1
|
Yang X, Zeng Y, Jiao G, Gan X, Linden D, Hernaus D, Zhu C, Li K, Yao D, Yao S, Jiang Y, Becker B. A brief real-time fNIRS-informed neurofeedback training of the prefrontal cortex changes brain activity and connectivity during subsequent working memory challenge. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110968. [PMID: 38354898 DOI: 10.1016/j.pnpbp.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/06/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.
Collapse
Affiliation(s)
- Xi Yang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Yixu Zeng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - David Linden
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Keshuang Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihan Jiang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China.
| | - Benjamin Becker
- The University of Hong Kong, State Key Laboratory of Brain and Cognitive Sciences, Hong Kong, China; The University of Hong Kong, Department of Psychology, Hong Kong, China.
| |
Collapse
|
2
|
Pałasz A, Worthington JJ, Filipczyk Ł, Saganiak K. Pharmacomodulation of brain neuromedin U signaling as a potential therapeutic strategy. J Neurosci Res 2023; 101:1728-1736. [PMID: 37496289 DOI: 10.1002/jnr.25234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/08/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Neuromedin U (NMU) belongs to a family of multifunctional neuropeptides that modulate the activity of several neural networks of the brain. Acting via metabotropic receptor NMUR2, NMU plays a role in the regulation of multiple systems, including energy homeostasis, stress responses, circadian rhythms, and endocrine signaling. The involvement of NMU signaling in the central regulation of important neurophysiological processes and its disturbances is a potential target for pharmacological modulation. Number of preclinical studies have proven that both modified NMU analogues such as PASR8-NMU or F4R8-NMU and designed NMUR2 agonists, for example, CPN-116, CPN-124 exhibit a distinct pharmacological activity especially when delivered transnasally. Their application can potentially be useful in the more convenient and safe treatment of obesity, eating disorders, Alzheimer's disease-related memory impairment, alcohol addiction, and sleep disturbances. Accumulating findings suggest that pharmacomodulation of the central NMU signaling may be a promising strategy in the treatment of several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Łukasz Filipczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Saganiak
- Department of Anatomy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Tian QQ, Cheng C, Liu PH, Yin ZX, Zhang MK, Cui YP, Zhao R, Deng H, Lu LM, Tang CZ, Xu NG, Yang XJ, Sun JB, Qin W. Combined effect of transcutaneous auricular vagus nerve stimulation and 0.1 Hz slow-paced breathing on working memory. Front Neurosci 2023; 17:1133964. [PMID: 36968483 PMCID: PMC10034029 DOI: 10.3389/fnins.2023.1133964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundPrevious research has found that transcutaneous auricular vagus nerve stimulation (taVNS) can improve working memory (WM) performance. It has also been shown that 0.1 Hz slow-paced breathing (SPB, i.e., breathing at a rate of approximately 6 breaths/min) can significantly influence physical state and cognitive function via changes in autonomic afferent activity. In the present study, we investigated the synergistic effects of taVNS and SPB on WM performance.MethodsA total of 96 healthy people participated in this within-subjects experiment involving four conditions, namely taVNS, SPB, combined taVNS with SPB (taVNS + SPB), and sham. Each participant underwent each intervention for 30 min and WM was compared pre- and post-intervention using the spatial and digit n-back tasks in a random order four times. Permutation-based analysis of variance was used to assess the interaction between time and intervention.ResultsFor the spatial 3-back task, a significant interaction between time and intervention was found for the accuracy rate of matching trials (mACC, p = 0.03). Post hoc analysis suggested that both taVNS and taVNS + SPB improved WM performance, however, no significant difference was found in the SPB or sham groups.ConclusionThis study has replicated the effects of taVNS on WM performance reported in previous studies. However, the synergistic effects of combined taVNS and SPB warrant further research.
Collapse
Affiliation(s)
- Qian-Qian Tian
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Peng-Hui Liu
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Zi-Xin Yin
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Meng-Kai Zhang
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Ya-Peng Cui
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Rui Zhao
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an, Shaanxi, China
| | - Hui Deng
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi’an, Shaanxi, China
| | - Li-Ming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun-Zhi Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng-Gui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Juan Yang
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi’an, Shaanxi, China
- Xue-Juan Yang,
| | - Jin-Bo Sun
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi’an, Shaanxi, China
- *Correspondence: Jin-Bo Sun,
| | - Wei Qin
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Kou J, Zhang Y, Zhou F, Sindermann C, Montag C, Becker B, Kendrick KM. A randomized trial shows dose-frequency and genotype may determine the therapeutic efficacy of intranasal oxytocin. Psychol Med 2022; 52:1959-1968. [PMID: 33272333 DOI: 10.1017/s0033291720003803] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The neuropeptide oxytocin is proposed as a promising therapy for social dysfunction by modulating amygdala-mediated social-emotional behavior. Although clinical trials report some benefits of chronic treatment, it is unclear whether efficacy may be influenced by dose frequency or genotype. METHODS In a randomized, double-blind, placebo-controlled pharmaco-functional magnetic resonance imaging trial (150 male subjects), we investigated acute and different chronic (every day or on alternate days for 5 days) intranasal oxytocin (24 international units) effects and oxytocin receptor genotype-mediated treatment sensitivity on amygdala responses to face emotions. We also investigated similar effects on resting-state functional connectivity between the amygdala and prefrontal cortex. RESULTS A single dose of oxytocin-reduced amygdala responses to all face emotions but for threatening (fear and anger) and happy faces, this effect was abolished after daily doses for 5 days but maintained by doses given every other day. The latter dose regime also enhanced associated anxious-arousal attenuation for fear faces. Oxytocin effects on reducing amygdala responses to face emotions only occurred in AA homozygotes of rs53576 and A carriers of rs2254298. The effects of oxytocin on resting-state functional connectivity were not influenced by either dose-frequency or receptor genotype. CONCLUSIONS Infrequent chronic oxytocin administration may be therapeutically most efficient and its anxiolytic neural and behavioral actions are highly genotype-dependent in males.
Collapse
Affiliation(s)
- Juan Kou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yingying Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cornelia Sindermann
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
5
|
Goh KK, Chen CYA, Wu TH, Chen CH, Lu ML. Crosstalk between Schizophrenia and Metabolic Syndrome: The Role of Oxytocinergic Dysfunction. Int J Mol Sci 2022; 23:ijms23137092. [PMID: 35806096 PMCID: PMC9266532 DOI: 10.3390/ijms23137092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
The high prevalence of metabolic syndrome in persons with schizophrenia has spurred investigational efforts to study the mechanism beneath its pathophysiology. Early psychosis dysfunction is present across multiple organ systems. On this account, schizophrenia may be a multisystem disorder in which one organ system is predominantly affected and where other organ systems are also concurrently involved. Growing evidence of the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, such as an association with cognitive dysfunction, altered autonomic nervous system regulation, desynchrony in the resting-state default mode network, and shared genetic liability, suggest that metabolic syndrome and schizophrenia are connected via common pathways that are central to schizophrenia pathogenesis, which may be underpinned by oxytocin system dysfunction. Oxytocin, a hormone that involves in the mechanisms of food intake and metabolic homeostasis, may partly explain this piece of the puzzle in the mechanism underlying this association. Given its prosocial and anorexigenic properties, oxytocin has been administered intranasally to investigate its therapeutic potential in schizophrenia and obesity. Although the pathophysiology and mechanisms of oxytocinergic dysfunction in metabolic syndrome and schizophrenia are both complex and it is still too early to draw a conclusion upon, oxytocinergic dysfunction may yield a new mechanistic insight into schizophrenia pathogenesis and treatment.
Collapse
Affiliation(s)
- Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cynthia Yi-An Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tzu-Hua Wu
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Itskovich E, Bowling DL, Garner JP, Parker KJ. Oxytocin and the social facilitation of placebo effects. Mol Psychiatry 2022; 27:2640-2649. [PMID: 35338314 PMCID: PMC9167259 DOI: 10.1038/s41380-022-01515-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/30/2023]
Abstract
Significant clinical improvement is often observed in patients who receive placebo treatment in randomized double-blind placebo-controlled trials. While a proportion of this "improvement" reflects experimental design limitations (e.g., reliance on subjective outcomes, unbalanced groups, reporting biases), some of it reflects genuine improvement corroborated by physiological change. Converging evidence across diverse medical conditions suggests that clinically-relevant benefits from placebo treatment are associated with the activation of brain reward circuits. In parallel, evidence has accumulated showing that such benefits are facilitated by clinicians that demonstrate warmth and proficiency during interactions with patients. Here, we integrate research on these neural and social aspects of placebo effects with evidence linking oxytocin and social reward to advance a neurobiological account for the social facilitation of placebo effects. This account frames oxytocin as a key mediator of treatment success across a wide-spectrum of interventions that increase social connectedness, thereby providing a biological basis for assessing this fundamental non-specific element of medical care.
Collapse
Affiliation(s)
- Elena Itskovich
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel L. Bowling
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Joseph P. Garner
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Karen J. Parker
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
7
|
Assecondi S, Villa-Sánchez B, Shapiro K. Event-Related Potentials as Markers of Efficacy for Combined Working Memory Training and Transcranial Direct Current Stimulation Regimens: A Proof-of-Concept Study. Front Syst Neurosci 2022; 16:837979. [PMID: 35547238 PMCID: PMC9083230 DOI: 10.3389/fnsys.2022.837979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
Abstract
Our brains are often under pressure to process a continuous flow of information in a short time, therefore facing a constantly increasing demand for cognitive resources. Recent studies have highlighted that a lasting improvement of cognitive functions may be achieved by exploiting plasticity, i.e., the brain’s ability to adapt to the ever-changing cognitive demands imposed by the environment. Transcranial direct current stimulation (tDCS), when combined with cognitive training, can promote plasticity, amplify training gains and their maintenance over time. The availability of low-cost wearable devices has made these approaches more feasible, albeit the effectiveness of combined training regimens is still unclear. To quantify the effectiveness of such protocols, many researchers have focused on behavioral measures such as accuracy or reaction time. These variables only return a global, non-specific picture of the underlying cognitive process. Electrophysiology instead has the finer grained resolution required to shed new light on the time course of the events underpinning processes critical to cognitive control, and if and how these processes are modulated by concurrent tDCS. To the best of our knowledge, research in this direction is still very limited. We investigate the electrophysiological correlates of combined 3-day working memory training and non-invasive brain stimulation in young adults. We focus on event-related potentials (ERPs), instead of other features such as oscillations or connectivity, because components can be measured on as little as one electrode. ERP components are, therefore, well suited for use with home devices, usually equipped with a limited number of recording channels. We consider short-, mid-, and long-latency components typically elicited by working memory tasks and assess if and how the amplitude of these components are modulated by the combined training regimen. We found no significant effects of tDCS either behaviorally or in brain activity, as measured by ERPs. We concluded that either tDCS was ineffective (because of the specific protocol or the sample under consideration, i.e., young adults) or brain-related changes, if present, were too subtle. Therefore, we suggest that other measures of brain activity may be more appropriate/sensitive to training- and/or tDCS-induced modulations, such as network connectivity, especially in young adults.
Collapse
Affiliation(s)
- Sara Assecondi
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Center for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Sara Assecondi, ,
| | | | - Kim Shapiro
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Center for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Schiele MA, Thiel C, Kollert L, Fürst L, Putschin L, Kehle R, Hauke W, Mahr M, Reinhold E, Gottschalk MG, Heinrichs M, Zaudig M, Berberich G, Domschke K. Oxytocin Receptor Gene DNA Methylation: A Biomarker of Treatment Response in Obsessive-Compulsive Disorder? PSYCHOTHERAPY AND PSYCHOSOMATICS 2021; 90:57-63. [PMID: 32920561 DOI: 10.1159/000509910] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is associated with high chronicity and treatment resistance, indicating the need for early therapy response markers enabling fast and personalized treatment adaptations. Although epigenetic mechanisms such as DNA methylation of the oxytocin receptor (OXTR) gene have previously been linked to OCD pathogenesis, epigenetic markers as predictors of treatment success have not yet been investigated in OCD. OBJECTIVE For the first time, this therapyepigenetic study aimed to investigate the role of OXTR methylation as a treatment response marker in OCD. METHODS In total, 113 inpatients with OCD (57 females) were compared to 113 age- and sex-matched healthy controls. Patients were investigated over a 10-week course of standardized, OCD-specific cognitive-behavioral psychotherapy. Clinical response was measured using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) at baseline, before in vivo exposure, and after therapy. OXTR exon III methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells. RESULTS Relative OXTR hypermethylation was observed in OCD patients compared to healthy controls. In OCD, higher baseline OXTR methylation was found to predict impaired treatment response at both categorical (responders vs. nonresponders) and dimensional (relative Y-BOCS reduction) levels, whereas lower baseline methylation was related to treatment response and greater symptom improvements. Analysis of Y-BOCS subdimensions revealed that the association between OXTR hypermethylation with impaired treatment response applied especially to symptoms related to obsessions, but not compulsions. CONCLUSIONS OXTR hypermethylation may constitute a predictive marker of impaired treatment response in OCD and thus carries great potential for future personalized treatment efforts in OCD.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christiane Thiel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Leonie Kollert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Lena Fürst
- Psychosomatic Hospital Windach, Windach, Germany
| | | | | | - Walter Hauke
- Psychosomatic Hospital Windach, Windach, Germany
| | - Marina Mahr
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Elena Reinhold
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael G Gottschalk
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Heinrichs
- Laboratory for Biological and Personality Psychology, Department of Psychology, University of Freiburg, Freiburg, Germany
| | | | | | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany, .,Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany,
| |
Collapse
|
9
|
Liu C, Huang Y, Chen L, Yu R. Lack of Evidence for the Effect of Oxytocin on Placebo Analgesia and Nocebo Hyperalgesia. PSYCHOTHERAPY AND PSYCHOSOMATICS 2021; 89:185-187. [PMID: 31865357 DOI: 10.1159/000504967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Cuizhen Liu
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Yi Huang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Linqiu Chen
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Rongjun Yu
- Department of Psychology, National University of Singapore, Singapore, Singapore, .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore,
| |
Collapse
|
10
|
Abramova O, Zorkina Y, Ushakova V, Zubkov E, Morozova A, Chekhonin V. The role of oxytocin and vasopressin dysfunction in cognitive impairment and mental disorders. Neuropeptides 2020; 83:102079. [PMID: 32839007 DOI: 10.1016/j.npep.2020.102079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
Oxytocin (OXT) and arginine-vasopressin (AVP) are structurally homologous peptide hormones synthesized in the hypothalamus. Nowadays, the role of OXT and AVP in the regulation of social behaviour and emotions is generally known. However, recent researches indicate that peptides also participate in cognitive functioning. This review presents the evidence that the OXT/AVP systems are involved in the formation of social, working, spatial and episodic memory, mediated by such brain structures as the hippocampal CA2 and CA3 regions, amygdala and prefrontal cortex. Some data have demonstrated that the OXT receptor's polymorphisms are associated with impaired memory in humans, and OXT knockout in mice is connected with memory deficit. Additionally, OXT and AVP are involved in mental disorders' progression. Stress-induced imbalance of the OXT/AVP systems leads to an increased risk of various mental disorders, including depression, schizophrenia, and autism. At the same time, cognitive deficits are observed in stress and mental disorders, and perhaps peptide hormones play a part in this. The final part of the review describes possible therapeutic strategies for the use of OXT and AVP for treatment of various mental disorders.
Collapse
Affiliation(s)
- Olga Abramova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Valeria Ushakova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
11
|
Becker B, Zhao W, Kendrick KM. Reply to the Letter to the Editor: "Lack of Evidence for the Effect of Oxytocin on Placebo Analgesia and Nocebo Hyperalgesia". PSYCHOTHERAPY AND PSYCHOSOMATICS 2020; 89:188. [PMID: 31972561 DOI: 10.1159/000505671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Benjamin Becker
- The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,
| | - Weihua Zhao
- The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Oxytocin reduces top-down control of attention by increasing bottom-up attention allocation to social but not non-social stimuli - A randomized controlled trial. Psychoneuroendocrinology 2019; 108:62-69. [PMID: 31229634 DOI: 10.1016/j.psyneuen.2019.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/22/2019] [Accepted: 06/06/2019] [Indexed: 01/18/2023]
Abstract
The neuropeptide oxytocin (OXT) may facilitate attention to social stimuli by influencing early stage bottom-up processing although findings in relation to different emotional expressions are inconsistent and its influence on top-down cognitive processing mechanisms unclear. In the current double-blind placebo (PLC) controlled between-subject design study we therefore recruited 71 male subjects (OXT = 34, PLC = 37) to investigate the effects of intranasal OXT (24IU) on both bottom-up attention allocation and top-down attention inhibition using a prosaccade and antisaccade paradigm incorporating social (neutral, happy, fearful, sad, angry faces) and non-social (oval shape) visual stimuli with concurrent eye movement acquisition. Results revealed a marginal significant interaction effect between treatment, condition and task (p = 0.054), with Bonferroni-corrected post-hoc tests indicating that OXT specifically increased antisaccade errors for social stimuli (ps < 0.04, effect sizes 0.46-0.88), but not non-social stimuli. Antisaccades are under volitional control and therefore this may indicate that OXT treatment reduced top-down inhibition. However, the overall findings are consistent with OXT acting to reduce top-down control of attention as a result of increasing bottom-up early attentional processing of social, but not non-social, stimuli in situations where the two systems are in potential conflict. Marked deficits in bottom-up attention allocation to social stimuli have been reported in autism spectrum disorder, within this context OXT may have the potential to increase early attention allocation towards social cues.
Collapse
|
13
|
Xu L, Becker B, Kendrick KM. Oxytocin Facilitates Social Learning by Promoting Conformity to Trusted Individuals. Front Neurosci 2019; 13:56. [PMID: 30787864 PMCID: PMC6372972 DOI: 10.3389/fnins.2019.00056] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/21/2019] [Indexed: 11/20/2022] Open
Abstract
There is considerable interest in the role of the neuropeptide oxytocin in promoting social cohesion both in terms of promoting specific social bonds and also more generally for increasing our willingness to trust others and/or to conform to their opinions. These latter findings may also be important in the context of a modulatory role for oxytocin in improving the efficacy of behavioral therapy in psychiatric disorders. However, the original landmark studies claiming an important role for oxytocin in enhancing trust in others, primarily using economic game strategies, have been questioned by subsequent meta-analytic approaches or failure to reproduce findings in different contexts. On the other hand, a growing number of studies have consistently reported that oxytocin promotes conformity to the views of groups of in-group individuals. Most recently we have found that oxytocin can increase acceptance of social advice given by individual experts without influencing their perceived trustworthiness per se, but that increased conformity in this context is associated with how much an expert is initially trusted and liked. Oxytocin can also enhance the impact of information given by experts by facilitating expectancy and placebo effects. Here we therefore propose that a key role for oxytocin is not in facilitating social trust per se but in conforming to, and learning from, trusted individuals who are either in-group members and/or perceived experts. The implications of this for social learning and use of oxytocin as an adjunct to behavioral therapy in psychiatric disorders are discussed. Interpersonal trust within social groups is of key importance for social interactions, bonds, cooperation and learning and trust between different groups can also help ensure a stable and peaceful co-existence as well as mutually beneficial co-operation and trade. Trust is generally considered to be critical for co-operation and reciprocity in social and economic interactions but importantly trust also involves risk of potential injury if misplaced or broken and we have a natural aversion to taking such risks (Hardin, 2002; Ostrom and Walker, 2003). Indeed, an important factor influencing our trust behavior is that we are strongly motivated to avoid others betraying our trust (Bohnet and Zeckhauser, 2004; Bohnet et al., 2008). Trust can potentially be influenced by our assessment of the level of risk that trusting others might have and also by increased sensitivity to physical and/or other cues for detecting trustworthiness. It is therefore of great importance to identify both behavioral and physiological factors which can act to enhance trust, particularly in situations where individuals have impaired trust and therefore find it hard to interact socially with others and learn from them and/or to benefit optimally from cognitive and behavioral therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Keith M. Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|