ministry of Public Health, Peking University Health Science Center, Beijing, China
| | - Yuqing Wang
- Department of Immunology, and Key Laboratory of Medical Immunology of Ministry of Public Health, Peking University Health Science Center, Beijing, China
| | - Jianhua Zhang
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Ying Yang
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Wenqin Tian
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Ruiqin Hou
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| |
Collapse
|
30
|
Influence of hemoadsorption during cardiopulmonary bypass on blood vesicle count and function. J Transl Med 2020; 18:202. [PMID: 32414386 PMCID: PMC7229608 DOI: 10.1186/s12967-020-02369-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 05/07/2020] [Indexed: 11/10/2022] Open
Abstract
Background Extracorporeal circulation during major cardiac surgery triggers a systemic inflammatory response affecting the clinical course and outcome. Recently, extracellular vesicle (EV) research has shed light onto a novel cellular communication network during inflammation. Hemoadsorption (HA) systems have shown divergent results in modulating the systemic inflammatory response during cardiopulmonary bypass (CPB) surgery. To date, the effect of HA on circulating microvesicles (MVs) in patients undergoing CPB surgery is unknown. Methods Count and function of MVs, as part of the extracellular vesicle fraction, were assessed in a subcohort of a single-center, blinded, controlled study investigating the effect of the CytoSorb device during CPB. A total of 18 patients undergoing elective CPB surgery with (n = 9) and without (n = 9) HA device were included in the study. MV phenotyping and counting was conducted via flow cytometry and procoagulatory potential was measured by tissue factor-dependent MV assays. Results Both study groups exhibited comparable counts and post-operative kinetics in MV subsets. Tissue factor-dependent procoagulatory potential was not detectable in plasma at any timepoint. Post-operative course and laboratory parameters showed no correlation with MV counts in patients undergoing CPB surgery. Conclusion Additional artificial surfaces to the CPB-circuit introduced by the use of the HA device showed no effect on circulating MV count and function in these patients. Larger studies are needed to assess and clarify the effect of HA on circulating vesicle counts and function. Trial registration ClinicalTrials.Gov Identifier: NCT01879176; registration date: June 17, 2013; https://clinicaltrials.gov/ct2/show/NCT01879176
Collapse
|
31
|
Tripisciano C, Weiss R, Karuthedom George S, Fischer MB, Weber V. Extracellular Vesicles Derived From Platelets, Red Blood Cells, and Monocyte-Like Cells Differ Regarding Their Ability to Induce Factor XII-Dependent Thrombin Generation. Front Cell Dev Biol 2020; 8:298. [PMID: 32478066 PMCID: PMC7232549 DOI: 10.3389/fcell.2020.00298] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
As transmitters of biological information, extracellular vesicles (EVs) are crucial for the maintenance of physiological homeostasis, but also contribute to pathological conditions, such as thrombotic disorders. The ability of EVs to support thrombin generation has been linked to their exposure of phosphatidylserine, an anionic phospholipid that is normally restricted to the inner leaflet of the plasma membrane but exposed on the outer leaflet during EV biogenesis. Here, we investigated whether EVs of different cellular origin and from different settings, namely platelets and red blood cells from blood bank units and a monocyte-like cell line (THP-1), differ regarding their potential to support factor XII-dependent thrombin generation. EVs were isolated from blood products or THP-1 cell culture supernatants using differential centrifugation and characterized by a combination of flow cytometry, nanoparticle tracking analysis, and Western blotting. Soluble factors co-enriched during the isolation of EVs were depleted from blood-cell derived EV fractions using size exclusion chromatography, while proteins bound to the surface of EVs were degraded by mild protease treatment. We found that platelet-derived and red blood cell-derived EVs supported factor XII-dependent thrombin generation to comparable extents, while monocytic EVs failed to support thrombin generation when added to EV-depleted human plasma. We excluded a major contribution of co-enriched soluble proteins or of proteins bound to the EV surface to the thrombogenicity of blood cell-derived EVs. Our data suggest that the enhanced potential of blood cell-derived EVs to support thrombin generation is rather due to enhanced exposure of phosphatidylserine on the surface of blood cell-derived EVs. Extending these investigations to EVs from other cell types, such as mesenchymal stromal cells, will be crucial for their future therapeutic applications.
Collapse
Affiliation(s)
- Carla Tripisciano
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - René Weiss
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Sobha Karuthedom George
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Michael B Fischer
- Center for Experimental Medicine, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria.,Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Krems, Austria.,Center for Experimental Medicine, Department for Biomedical Research, Danube University Krems, Krems, Austria
| |
Collapse
|
32
|
Wirtz MR, Almizraq RJ, Weber NC, Norris PJ, Pandey S, Spinella PC, Muszynski JA, P Acker J, Juffermans NP. Red-blood-cell manufacturing methods and storage solutions differentially induce pulmonary cell activation. Vox Sang 2020; 115:395-404. [PMID: 32166810 PMCID: PMC7497002 DOI: 10.1111/vox.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/07/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Abstract
Background and Objectives Red‐blood‐cell (RBC) transfusion is associated with lung injury, which is further exacerbated by mechanical ventilation. Manufacturing methods of blood products differ globally and may play a role in the induction of pulmonary cell activation through alteration of the immunomodulatory property of the products. Here, the effect of different manufacturing methods on pulmonary cell activation was investigated in an in vitro model of mechanical ventilation. Materials and Methods Pulmonary type II cells were incubated with supernatant from fresh and old RBC products obtained via whole blood filtration (WBF), red cell filtration (RCF), apheresis‐derived (AD) or whole blood‐derived (WBD) methods. Lung cells were subjected to 25% stretch for 24 h. Controls were non‐stretched or non‐incubated cells. Results Fresh but not old AD products and WBF products induce lung cell production of pro‐inflammatory cytokines and chemokines, which was not observed with WBD or RCF products. Effects were associated with an increased amount of platelet‐derived vesicles and an increased thrombin‐generating capacity. Mechanical stretching of lung cells induced more severe cell injury compared to un‐stretched controls, including alterations in the cytoskeleton, which was further augmented by incubation with AD products. In all read‐out parameters, RCF products seemed to induce less injury compared to the other products. Conclusions Our findings show that manufacturing methods of RBC products impact pulmonary cell activation, which may be mediated by the generation of vesicles in the product. We suggest RBC manufacturing method may be an important factor in understanding the association between RBC transfusion and lung injury.
Collapse
Affiliation(s)
- Mathijs R Wirtz
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ruqayyah J Almizraq
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, CA, USA.,Departments of Laboratory Medicine and Medicine, University of California, San Francisco, CA, USA
| | - Suchitra Pandey
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.,Blood Centers of the Pacific (member of Blood Systems), San Francisco, CA, USA
| | - Philip C Spinella
- Department of Pediatrics, Division of Critical Care, Washington University in St Louis, St Louis, MO, USA
| | - Jennifer A Muszynski
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jason P Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.,Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Noubouossie DF, Henderson MW, Mooberry M, Ilich A, Ellsworth P, Piegore M, Skinner SC, Pawlinski R, Welsby I, Renné T, Hoffman M, Monroe DM, Key NS. Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood 2020; 135:755-765. [PMID: 31971571 PMCID: PMC7059516 DOI: 10.1182/blood.2019001643] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
Storage lesion-induced, red cell-derived microvesicles (RBC-MVs) propagate coagulation by supporting the assembly of the prothrombinase complex. It has also been reported that RBC-MVs initiate coagulation via the intrinsic pathway. To elucidate the mechanism(s) of RBC-MV-induced coagulation activation, the ability of storage lesion-induced RBC-MVs to activate each zymogen of the intrinsic pathway was assessed in a buffer system. Simultaneously, the thrombin generation (TG) assay was used to assess their ability to initiate coagulation in plasma. RBC-MVs directly activated factor XII (FXII) or prekallikrein, but not FXI or FIX. RBC-MVs initiated TG in normal pooled plasma and in FXII- or FXI-deficient plasma, but not in FIX-deficient plasma, suggesting an alternate pathway that bypasses both FXII and FXI. Interestingly, RBC-MVs generated FIXa in a prekallikrein-dependent manner. Similarly, purified kallikrein activated FIX in buffer and initiated TG in normal pooled plasma, as well as FXII- or FXI-deficient plasma, but not FIX-deficient plasma. Dual inhibition of FXIIa by corn trypsin inhibitor and kallikrein by soybean trypsin inhibitor was necessary for abolishing RBC-MV-induced TG in normal pooled plasma, whereas kallikrein inhibition alone was sufficient to abolish TG in FXII- or FXI-deficient plasma. Heating RBC-MVs at 60°C for 15 minutes or pretreatment with trypsin abolished TG, suggesting the presence of MV-associated proteins that are essential for contact activation. In summary, RBC-MVs activate both FXII and prekallikrein, leading to FIX activation by 2 independent pathways: the classic FXIIa-FXI-FIX pathway and direct kallikrein activation of FIX. These data suggest novel mechanisms by which RBC transfusion mediates inflammatory and/or thrombotic outcomes.
Collapse
Affiliation(s)
| | - Michael W Henderson
- UNC Blood Research Center, and
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Anton Ilich
- Department of Medicine
- UNC Blood Research Center, and
| | - Patrick Ellsworth
- Department of Medicine
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Piegore
- Department of Medicine
- UNC Blood Research Center, and
| | - Sarah C Skinner
- Department of Medicine
- UNC Blood Research Center, and
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Ian Welsby
- Department of Anesthesiology, Duke University, Durham, NC
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Maureane Hoffman
- Department of Pathology, Veteran Affairs Medical Center, Durham, NC
| | | | - Nigel S Key
- Department of Medicine
- UNC Blood Research Center, and
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
34
|
Almizraq RJ, Kipkeu BJ, Acker JP. Platelet vesicles are potent inflammatory mediators in red blood cell products and washing reduces the inflammatory phenotype. Transfusion 2019; 60:378-390. [PMID: 31756004 DOI: 10.1111/trf.15590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Studies suggest that washing red cell concentrates (RCCs) to remove soluble mediators and/or inflammatory components, such as extracellular vesicles (EVs), may lead to better clinical outcomes. This study tested the hypothesis that non-red blood cell (RBC) generated vesicles in RCC are potent inflammatory mediators in vitro and washing RCCs can reduce these vesicles and subsequently decrease the inflammatory activity of RCCs. STUDY DESIGN AND METHODS Sixteen RCCs were pooled and split into four groups based on pre-wash storage time (Day 2 or 14; n = 4/group). Each group was tested 24 hours and 7 days post-wash. Characteristics of RBCs and EVs, cytokines released by monocytes, and expression of human umbilical vein endothelial cells (HUVECs) adhesion molecules were assessed. RESULTS All RCCs meet quality standards for hemolysis, hematocrit, and hemoglobin. Washing did not remove residual platelets from RCCs but led to a significant reduction in platelet-EV count regardless of the group. Supernatant of RCCs washed on Day 14 and stored for 24 hours had significantly lower concentrations of RBC-EVs and white blood cell EVs compared to unwashed controls. Supernatant of unwashed RCCs showed higher production of inflammatory cytokines/chemokines MCP-1, IL-8, and TNF-α, and heightened expression of HUVEC VCAM-1, which were significantly reduced by washing. Spiking washed RCC supernatants with platelet-EVs showed significant increase in IL-8, MCP-1, VCAM-1, and E-selection in groups washed on Day 14. CONCLUSIONS Platelet-EVs in RCCs are associated with pro-inflammatory activity. As washing significantly reduced RCC immunomodulatory activity, implementation of this process may improve transfusion outcomes.
Collapse
Affiliation(s)
- Ruqayyah J Almizraq
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Betty J Kipkeu
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason P Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Centre for Innovation, Canadian Blood Services, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Blood manufacturing methods affect red blood cell product characteristics and immunomodulatory activity. Blood Adv 2019; 2:2296-2306. [PMID: 30217795 DOI: 10.1182/bloodadvances.2018021931] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022] Open
Abstract
Transfusion of red cell concentrates (RCCs) is associated with increased risk of adverse outcomes that may be affected by different blood manufacturing methods and the presence of extracellular vesicles (EVs). We investigated the effect of different manufacturing methods on hemolysis, residual cells, cell-derived EVs, and immunomodulatory effects on monocyte activity. Thirty-two RCC units produced using whole blood filtration (WBF), red cell filtration (RCF), apheresis-derived (AD), and whole blood-derived (WBD) methods were examined (n = 8 per method). Residual platelet and white blood cells (WBCs) and the concentration, cell of origin, and characterization of EVs in RCC supernatants were assessed in fresh and stored supernatants. Immunomodulatory activity of RCC supernatants was assessed by quantifying monocyte cytokine production capacity in an in vitro transfusion model. RCF units yielded the lowest number of platelet and WBC-derived EVs, whereas the highest number of platelet EVs was in AD (day 5) and in WBD (day 42). The number of small EVs (<200 nm) was greater than large EVs (≥200 nm) in all tested supernatants, and the highest level of small EVs were in AD units. Immunomodulatory activity was mixed, with evidence of both inflammatory and immunosuppressive effects. Monocytes produced more inflammatory interleukin-8 after exposure to fresh WBF or expired WBD supernatants. Exposure to supernatants from AD and WBD RCC suppressed monocyte lipopolysaccharide-induced cytokine production. Manufacturing methods significantly affect RCC unit EV characteristics and are associated with an immunomodulatory effect of RCC supernatants, which may affect the quality and safety of RCCs.
Collapse
|
36
|
Ramirez‐Arcos S, Kou Y, Cayer M, De Grandmont M, Girard M, Cloutier M. The impact of red blood cell manufacturing variables on bacterial growth dynamics: a pilot study. Vox Sang 2019; 114:478-486. [DOI: 10.1111/vox.12782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/26/2019] [Accepted: 03/23/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Ramirez‐Arcos
- Canadian Blood Services Centre for Innovation Ottawa ON Canada
- Department of Biochemistry, Microbiology and Immunology University of Ottawa Ottawa ON Canada
| | - Yuntong Kou
- Canadian Blood Services Centre for Innovation Ottawa ON Canada
| | - Marie‐Pierre Cayer
- Héma‐Québec Applied Research Medical Affairs and Innovation Québec QC Canada
| | | | - Mélissa Girard
- Héma‐Québec Applied Research Medical Affairs and Innovation Québec QC Canada
| | - Marc Cloutier
- Héma‐Québec Applied Research Medical Affairs and Innovation Québec QC Canada
| |
Collapse
|
37
|
Wannez A, Devalet B, Chatelain B, Chatelain C, Dogné JM, Mullier F. Extracellular Vesicles in Red Blood Cell Concentrates: An Overview. Transfus Med Rev 2019; 33:125-130. [PMID: 30910256 DOI: 10.1016/j.tmrv.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/28/2023]
Abstract
Red blood cell (RBC) concentrates may be stored for up to 42 days before transfusion to a patient. During storage extracellular vesicles (EVs) develop and can be detected in significant amounts in RBC concentrates. The concentration of EVs is affected by component preparation methods, storage solutions, and inter-donor variation. Laboratory investigations have focused on the effect of EVs on in vitro assays of thrombin generation and immune responses. Assays for EVs in RBC concentrates are not standardized. The aims of this review are to describe the factors that determine the presence of erythrocyte-EVs in RBC concentrates, the current techniques used to characterize them, and the potential role of EV analysis as a quality control maker for RBC storage.
Collapse
Affiliation(s)
- Adeline Wannez
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium; University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Department of Pharmacy, Namur, Belgium.
| | - Bérangère Devalet
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Department of Hematology, Yvoir, Belgium
| | - Bernard Chatelain
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| | - Christian Chatelain
- University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Department of Pharmacy, Namur, Belgium
| | - Jean-Michel Dogné
- University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Department of Pharmacy, Namur, Belgium
| | - François Mullier
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| |
Collapse
|
38
|
Acker JP, Almizraq RJ, Millar D, Maurer-Spurej E. Screening of red blood cells for extracellular vesicle content as a product quality indicator. Transfusion 2018; 58:2217-2226. [PMID: 30168148 DOI: 10.1111/trf.14782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The controversy around the quality and clinical impact of stored and differentially manufactured red cell concentrates (RCCs) from different donor groups is ongoing. Current studies are limited by the lack of quality measures suitable for routine screening of RCCs. As extracellular vesicles (EVs) are markers of cellular activation or degradation, this study investigated the utility of EV screening to characterize the effects of RBCs production methods and storage. STUDY DESIGN AND METHODS RCCs were prepared by whole blood filtration or red blood cell (RBC) filtration methods, centrifuged to prepare a supernatant, and tested for EV content (dynamic light scattering or tunable resistive pulse-sensing techniques), hemolysis, ATP, and RBC deformability on Days 7, 21, and 42 of storage. To simulate nondestructive quality control (QC) testing, 1 RBC unit was tested in parallel with six 10-mL aliquots that were stored in small-volume containers. RESULTS EV content showed a linear increase with storage time (p < 0.001) and correlated with supernatant hemoglobin and inversely with ATP or RBC deformability. The method of component manufacturing influenced the characteristics of the EVs during storage. A strong correlation between both EV testing methods' measure of total EV was observed. EV content in the six aliquots were consistent at each time point but statistically higher than in the original RCCs on and after 21 days of storage. CONCLUSIONS EV content correlates with measures of hemolysis and other RBC quality indicators and could be implemented as a routine screening tool for nondestructive QC testing of RCCs.
Collapse
Affiliation(s)
- Jason P Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta.,Centre for Innovation, Canadian Blood Services, Edmonton, Alberta
| | | | - Daniel Millar
- LightIntegra Technology, Inc., Vancouver, British Columbia, Canada
| | - Elisabeth Maurer-Spurej
- LightIntegra Technology, Inc., Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|