1
|
Treutlein J, Löhlein S, Einenkel KE, Picotin R, Diekhof EK, Gruber O. Association of Unc-51-like Kinase 4 ( ULK4) with the reactivity of the extended reward system in response to conditioned stimuli. World J Biol Psychiatry 2024; 25:443-450. [PMID: 39185807 DOI: 10.1080/15622975.2024.2393381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES ULK4 is an established candidate gene for mental disorders and antipsychotic treatment response. We investigated the association of functional genetic variation at the ULK4 locus with the human extended dopaminergic reward system using fMRI during the performance of a well-established reward paradigm. METHODS Two hundred and thirty-four patients were included in this study. Association of genetic variation in the ULK4 gene with reward system functioning were determined using the Desire-Reason-Dilemma (DRD) paradigm which allows to assess brain activation in response to conditioned reward stimuli. RESULTS Variant prioritisation revealed the strongest functional signatures for the ULK4 variant rs17215589, coding for amino acid exchange Ala715Thr. For rs17215589 minor allele carriers, we detected increased activation responses to conditioned reward stimuli in the ventral tegmental area, nucleus accumbens and several cortical brain regions of the extended reward system. CONCLUSIONS Our findings provide further evidence in humans that genetic variation in ULK4 may increase the vulnerability to mental disorders, by modulating the extended reward system function. Future studies are needed to confirm the modulation of the extended reward system by ULK4 and to specify the role of this mechanism in the pathogenesis of psychiatric disorders.
Collapse
Affiliation(s)
- Jens Treutlein
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Simone Löhlein
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
- Institute of Flight Systems, University of the Bundeswehr Munich, Munich, Germany
| | - Karolin E Einenkel
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Rosanne Picotin
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Esther K Diekhof
- Institute for Cell- and Systemsbiology of Animals, Department of Biology, Neuroendocrinology Unit, Universität Hamburg, Hamburg, Germany
- Department of Psychiatry and Psychotherapy, Center for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University Göttingen, Göttingen, Germany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Kucińska A, Hawuła W, Rutkowska L, Wysocka U, Kępczyński Ł, Piotrowicz M, Chilarska T, Wieczorek-Cichecka N, Połatyńska K, Przysło Ł, Gach A. The Use of CGH Arrays for Identifying Copy Number Variations in Children with Autism Spectrum Disorder. Brain Sci 2024; 14:273. [PMID: 38539661 PMCID: PMC10968557 DOI: 10.3390/brainsci14030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
Autism spectrum disorders (ASDs) encompass a broad group of neurodevelopmental disorders with varied clinical symptoms, all being characterized by deficits in social communication and repetitive behavior. Although the etiology of ASD is heterogeneous, with many genes involved, a crucial role is believed to be played by copy number variants (CNVs). The present study examines the role of copy number variation in the development of isolated ASD, or ASD with additional clinical features, among a group of 180 patients ranging in age from two years and four months to 17 years and nine months. Samples were taken and subjected to array-based comparative genomic hybridization (aCGH), the gold standard in detecting gains or losses in the genome, using a 4 × 180 CytoSure Autism Research Array, with a resolution of around 75 kb. The results indicated the presence of nine pathogenic and six likely pathogenic imbalances, and 20 variants of uncertain significance (VUSs) among the group. Relevant variants were more prevalent in patients with ASD and additional clinical features. Twelve of the detected variants, four of which were probably pathogenic, would not have been identified using the routine 8 × 60 k microarray. These results confirm the value of microarrays in ASD diagnostics and highlight the need for dedicated tools.
Collapse
Affiliation(s)
- Agata Kucińska
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Wanda Hawuła
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Lena Rutkowska
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Urszula Wysocka
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Łukasz Kępczyński
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Małgorzata Piotrowicz
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Tatiana Chilarska
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Nina Wieczorek-Cichecka
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Katarzyna Połatyńska
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (K.P.); (Ł.P.)
| | - Łukasz Przysło
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (K.P.); (Ł.P.)
| | - Agnieszka Gach
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| |
Collapse
|
3
|
Tian M, Liu X, Lin S, Wang J, Luo S, Gao L, Chen X, Liang X, Liu Z, He N, Yi Y, Liao W. Variants in BRWD3 associated with X-linked partial epilepsy without intellectual disability. CNS Neurosci Ther 2022; 29:727-735. [PMID: 36514184 PMCID: PMC9873514 DOI: 10.1111/cns.14057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS Etiology of the majority patients with idiopathic partial epilepsy (IPE) remains elusive. We thus screened the potential disease-associated variants in the patients with IPE. METHODS Trios-based whole exome sequencing was performed in a cohort of 320 patients with IPE. Frequency and molecular effects of variants were predicted. RESULTS Three novel BRWD3 variants were identified in five unrelated cases with IPE, which were four male cases and one female case. The variants included two recurrent missense variants (c.836C>T/p.Thr279Ile and c.4234A>C/p.Ile1412Leu) and one intronic variant close to splice site (c.2475 + 6A>G). The two missense variants were located in WD40 repeat domain and bromodomain, respectively. They were predicted to be damaging by silico tools and change hydrogen bonds with surrounding amino acids. The frequency of mutant alleles in this cohort was significantly higher than that in the controls of East Asian and all population of gnomAD. All these variants were inherited from the asymptomatic mothers. Four male cases presented frequent seizures at onset, while the female case only had two fever-triggered seizures. They showed good responses to valproate and lamotrigine, then finally became seizure free. All the cases had no intellectual disability. Further analysis demonstrated that all previously reported destructive variants of BRWD3 caused intellectual disability, while missense variants located in WD40 repeat domains and bromodomains of BRWD3 were associated with epilepsy. CONCLUSION BRWD3 gene is potentially associated with X-linked partial epilepsy without intellectual disability. The genotypes and locations of BRWD3 variants may explain for their phenotypic variation.
Collapse
Affiliation(s)
- Mao‐Qiang Tian
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina,Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Xiao‐Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Si‐Mei Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Sheng Luo
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Liang‐Di Gao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Xiao‐Bin Chen
- Department of PediatricsThe 900th Hospital of Joint Logistic Support ForceFuzhouChina
| | - Xiao‐Yu Liang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Zhi‐Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare HospitalSouthern Medical UniversityFoshanChina
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Yong‐Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Wei‐Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | | |
Collapse
|
4
|
Hu L, Zhou BY, Yang CP, Lu DY, Tao YC, Chen L, Zhang L, Su JH, Huang Y, Song NN, Chen JY, Zhao L, Chen Y, He CH, Wang YB, Lang B, Ding YQ. Deletion of Schizophrenia Susceptibility Gene Ulk4 Leads to Abnormal Cognitive Behaviors via Akt-GSK-3 Signaling Pathway in Mice. Schizophr Bull 2022; 48:804-813. [PMID: 35522199 PMCID: PMC9212110 DOI: 10.1093/schbul/sbac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Despite of strenuous research in the past decades, the etiology of schizophrenia (SCZ) still remains incredibly controversial. Previous genetic analysis has uncovered a close association of Unc-51 like kinase 4 (ULK4), a family member of Unc-51-like serine/threonine kinase, with SCZ. However, animal behavior data which may connect Ulk4 deficiency with psychiatric disorders, particularly SCZ are still missing. METHODS We generated Emx1-Cre:Ulk4flox/flox conditional knockout (CKO) mice, in which Ulk4 was deleted in the excitatory neurons of cerebral cortex and hippocampus. RESULTS The cerebral cellular architecture was maintained but the spine density of pyramidal neurons was reduced in Ulk4 CKO mice. CKO mice showed deficits in the spatial and working memories and sensorimotor gating. Levels of p-Akt and p-GSK-3α/β were markedly reduced in the CKO mice indicating an elevation of GSK-3 signaling. Mechanistically, Ulk4 may regulate the GSK-3 signaling via putative protein complex comprising of two phosphatases, protein phosphatase 2A (PP2A) and 1α (PP1α). Indeed, the reduction of p-Akt and p-GSK-3α/β was rescued by administration of inhibitor acting on PP2A and PP1α in CKO mice. CONCLUSIONS Our data identified potential downstream signaling pathway of Ulk4, which plays important roles in the cognitive functions and when defective, may promote SCZ-like pathogenesis and behavioral phenotypes in mice.
Collapse
Affiliation(s)
| | | | - Cui-Ping Yang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Da-Yun Lu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yun-Chao Tao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin Chen
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Jun-Hui Su
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Ying Huang
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li Zhao
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Yi Chen
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Chun-Hui He
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Qiang Ding
- To whom correspondence should be addressed; Shanghai 200032, China; tel: +86 021 5423 7169, e-mail:
| |
Collapse
|
5
|
Luo S, Zheng N, Lang B. ULK4 in Neurodevelopmental and Neuropsychiatric Disorders. Front Cell Dev Biol 2022; 10:873706. [PMID: 35493088 PMCID: PMC9039724 DOI: 10.3389/fcell.2022.873706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
The gene Unc51-like kinase 4 (ULK4) belongs to the Unc-51-like serine/threonine kinase family and is assumed to encode a pseudokinase with unclear function. Recently, emerging evidence has suggested that ULK4 may be etiologically involved in a spectrum of neuropsychiatric disorders including schizophrenia, but the underlying mechanism remains unaddressed. Here, we summarize the key findings of the structure and function of the ULK4 protein to provide comprehensive insights to better understand ULK4-related neurodevelopmental and neuropsychiatric disorders and to aid in the development of a ULK4-based therapeutic strategy.
Collapse
Affiliation(s)
- Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, China
| | - Nanxi Zheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Nanxi Zheng, ; Bing Lang,
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Nanxi Zheng, ; Bing Lang,
| |
Collapse
|
6
|
Oszer A, Bąbol-Pokora K, Kołtan S, Pastorczak A, Młynarski W. Germline 3p22.1 microdeletion encompassing RPSA gene is an ultra-rare cause of isolated asplenia. Mol Cytogenet 2021; 14:51. [PMID: 34781974 PMCID: PMC8591925 DOI: 10.1186/s13039-021-00571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Isolated Congenital Asplenia (ICA, OMIM #271400) is a rare, life-threatening abnormality causing immunodeficiency, which is characterized by the absence of a spleen. Diagnosis should be completed in early childhood and antibiotic prophylaxis applied with additional vaccinations. Case presentation We report the case of a six-month old girl with hematologic abnormalities and asplenia documented in imaging, with Howell-Jolly bodies in peripheral blood smear. Targeted Next Generation Sequencing screening did not reveal any pathogenic variant in genes associated with congenital asplenia. Since absence of the spleen was found by imaging, high-resolution copy number variations detection was also performed using genomic Single Nucleotide Polymorphism microarray: a heterozygous 337.2 kb deletion encompassing the RPSA gene was observed, together with SLC25A38, SNORA6, SNORA62 and MOBP genes. Despite haploinsufficiency of SLC25A38, SNORA6, SNORA62 and MOBP, no change in the clinical picture was observed. A search of available CNV databases found that a deletion of the RPSA locus seems to be unique and only duplications were found in this region with the frequency of less than 0.02%. Conclusions Copy number variations in RPSA gene locus are ultrarare cause of isolated asplenia. Furthermore, since the patient does not present any concomitant clinical features, it would appear that haploinsufficiency of SLC25A38, SNORA6, SNORA62 and MOBP genes does not affect the phenotype of patients. However, to confirm this thesis a longer follow-up of the patient’s development is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s13039-021-00571-0.
Collapse
Affiliation(s)
- Aleksandra Oszer
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Sylwia Kołtan
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
7
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Brommage R, Powell DR, Vogel P. Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis Model Mech 2019; 12:dmm038224. [PMID: 31064765 PMCID: PMC6550044 DOI: 10.1242/dmm.038224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Two large-scale mouse gene knockout phenotyping campaigns have provided extensive data on the functions of thousands of mammalian genes. The ongoing International Mouse Phenotyping Consortium (IMPC), with the goal of examining all ∼20,000 mouse genes, has examined 5115 genes since 2011, and phenotypic data from several analyses are available on the IMPC website (www.mousephenotype.org). Mutant mice having at least one human genetic disease-associated phenotype are available for 185 IMPC genes. Lexicon Pharmaceuticals' Genome5000™ campaign performed similar analyses between 2000 and the end of 2008 focusing on the druggable genome, including enzymes, receptors, transporters, channels and secreted proteins. Mutants (4654 genes, with 3762 viable adult homozygous lines) with therapeutically interesting phenotypes were studied extensively. Importantly, phenotypes for 29 Lexicon mouse gene knockouts were published prior to observations of similar phenotypes resulting from homologous mutations in human genetic disorders. Knockout mouse phenotypes for an additional 30 genes mimicked previously published human genetic disorders. Several of these models have helped develop effective treatments for human diseases. For example, studying Tph1 knockout mice (lacking peripheral serotonin) aided the development of telotristat ethyl, an approved treatment for carcinoid syndrome. Sglt1 (also known as Slc5a1) and Sglt2 (also known as Slc5a2) knockout mice were employed to develop sotagliflozin, a dual SGLT1/SGLT2 inhibitor having success in clinical trials for diabetes. Clinical trials evaluating inhibitors of AAK1 (neuropathic pain) and SGLT1 (diabetes) are underway. The research community can take advantage of these unbiased analyses of gene function in mice, including the minimally studied 'ignorome' genes.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - David R Powell
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - Peter Vogel
- St. Jude Children's Research Hospital, Pathology, MS 250, Room C5036A, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Tenorio J, Alarcón P, Arias P, Ramos FJ, Campistol J, Climent S, García‐Miñaur S, Dapía I, Hernández A, Nevado J, Solís M, Ruiz‐Pérez VL, Lapunzina P. MRX93 syndrome (
BRWD3
gene): five new patients with novel mutations. Clin Genet 2019; 95:726-731. [DOI: 10.1111/cge.13504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jair Tenorio
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Pablo Alarcón
- Genetic SectionHospital Clínico Universidad de Chile Santiago Chile
| | - Pedro Arias
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Feliciano J. Ramos
- Clinical Genetics Unit, Service of PaediatricsUniversity Hospital “Lozano Blesa”, University of Zaragoza School of Medicine Zaragoza Spain
| | - Jaume Campistol
- Neurology UnitHospital Sant Joan de Deu ‐ Passeig Sant Joan de Déu Barcelona Spain
| | | | - Sixto García‐Miñaur
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Irene Dapía
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Alicia Hernández
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Julián Nevado
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Mario Solís
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Víctor L. Ruiz‐Pérez
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
- Instituto de Investigaciones Biomedicas de Madrid (CSIC‐UAM)Arturo Duperier Madrid Spain
| | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | | |
Collapse
|