1
|
Guerra-Cantera S, Frago LM, Espinoza-Chavarria Y, Collado-Pérez R, Jiménez-Hernaiz M, Torrecilla-Parra M, Barrios V, Belsham DD, Laursen LS, Oxvig C, Argente J, Chowen JA. Palmitic Acid Modulation of the Insulin-Like Growth Factor System in Hypothalamic Astrocytes and Neurons. Neuroendocrinology 2024; 114:958-974. [PMID: 39043147 DOI: 10.1159/000540442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Insulin-like growth factor (IGF)1 and IGF2 have neuroprotective effects, but less is known regarding how other members of the IGF system, including IGF binding proteins (IGFBPs) and the regulatory proteinase pappalysin-1 (PAPP-A) and its endogenous inhibitor stanniocalcin-2 (STC2) participate in this process. Here, we analyzed whether these members of the IGF system are modified in neurons and astrocytes in response to palmitic acid (PA), a fatty acid that induces cell stress when increased centrally. METHODS Primary hypothalamic astrocyte cultures from male and female PND2 rats and the pro-opiomelanocortin (POMC) neuronal cell line, mHypoA-POMC/GFP-2, were treated with PA, IGF1 or both. To analyze the role of STC2 in astrocytes, siRNA assays were employed. RESULTS In astrocytes of both sexes, PA rapidly increased cell stress factors followed by increased Pappa and Stc2 mRNA levels and then a decrease in Igf1, Igf2, and Igfbp2 expression and cell number. Exogenous IGF1 did not revert these effects. In mHypoA-POMC/GFP-2 neurons, PA reduced cell number and Pomc and Igf1 mRNA levels, and increased Igfbp2 and Stc2, again with no effect of exogenous IGF1. PA increased STC2 expression, but no effects of decreasing its levels by interference assays or exogenous STC2 treatment in astrocytes were found. CONCLUSIONS The response of the IGF system to PA was cell and sex specific, but no protective effects of the IGFs were found. However, the modifications in hypothalamic PAPP-A and STC2 indicate that further studies are required to determine their role in the response to fatty acids and possibly in metabolic control.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Yesenia Espinoza-Chavarria
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Torrecilla-Parra
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
2
|
Ilyas MF, Lado A, Budiono EA, Suryaputra GP, Ramadhana GA, Novika RGH. Platelet-to-lymphocyte ratio as a prognostic predictive marker on adults with traumatic brain injury: Systematic review. Surg Neurol Int 2024; 15:205. [PMID: 38974549 PMCID: PMC11225503 DOI: 10.25259/sni_878_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/17/2024] [Indexed: 07/09/2024] Open
Abstract
Background The platelet-to-lymphocyte ratio (PLR) has emerged as a prognostic predictive marker in various diseases, but its role in traumatic brain injury (TBI) has not been fully elucidated. This study aims to evaluate the role of PLR as a prognostic predictive marker in adults with TBI. Methods This systematic review was conducted according to the Preferred Reporting Items in the Systematic Review and Meta-analysis Guidelines 2020. A comprehensive search was performed using PubMed, Google Scholar, Scopus, Crossref, OpenAlex, Semantic Scholar, Library of Congress, and Jisc Library Hub Discover database to identify relevant studies published up to February 2023. Both prospective and retrospective observational studies written in English or Indonesian were included in the study. No restrictions were placed on the year and country of publication and duration of follow-up. Study quality was evaluated using the Newcastle-Ottawa Scale (NOS), and the risk of bias was estimated using the Cochrane Risk of Bias Assessment Tool for Nonrandomized Research (Ro-BANS) tool. A narrative synthesis was also conducted to summarize the findings. Results We retrieved 1644 references using the search strategy, and 1623 references were excluded based on screening the title and abstract. The full text was retrieved for 20 articles and subjected to the eligibility criteria, of which 16 were excluded from the study. Four papers with a total of 1.467 sample sizes were included in the review. The median of NOS for study quality was 8-9, with the risk of selection bias using the Ro-BANS tool being low in all studies except for the blinding outcome assessments, which are all unclear. The study finding suggests that the PLR has the potential as an independent prognostic predictive marker in adult patients with TBI. In three studies, a high level of admission PLR may independently predict an increasing mortality risk in 30 days and adverse outcomes measured by the Glasgow outcome scale in 6 months following TBI. However, one study shows that PLR may have limited value as a predictor of mortality or favorable neurological outcomes compared to other hematological parameters. Further studies were needed to establish the clinical utility of PLR and fill the present gaps. Conclusion This systematic review provides evidence supporting the utilization of PLR as a prognostic predictive marker in adult patients with TBI. The PLR can mainly be utilized, especially in rural practice, as PLR is a simple, low-cost, and routinely performed hematological examination.
Collapse
Affiliation(s)
- Muhana Fawwazy Ilyas
- Department of Neurology, Faculty of Medicine, Dr. Moewardi General Hospital, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Aldebaran Lado
- Faculty of Medicine, Dr. Moewardi General Hospital, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Enrico Ananda Budiono
- Faculty of Medicine, Dr. Moewardi General Hospital, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Gregorius Prama Suryaputra
- Faculty of Medicine, Dr. Moewardi General Hospital, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Geizar Arsika Ramadhana
- Department of Neurosurgery, Dr. Moewardi General Hospital, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Revi Gama Hatta Novika
- Faculty of Medicine, Dr. Moewardi General Hospital, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| |
Collapse
|
3
|
Zhang D, Zhuang D, Li T, Liu X, Zhang Z, Zhu L, Tian F, Chen X, Li K, Chen W, Sheng J. An analysis of neutrophil-to-lymphocyte ratios and monocyte-to-lymphocyte ratios with six-month prognosis after cerebral contusions. Front Immunol 2024; 15:1336862. [PMID: 38545111 PMCID: PMC10967015 DOI: 10.3389/fimmu.2024.1336862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Background and purpose Neutrophil-to-lymphocyte ratio (NLR) and monocyte-to-lymphocyte ratio (MLR) have been identified as potential prognostic markers in various conditions, including cancer, cardiovascular disease, and stroke. This study aims to investigate the dynamic changes of NLR and MLR following cerebral contusion and their associations with six-month outcomes. Methods Retrospective data were collected from January 2016 to April 2020, including patients diagnosed with cerebral contusion and discharged from two teaching-oriented tertiary hospitals in Southern China. Patient demographics, clinical manifestations, laboratory test results (neutrophil, monocyte, and lymphocyte counts) obtained at admission, 24 hours, and one week after cerebral contusion, as well as outcomes, were analyzed. An unfavorable outcome was defined as a Glasgow Outcome Score (GOS) of 0-3 at six months. Logistic regression analysis was performed to identify independent predictors of prognosis, while receiver characteristic curve analysis was used to determine the optimal cutoff values for NLR and MLR. Results A total of 552 patients (mean age 47.40, SD 17.09) were included, with 73.19% being male. Higher NLR at one-week post-cerebral contusion (adjusted OR = 4.19, 95%CI, 1.16 - 15.16, P = 0.029) and higher MLR at admission and at 24 h (5.80, 1.40 - 24.02, P = 0.015; 9.06, 1.45 - 56.54, P = 0.018, respectively) were significantly associated with a 6-month unfavorable prognosis after adjustment for other risk factors by multiple logistic regression. The NLR at admission and 24 hours, as well as the MLR at one week, were not significant predictors for a 6-month unfavorable prognosis. Based on receiver operating characteristic curve analysis, the optimal thresholds of NLR at 1 week and MLR at admission after cerebral contusion that best discriminated a unfavorable outcome at 6-month were 6.39 (81.60% sensitivity and 70.73% specificity) and 0.76 (55.47% sensitivity and 78.26% specificity), respectively. Conclusion NLR measured one week after cerebral contusion and MLR measured at admission may serve as predictive markers for a 6-month unfavorable prognosis. These ratios hold potential as parameters for risk stratification in patients with cerebral contusion, complementing established biomarkers in diagnosis and treatment. However, further prospective studies with larger cohorts are needed to validate these findings.
Collapse
Affiliation(s)
- Dangui Zhang
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Dongzhou Zhuang
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tian Li
- Department of Microbiology and Immunology and Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xueer Liu
- Department of Microbiology and Immunology and Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zelin Zhang
- Department of Microbiology and Immunology and Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Lihong Zhu
- Department of Microbiology and Immunology and Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Fei Tian
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology and Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Kangsheng Li
- Department of Microbiology and Immunology and Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology and Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
4
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
5
|
Atashgar F, Shafieian M, Abolfathi N. The effect of the properties of cell nucleus and underlying substrate on the response of finite element models of astrocytes undergoing mechanical stimulations. Comput Methods Biomech Biomed Engin 2023; 26:1572-1581. [PMID: 36324266 DOI: 10.1080/10255842.2022.2128673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Astrocyte cells play a critical role in the mechanical behaviour of the brain tissue; hence understanding the properties of Astrocytes is a big step toward understanding brain diseases and abnormalities. Conventionally, atomic force microscopy (AFM) has been used as one of the most powerful tools to characterize the mechanical properties of cells. However, due to the complexities of experimental work and the complex behaviour of living cells, the finite element method (FEM) is commonly used to estimate the cells' response to mechanical stimulations. In this study, we developed a finite element model of the Astrocyte cells to investigate the effect of two key parameters that could affect the response of the cell to mechanical loading; the properties of the underlying substrate and the nucleus. In this regard, the cells were placed on two different substrates in terms of thickness and stiffness (gel and glass) with varying properties of the nucleus. The main achievement of this study was to develop an insight to investigate the response of the Astrocytes to mechanical loading for future studies, both experimentally and computationally.
Collapse
Affiliation(s)
- Fatemeh Atashgar
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Nabiollah Abolfathi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Barreto GE, Gonzalez J, Ramírez D. Network pharmacology and topological analysis on tibolone metabolites and their molecular mechanisms in traumatic brain injury. Biomed Pharmacother 2023; 165:115089. [PMID: 37418975 DOI: 10.1016/j.biopha.2023.115089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Traumatic brain injury (TBI) is a pathology of great social impact, affecting millions of people worldwide. Despite the scientific advances to improve the management of TBI in recent years, we still do not have a specific treatment that controls the inflammatory process after mechanical trauma. The discovery and implementation of new treatments is a long and expensive process, making the repurpose of approved drugs for other pathologies a clinical interest. Tibolone is a drug in use for the treatment of symptoms associated with menopause and has been shown to have a broad spectrum of actions by regulating estrogen, androgen and progesterone receptors, whose activation exerts potent anti-inflammatory and antioxidant effects. In the present study, we aimed to investigate the therapeutic potential of the tibolone metabolites 3α-Hydroxytibolone, 3β-Hydroxytibolone, and Δ4-Tibolone as a possible therapy in TBI using network pharmacology and network topology analysis. Our results demonstrate that the estrogenic component mediated by the α and β metabolites can regulate synaptic transmission and cell metabolism, while the Δ metabolite may be involved in modulating the post-TBI inflammatory process. We identified several molecular targets, including KDR, ESR2, AR, NR3C1, PPARD, and PPARA, which are known to play critical roles in the pathogenesis of TBI. Tibolone metabolites were predicted to regulate the expression of key genes involved in oxidative stress, inflammation, and apoptosis. Overall, the repurposing of tibolone as a neuroprotective treatment for TBI holds promise for future clinical trials. However, further studies are needed to confirm its efficacy and safety in TBI patients.
Collapse
Affiliation(s)
- George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
7
|
Phillips AK, Keller MF, McClung JP, Steele N, Witkop CT, Wu TJ. Physical Health and Well-being: Updates and the Way Ahead. Mil Med 2023; 188:9-18. [PMID: 37490559 DOI: 10.1093/milmed/usac370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 02/24/2022] [Accepted: 11/14/2022] [Indexed: 07/27/2023] Open
Abstract
INTRODUCTION The Women in Combat Summit 2021 "Forging the Future: How Women Enhance the Fighting Force" took place during February 9-11, 2021, via a virtual conference platform. The third and final day of the Summit regarded the physical health and well-being of military women and included the topics of urogenital health, nutrition and iron-deficiency anemia, unintended pregnancy and contraception, and traumatic brain injury. MATERIALS AND METHODS After presentations on the topics earlier, interested conference attendees were invited to participate in focus groups to discuss and review policy recommendations for physical health and well-being in military women. Discussions centered around the topics discussed during the presentations, and suggestions for future Women in Combat Summits were noted. Specifics of the methods of the Summit are presented elsewhere in this supplement. RESULTS We formulated research and policy recommendations for urogenital health, nutrition and iron-deficiency anemia, contraception and unintended pregnancy, and traumatic brain injury. CONCLUSIONS In order to continue to develop the future health of military women, health care providers, researchers, and policymakers should consider the recommendations made in this supplement as they continue to build on the state of the science and forge the future.
Collapse
Affiliation(s)
- Angela K Phillips
- Malcolm Grow Medical Clinics and Surgery Center, Joint Base Andrews, MD 20762, USA
| | - Margaux F Keller
- Henry Jackson Foundation at the Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
| | - James P McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Nancy Steele
- School of Nursing, University of North Florida, Jacksonville, FL 32224, USA
| | - Catherine T Witkop
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD 20814, USA
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University, Bethesda, MD 20814, USA
| | - T John Wu
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Murlanova K, Jouroukhin Y, Novototskaya-Vlasova K, Huseynov S, Pletnikova O, Morales MJ, Guan Y, Kamiya A, Bergles DE, Dietz DM, Pletnikov MV. Loss of Astrocytic µ Opioid Receptors Exacerbates Aversion Associated with Morphine Withdrawal in Mice: Role of Mitochondrial Respiration. Cells 2023; 12:1412. [PMID: 37408246 PMCID: PMC10216734 DOI: 10.3390/cells12101412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Astrocytes express mu/µ opioid receptors, but the function of these receptors remains poorly understood. We evaluated the effects of astrocyte-restricted knockout of µ opioid receptors on reward- and aversion-associated behaviors in mice chronically exposed to morphine. Specifically, one of the floxed alleles of the Oprm1 gene encoding µ opioid receptor 1 was selectively deleted from brain astrocytes in Oprm1 inducible conditional knockout (icKO) mice. These mice did not exhibit changes in locomotor activity, anxiety, or novel object recognition, or in their responses to the acute analgesic effects of morphine. Oprm1 icKO mice displayed increased locomotor activity in response to acute morphine administration but unaltered locomotor sensitization. Oprm1 icKO mice showed normal morphine-induced conditioned place preference but exhibited stronger conditioned place aversion associated with naloxone-precipitated morphine withdrawal. Notably, elevated conditioned place aversion lasted up to 6 weeks in Oprm1 icKO mice. Astrocytes isolated from the brains of Oprm1 icKO mice had unchanged levels of glycolysis but had elevated oxidative phosphorylation. The basal augmentation of oxidative phosphorylation in Oprm1 icKO mice was further exacerbated by naloxone-precipitated withdrawal from morphine and, similar to that for conditioned place aversion, was still present 6 weeks later. Our findings suggest that µ opioid receptors in astrocytes are linked to oxidative phosphorylation and they contribute to long-term changes associated with opioid withdrawal.
Collapse
Affiliation(s)
- Kateryna Murlanova
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yan Jouroukhin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ksenia Novototskaya-Vlasova
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Shovgi Huseynov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Olga Pletnikova
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J. Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dwight E. Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Mikhail V. Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Pavan B, Guzzo S, De Bonis P, Fadiga L. β-Estradiol 17-acetate enhances the in vitro vitality of endothelial cells isolated from the brain of patients subjected to neurosurgery. Neural Regen Res 2023; 18:389-395. [PMID: 35900435 PMCID: PMC9396507 DOI: 10.4103/1673-5374.346054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In the current landscape of endothelial cell isolation for building in vitro models of the blood-brain barrier, our work moves towards reproducing the features of the neurovascular unit to achieve glial compliance through an innovative biomimetic coating technology for brain chronic implants. We hypothesized that the autologous origin of human brain microvascular endothelial cells (hBMECs) is the first requirement for the suitable coating to prevent the glial inflammatory response triggered by foreign neuroprosthetics. Therefore, this study established a new procedure to preserve the in vitro viability of hBMECs isolated from gray and white matter specimens taken from neurosurgery patients. Culturing adult hBMECs is generally considered a challenging task due to the difficult survival ex vivo and progressive reduction in proliferation of these cells. The addition of 10 nM β-estradiol 17-acetate to the hBMEC culture medium was found to be an essential and discriminating factor promoting adhesion and proliferation both after isolation and thawing, supporting the well-known protective role played by estrogens on microvessels. In particular, β-estradiol 17-acetate was critical for both freshly isolated and thawed female-derived hBMECs, while it was not necessary for freshly isolated male-derived hBMECs; however, it did counteract the decay in the viability of the latter after thawing. The tumor-free hBMECs were thus cultured for up to 2 months and their growth efficiency was assessed before and after two periods of cryopreservation. Despite the thermal stress, the hBMECs remained viable and suitable for re-freezing and storage for several months. This approach increasing in vitro viability of hBMECs opens new perspectives for the use of cryopreserved autologous hBMECs as biomimetic therapeutic tools, offering the potential to avoid additional surgical sampling for each patient.
Collapse
|
10
|
Dong Q, Yang S, Liao H, He Q, Xiao J. Preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury. Food Sci Nutr 2022; 10:4403-4410. [PMID: 36514753 PMCID: PMC9731527 DOI: 10.1002/fsn3.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is characterized by cellular damage and inflammation in lesioned brain tissue. Ferulic acid has been shown to have a melioration effect on neurological functions. However, the active pharmacological effects and the underlying mechanisms of ferulic acid against TBI remain unclear. On the basis of network pharmacology and molecular docking methodology, this study aimed to investigate the beneficial effects of ferulic acid in treating TBI, and characterized the detailed biotargets and mechanisms of these actions. The identified core targets were validated via in silico simulation. We identified 91 overlapping targets associated with ferulic acid and TBI. In-silico simulation analysis validated the putative core targets of tumor protein p53, mitogen-activated protein kinase (MAPK) 1, and estrogen receptor 1. The Gene Ontology-enriched annotations and findings were largely associated with cell proliferation, apoptosis, and inflammation in nerve cells. Additional Kyoto Encyclopedia of Genes and Genomes enrichment analysis unmasked the pharmacological pathways of ferulic acid in treating TBI, including the MAPK signaling pathway and hypoxia-inducible factor-1 signaling pathway. Bioinformatic analyses and findings provide a new preclinical strategy for revealing the core targets and network pathways of ferulic acid in treating TBI. Moreover, some bioinformatic findings were computationally validated in silico for exhibiting the neuroprotective action of ferulic acid against TBI.
Collapse
Affiliation(s)
- Qinghua Dong
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Shenglin Yang
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Huafeng Liao
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Qi He
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Junxin Xiao
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| |
Collapse
|
11
|
Ghozy S, El-Qushayri AE, Varney J, Kacimi SEO, Bahbah EI, Morra ME, Shah J, Kallmes KM, Abbas AS, Elfil M, Alghamdi BS, Ashraf G, Alhabbab R, Dmytriw AA. The prognostic value of neutrophil-to-lymphocyte ratio in patients with traumatic brain injury: A systematic review. Front Neurol 2022; 13:1021877. [PMID: 36353130 PMCID: PMC9638118 DOI: 10.3389/fneur.2022.1021877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) places a heavy load on healthcare systems worldwide. Despite significant advancements in care, the TBI-related mortality is 30–50% and in most cases involves adolescents or young adults. Previous literature has suggested that neutrophil-to-lymphocyte ratio (NLR) may serve as a sensitive biomarker in predicting clinical outcomes following TBI. With conclusive evidence in this regard lacking, this study aimed to systematically review all original studies reporting the effectiveness of NLR as a predictor of TBI outcomes. A systematic search of eight databases was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA) recommendations. The risk of bias was assessed using the Quality in Prognostic Studies (QUIPS) tool. Eight studies were ultimately included in the study. In most of the studies interrogated, severity outcomes were successfully predicted by NLR in both univariate and multivariate prediction models, in different follow-up durations up to 6 months. A high NLR at 24 and 48 h after TBI in pediatric patients was associated with worse clinical outcomes. On pooling the NLR values within studies assessing its association with the outcome severity (favorable or not), patients with favorable outcomes had 37% lower NLR values than those with unfavorable ones (RoM= 0.63; 95% CI = 0.44–0.88; p = 0.007). However, there were considerable heterogeneity in effect estimates (I2 = 99%; p < 0.001). Moreover, NLR was a useful indicator of mortality at both 6-month and 1-year intervals. In conjunction with clinical and radiographic parameters, NLR might be a useful, inexpensive marker in predicting clinical outcomes in patients with TBI. However, the considerable heterogeneity in current literature keeps it under investigation with further studies are warranted to confirm the reliability of NLR in predicting TBI outcomes.
Collapse
Affiliation(s)
- Sherief Ghozy
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States
- Nuffield Department of Primary Care Health Sciences and Department for Continuing Education (EBHC Program), Oxford University, Oxford, United Kingdom
- *Correspondence: Sherief Ghozy
| | | | - Joseph Varney
- School of Medicine, American University of the Caribbean, Philipsburg, Sint Maarten
| | | | | | | | - Jaffer Shah
- Drexel University College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Kevin M. Kallmes
- Nested Knowledge, Saint Paul, MN, United States
- Superior Medical Experts, Saint Paul, MN, United States
| | | | - Mohamed Elfil
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Ghulam Ashraf
| | - Rowa Alhabbab
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adam A. Dmytriw
- Neurointerventional Program, Departments of Medical Imaging and Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
- Neuroendovascular Program, Massachusetts General Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Khayatan D, Razavi SM, Arab ZN, Niknejad AH, Nouri K, Momtaz S, Gumpricht E, Jamialahmadi T, Abdolghaffari AH, Barreto GE, Sahebkar A. Protective effects of curcumin against traumatic brain injury. Biomed Pharmacother 2022; 154:113621. [PMID: 36055110 DOI: 10.1016/j.biopha.2022.113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 02/06/2023] Open
|
13
|
Murlanova K, Jouroukhin Y, Huseynov S, Pletnikova O, Morales MJ, Guan Y, Baraban JM, Bergles DE, Pletnikov MV. Deficient mitochondrial respiration in astrocytes impairs trace fear conditioning and increases naloxone-precipitated aversion in morphine-dependent mice. Glia 2022; 70:1289-1300. [PMID: 35275429 PMCID: PMC9773362 DOI: 10.1002/glia.24169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are abundant in the fine processes of astrocytes, however, potential roles for astrocyte mitochondria remain poorly understood. In the present study, we performed a systematic examination of the effects of abnormal oxidative phosphorylation in astrocytes on several mouse behaviors. Impaired astrocyte oxidative phosphorylation was produced by astrocyte-specific deletion of the nuclear mitochondrial gene, Cox10, that encodes an accessory protein of complex IV, the protoheme:heme-O-farnesyl transferase. As expected, conditional deletion of the Cox10 gene in mice (cKO mice) significantly reduced expression of COX10 and Cytochrome c oxidase subunit I (MTCO1) of Complex IV, resulting in decreased oxidative phosphorylation without significantly affecting glycolysis. No effects of the deletion were observed on locomotor activity, anxiety-like behavior, nociception, or spontaneous alternation. Cox10 cKO female mice exhibited mildly impaired novel object recognition, while Cox10 cKO male mice were moderately deficient in trace fear conditioning. No group-related changes were observed in conditional place preference (CPP) that assessed effects of morphine on reward. In contrast to CPP, Cox10 cKO mice demonstrated significantly increased aversive behaviors produced by naloxone-precipitated withdrawal following chronic exposure to morphine, that is, jumping and avoidance behavior as assessed by conditional place aversion (CPA). Our study suggests that astrocyte oxidative phosphorylation may contribute to behaviors associated with greater cognitive load and/or aversive and stressful conditions.
Collapse
Affiliation(s)
- Kateryna Murlanova
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Yan Jouroukhin
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Shovgi Huseynov
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA,Molecular Basis of Integrative Activity, Academician Abdulla Garayev Institute of Physiology, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
| | - Olga Pletnikova
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine; State University of New York at Buffalo, Buffalo, New York, USA,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J. Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jay M. Baraban
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dwight E. Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mikhail V. Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Mahmoudi A, Heydari S, Markina YV, Barreto GE, Sahebkar A. Role of statins in regulating molecular pathways following traumatic brain injury: A system pharmacology study. Biomed Pharmacother 2022; 153:113304. [PMID: 35724514 DOI: 10.1016/j.biopha.2022.113304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious disorder with debilitating physical and psychological complications. Previous studies have indicated that genetic factors have a critical role in modulating the secondary phase of injury in TBI. Statins have interesting pleiotropic properties such as antiapoptotic, antioxidative, and anti-inflammatory effects, which make them a suitable class of drugs for repurposing in TBI. In this study, we aimed to explore how statins modulate proteins and pathways involved in TBI using system pharmacology. We first explored the target associations with statins in two databases to discover critical clustering groups, candidate hub and critical hub genes in the network of TBI, and the possible connections of statins with TBI-related genes. Our results showed 1763 genes associated with TBI. Subsequently, the analysis of centralities in the PPI network displayed 55 candidate hub genes and 15 hub genes. Besides, MCODE analysis based on threshold score:10 determined four modular clusters. Intersection analysis of genes related to TBI and statins demonstrated 204 shared proteins, which suggested that statins influence 31 candidate hub and 9 hub genes. Moreover, statins had the highest interaction with MCODE1. The biological processes of the 31 shared proteins are related to gene expression, inflammation, antioxidant activity, and cell proliferation. Biological enriched pathways showed Programmed Cell Death proteins, AGE-RAGE signaling pathway, C-type lectin receptor signalling pathway, and MAPK signaling pathway as top clusters. In conclusion, statins could target several critical post-TBI genes mainly involved in inflammation and apoptosis, supporting the previous research results as a potential therapeutic agent.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, the Islamic Republic of Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Sahar Heydari
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, the Islamic Republic of Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Yuliya V Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology of FSBI "Petrovsky National Research Center of Surgery", 3 Tsyurupy Str., 117418, Moscow, the Russian Federation
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran.
| |
Collapse
|
15
|
Abstract
Research into TBI biomarkers has accelerated rapidly in the past decade owing to the heterogeneous nature of TBI pathologies and management, which pose challenges to TBI evaluation, management, and prognosis. TBI biomarker proteins resulting from axonal, neuronal, or glial cell injuries are widely used and have been extensively studied. However, they might not pass the blood-brain barrier with sufficient amounts to be detected in peripheral blood specimens, and further might not be detectable in the cerebrospinal fluid owing to flow limitations triggered by the injury itself. Despite the advances in TBI research, there is an unmet clinical need to develop and identify novel TBI biomarkers that entirely correlate with TBI pathologies on the molecular level, including mild TBI, and further enable physicians to predict patient outcomes and allow researchers to test neuroprotective agents to limit the extents of injury. Although the extracellular vesicles have been identified and studied long ago, they have recently been revisited and repurposed as potential TBI biomarkers that overcome the many limitations of the traditional blood and CSF assays. Animal and human experiments demonstrated the accuracy of several types of exosomes and miRNAs in detecting mild, moderate, and severe TBI. In this paper, we provide a comprehensive review of the traditional TBI biomarkers that are helpful in clinical practice. Also, we highlight the emerging roles of exosomes and miRNA being the promising candidates under investigation of current research.
Collapse
|
16
|
McGovern AJ, González J, Ramírez D, Barreto GE. Identification of HMGCR, PPGARG and prohibitin as potential druggable targets of dihydrotestosterone for treatment against traumatic brain injury using system pharmacology. Int Immunopharmacol 2022; 108:108721. [PMID: 35344815 DOI: 10.1016/j.intimp.2022.108721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) has long-term devastating effects for which there is no accurate and effective treatment for inflammation and chronic oxidative stress. As a disease that affects multiple signalling pathways, the search for a drug with a broader spectrum of pharmacological action is of clinical interest. The fact that endocrine disruption (e.g hypogonadism) has been observed in TBI patients suggests that endogenous therapy with testosterone, or its more androgenic derivative, dihydrotestosterone (DHT), may attenuate, at least in part, the TBI-induced inflammation, but the underlying molecular mechanisms by which this occurs are still not completely clear. AIMS AND METHODS In this study, the main aim was to investigate proteins that may be related to the pathophysiological mechanism of TBI and also be pharmacological targets of DHT in order to explore a possible therapy with this androgen using network pharmacology. RESULTS AND CONCLUSIONS We identified 2.700 proteins related to TBI and 1.567 that are potentially molecular targets of DHT. Functional enrichment analysis showed that steroid (p-value: 2.1-22), lipid metabolism (p-value: 2.8-21) and apoptotic processes (p-value: 5.2-21) are mainly altered in TBI. Furthermore, being mitochondrion an organelle involved on these molecular processes we next identified that out of 32 mitochondrial-related proteins 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), peroxisome proliferator activated receptor gamma (PPGARG) and prohibitin are those found highly regulated in the network and potential targets of DHT in TBI. In conclusion, the identification of these cellular nodes may prove to be essential as targets of DHT for therapy against post-TBI inflammation.
Collapse
Affiliation(s)
- Andrew J McGovern
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
17
|
Sex differences in immune gene expression in the brain of a small shorebird. Immunogenetics 2022; 74:487-496. [PMID: 35084547 PMCID: PMC8792134 DOI: 10.1007/s00251-022-01253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
Males and females often exhibit differences in behaviour, life histories, and ecology, many of which are typically reflected in their brains. Neuronal protection and maintenance include complex processes led by the microglia, which also interacts with metabolites such as hormones or immune components. Despite increasing interest in sex-specific brain function in laboratory animals, the significance of sex-specific immune activation in the brain of wild animals along with the variables that could affect it is widely lacking. Here, we use the Kentish plover (Charadrius alexandrinus) to study sex differences in expression of immune genes in the brain of adult males and females, in two wild populations breeding in contrasting habitats: a coastal sea-level population and a high-altitude inland population in China. Our analysis yielded 379 genes associated with immune function. We show a significant male-biased immune gene upregulation. Immune gene expression in the brain did not differ in upregulation between the coastal and inland populations. We discuss the role of dosage compensation in our findings and their evolutionary significance mediated by sex-specific survival and neuronal deterioration. Similar expression profiles in the coastal and inland populations suggest comparable genetic control by the microglia and possible similarities in pathogen pressures between habitats. We call for further studies on gene expression of males and females in wild population to understand the implications of immune function for life-histories and demography in natural systems.
Collapse
|
18
|
Batson C, Gomez A, Sainbhi AS, Froese L, Zeiler FA. Association of Age and Sex With Multi-Modal Cerebral Physiology in Adult Moderate/Severe Traumatic Brain Injury: A Narrative Overview and Future Avenues for Personalized Approaches. Front Pharmacol 2021; 12:676154. [PMID: 34899283 PMCID: PMC8652202 DOI: 10.3389/fphar.2021.676154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
The impact of age and biological sex on outcome in moderate/severe traumatic brain injury (TBI) has been documented in large cohort studies, with advanced age and male sex linked to worse long-term outcomes. However, the association between age/biological sex and high-frequency continuous multi-modal monitoring (MMM) cerebral physiology is unclear, with only sparing reference made in guidelines and major literature in moderate/severe TBI. In this narrative review, we summarize some of the largest studies associating various high-frequency MMM parameters with age and biological sex in moderate/severe TBI. To start, we present this by highlighting the representative available literature on high-frequency data from Intracranial Pressure (ICP), Cerebral Perfusion Pressure (CPP), Extracellular Brain Tissue Oxygenation (PbtO2), Regional Cerebral Oxygen Saturations (rSO2), Cerebral Blood Flow (CBF), Cerebral Blood Flow Velocity (CBFV), Cerebrovascular Reactivity (CVR), Cerebral Compensatory Reserve, common Cerebral Microdialysis (CMD) Analytes and their correlation to age and sex in moderate/severe TBI cohorts. Then we present current knowledge gaps in the literature, discuss biological implications of age and sex on cerebrovascular monitoring in TBI and some future avenues for bedside research into the cerebrovascular physiome after TBI.
Collapse
Affiliation(s)
- C Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A S Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - L Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - F A Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Teo L, Boghdadi AG, Homman-Ludiye J, Mundinano IC, Kwan WC, Bourne JA. Replicating infant-specific reactive astrocyte functions in the injured adult brain. Prog Neurobiol 2021; 204:102108. [PMID: 34147584 DOI: 10.1016/j.pneurobio.2021.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Infants and adults respond differently to brain injuries. Specifically, improved neuronal sparing along with reduced astrogliosis and glial scarring often observed earlier in life, likely contributes to improved long-term outcomes. Understanding the underlying mechanisms could enable the recapitulation of neuroprotective effects, observed in infants, to benefit adults after brain injuries. We reveal that in primates, Eph/ ephrin signaling contributes to age-dependent reactive astrocyte behavior. Ephrin-A5 expression on astrocytes was more protracted in adults, whereas ephrin-A1 was only expressed on infant astrocytes. Furthermore, ephrin-A5 exacerbated major hallmarks of astrocyte reactivity via EphA2 and EphA4 receptors, which was subsequently alleviated by ephrin-A1. Rather than suppressing reactivity, ephrin-A1 signaling shifted astrocytes towards GAP43+ neuroprotection, accounting for improved neuronal sparing in infants. Reintroducing ephrin-A1 after middle-aged focal ischemic injury significantly attenuated glial scarring, improved neuronal sparing and preserved circuitry. Therefore, beneficial infant mechanisms can be recapitulated in adults to improve outcomes after CNS injuries.
Collapse
Affiliation(s)
- Leon Teo
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Anthony G Boghdadi
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - Inaki-Carril Mundinano
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - William C Kwan
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, 15 Innovation Walk, Monash University, Clayton VIC, 3800, Australia.
| |
Collapse
|
20
|
Michinaga S, Koyama Y. Pathophysiological Responses and Roles of Astrocytes in Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22126418. [PMID: 34203960 PMCID: PMC8232783 DOI: 10.3390/ijms22126418] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is immediate damage caused by a blow to the head resulting from traffic accidents, falls, and sporting activity, which causes death or serious disabilities in survivors. TBI induces multiple secondary injuries, including neuroinflammation, disruption of the blood–brain barrier (BBB), and brain edema. Despite these emergent conditions, current therapies for TBI are limited or insufficient in some cases. Although several candidate drugs exerted beneficial effects in TBI animal models, most of them failed to show significant effects in clinical trials. Multiple studies have suggested that astrocytes play a key role in the pathogenesis of TBI. Increased reactive astrocytes and astrocyte-derived factors are commonly observed in both TBI patients and experimental animal models. Astrocytes have beneficial and detrimental effects on TBI, including promotion and restriction of neurogenesis and synaptogenesis, acceleration and suppression of neuroinflammation, and disruption and repair of the BBB via multiple bioactive factors. Additionally, astrocytic aquaporin-4 is involved in the formation of cytotoxic edema. Thus, astrocytes are attractive targets for novel therapeutic drugs for TBI, although astrocyte-targeting drugs have not yet been developed. This article reviews recent observations of the roles of astrocytes and expected astrocyte-targeting drugs in TBI.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan;
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558, Japan
- Correspondence: ; Tel.: +81-78-441-7572
| |
Collapse
|
21
|
Network pharmacology identifies IL6 as an important hub and target of tibolone for drug repurposing in traumatic brain injury. Biomed Pharmacother 2021; 140:111769. [PMID: 34058440 DOI: 10.1016/j.biopha.2021.111769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is characterized by a complex network of signals mediating inflammatory, proliferative and apoptotic processes during its acute and chronic phases. Current therapies mitigate damage and are mainly for palliative care and there are currently no effective therapies for secondary damage. This suggests a need to discover a compound with a greater spectrum of action that can control various pathological aspects of TBI. Here we used a network pharmacology approach to explore the benefits of tibolone, an estrogen and androgen receptor agonist with broader actions in cells, as a possible repurposing drug for TBI therapy. Using different databases we retrieved the targets significantly associated to TBI and tibolone, obtaining 2700 and 652, respectively. The top 10 GO enriched terms were mostly related to cell proliferation, apoptosis and inflammation. Following protein-protein functional analysis, the top connected proteins were related to kinase activity (MAPK1/14/3, AKT1 PIK3R1), apoptosis (TP53, CASP3), growth factors (EGFR), estrogen signalling (ESR1) and inflammation (IL6, TNF), with IL6 as an important signalling hub belonging to the top GO categories. Thus, we identified IL6 as a cellular node which we then validated using molecular mechanics-generalized born surface area (MMGBSA) and docking to explore which tibolone metabolite might interact with this protein. Both 3α and 3β-OH tibolone seemed to bind better to IL6 at important sites responsible for its binding to IL6R. In conclusion, our study demonstrates key hubs involved in TBI pathology which indicates IL6 as a target molecule of tibolone as drug repurposing for TBI therapy.
Collapse
|
22
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
23
|
Wang J, Hou Y, Zhang L, Liu M, Zhao J, Zhang Z, Ma Y, Hou W. Estrogen Attenuates Traumatic Brain Injury by Inhibiting the Activation of Microglia and Astrocyte-Mediated Neuroinflammatory Responses. Mol Neurobiol 2021; 58:1052-1061. [PMID: 33085047 DOI: 10.1007/s12035-020-02171-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI), which leads to high mortality and morbidity, is a prominent public health problem worldwide. Neuroinflammation involving microglia and astrocyte activation has been demonstrated to play critical role in the secondary injury induced by TBI. A1 astrocytes, which are induced by activated microglia, can directly kill neurons by secreting neurotoxic complement C3. Estrogen has been proved to possess neuroprotective effects, but the effect and underlying mechanism of estrogen on TBI-induced neuroinflammatory injury remain largely unclear. In this study, we constructed an adult male mouse model of TBI and immediately after injury treated the mice with 17β-estradiol (E2) (100 μg/kg, once every day via intraperitoneal injection) for 3 days. We found that E2 treatment significantly alleviated TBI-induced neurological deficits, neuronal injuries, and brain edema and significantly inhibited Iba1 and GFAP expression, which are markers of microglia and astrocyte activation, respectively. E2 treatment also significantly inhibited TLR4 and NF-κB protein expression, and significantly reduced the expression of the proinflammatory factors IL-1β, IL-6, and TNF-α. Moreover, E2 treatment significantly decreased the number of complement C3d/GFAP-positive cells and complement C3d protein expression. Taking these results together, we concluded that E2 treatment dramatically alleviates TBI neuroinflammatory injury by inhibiting TLR4/NF-κB pathway-mediated microglia and astrocyte activation and neuroinflammation and reducing A1-phenotype neurotoxic astrocyte activation. Our findings indicate that E2 treatment may be a potential therapy strategy for TBI-induced neuroinflammation injury.
Collapse
Affiliation(s)
- Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Yushu Hou
- Department of Anesthesiology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710001, China
| | - Lixia Zhang
- Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Min Liu
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Zhen Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Yulong Ma
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, China.
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
24
|
Bakeberg MC, Gorecki AM, Kenna JE, Jefferson A, Byrnes M, Ghosh S, Horne MK, McGregor S, Stell R, Walters S, Chivers P, Winter SJ, Mastaglia FL, Anderton RS. Differential effects of sex on longitudinal patterns of cognitive decline in Parkinson's disease. J Neurol 2021; 268:1903-1912. [PMID: 33399968 PMCID: PMC8068663 DOI: 10.1007/s00415-020-10367-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023]
Abstract
Background Cognitive impairment is an important and diverse symptom of Parkinson’s disease (PD). Sex is a purported risk variable for cognitive decline in PD, but has not been comprehensively investigated.
Objectives This cross-sectional and longitudinal study examined sex differences in global and domain-specific cognitive performance in a large PD cohort. Methods Cognitive function was evaluated using the Addenbrooke’s Cognitive Examination in 392 people with PD (PwP) from the Australian Parkinson’s Disease Registry. The influence of sex on domain-specific cognitive performance was investigated using covariate-corrected generalised linear models. In a repeated measures longitudinal subset of 127 PwP, linear mixed models were used to assess the impact of sex on cognition over time, while accounting for covariates.
Results Cross-sectional-corrected modelling revealed that sex was significantly predictive of cognitive performance, with males performing worse than females on global cognition, and memory and fluency domains. Longitudinally, sex was significantly predictive of cognitive decline, with males exhibiting a greater reduction in global cognition and language, whereas females showed a greater decline in attention/orientation, memory and visuospatial domains, despite starting with higher baseline scores. At follow-up, a significantly higher proportion of males than females fulfilled criteria for mild cognitive impairment or PD dementia. Conclusions Sex was revealed as a significant determinant of overall cognitive performance as well as specific cognitive domains, with a differential pattern of decline in male and female participants. Such sex-specific findings appear to explain some of the heterogeneity observed in PD, warranting further investigation of mechanisms underlying this sexual dimorphism. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-020-10367-8.
Collapse
Affiliation(s)
- Megan C Bakeberg
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Anastazja M Gorecki
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jade E Kenna
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Alexa Jefferson
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Michelle Byrnes
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Soumya Ghosh
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Malcolm K Horne
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Sarah McGregor
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Rick Stell
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Sue Walters
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Paola Chivers
- Institute for Health Research and School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia.,Exercise Medicine Research Institute and School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Samantha J Winter
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Institute for Health Research and School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia. .,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia. .,Institute for Health Research and School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia.
| |
Collapse
|
25
|
Rurak GM, Woodside B, Aguilar-Valles A, Salmaso N. Astroglial cells as neuroendocrine targets in forebrain development: Implications for sex differences in psychiatric disease. Front Neuroendocrinol 2021; 60:100897. [PMID: 33359797 DOI: 10.1016/j.yfrne.2020.100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Astroglial cells are the most abundant cell type in the mammalian brain. They are implicated in almost every aspect of brain physiology, including maintaining homeostasis, building and maintaining the blood brain barrier, and the development and maturation of neuronal networks. Critically, astroglia also express receptors for gonadal sex hormones, respond rapidly to gonadal hormones, and are able to synthesize hormones. Thus, they are positioned to guide and mediate sexual differentiation of the brain, particularly neuronal networks in typical and pathological conditions. In this review, we describe astroglial involvement in the organization and development of the brain, and consider known sex differences in astroglial responses to understand how astroglial cell-mediated organization may play a role in forebrain sexual dimorphisms in human populations. Finally, we consider how sexually dimorphic astroglial responses and functions in development may lead to sex differences in vulnerability for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gareth M Rurak
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Concordia University, Montreal, Quebec, Canada
| | | | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
26
|
Kövesdi E, Szabó-Meleg E, Abrahám IM. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int J Mol Sci 2020; 22:E11. [PMID: 33374952 PMCID: PMC7792596 DOI: 10.3390/ijms22010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Patients surviving traumatic brain injury (TBI) face numerous neurological and neuropsychological problems significantly affecting their quality of life. Extensive studies over the past decades have investigated pharmacological treatment options in different animal models, targeting various pathological consequences of TBI. Sex and gender are known to influence the outcome of TBI in animal models and in patients, respectively. Apart from its well-known effects on reproduction, 17β-estradiol (E2) has a neuroprotective role in brain injury. Hence, in this review, we focus on the effect of E2 in TBI in humans and animals. First, we discuss the clinical classification and pathomechanism of TBI, the research in animal models, and the neuroprotective role of E2. Based on the results of animal studies and clinical trials, we discuss possible E2 targets from early to late events in the pathomechanism of TBI, including neuroinflammation and possible disturbances of the endocrine system. Finally, the potential relevance of selective estrogenic compounds in the treatment of TBI will be discussed.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pecs, Hungary;
| | - István M. Abrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| |
Collapse
|
27
|
Cerri S, Mus L, Blandini F. Parkinson's Disease in Women and Men: What's the Difference? JOURNAL OF PARKINSONS DISEASE 2020; 9:501-515. [PMID: 31282427 PMCID: PMC6700650 DOI: 10.3233/jpd-191683] [Citation(s) in RCA: 345] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing evidence points to biological sex as an important factor in the development and phenotypical expression of Parkinson’s disease (PD). Risk of developing PD is twice as high in men than women, but women have a higher mortality rate and faster progression of the disease. Moreover, motor and nonmotor symptoms, response to treatments and disease risk factors differ between women and men. Altogether, sex-related differences in PD support the idea that disease development might involve distinct pathogenic mechanisms (or the same mechanism but in a different way) in male and female patients. This review summarizes the most recent knowledge concerning differences between women and men in PD clinical features, risk factors, response to treatments and mechanisms underlying the disease pathophysiology. Unraveling how the pathology differently affect the two sexes might allow the development of tailored interventions and the design of innovative programs that meet the distinct needs of men and women, improving patient care.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Liudmila Mus
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
28
|
Crespo-Castrillo A, Garcia-Segura LM, Arevalo MA. The synthetic steroid tibolone exerts sex-specific regulation of astrocyte phagocytosis under basal conditions and after an inflammatory challenge. J Neuroinflammation 2020; 17:37. [PMID: 31992325 PMCID: PMC6986022 DOI: 10.1186/s12974-020-1719-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tibolone is a synthetic steroid used in clinical practice for the treatment of climacteric symptoms and osteoporosis. Active metabolites of tibolone, generated in target tissues, have an affinity for estrogen and androgen receptors. Astrocytes are direct targets for estrogenic compounds and previous studies have shown that tibolone protects brain cortical neurons in association with a reduction in reactive astrogliosis in a mouse model of traumatic brain injury. Since phagocytosis is a crucial component of the neuroprotective function exerted by astrocytes, in the present study, we have assessed whether tibolone regulates phagocytosis in primary astrocytes incubated with brain-derived cellular debris. METHODS Male and female astrocyte cell cultures were obtained from newborn (P0-P2) female and male Wistar rats. Astrocytic phagocytosis was first characterized using carboxylate beads, Escherichia coli particles, or brain-derived cellular debris. Then, the effect of tibolone on the phagocytosis of Cy3-conjugated cellular debris was quantified by measuring the intensity of Cy3 dye-emitted fluorescence in a given GFAP immunoreactive area. Before the phagocytosis assays, astrocytes were incubated with tibolone in the presence or absence of estrogen or androgen receptor antagonists or an inhibitor of the enzyme that synthesizes estradiol. The effect of tibolone on phagocytosis was analyzed under basal conditions and after inflammatory stimulation with lipopolysaccharide. RESULTS Tibolone stimulated phagocytosis of brain-derived cellular debris by male and female astrocytes, with the effect being more pronounced in females. The effect of tibolone in female astrocytes was blocked by a selective estrogen receptor β antagonist and by an androgen receptor antagonist. None of these antagonists affected tibolone-induced phagocytosis in male astrocytes. In addition, the inhibition of estradiol synthesis in the cultures enhanced the stimulatory effect of tibolone on phagocytosis in male astrocytes but blocked the effect of the steroid in female cells under basal conditions. However, after inflammatory stimulation, the inhibition of estradiol synthesis highly potentiated the stimulation of phagocytosis by tibolone, particularly in female astrocytes. CONCLUSIONS Tibolone exerts sex-specific regulation of phagocytosis in astrocytes of both sexes, both under basal conditions and after inflammatory stimulation.
Collapse
Affiliation(s)
| | - Luis-Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain. .,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
29
|
Hidalgo-Lanussa O, Baez-Jurado E, Echeverria V, Ashraf GM, Sahebkar A, Garcia-Segura LM, Melcangi RC, Barreto GE. Lipotoxicity, neuroinflammation, glial cells and oestrogenic compounds. J Neuroendocrinol 2020; 32:e12776. [PMID: 31334878 DOI: 10.1111/jne.12776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
The high concentrations of free fatty acids as a consequence of obesity and being overweight have become risk factors for the development of different diseases, including neurodegenerative ailments. Free fatty acids are strongly related to inflammatory events, causing cellular and tissue alterations in the brain, including cell death, deficits in neurogenesis and gliogenesis, and cognitive decline. It has been reported that people with a high body mass index have a higher risk of suffering from Alzheimer's disease. Hormones such as oestradiol not only have beneficial effects on brain tissue, but also exert some adverse effects on peripheral tissues, including the ovary and breast. For this reason, some studies have evaluated the protective effect of oestrogen receptor (ER) agonists with more specific tissue activities, such as the neuroactive steroid tibolone. Activation of ERs positively affects the expression of pro-survival factors and cell signalling pathways, thus promoting cell survival. This review aims to discuss the relationship between lipotoxicity and the development of neurodegenerative diseases. We also elaborate on the cellular and molecular mechanisms involved in neuroprotection induced by oestrogens.
Collapse
Affiliation(s)
- Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
- Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
30
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|