1
|
Ma Z, Bitter JH, Boom RM, Nikiforidis CV. Encapsulation of cannabidiol in hemp seed oleosomes. Food Res Int 2024; 195:114948. [PMID: 39277226 DOI: 10.1016/j.foodres.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Oleosomes are natural lipid droplets that can be extracted intact from oil seeds, forming oil/water emulsions. Their lipid cores, surrounded by a monolayer of phospholipids and proteins, make oleosomes suitable as carriers of hydrophobic bioactive compounds like cannabidiol (CBD). As CBD is crystalline at room temperature, it first has to be liquified to allow better encapsulation. This was done by heating (80 °C for 4 h) or by pre-solubilizing CBD in ethanol and then the liquified CBD was mixed with oleosome dispersions for the encapsulation. Both methods exhibit good encapsulation efficiency, but the results were significantly influenced by the ratio of CBD to lipid contents, regardless of the encapsulation method applied. At higher concentrations of CBD relative to that of the lipid in the oleosomes, the encapsulation efficiency decreased as saturation was attained. Moreover, the in vitro digestion analysis was conducted to investigate the potential of oleosomes as carriers to transport CBD. The relatively slow and steady release of CBD from oleosomes indicates that oleosomes are a slow-release carrier for hydrophobic functional ingredients. An important finding is that the encapsulation and in vitro digestive properties of the oleosomes remain unaffected by the presence of CBD, heating treatment or ethanol, which could bring more opportunities for the applications of oleosomes as carriers in various fields.
Collapse
Affiliation(s)
- Zhaoxiang Ma
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands; Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands
| | - Remko M Boom
- Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands
| | - Constantinos V Nikiforidis
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
2
|
Banerjee A, Hosie W, Terso Ventura AC, Razmkhah K, Bautista J, Beyene A, Binder J, Trant JF. Rational Design, Synthesis, and Characterization of a Solid Δ9-Tetrahydrocannabinol Nanoformulation Suitable for "Microdosing" Applications. Cannabis Cannabinoid Res 2024; 9:e1410-e1422. [PMID: 37579068 DOI: 10.1089/can.2023.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Background: This article highlights the formulation of a solid Δ9-tetrahydrocannabinol (THC)-loaded ingestible prepared from pure THC distillate. Methods: A THC-containing ethanol-assisted cannabinoid nanoemulsion (EACNE) was created using a solvent displacement technique. Subsequently, the EACNE was converted to a solid powdery material while still retaining its THC potency, a format uniquely suited for "microdosing" applications. Results: EACNE had an average lipid droplet size of ∼190 nm, with a polydispersity index of 0.15, and an average droplet ζ potential of -49±10 mV. The nanoemulsion (NE) was colloidally stable for at least 6 weeks, with no meaningful change in cannabinoid potency over the experimental period, as determined by high-performance liquid chromatography analysis. The EACNE remained stable when subjected to physical stresses such as heat, freeze/thaw cycles, carbonation, dilution to beverage concentrations, high sucrose concentrations, and a pH range between 5 and 8. The microencapsulated EACNE demonstrated limited free-flowing behavior but was freely redispersible in water without any visible phase separation. Conclusions: We report the design, creation, and characterization of a THC NE generated without the use of specialized equipment, such as a microfluidizer or a high-pressure homogenizer. This emulsion could readily be converted to a water-redispersible powder. This embodiment is particularly suited for THC "microdosing," a practice that might decouple the health benefits of THC from its psychotropic effects.
Collapse
Affiliation(s)
- Abhinandan Banerjee
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - William Hosie
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Ana Carolina Terso Ventura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
- Department of Pharmacy, Universidade Estadual de Ponta Grossa, Parana, Brazil
| | - Kasra Razmkhah
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Joseph Bautista
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Afeson Beyene
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Justin Binder
- Peak Processing Solutions, Tecumseh, Ontario, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
- WeSpark Health Institute, Windsor, Ontario, Canada
| |
Collapse
|
3
|
LoParco CR, Tillett KK, Chen-Sankey J, Berg CJ, Rossheim ME. Public health considerations about tetrahydrocannabinol-infused beverages. Addiction 2024. [PMID: 39327681 DOI: 10.1111/add.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Cassidy R LoParco
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Kayla K Tillett
- School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Carla J Berg
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
- George Washington Cancer Center, George Washington University, Washington, DC, USA
| | - Matthew E Rossheim
- School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
4
|
Moya-Utrera F, Fuentes-Ríos D, Romero-Carrasco A, Doña-Flores M, Cheng-Sánchez I, Díaz-Morilla A, Soledad Pino-González M, Martínez-Ferez A, Moreno J, Mesas C, Melguizo C, Prados J, Sarabia F, López-Romero JM. Synthesis of (-)-Cannabidiol (CBD), (-)-Δ 9- and (-)-Δ 8-Tetrahydrocannabinols, Encapsulation of CBD with Nanoparticles for Controlled Delivery and Biological Evaluation. Chemistry 2024:e202402496. [PMID: 39307687 DOI: 10.1002/chem.202402496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 11/01/2024]
Abstract
Cannabidiol (CBD) is garnering increasing interest due to its significant biological activity. This natural compound is one of the major cannabinoids in Cannabis sativa L. In this work, we describe the encapsulation of CBD in solid and hollow pH-sensitive poly(4-vinylpyridine) (solid@p4VP and hollow@p4VP) nanoparticles, and temperature-sensitive poly(N-isopropylacrylamide) (solid@pNIPAM and hollow@pNIPAM) nanoparticles for transport and release CBD in a controlled manner. The CBD loading into these smart polymeric systems was effective and their release profiles, solubility and resistance to stomach and intestinal conditions were evaluated, showing satisfactory properties and improved bioavailability with respect to free CBD. Finally, the A549 human lung cancer cell line was used as lung adenocarcinoma epithelial cellular model to carry out preliminary assays of the in vitro activity of the vehiculized CBD. For all these studies, synthetic CBD was employed, for which a new efficient and scalable synthesis of cannabinoids has been developed.
Collapse
Affiliation(s)
- Federico Moya-Utrera
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - David Fuentes-Ríos
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Antonio Romero-Carrasco
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Manuel Doña-Flores
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Iván Cheng-Sánchez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amelia Díaz-Morilla
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - María Soledad Pino-González
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | | | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - J Manuel López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| |
Collapse
|
5
|
Dernaika F, Halawy L, Zeaiter J, Kawrani S, Mroue D, Lteif A, Kourani S, Mehanna M, Abboud C, Mroueh M, Milane A. Development and characterization of a zeolite based drug delivery system: Application to cannabidiol oral delivery. Heliyon 2024; 10:e37373. [PMID: 39296216 PMCID: PMC11409077 DOI: 10.1016/j.heliyon.2024.e37373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
The growing interest in the therapeutic potential of cannabidiol (CBD) has led to the need for effective and reliable delivery methods that overcome its low oral absorption. Zeolites, a class of porous nanoparticles, offer unique advantages as drug carriers due to their high surface area and adjustable pore size. In this study, a zeolite-based drug delivery system was developed for the encapsulation of CBD. The zeolite particles were characterized using various techniques such as Scanning Electron Microscopy (SEM), N2 adsorption analysis, Solid-state Fourier Transform Infrared (FTIR), Direct Light Scattering (DLS), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) before and after the loading. The drug encapsulation efficiency, and the release profile of CBD from the zeolite matrix were evaluated in addition to in vitro dissolution experiments in the intestinal and gastric simulated fluids. The results showed that the loaded zeolite particles exhibited high encapsulation efficiency of 73.5 %. XRD analysis proved that the USY structure remained intact after loading with CBD. DLS and N2 adsorption analysis indicated that CBD was successfully loaded into the zeolite matrix. When compared to CBD containing particles in a commercialized capsule, the in-vitro dissolution rate of CBD loaded zeolite was significantly higher after 30 min in the simulated stomach (pH 1.8) and the intestinal (pH 6.8) fluids, 67.8 % versus 43.6 % and 62.6 % vs 38.4 % respectively. Our findings open new avenues for the use of zeolites as an efficient drug delivery system for drugs with low bioavailability like CBD.
Collapse
Affiliation(s)
- Fouad Dernaika
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Layal Halawy
- Bahaa and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Lebanon
| | - Joseph Zeaiter
- Bahaa and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Lebanon
| | - Sara Kawrani
- Department of Natural Sciences, School of Art and Sciences, Lebanese American University, Byblos, Lebanon
| | - Dima Mroue
- Department of Natural Sciences, School of Art and Sciences, Lebanese American University, Byblos, Lebanon
| | - Anthony Lteif
- Department of Natural Sciences, School of Art and Sciences, Lebanese American University, Byblos, Lebanon
| | - Sima Kourani
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Mohamed Mehanna
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Celine Abboud
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Mohamad Mroueh
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Aline Milane
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
6
|
Jha SK, Nelson VK, Suryadevara PR, Panda SP, Pullaiah CP, Nuli MV, Kamal M, Imran M, Ausali S, Abomughaid MM, Srivastava R, Deka R, Pritam P, Gupta N, Shyam H, Singh IK, Pandey BW, Dewanjee S, Jha NK, Jafari SM. Cannabidiol and neurodegeneration: From molecular mechanisms to clinical benefits. Ageing Res Rev 2024; 100:102386. [PMID: 38969143 DOI: 10.1016/j.arr.2024.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce psycho-motor malfunctions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-β, huntingtin, and tau, and accumulation of the associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation. Cannabidiol (CBD) is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo. CBD has gained attention as a promising drug candidate for the management of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as the clinical applications of CBD in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Vinod Kumar Nelson
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute Of Medical And Technical Sciences, India
| | | | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India, Chennai, Tamil Nadu, India
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Saijyothi Ausali
- College of Pharmacy, MNR Higher Education and Research Academy Campus, MNR Nagar, Sangareddy 502294, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rashi Srivastava
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology,Patna, 800013 India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Harishankar Shyam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Indrakant K Singh
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College & Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110019, India
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| |
Collapse
|
7
|
Nie Y, Kong Y, Peng J, Sun J, Fan B. Enhanced oral bioavailability of cannabidiol by flexible zein nanoparticles: in vitro and pharmacokinetic studies. Front Nutr 2024; 11:1431620. [PMID: 39086540 PMCID: PMC11289775 DOI: 10.3389/fnut.2024.1431620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Cannabidiol (CBD) has a variety of pharmacological effects including antiepileptic, antispasmodic, anxiolytic and anti-inflammatory among other pharmacological effects. However, since CBD is a terpene-phenolic compound, its clinical application is limited by its poor water solubility, low stability, and low bioavailability. Methods In this study, we used several strategies to address the above problems. Hydrochloric acid was used to modify zein to improve the molecular flexibility. Flexible zein nanoparticles (FZP-CBD) loaded with CBD was prepared to improve the stability and bioavailability of CBD. The parameters were evaluated in terms of morphology, particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), loading capacity (LC%), and storage stability. Simulated gastrointestinal fluid release experiment and bioavailability assay were applied in the evaluation. Results The simulated gastrointestinal fluid experiment showed that the release rates of FZP-CBD and natural zein nanoparticles (NZP-CBD) loaded with CBD were 3.57% and 89.88%, respectively, after digestion with gastric fluid for 2 h, 92.12% and 92.56%, respectively, after intestinal fluid digestion for 2 h. Compared with NZP-CBD, the C max of FZP-CBD at 3 different doses of CBD was increased by 1.7, 1.3 and 1.5 times respectively, and AUC0-t was increased by 1.4, 1.1 and 1.7 times respectively, bioavailability (F) was increased by 135.9%, 114.9%, 169.6% respectively. Discussion The experimental results showed that FZP-CBD could protect most of the CBD from being released in the stomach, and then control its release in the intestines, promote the absorption of CBD in the small intestine, and increase the bioavailability of CBD. Therefore, FZP-CBD could improve the utilization value of CBD and provide a new idea for the application of CBD in medicine and pharmacy.
Collapse
Affiliation(s)
| | | | | | | | - Bin Fan
- Beijing Key Laboratory of Basic Research on Traditional Chinese Medicine to Prevent and Control Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Hu Z, Qin Z, Xie J, Qu Y, Yin L. Cannabidiol and its application in the treatment of oral diseases: therapeutic potentials, routes of administration and prospects. Biomed Pharmacother 2024; 176:116271. [PMID: 38788594 DOI: 10.1016/j.biopha.2024.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/26/2024] Open
Abstract
Cannabidiol (CBD), one of the most important active ingredients in cannabis, has been reported to have some pharmacological effects such as antibacterial and analgesic effects, and to have therapeutic potential in the treatment of oral diseases such as oral cancer, gingivitis and periodontal diseases. However, there is a lack of relevant systematic research and reviews. Therefore, based on the etiology and clinical symptoms of several common oral diseases, this paper focuses on the therapeutic potential of CBD in periodontal diseases, pulp diseases, oral mucosal diseases, oral cancer and temporomandibular joint diseases. The pharmacological effects of CBD and the distribution and function of its receptors in the oral cavity are also summarized. In order to provide reference for future research and further clinical application of CBD, we also summarize several possible routes of administration and corresponding characteristics. Finally, the challenges faced while applying CBD clinically and possible solutions are discussed, and we also look to the future.
Collapse
Affiliation(s)
- Zonghao Hu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zishun Qin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jinhong Xie
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Yue Qu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lihua Yin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Chantarat N, Pe KCS, Suppipat K, Vimolmangkang S, Tawinwung S. Effects of Cannabidiol on the Functions of Chimeric Antigen Receptor T Cells in Hematologic Malignancies. Cannabis Cannabinoid Res 2024; 9:819-829. [PMID: 37878339 DOI: 10.1089/can.2023.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Introduction: CD19-chimeric antigen receptor (CAR) T cell therapy is a promising immunotherapy for cancer treatment that has shown remarkable clinical responses, leading to approval by the FDA for relapsed and refractory B cell hematological malignancy treatment. Cannabidiol (CBD) is a nonpsychoactive cannabinoid compound that has been utilized as a palliative treatment in cancer patients due to its immunosuppressive properties. Currently, studies on using CBD during immunotherapy have gained increasing attention. However, the possible interaction between CBD and CAR T cell therapy has not been studied. Therefore, in this study, we aimed to examine the direct effects of CBD on CD19-CAR T cell function against hematologic malignancies. Materials and Methods: The cytotoxic effect of CBD was determined by a cell proliferation reagent water-soluble tatrazolium salt (WST-1) assay. CAR T cells were generated by retroviral transduction and treated with CBD at a nontoxic dose. The effect of CBD on immune characteristics, including transgene expression, T cell subset, and memory phenotype, was analyzed by flow cytometry. Proliferation, apoptosis, and cell cycle distribution were analyzed with standard methods. The effect on cytotoxic function was evaluated using degranulation assays, and antitumor activity was evaluated using flow cytometry. Results: The half-maximum inhibitory concentration (IC50) of CBD on NALM6, Raji, and T cells ranged from 16 to 22 μM. The maximum nontoxic dose of CBD that maintained cell viability at ∼100% was 8 μM. For the generation of CD19-CAR T cells, primary T cells were activated and transduced with a retroviral vector encoding CD19-CAR. CBD did not alter the surface expression or immune characteristics, including the T cell subset and memory phenotype, of CD19-CAR T cells. However, CBD suppressed CD19-CAR T cell proliferation by inducing apoptosis, as evidenced by an increase in the proportion of cells in the Sub-G1 phase in cell cycle arrest. However, the antitumor activity and cytokine secretion of CD19-CAR T cells were not altered by exposure to CBD in this study. Conclusions: In this study, a nontoxic dose of CBD affected CD19-CAR T cell proliferation but not its immune characteristics or cytotoxic function.
Collapse
Affiliation(s)
- Natthida Chantarat
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kristine Cate S Pe
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Koramit Suppipat
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Cluster for Cannabis and its Natural Substances, Chulalongkorn University, Bangkok, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| |
Collapse
|
10
|
Provenzano R, De Caro C, Vitiello A, Izzo L, Ritieni A, Ungaro F, Quaglia F, Russo E, Miro A, d'Angelo I. Enhancing transmucosal delivery of CBD through nanoemulsion: in vitro and in vivo studies. Drug Deliv Transl Res 2024; 14:1648-1659. [PMID: 38064145 DOI: 10.1007/s13346-023-01481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 04/28/2024]
Abstract
Cannabidiol (CBD) has gained significant attention as a complementary and alternative medicine due to its promising therapeutic properties. However, CBD faces obstacles when administered orally due to its poor solubility in water, leading to limited absorption into the bloodstream and low and variable bioavailability. Therefore, the development of innovative delivery approaches that can enhance CBD's bioavailability, facilitate administration, and promote patient adherence is crucial. We propose a new approach for buccal delivery of CBD based on a self-assembling nanoemulsion (NE) made of a mixture of surfactants (Tween 80 and Labrasol) and medium chain triglycerides (MCTs). The NE formulation showed properties suitable for buccal administration, including appropriate size, CBD content, and surface properties, and, if compared to a CBD-MCT solution, it exhibited better control of administered doses, faster dissolution in buccal medium, and enhanced stability. The CBD-NE effectively released its active load within 5 h, remained stable even when diluted in simulated buccal fluids, and could be easily administered through a commercially available spray, providing consistent and reproducible doses of NE with optimized properties. In vitro permeation studies demonstrated that the CBD-NE facilitated swift and consistent permeation through the buccal mucosa, resulting in a higher concentration in the acceptor compartment compared to CBD-MCT. Furthermore, the in vivo study in mice showed that a single buccal administration of CBD-NE led to a quicker onset of action than a CBD solution in MCT, while maintaining the same plasma levels over time and leading to typically higher plasma concentrations compared to those usually achieved through oral administration. In conclusion, our CBD-NE represents a promising alternative formulation strategy for buccal CBD administration, overcoming the challenges associated with conventional formulations such as variable bioavailability and low control of administered doses.
Collapse
Affiliation(s)
- Romina Provenzano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Carmen De Caro
- Department of Science of Health, Magna Græcia University, Catanzaro, Italy
| | - Antonella Vitiello
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Emilio Russo
- Department of Science of Health, Magna Græcia University, Catanzaro, Italy
| | - Agnese Miro
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Ivana d'Angelo
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| |
Collapse
|
11
|
Limsuwan S, Phonsatta N, Panya A, Asasutjarit R, Tansakul N. Pharmacokinetics behavior of four cannabidiol preparations following single oral administration in dogs. Front Vet Sci 2024; 11:1389810. [PMID: 38725584 PMCID: PMC11080651 DOI: 10.3389/fvets.2024.1389810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Cannabidiol (CBD) is a natural phytochemical agent and one of the most abundant found in Cannabis sativa. It is known to exhibit pharmacological properties on various condition such as relieving-inflammation, pain, epilepsy, and anxiety effect. There has been an increasing trend globally in the use of CBD as a supplement in pets. Consequently, there are various CBD products being marketed that are specifically available for pets. Veterinarians and pet owners are concerned that following ingestion, different CBD formulations may result in a CBD level circulating in the blood that may affect the safe use and efficacy of CBD in pets. Several pharmacokinetics studies in animals have been mainly conducted with an oily form of CBD. To date, there is a lack of data regarding direct comparisons in animals among the CBD plasma kinetic profiles from an oral administration of the various preparation forms. Therefore, the current study evaluated and compared the plasma CBD levels from a single oral administration using four different CBD preparations-liquid (an oil-based form, a nanoemulsion form, or a water-soluble form) or a semi-solid form (as CBD mixed in a treat) in dogs. In total, 32 healthy, crossbreed dogs were randomly assigned into 4 groups and treated according to a 1-period, 4-treatment parallel-design. The three liquid forms were dosed at 5 mg/kg body weight, while the single semi-solid form was given at 50 mg/treat/dog. The results showed that the CBD plasma profile from the administration of a water-soluble form was comparable to that of the oil-based group. The nanoemulsion-based form tended to be rapidly absorbed and reached its peak sooner than the others. However, the CBD in all preparations reached the maximum plasma concentration within 3 h post-dose, with an average range of 92-314 μg/L. There were significant differences among certain parameters between the liquid and semi-solid forms. This was the first study to provide pharmacokinetics data regarding CBD in water soluble, nanoemulsion-based, and semi-solid forms for dogs as companion animals. The current data should facilitate the scrutiny of CBD plasma profiles based on different formulations via an oral route in dogs.
Collapse
Affiliation(s)
- Sasithorn Limsuwan
- Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
| | - Natthaporn Phonsatta
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Atikorn Panya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Rathapon Asasutjarit
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani, Thailand
| | - Natthasit Tansakul
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
12
|
Blebea NM, Pricopie AI, Vlad RA, Hancu G. Phytocannabinoids: Exploring Pharmacological Profiles and Their Impact on Therapeutical Use. Int J Mol Sci 2024; 25:4204. [PMID: 38673788 PMCID: PMC11050509 DOI: 10.3390/ijms25084204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Phytocannabinoids, a diverse group of naturally occurring compounds extracted from the Cannabis plant, have attracted interest due to their potential pharmacological effects and medicinal uses. This comprehensive review presents the intricate pharmacological profiles of phytocannabinoids while exploring the diverse impacts these substances have on biological systems. From the more than one hundred cannabinoids which were identified in the Cannabis plant so far, cannabidiol (CBD) and tetrahydrocannabinol (THC) are two of the most extensively studied phytocannabinoids. CBD is a non-psychoactive compound, which exhibits potential anti-inflammatory, neuroprotective, and anxiolytic properties, making it a promising candidate for a wide array of medical conditions. THC, known for its psychoactive effects, possesses analgesic and antiemetic properties, contributing to its therapeutic potential. In addition to THC and CBD, a wide range of additional phytocannabinoids have shown intriguing pharmacological effects, including cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN). The endocannabinoid system, made up of the enzymes involved in the production and breakdown of endocannabinoids, cannabinoid receptors (CB1 and CB2), and endogenous ligands (endocannabinoids), is essential for preserving homeostasis in several physiological processes. Beyond their effects on the endocannabinoid system, phytocannabinoids are studied for their ability to modify ion channels, neurotransmitter receptors, and anti-oxidative pathways. The complex interaction between phytocannabinoids and biological systems offers hope for novel treatment approaches and lays the groundwork for further developments in the field of cannabinoid-based medicine. This review summarizes the state of the field, points out information gaps, and emphasizes the need for more studies to fully realize the therapeutic potential of phytocannabinoids.
Collapse
Affiliation(s)
- Nicoleta Mirela Blebea
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, “Ovidius” University from Constanța, 900470 Constanța, Romania;
| | - Andreea Iulia Pricopie
- Biochemistry and Chemistry of Environmental Factors Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Gabriel Hancu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| |
Collapse
|
13
|
Fraguas-Sánchez AI, Hernán D, Montejo C, Poklis JL, Lichtman AH, Torres-Suárez AI. Polycaprolactone microparticles for the subcutaneous administration of cannabidiol: in vitro and in vivo release. Drug Deliv Transl Res 2024; 14:959-969. [PMID: 37824041 DOI: 10.1007/s13346-023-01444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Cannabidiol (CBD) has become a highly attractive entity in therapeutics. However, its low aqueous solubility, instability and handling problems limit the development of effective CBD formulations. Subcutaneously administered CBD-loaded polycaprolactone microparticles (MP) represent an interesting strategy to overcome these challenges. This work focuses on evaluating the pharmacokinetics of CBD formulated in polymer microparticles for subcutaneous administration and characterising its release. The mean release time (MRLT) parameter is used to compare the release of CBD from two microparticle formulations in vitro and in a mouse model. After the administration of CBD in solution, a bicompartmental distribution is observed due to the extensive diffusion to the brain, being the brain/blood AUC ratio 1.29. The blood and brain mean residence time (MRT) are 0.507 ± 0.04 and 0.257 ± 0.0004 days, respectively. MP prepared with two drug/polymer ratios (15/150-MP and 30/150-MP) are designed, showing similar in vitro dissolution profiles (similarity factor (f2) is 63.21), without statistically significant differences between MRLTin vitro values (4.68 ± 0.63 and 4.32 ± 0.05 days). However, considerable differences in blood and brain profiles between both formulations are detected. The blood and brain MRT values of 15/150-MP are 6.44 ± 0.3 days and 6.15 ± 0.25 days, respectively, whereas significantly lower values 3.91 ± 0.29 days and 2.24 ± 0.64 days are obtained with 30/150-MP. The extended release of CBD during 10 days after a single subcutaneous administration is achieved.
Collapse
Affiliation(s)
- Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Dolores Hernán
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Consuelo Montejo
- Department of Food and Pharmaceutical Sciences, San Pablo CEU University, Madrid, Spain
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain.
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
14
|
Marques GVL, Braga AV, Silva IR, de Souza ARB, Kohlhoff M, César IC, Machado RR, Oliveira RB. Synthesis and Antiallodynic Activity of Cannabidiol Analogue on Peripheral Neuropathy in Mice. Chem Biodivers 2024; 21:e202301935. [PMID: 38363210 DOI: 10.1002/cbdv.202301935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Cannabidiol (CBD) is a substance that exerts several therapeutic actions, including analgesia. CBD is generally administered orally, but its poor water solubility and metabolism impair its bioavailability. Thus, the development of molecules with better pharmacokinetic profile from cannabidiol becomes an interesting strategy for the design of novel analgesic drugs for the relief of painful conditions that are difficult to manage clinically, such as neuropathic pain. In the present study, an unprecedented analogue of CBD (1) was synthesized and some of its physicochemical properties were evaluated in silico as well as its stability in an acid medium. Additionally, its effect was investigated in a model of neuropathic pain induced by the chemotherapy drug paclitaxel in mice, in comparison with cannabidiol itself. Cannabidiol (20 mg/kg), pregabalin (30 mg/kg), or analogue 1 (5, 10, and 20 mg/kg), administered on the 14th day after the first administration of paclitaxel, attenuated the mechanical allodynia of the sensitized animals. The antinociceptive activity of analogue 1 was attenuated by previous administration of a cannabinoid CB1 receptor antagonist, AM 251, which indicates that its mechanism of action is related to the activation of CB1 receptors. In conclusion, the CBD analogue 1 developed in this study shows great potential to be used in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Gabriel V L Marques
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alysson V Braga
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Iara R Silva
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adna R B de Souza
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Markus Kohlhoff
- Química de Produtos Naturais Bioativos, Instituto René Rachou - FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela C César
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata B Oliveira
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
15
|
Chavda VP, Balar PC, Bezbaruah R, Vaghela DA, Rynjah D, Bhattacharjee B, Sugandhi VV, Paiva-Santos AC. Nanoemulsions: Summary of a Decade of Research and Recent Advances. Nanomedicine (Lond) 2024; 19:519-536. [PMID: 38293801 DOI: 10.2217/nnm-2023-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Nanoemulsions consist of a combination of several components such as oil, water, emulsifiers, surfactants and cosurfactants. Various techniques for producing nanoemulsions include high-energy and low-energy approaches such as high-pressure homogenization, microfluidization, jet disperser and phase inversion methods. The properties of a formulation can be influenced by elements such as the composition, concentration, size and charge of droplets, which in turn can affect the technique of manufacture. Characterization is conducted by the assessment of several factors such as physical properties, pH analysis, viscosity measurement and refractive index determination. This article offers a thorough examination of the latest developments in nanoemulsion technology, with a focus on their wide-ranging applications and promising future possibilities. It also discusses the administration of nanoemulsions through several methods.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Pankti C Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Institute of Pharmacy, Assam Medical College & Hospital, Dibrugarh, Assam, 786002, India
| | - Dixa A Vaghela
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Damanbhalang Rynjah
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science - Tezpur, Sonitpur, Assam, 784501, India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science - Tezpur, Sonitpur, Assam, 784501, India
| | - Vrashabh V Sugandhi
- Department of Industrial Pharmacy, College of Pharmacy and Health Sciences St. John's University, New York, 11439, USA
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal, 3000-370
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal, 3000-548
| |
Collapse
|
16
|
Yan C, Kim SR. Microencapsulation for Pharmaceutical Applications: A Review. ACS APPLIED BIO MATERIALS 2024; 7:692-710. [PMID: 38320297 DOI: 10.1021/acsabm.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
In order to improve bioavailability, stability, control release, and target delivery of active pharmaceutical ingredients (APIs), as well as to mask their bitter taste, to increase their efficacy, and to minimize their side effects, a variety of microencapsulation (including nanoencapsulation, particle size <100 nm) technologies have been widely used in the pharmaceutical industry. Commonly used microencapsulation technologies are emulsion, coacervation, extrusion, spray drying, freeze-drying, molecular inclusion, microbubbles and microsponge, fluidized bed coating, supercritical fluid encapsulation, electro spinning/spray, and polymerization. In this review, APIs are categorized by their molecular complexity: small APIs (compounds with low molecular weight, like Aspirin, Ibuprofen, and Cannabidiol), medium APIs (compounds with medium molecular weight like insulin, peptides, and nucleic acids), and living microorganisms (such as probiotics, bacteria, and bacteriophages). This article provides an overview of these microencapsulation technologies including their processes, matrix, and their recent applications in microencapsulation of APIs. Furthermore, the advantages and disadvantages of these common microencapsulation technologies in terms of improving the efficacy of APIs for pharmaceutical treatments are comprehensively analyzed. The objective is to summarize the most recent progresses on microencapsulation of APIs for enhancing their bioavailability, control release, target delivery, masking their bitter taste and stability, and thus increasing their efficacy and minimizing their side effects. At the end, future perspectives on microencapsulation for pharmaceutical applications are highlighted.
Collapse
Affiliation(s)
- Cuie Yan
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| | - Sang-Ryoung Kim
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| |
Collapse
|
17
|
O’Sullivan SE, Jensen SS, Kolli AR, Nikolajsen GN, Bruun HZ, Hoeng J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals (Basel) 2024; 17:244. [PMID: 38399459 PMCID: PMC10892205 DOI: 10.3390/ph17020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The poor physicochemical properties of cannabidiol (CBD) hamper its clinical development. The aim of this review was to examine the literature to identify novel oral products and delivery strategies for CBD, while assessing their clinical implications and translatability. Evaluation of the published literature revealed that oral CBD strategies are primarily focused on lipid-based and emulsion solutions or encapsulations, which improve the overall pharmacokinetics (PK) of CBD. Some emulsion formulations demonstrate more rapid systemic delivery. Variability in the PK effects of different oral CBD products is apparent across species. Several novel administration routes exist for CBD delivery that may offer promise for specific indications. For example, intranasal administration and inhalation allow quick delivery of CBD to the plasma and the brain, whereas transdermal and transmucosal administration routes deliver CBD systemically more slowly. There are limited but promising data on novel delivery routes such as intramuscular and subcutaneous. Very limited data show that CBD is generally well distributed across tissues and that some CBD products enable increased delivery of CBD to different brain regions. However, evidence is limited regarding whether changes in CBD PK profiles and tissue distribution equate to superior therapeutic efficacy across indications and whether specific CBD products might be suited to particular indications.
Collapse
Affiliation(s)
| | - Sanne Skov Jensen
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Aditya Reddy Kolli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland;
| | | | - Heidi Ziegler Bruun
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Julia Hoeng
- Vectura Fertin Pharma, 4058 Basel, Switzerland;
| |
Collapse
|
18
|
Singh V, Vihal S, Rana R, Rathore C. Nanocarriers for Cannabinoid Delivery: Enhancing Therapeutic Potential. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:247-261. [PMID: 39356097 DOI: 10.2174/0126673878300347240718100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 10/03/2024]
Abstract
Medical cannabis has potential therapeutic benefits in managing pain, anxiety, depression, and neurological and movement disorders. Phytocannabinoids derived from the cannabis plant are responsible for their pharmacological and therapeutic properties. However, the complexity of cannabis components, especially cannabinoids, poses a challenge to effective medicinal administration. Even with the increasing acceptance of cannabis-based medicines, achieving consistent bioavailability and targeted distribution remains difficult. Conventional administration methods are plagued by solubility and absorption problems requiring innovative solutions. After conducting a thorough review of research papers and patents, it has become evident that nanotechnology holds great promise as a solution. The comprehensive review of 36 research papers has yielded valuable insights, with 7 papers reporting enhanced bioavailability, while others have focused on improvements in release, solubility, and stability. Additionally, 19 patents have been analyzed, of which 7 specifically claim enhanced bioavailability, while the remaining patents describe various formulation methods. These patents outline effective techniques for encapsulating cannabis using nanocarriers, effectively addressing solubility and controlled release. Studies on the delivery of cannabis using nanocarriers focus on improving bioavailability, prolonging release, and targeting specific areas. This synthesis highlights the potential of nanotechnology to enhance cannabis therapies and pave the way for innovative interventions and precision medicine.
Collapse
Affiliation(s)
- Varun Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, 160036, India
| |
Collapse
|
19
|
Guruprasad Reddy P, Bar-Hai A, Hoffman A, Marc Feldmann S, Domb AJ. Novel phenolate salts of bioactive agents: Cannabidiol phenolate salts. Bioorg Chem 2023; 141:106914. [PMID: 37857065 DOI: 10.1016/j.bioorg.2023.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Bioactive phenolic compounds are commonly found in medications, with examples including apomorphine, estrone, thymol, estradiol, propofol, o-phenylphenol, l-Dopa, doxorubicin, tetrahydrocannabinol (THC), and cannabidiol (CBD). This study is the first to explore the creation and assessment of metal and ammonium phenolate salts using CBD as an example. CBD is used in medicine to treat anxiety, insomnia, chronic pain, and inflammation, but its bioavailability is limited due to poor water solubility. In this study exploit a synthetic route to convert CBD into anionic CBD-salts to enhance water solubility. Various CBD-salts with metal and ammonium counterions such as lithium (Li+), sodium (Na+), potassium (K+), choline hydroxide ([(CH3)3NCH2CH2OH]+), and tetrabutylammonium ([N(C4H9)4]+) have been synthesized and characterized. These salts are obtained in high yields, ranging from 74 % to 88 %, through a straightforward dehydration reaction between CBD and alkali metal hydroxides (LiOH, NaOH, KOH) or ammonium hydroxides (choline hydroxide, tetrabutylammonium hydroxide). These reactions are conducted in either ethanol, methanol, or a methanol:water mixture, maintaining a 1:1 molar ratio between the reactants. Comprehensive characterization using Fourier-Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance (NMR) spectroscopy, and elemental (CHN) analysis confirms the formation of CBD-salts, as evidenced by the absence of aromatic hydroxyl resonances or stretching frequencies. The molecular formulas of CBD salts were determined based on CHN analysis, and CBD quantification from acid regeneration experiments. Characterization data confirms that each CBD phenolate in a specific CBD salt was electrostatically stabilized by one of the either alkali metal or ammonium ion. The CBD-salts are highly susceptible to acidic conditions, readily reverting back to the original CBD. The percentage and purity of CBD in the CBD-metal/ammonium salts have been studied using High-Performance Liquid Chromatography (HPLC) analysis. Solubility studies indicate that the conversion of CBD into CBD salts significantly enhances its solubility in water, ranging from 110 to 1606 folds greater than pure CBD. Furthermore, the pharmacokinetic evaluation of oral administration of CBD-salts compared to CBD were determined in rats.
Collapse
Affiliation(s)
- Pulikanti Guruprasad Reddy
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem, Israel
| | - Ayala Bar-Hai
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem, Israel
| | - Amnon Hoffman
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem, Israel
| | | | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem, Israel.
| |
Collapse
|
20
|
Tagen M, Klumpers LE, Peshkovsky A. Pharmacokinetics of Two Nanoemulsion Formulations of Δ 8-Tetrahydrocannabinol in Rats. AAPS PharmSciTech 2023; 24:239. [PMID: 37989959 DOI: 10.1208/s12249-023-02699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
The use of Δ8-tetrahydrocannabinol (Δ8-THC) has increased in recent years. Given that the oral absorption of cannabinoids in oil formulations is typically slow and variable, nanoemulsions may be an improved delivery vehicle. Therefore, we characterized the pharmacokinetics (PK) in Sprague-Dawley rats following the administration of three different oral formulations containing 10 mg/kg Δ8-THC: a translucent liquid nanoemulsion, a reconstituted powder nanoemulsion, and a medium chain triglyceride (MCT) oil solution for comparison. Δ8-THC was also administered intravenously at 0.6 mg/kg. Plasma samples were quantified for Δ8-THC and two metabolites, 11-hydroxy-Δ8-THC (11-OH-Δ8-THC) and 11-carboxy-Δ8-THC (COOH-Δ8-THC). Non-compartmental PK parameters were calculated, and a PK model was developed based on pooled data. Despite a smaller median droplet size of the translucent liquid nanoemulsion (26.9 nm) compared to the reconstituted powder nanoemulsion (168 nm), the PK was similar for both. The median Tmax values of Δ8-THC for the nanoemulsions (0.667 and 1 h) were significantly shorter than the median Tmax of Δ8-THC in MCT oil (6 h). This resulted in an approximately 4-fold higher Δ8-THC exposure over the first 4 h for the nanoemulsions relative to the MCT oil solution. The active 11-OH-Δ8-THC metabolite followed a similar pattern to Δ8-THC. The non-compartmental bioavailability estimates of Δ8-THC for the nanoemulsions (11-16.5%) were lower than for the MCT oil solution (>21.5%). However, a model-based analysis indicated similar bioavailability for all three oral formulations. These results demonstrate favorable absorption properties of both nanoemulsions, despite the difference in droplet sizes, compared to an MCT oil formulation.
Collapse
Affiliation(s)
| | - Linda E Klumpers
- Verdient Science LLC, Denver, Colorado, USA
- University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | | |
Collapse
|
21
|
Gabarin A, Yarmolinsky L, Budovsky A, Khalfin B, Ben-Shabat S. Cannabis as a Source of Approved Drugs: A New Look at an Old Problem. Molecules 2023; 28:7686. [PMID: 38067416 PMCID: PMC10707504 DOI: 10.3390/molecules28237686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Cannabis plants have been used in medicine since ancient times. They are well known for their anti-diabetic, anti-inflammatory, neuroprotective, anti-cancer, anti-oxidative, anti-microbial, anti-viral, and anti-fungal activities. A growing body of evidence indicates that targeting the endocannabinoid system and various other receptors with cannabinoid compounds holds great promise for addressing multiple medical conditions. There are two distinct avenues in the development of cannabinoid-based drugs. The first involves creating treatments directly based on the components of the cannabis plant. The second involves a singular molecule strategy, in which specific phytocannabinoids or newly discovered cannabinoids with therapeutic promise are pinpointed and synthesized for future pharmaceutical development and validation. Although the therapeutic potential of cannabis is enormous, few cannabis-related approved drugs exist, and this avenue warrants further investigation. With this in mind, we review here the medicinal properties of cannabis, its phytochemicals, approved drugs of natural and synthetic origin, pitfalls on the way to the widespread clinical use of cannabis, and additional applications of cannabis-related products.
Collapse
Affiliation(s)
- Adi Gabarin
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| | - Ludmila Yarmolinsky
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| | - Arie Budovsky
- Research and Development Authority, Barzilai University Medical Center, Ashkelon 7830604, Israel;
| | - Boris Khalfin
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| | - Shimon Ben-Shabat
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| |
Collapse
|
22
|
Thapa D, Warne LN, Falasca M. Pharmacohistory of Cannabis Use-A New Possibility in Future Drug Development for Gastrointestinal Diseases. Int J Mol Sci 2023; 24:14677. [PMID: 37834122 PMCID: PMC10572150 DOI: 10.3390/ijms241914677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Humans have employed cannabis for multiple uses including medicine, recreation, food, and fibre. The various components such as roots, flowers, seeds, and leaves have been utilized to alleviate pain, inflammation, anxiety, and gastrointestinal disorders like nausea, vomiting, diarrhoea, and inflammatory bowel diseases (IBDs). It has occupied a significant space in ethnomedicines across cultures and religions. Despite multi-dimensional uses, the global prohibition of cannabis by the USA through the introduction of the Marijuana Tax Act in 1937 led to prejudice about the perceived risks of cannabis, overshadowing its medicinal potential. Nevertheless, the discovery of tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, and the endocannabinoid system renewed scientific interest in understanding the role of cannabis in modulating different conditions, including gastrointestinal disorders. Preparations combining cannabidiol and THC have shown promise in mitigating gut symptoms through anti-inflammatory and motility-enhancing effects. This review revisits the ethnomedicinal use of cannabis in gastrointestinal diseases and emphasizes the need for further research to determine optimal dosages, formulations, and safety profiles of cannabis-based medicines. It also underscores the future potential of cannabinoid-based therapies by leveraging the role of the expanded endocannabinoid system, an endocannabinoidome, in the modulation of gastrointestinal ailments.
Collapse
Affiliation(s)
- Dinesh Thapa
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
| | - Leon N. Warne
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
- Little Green Pharma, West Perth, WA 6872, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
| |
Collapse
|
23
|
Tran VN, Strnad O, Šuman J, Veverková T, Sukupová A, Cejnar P, Hynek R, Kronusová O, Šach J, Kaštánek P, Ruml T, Viktorová J. Cannabidiol nanoemulsion for eye treatment - Anti-inflammatory, wound healing activity and its bioavailability using in vitro human corneal substitute. Int J Pharm 2023; 643:123202. [PMID: 37406946 DOI: 10.1016/j.ijpharm.2023.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Cannabidiol (CBD) is the non-psychoactive component of the plant Cannabis sativa (L.) that has great anti-inflammatory benefits and wound healing effects. However, its high lipophilicity, chemical instability, and extensive metabolism impair its bioavailability and clinical use. Here, we report on the preparation of a human cornea substitute in vitro and validate this substitute for the evaluation of drug penetration. CBD nanoemulsion was developed and evaluated for stability and biological activity. The physicochemical properties of CBD nanoemulsion were maintained during storage for 90 days under room conditions. In the scratch assay, nanoformulation showed significantly ameliorated wound closure rates compared to the control and pure CBD. Due to the lower cytotoxicity of nanoformulated CBD, a higher anti-inflammatory activity was demonstrated. Neither nanoemulsion nor pure CBD can penetrate the cornea after the four-hour apical treatment. For nanoemulsion, 94 % of the initial amount of CBD remained in the apical compartment while only 54 % of the original amount of pure CBD was detected in the apical medium, and 7 % in the cornea, the rest was most likely metabolized. In summary, the nanoemulsion developed in this study enhanced the stability and biological activity of CBD.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Ondřej Strnad
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Jáchym Šuman
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Tereza Veverková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Adéla Sukupová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Pavel Cejnar
- Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Olga Kronusová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; EcoFuel Laboratories Ltd., Ocelářská 392, 190 00 Prague 9, Czech Republic
| | - Josef Šach
- Department of Pathology, Third Faculty of Medicine, Teaching Hospital Královské Vinohrady Prague, Šrobárova 50, 100 34 Prague 10, Czech Republic
| | - Petr Kaštánek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; EcoFuel Laboratories Ltd., Ocelářská 392, 190 00 Prague 9, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic.
| |
Collapse
|
24
|
Momenzadeh K, Yeritsyan D, Kheir N, Nazarian RM, Nazarian A. Propylene glycol and Kolliphor as solvents for systemic delivery of cannabinoids via intraperitoneal and subcutaneous routes in preclinical studies: a comparative technical note. J Cannabis Res 2023; 5:24. [PMID: 37340498 DOI: 10.1186/s42238-023-00194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Substance administration to laboratory animals necessitates careful consideration and planning in order to enhance agent distribution while reducing any harmful effects from the technique. There are numerous methods for administering cannabinoids; however, several parameters must be considered, including delivery frequency, volume of administration, vehicle, and the level of competence required for staff to use these routes properly. There is a scarcity of information about the appropriate delivery method for cannabinoids in animal research, particularly those that need the least amount of animal manipulation during the course of the investigation. This study aims to assess the feasibility and potential side effects of intraperitoneal and subcutaneous injection of CBD and THC using propylene glycol or Kolliphor in animal models. By evaluating the ease of use and histopathological side effects of these solvents, this study intends to help researchers better understand an accessible long-term delivery route of administration in animal experiments while minimizing the potential confounding effects of the delivery method on the animal. METHODS Intraperitoneal and subcutaneous methods of systemic cannabis administration were tested in rat models. Subcutaneous delivery via needle injection and continuous osmotic pump release were evaluated using propylene glycol or Kolliphor solvents. In addition, the use of a needle injection and a propylene glycol solvent for intraperitoneal (IP) administration was investigated. Skin histopathological changes were evaluated following a trial of subcutaneous injections of cannabinoids utilizing propylene glycol solvent. DISCUSSION Although IP delivery of cannabinoids with propylene glycol as solvent is a viable method and is preferable to oral treatment in order to reduce gastrointestinal tract degradation, it has substantial feasibility limitations. We conclude that subcutaneous delivery utilizing osmotic pumps with Kolliphor as a solvent provides viable and consistent route of administration for long-term systemic cannabinoid delivery in the preclinical context.
Collapse
Affiliation(s)
- Kaveh Momenzadeh
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadim Kheir
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Rosalyn M Nazarian
- Pathology Service, Dermatopathology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia.
| |
Collapse
|
25
|
Yau GTY, Tai W, Arnold JC, Chan HK, Kwok PCL. Cannabidiol for the Treatment of Brain Disorders: Therapeutic Potential and Routes of Administration. Pharm Res 2023; 40:1087-1114. [PMID: 36635488 PMCID: PMC10229467 DOI: 10.1007/s11095-023-03469-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
The use of cannabidiol (CBD) for treating brain disorders has gained increasing interest. While the mechanism of action of CBD in these conditions is still under investigation, CBD has been shown to affect numerous different drug targets in the brain that are involved in brain disorders. Here we review the preclinical and clinical evidence on the potential therapeutic use of CBD in treating various brain disorders. Moreover, we also examine various drug delivery approaches that have been applied to CBD. Due to the slow absorption and low bioavailability with the current oral CBD therapy, more efficient routes of administration to bypass hepatic metabolism, particularly pulmonary delivery, should be considered. Comparison of pharmacokinetic studies of different delivery routes highlight the advantages of intranasal and inhalation drug delivery over other routes of administration (oral, injection, sublingual, buccal, and transdermal) for treating brain disorders. These two routes of delivery, being non-invasive and able to achieve fast absorption and increase bioavailability, are attracting increasing interest for CBD applications, with more research and development expected in the near future.
Collapse
Affiliation(s)
- Grace Tsz Yan Yau
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Waiting Tai
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jonathon Carl Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2050, Australia
- Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
26
|
Lazzarotto Rebelatto ER, Rauber GS, Caon T. An update of nano-based drug delivery systems for cannabinoids: Biopharmaceutical aspects & therapeutic applications. Int J Pharm 2023; 635:122727. [PMID: 36803924 DOI: 10.1016/j.ijpharm.2023.122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Nanotechnology has been widely used to improve stability, efficacy, release control and biopharmaceutical aspects of natural and synthetic cannabinoids. In this review, the main types of cannabinoid-based nanoparticles (NPs) reported so far are addressed, taking into account the advantages and disadvantages of each system. Formulation, preclinical and clinical studies performed with colloidal carriers were individually analyzed. Lipid-based nanocarriers have been recognized for their high biocompatibility and ability to improve both solubility and bioavailability. Δ9-tetrahydrocannabinol-loaded lipid systems designed to treat glaucoma, for example, showed superior in vivo efficacy in comparison to market formulations. The analyzed studies have shown that product performance can be modulated by varying particle size and composition. In the case of self-nano-emulsifying drug delivery systems, the reduced particle size shortens the time to reach high plasma concentrations while the incorporation of metabolism inhibitors extends the plasma circulation time. The use of long alkyl chain lipids in NP formulations, in turn, is strategized to achieve intestinal lymphatic absorption. Polymer NPs have been prioritized when a sustained or site-specific cannabinoid release is desirable (e.g., CNS-affecting diseases/cancer). The functionalization of the surface of polymer NPs makes their action even more selective whereas surface charge modulation is highlighted to provide mucoadhesion. The present study identified promising systems for targeted applications, making the process of optimizing new formulations more effective and faster. Although NPs have shown a promising role in the treatment of several difficult-to-treat diseases, more translational studies should be performed to confirm the benefits reported here.
Collapse
Affiliation(s)
| | - Gabriela Schneider Rauber
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Thiago Caon
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina Trindade, Florianopolis 88040-900, Brazil.
| |
Collapse
|
27
|
Assadpour E, Rezaei A, Das SS, Krishna Rao BV, Singh SK, Kharazmi MS, Jha NK, Jha SK, Prieto MA, Jafari SM. Cannabidiol-Loaded Nanocarriers and Their Therapeutic Applications. Pharmaceuticals (Basel) 2023; 16:ph16040487. [PMID: 37111244 PMCID: PMC10141492 DOI: 10.3390/ph16040487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Cannabidiol (CBD), one of the most promising constituents isolated from Cannabis sativa, exhibits diverse pharmacological actions. However, the applications of CBD are restricted mainly due to its poor oral bioavailability. Therefore, researchers are focusing on the development of novel strategies for the effective delivery of CBD with improved oral bioavailability. In this context, researchers have designed nanocarriers to overcome limitations associated with CBD. The CBD-loaded nanocarriers assist in improving the therapeutic efficacy, targetability, and controlled biodistribution of CBD with negligible toxicity for treating various disease conditions. In this review, we have summarized and discussed various molecular targets, targeting mechanisms and types of nanocarrier-based delivery systems associated with CBD for the effective management of various disease conditions. This strategic information will help researchers in the establishment of novel nanotechnology interventions for targeting CBD.
Collapse
Affiliation(s)
- Elham Assadpour
- Food Industry Research Co., Gorgan 49138-15739, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, India
| | - Balaga Venkata Krishna Rao
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Correspondence:
| |
Collapse
|
28
|
Wang C, Dong C, Lu Y, Freeman K, Wang C, Guo M. Digestion behavior, in vitro and in vivo bioavailability of cannabidiol in emulsions stabilized by whey protein-maltodextrin conjugate: Impact of carrier oil. Colloids Surf B Biointerfaces 2023; 223:113154. [PMID: 36708645 DOI: 10.1016/j.colsurfb.2023.113154] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
An emulsion delivery system may be affected significantly by oil phase composition in terms of digestion behavior and bioavailability of the delivered substance. In this study, emulsions loaded with cannabidiol (CBD) were prepared with medium chain triglyceride (MCT), long chain triglyceride (LCT) or MCT/LCT(1:1) as carrier oil and whey protein-maltodextrin conjugate as emulsifier, and the digestion behavior of emulsion and bioavailability of CBD were assessed in vitro and in vivo. The particle size of emulsions throughout the in vitro digestion process was in the order of MCT < MCT/LCT < LCT, and three emulsions showed consistent particle size changes: stable in oral phase, sharply increased in gastric phase, and decreased in small intestine. After intestinal digestion, about 90% of free fatty acids (FFA) was released in MCT emulsion, followed by MCT/LCT (76%) and then LCT (45%). CBD was degraded during gastrointestinal digestion and the transformation stability of CBD in oil phase was in the order of LCT > MCT/LCT > MCT. Although CBD had higher bioaccessibility in MCT and MCT/LCT emulsions, the bioavailability of CBD in LCT was the highest (43%), followed by MCT/LCT (39%), MCT (33%). In vivo pharmacokinetic study showed that MCT/LCT and LCT were more favorable for CBD transport and absorption. The results may provide useful information for the construction of delivery systems, protecting CBD molecules, and improving their bioavailability.
Collapse
Affiliation(s)
- Ce Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yingcong Lu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Kalev Freeman
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
29
|
Reddy TS, Zomer R, Mantri N. Nanoformulations as a strategy to overcome the delivery limitations of cannabinoids. Phytother Res 2023; 37:1526-1538. [PMID: 36748949 DOI: 10.1002/ptr.7742] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 02/08/2023]
Abstract
Medical cannabis has received significant interest in recent years due to its promising benefits in the management of pain, anxiety, depression and neurological and movement disorders. Specifically, the major phytocannabinoids derived from the cannabis plant such as (-) trans-Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), have been shown to be responsible for the pharmacological and therapeutic properties. Recently, these phytocannabinoids have also attracted special attention in cancer treatment due to their well-known palliative benefits in chemotherapy-induced nausea, vomiting, pain and loss of appetite along with their anticancer activities. Despite the enormous pharmacological benefits, the low aqueous solubility, high instability (susceptibility to extensive first pass metabolism) and poor systemic bioavailability restrict their utilization at clinical perspective. Therefore, drug delivery strategies based on nanotechnology are emerging to improve pharmacokinetic profile and bioavailability of cannabinoids as well as enhance their targeted delivery. Here, we critically review the nano-formulation systems engineered for overcoming the delivery limitations of native phytocannabinoids including polymeric and lipid-based nanoparticles (lipid nano capsules (LNCs), nanostructured lipid carriers (NLCs), nanoemulsions (NE) and self-emulsifying drug delivery systems (SEDDS)), ethosomes and cyclodextrins as well as their therapeutic applications.
Collapse
Affiliation(s)
- T Srinivasa Reddy
- The Pangenomics Group, Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, Western Australia, Australia
| | - Nitin Mantri
- The Pangenomics Group, Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia.,The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
30
|
ElSohly MA, Shahzadi I, Gul W. Absorption and Bioavailability of Novel UltraShear Nanoemulsion of Cannabidiol in Rats. Med Cannabis Cannabinoids 2023; 6:148-159. [PMID: 37942295 PMCID: PMC10629855 DOI: 10.1159/000534473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Cannabidiol (CBD) has several potential benefits and therapeutic uses, especially in pain, inflammation, and anxiety. CBD has high hydrophobicity and very low solubility in water. CBD has also shown exceptionally low oral-gastrointestinal (oral-GI) bioavailability. In this study, we aimed to examine the oral gastrointestinal absorption and subsequent bioavailability of CBD in a nanoemulsion formulation prepared by Pressure BioSciences' UltraShearTM technology. Methods CBD nanoemulsion (2%) was provided by Pressure BioSciences, Inc. (South Easton, MA), and CBD pharmacokinetic parameters were evaluated in male Sprague-Dawley rats using LC-MS/MS technology. Results Bioavailability of orally delivered CBD UltraShear nanoemulsion was calculated to be 18.6% at 6 h and 25.4% at 24 h. While oral-GI bioavailability is unsurprisingly limited by first-pass metabolism, it is nonetheless notable that CBD bioavailability for oral-GI UltraShear nanoemulsion CBD is roughly 3-4x higher than the typical bioavailability for oral-GI CBD delivered in oil solution or conventional edible formats. Conclusion This study has provided a compelling demonstration of unprecedented speed and efficiency of oral-GI CBD absorption of CBD UltraShear nanoemulsions, achieving 10% of levels achieved for direct IV injection within 30 min and 80% of IV levels in 24 h. Notably, within just the first hour post-administration, the bioavailability of oral CBD from UltraShear nanoemulsion formulation exceeded the typical 6% total CBD oral bioavailability benchmarks reported for CBD edibles and ultimately achieved 3-4X these levels within 6-24 h.
Collapse
Affiliation(s)
| | | | - Waseem Gul
- ElSohly Laboratories, Inc., Oxford, MS, USA
| |
Collapse
|
31
|
Bacalia KMA, Tveter KM, Palmer H, Douyere J, Martinez S, Sui K, Roopchand DE. Cannabidiol Decreases Intestinal Inflammation in the Ovariectomized Murine Model of Postmenopause. Biomedicines 2022; 11:74. [PMID: 36672582 PMCID: PMC9855871 DOI: 10.3390/biomedicines11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Cannabidiol (CBD) (25 mg/kg peroral) treatment was shown to improve metabolic outcomes in ovariectomized (OVX) mice deficient in 17β-estradiol (E2). Herein, CBD effects on intestinal and hepatic bile acids (BAs) and inflammation were investigated. Following RNA sequencing of colon tissues from vehicle (VEH)- or CBD-treated sham surgery (SS) or OVX mice (n = 4 per group), differentially expressed genes (DEGs) were sorted in ShinyGO. Inflammatory response and bile secretion pathways were further analyzed. Colon content and hepatic BAs were quantified by LC-MS (n = 8-10 samples/group). Gut organoids were treated with CBD (100, 250, 500 µM) with or without TNFα and lipopolysaccharide (LPS) followed by mRNA extraction and qPCR to assess CBD-induced changes to inflammatory markers. The expression of 78 out of 114 inflammatory response pathway genes were reduced in CBD-treated OVX mice relative to vehicle (VEH)-treated OVX mice. In contrast, 63 of 111 inflammatory response pathway genes were increased in CBD-treated sham surgery (SS) mice compared to VEH-treated SS group and 71 of 121 genes were increased due to ovariectomy. CBD did not alter BA profiles in colon content or liver. CBD repressed Tnf and Nos2 expression in intestinal organoids in a dose-dependent manner. In conclusion, CBD suppressed colonic inflammatory gene expression in E2-deficient mice but was pro-inflammatory in E2-sufficient mice suggesting CBD activity in the intestine is E2-dependent.
Collapse
Affiliation(s)
- Karen Mae A. Bacalia
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
- Graduate Program, Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Kevin M. Tveter
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hayley Palmer
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jeffrey Douyere
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| | - Savannah Martinez
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ke Sui
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| | - Diana E. Roopchand
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
32
|
Bailey MM, Emily Mills MC, Haas AE, Bailey K, Kaufmann RC. The effects of subacute exposure to a water-soluble cannabinol compound in male mice. J Cannabis Res 2022; 4:44. [PMID: 35897117 PMCID: PMC9327251 DOI: 10.1186/s42238-022-00153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/08/2022] [Indexed: 01/05/2023] Open
Abstract
Background Cannabinol (CBN) is one of the many cannabinoids present in Cannabis sativa and has been explored as a potential treatment for sleeplessness. The purpose of this study was to determine the physiological and behavioral effects of subacute exposure to therapeutic and low pharmacological levels of a mechanically formed, stabilized water-soluble cannabinol nano-emulsion (CBNight™). Methods Sixty-two male mice were randomly assigned to one of six treatment groups given CBNight™ at dosages designed to deliver 0mg (control) to 4 mg/kg of CBN daily via oral gavage for 14 days. In-cage behavior was observed at 30 minutes and at 2, 4, 8, and 16 hours after each dose. After 14 days, the mice were sacrificed and necropsied. Organs were weighed and inspected for gross abnormalities, and blood was collected via cardiac puncture for clinical chemistry. Results No dosage-dependent adverse effects on behavior, body mass, or blood chemistry were observed, except that the highest doses of CBNight™ were associated with significantly lower eosinophil counts. Conclusions The commercially available, water-soluble CBN compound employed in this study does not appear to cause adverse effects in mice; rather, it appears to be well tolerated at pharmacological levels. The findings of eosinopenia at higher doses of CBN and lack of hepatotoxicity at any dosage employed in this study have not been reported to date. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-022-00153-w.
Collapse
|
33
|
Yordanov Y, Stefanova D, Spassova I, Kovacheva D, Tzankova V, Konstantinov S, Yoncheva K. Formulation of Nanomicelles Loaded with Cannabidiol as a Platform for Neuroprotective Therapy. Pharmaceutics 2022; 14:pharmaceutics14122625. [PMID: 36559117 PMCID: PMC9781481 DOI: 10.3390/pharmaceutics14122625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The present study is focused on the development of cannabidiol-loaded polymeric nanomicelles as a drug delivery system with neuroprotective effects. Cannabidiol was loaded in Pluronic micelles (Pluronic P123 or its combination with Pluronic F127) possessing an average diameter smaller than 50 nm and high encapsulation efficiency for the hydrophobic drug (80% and 84%, respectively). The successful encapsulation and transformation of cannabidiol in amorphous phase were observed by IR spectroscopy and X-ray diffraction, respectively. Studies with neuroblastoma cells (SH-SY5Y and Neuro-2a) showed that the pure cannabidiol caused a dose-dependent reduction of cell viability, whereas its loading into the micelles decreased cytotoxicity. Further, neuroprotective effects of pure and micellar cannabidiol were examined in a model of H2O2-induced oxidative stress in both neuroblastoma cells. The pre-treatment of cell lines with cannabidiol loaded into the mixed Pluronic P123/F127 micelles exerted significantly stronger protection against the oxidative stress compared to pure cannabidiol and cannabidiol in single Pluronic P123 micelles. Interestingly, the empty mixed P123/F127 micelles demonstrated protective activity against the oxidative stress. In conclusion, the study revealed the opportunity to formulate a new drug delivery system of cannabidiol, in particular nanosized micellar aqueous dispersion, that could be considered as a perspective platform for cannabidiol application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yordan Yordanov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Denitsa Stefanova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Spiro Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Krassimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-9236525
| |
Collapse
|
34
|
d’Angelo I, Provenzano R, Florio E, Lombardi A, Trama U, Ungaro F, Quaglia F, Miro A. Transmucosal delivery of the medical Cannabis oil via a nanoemulsion formulation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
del Río C, Ruiz-Pino F, Prados ME, Fiebich BL, Tena-Sempere M, Muñoz E. Cannabidiol markedly alleviates skin and liver fibrosis. Front Pharmacol 2022; 13:981817. [PMID: 36339540 PMCID: PMC9627610 DOI: 10.3389/fphar.2022.981817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Cannabidiol (CBD) has been suggested as a potential therapy for inflammatory and fibrotic diseases. Cannabidiol was demonstrated to reduce alcohol-induced liver inflammation and steatosis but its specific activity on the fibrotic process was not investigated. Herein, the antifibrotic effects of cannabidiol in the skin were analysed in vitro using NIH-3T3 fibroblasts and human dermal fibroblasts and in vivo using the bleomycin-induced model of skin fibrosis. In a second model, non-alcoholic liver fibrosis was induced in mice by CCl4 exposure. Cannabidiol was administered daily, intraperitoneally in mice challenged with bleomycin and orally in CCl4 mice, and skin and liver fibrosis and inflammation were assessed by immunochemistry. Cannabidiol inhibited collagen gene transcription and synthesis and prevented TGFβ-and IL-4 induced fibroblast migration. In the bleomycin model, cannabidiol prevented skin fibrosis and collagen accumulation around skin blood vessels, and in the CCl4 model cannabidiol significantly attenuated liver fibrosis measured by picrosirius red and Tenascin C staining and reduced T cell and macrophage infiltration. Altogether, our data further support the rationale of the medicinal use of this cannabinoid, as well as cannabis preparations containing it, in the management of fibrotic diseases including Systemic Sclerosis and Non-Alcoholic Fatty Liver Disease.
Collapse
Affiliation(s)
- Carmen del Río
- Instituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC, Cordoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía, Cordoba, Spain
| | | | | | | | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC, Cordoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía, Cordoba, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC, Cordoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía, Cordoba, Spain
| |
Collapse
|
36
|
Wang C, Zhang X, Zhao R, Freeman K, McHenry MA, Wang C, Guo M. Impact of carrier oil on interfacial properties, CBD partition and stability of emulsions formulated by whey protein or whey protein-maltodextrin conjugate. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Promising Nanocarriers to Enhance Solubility and Bioavailability of Cannabidiol for a Plethora of Therapeutic Opportunities. Molecules 2022; 27:molecules27186070. [PMID: 36144803 PMCID: PMC9502382 DOI: 10.3390/molecules27186070] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
In recent years, the interest in cannabidiol (CBD) has increased because of the lack of psychoactive properties. However, CBD has low solubility and bioavailability, variable pharmacokinetics profiles, poor stability, and a pronounced presystemic metabolism. CBD nanoformulations include nanosuspensions, polymeric micelles and nanoparticles, hybrid nanoparticles jelled in cross-linked chitosan, and numerous nanosized lipid formulations, including nanostructured lipid carriers, vesicles, SNEEDS, nanoemulsions, and microemulsions. Nanoformulations have resulted in high CBD solubility, encapsulation efficiency, and stability, and sustained CBD release. Some studies assessed the increased Cmax and AUC and decreased Tmax. A rational evaluation of the studies reported in this review evidences how some of them are very preliminary and should be completed before performing clinical trials. Almost all the developed nanoparticles have simple architectures, are well-known and safe nanocarriers, or are even simple nanosuspensions. In addition, the conventional routes of administration are generally investigated. As a consequence, many of these studies are almost ready for forthcoming clinical translations. Some of the developed nanosystems are very promising for a plethora of therapeutic opportunities because of the versatility in terms of the release, the crossing of physiological barriers, and the number of possible routes of administration.
Collapse
|
38
|
Hameed B, Rizwanullah M, Mir SR, Akhtar MS, Amin S. Development of cannabidiol nanoemulsion for direct nose to brain delivery: Statistical optimization, in vitro and in vivo evaluation. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac9267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Cannabidiol (CBD) is a prescribed drug for epilepsy but has low oral bioavailability and gastric instability. Because of the direct link between the nasal cavity and the central nervous system (CNS), intranasal administration of CBD as nanoemulsions which are the small sized lipid carriers seem to improve the bioavailability. CBD-NEs were made using Capryol 90, Tween 80, and Transcutol P as oil, surfactant, and co-surfactant, respectively, following aqueous titration approach. Then, using the Box-Behnken design, CBD-NE was statistically optimised for the selection of desirable excipient concentrations in order to create the optimal CBD-NE formulation. As independent variables in the statistical design, Capryol 90 (oil; coded as A), Tween 80 (surfactant; coded as B), and Transcutol P (co-surfactant; coded as C) were used. The dependent variables were droplet size (DS; coded as R1) and polydispersity index (PDI; coded as R2). The average DS, PDI, and the zeta potential of the optimized CBD-NEs were observed to be 88.73 ± 2.67 nm, 0.311 ± 0.015, and –2.71 ± 0.52 mV respectively. Pure CBD and lyophilized CBD-NE FT-IR spectra demonstrated no physicochemical interaction between excipients and the drug. Furthermore, differential scanning calorimetry and X-ray diffraction measurements revealed the amorphous CBD in the NE. As compared to pure CBD, the optimised CBD-NE showed considerably better in vitro drug release as well as ex vivo nasal permeability. The drug targeting efficiency and direct transport percentage of the optimised CBD-NEs were found to be 419.64 % and 76.17 %, respectively, in this research. Additionally, pharmacokinetic investigations after intranasal administration of CBD-NE revealed considerably higher drug concentrations in the brain with better brain targeting efficiency. As a result, the development of CBD-NE may be an excellent alternative for better intranasal delivery.
Collapse
|
39
|
Wang C, Li J, Sun Y, Wang C, Guo M. Fabrication and characterization of a cannabidiol-loaded emulsion stabilized by a whey protein-maltodextrin conjugate and rosmarinic acid complex. J Dairy Sci 2022; 105:6431-6446. [PMID: 35688741 DOI: 10.3168/jds.2022-21862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2023]
Abstract
A cannabidiol (CBD)-loaded oil-in-water emulsion stabilized by a whey protein (WP)-maltodextrin (MD) conjugate and rosmarinic acid (RA) complex was fabricated, and its stability characteristics were investigated under various environmental conditions. The WP-MD conjugates were formed via dry-heating. The interaction between WP and MD was assessed by browning intensity, reduced amount of free amino groups, the formation of high molecular weight components in sodium dodecyl sulfate-PAGE, and changes in secondary structure of whey proteins. The WP-MD-RA noncovalent complex was prepared and confirmed by fluorescence quenching and Fourier-transform infrared spectroscopy spectra. Emulsions stabilized by WP, WP-MD, and WP-RA were used as references to evaluate the effect of WP-MD-RA as a novel emulsifier. Results showed that WP-MD-RA was an effective emulsifier to produce fine droplets for a CBD-loaded emulsion and remarkably improved the pH and salt stabilities of emulsions in comparison with WP. An emulsion prepared with WP-MD-RA showed the highest protection of CBD against UV and heat-induced degradation among all emulsions. The ternary complex kept emulsions in small particle size during storage at 4°C. Data from the current study may offer useful information for designing emulsion-based delivery systems which can protect active substance against environmental stresses.
Collapse
Affiliation(s)
- Ce Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Ji Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yonghai Sun
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington 05405; College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
40
|
Parrish RH, Ashworth LD, Löbenberg R, Benavides S, Cies JJ, MacArthur RB. Compounded Nonsterile Preparations and FDA-Approved Commercially Available Liquid Products for Children: A North American Update. Pharmaceutics 2022; 14:1032. [PMID: 35631618 PMCID: PMC9144535 DOI: 10.3390/pharmaceutics14051032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work was to evaluate the suitability of recent US Food and Drug Administration (US-FDA)-approved and marketed oral liquid, powder, or granule products for children in North America, to identify the next group of Active Pharmaceutical Ingredients (APIs) that have high potential for development as commercially available FDA-approved finished liquid dosage forms, and to propose lists of compounded nonsterile preparations (CNSPs) that should be developed as commercially available FDA-approved finished liquid dosage forms, as well as those that pharmacists should continue to compound extemporaneously. Through this identification and categorization process, the pharmaceutical industry, government, and professionals are encouraged to continue to work together to improve the likelihood that patients will receive high-quality standardized extemporaneously compounded CNSPs and US-FDA-approved products.
Collapse
Affiliation(s)
- Richard H. Parrish
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA 31902, USA
| | - Lisa D. Ashworth
- Department of Pharmacy Services, Children’s Health System of Texas, Dallas, TX 75235, USA;
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Sandra Benavides
- School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA;
| | - Jeffrey J. Cies
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
- Department of Pharmacy Services, St. Christopher’s Hospital for Children/Tower Health, Philadelphia, PA 19134, USA
| | - Robert B. MacArthur
- Department of Pharmacy Services, Rockefeller University Hospital, New York, NY 10065, USA;
| |
Collapse
|
41
|
Zheng H, Chen B, Rao J. Nutraceutical potential of industrial hemp ( Cannabis sativa L.) extracts: physicochemical stability and bioaccessibility of cannabidiol (CBD) nanoemulsions. Food Funct 2022; 13:4502-4512. [PMID: 35348145 DOI: 10.1039/d1fo04433h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cannabidiol (CBD) is one of the most promising functional food ingredients, which displays a number of health benefits. However, its low solubility and bioavailability impede its applications in functional foods. Herein, we developed a food-grade CBD nanoemulsion system using medium chain triacylglycerides (MCT), canola oil (CO), or hemp seed oil (HSO) as the carrier oil to compare the physicochemical stability and bioaccessibility of CBD. Encouragingly, all formulations were well maintained for 90 days under the tested temperatures (4, 25 and 37 °C) and pH values (3.5 and 7.0). Quantitative analysis of CBD during storage using high performance liquid chromatography revealed that the light exposure and acidity of the solution are two important factors affecting the chemical stability of CBD. Moreover, improved bioaccessibility of CBD in all three nanoemulsion formulations compared to that of bulk oil forms was confirmed, and the long chain triacylglyceride (LCT)-based nanoemulsion was superior to the MCT-based counterpart.
Collapse
Affiliation(s)
- Huijuan Zheng
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Bingcan Chen
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Jiajia Rao
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|
42
|
Kumar G, Virmani T, Pathak K, Alhalmi A. A Revolutionary Blueprint for Mitigation of Hypertension via Nanoemulsion. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4109874. [PMID: 35463984 PMCID: PMC9023159 DOI: 10.1155/2022/4109874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Hypertension is one of the most important causes of mortality, affecting the health status of the patient. At the same time, hypertension causes a huge health and economic burden on the whole world. The incidence and prevalence of hypertension are rising even among young people in both urban as well as rural communities. Although various conventional therapeutic moieties are available for the management of hypertension, they have serious flaws such as hepatic metabolism, reduced dose frequency, poor aqueous solubility, reduced bioavailability, and increased adverse effects, making the drug therapy ineffective. Therefore, it is required to design a novel drug delivery system having the capability to solve the constraints associated with conventional treatment of hypertension. Nanotechnology is a new way of using and manipulating the matter at the molecular level, whose functional organization is measured in nanometers. The applications of nanotechnology in the field of medicine provide an alternative and novel direction for the treatment of cardiovascular diseases and show excellent performance in the field of targeted drug therapy. Various nanotechnologies based drug delivery systems, such as solid lipid nanoparticles, nanosuspension, nanoemulsion, liposome, self-emulsifying systems, and polymeric nanoparticles, are available. Among them, nanoemulsion has provided a niche to supplement currently available therapeutic choices due to numerous benefits like stability, ease of preparation, enhanced drug absorption, reduced hepatic metabolism, increased dose frequency, enhanced bioavailability, and encapsulation of hydrophilic as well as hydrophobic drugs. This present review provides an in-depth idea about progression in treatment of hypertension, constraints for antihypertensive drug therapy, need of nanoemulsions to overcome these constraints, comparative analysis of nanoemulsions over other nanostructure drug delivery systems, pharmacodynamics studies of nanoemulsions for treatment of hypertension, recent patents for drug-loaded nanoemulsions meant for hypertension, and marketed formulations of nanoemulsions for hypertension.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Kamla Pathak
- Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh 206001, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
43
|
Enhanced Stability and Oral Bioavailability of Cannabidiol in Zein and Whey Protein Composite Nanoparticles by a Modified Anti-Solvent Approach. Foods 2022; 11:foods11030376. [PMID: 35159526 PMCID: PMC8833932 DOI: 10.3390/foods11030376] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Wide applications of cannabidiol (CBD) in the food and pharmaceutical industries are limited due to its low bioavailability, sensitivity to environmental pressures and low water solubility. Zein nanoparticles were stabilized by whey protein (WP) for the delivery of cannabidiol (CBD) using a modified anti-solvent approach. Particle size, surface charge, encapsulation efficiency, and re-dispersibility of nanoparticles were influenced by the zein to WP ratio. Under optimized conditions at 1:4, zein–WP nanoparticles were fabricated with CBD (200 μg/mL) and further characterized. WP absorbed on zein surface via hydrogen bond, hydrophobic forces, and electrostatic attraction. The zein–WP nanoparticles showed excellent storage stability (4 °C, dark) and effectively protected CBD degradation against heat and UV light. In vivo pharmacokinetic study demonstrated that CBD in zein–WP nanoparticles displayed 2-times and 1.75-fold enhancement in maximum concentration (C max) and the area under curve (AUC) as compared to free-form CBD. The data indicated the feasibility of developing zein–WP based nanoparticles for the encapsulation, protection, and delivery of CBD.
Collapse
|
44
|
Viana MDB, de Aquino PEA, Estadella D, Ribeiro DA, Viana GSDB. Cannabis sativa and Cannabidiol: A Therapeutic Strategy for the Treatment of Neurodegenerative Diseases? Med Cannabis Cannabinoids 2022; 5:207-219. [PMID: 36467781 PMCID: PMC9710321 DOI: 10.1159/000527335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/04/2022] [Indexed: 08/27/2023] Open
Abstract
This work is a literature review, presenting the current state of the use of cannabinoids on neurodegenerative diseases. The emphasis is on Parkinson's (PD) and Alzheimer's (AD) diseases, the two most prevalent neurological diseases. The review goes from Cannabis sativa and its hundreds of bioactive compounds to Δ9-tetrahydrocannabinol (THC) and mainly cannabidiol (CBD) and their interactions with the endocannabinoid receptors (CB1 and CB2). CBD molecular targets were also focused on to explain its neuroprotective action mechanism on neurodegenerative diseases. Although THC is the main psychoactive component of C. sativa, and it may induce transient psychosis-like symptoms, growing evidence suggests that CBD may have protective effects against the psychotomimetic effects of THC and therapeutic properties. Furthermore, a great number of recent works on the neuroprotective and anti-inflammatory CBD effects and its molecular targets are also reviewed. We analyzed CBD actions in preclinical and in clinical trials, conducted with PD and AD patients. Although the data on preclinical assays are more convincing, the same is not true with the clinical data. Despite the consensus among researchers on the potential of CBD as a neuroprotective agent, larger and well-designed randomized clinical trials will be necessary to gather conclusive results concerning the use of CBD as a therapeutic strategy for the treatment of diseases such as PD and AD.
Collapse
Affiliation(s)
- Milena de Barros Viana
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Campus Santos, Santos, Brazil
| | | | - Débora Estadella
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Campus Santos, Santos, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Campus Santos, Santos, Brazil
| | | |
Collapse
|
45
|
Optimization of supercritical carbon dioxide fluid extraction of seized cannabis and self-emulsifying drug delivery system for enhancing the dissolution of cannabis extract. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Kok LY, Bannigan P, Sanaee F, Evans JC, Dunne M, Regenold M, Ahmed L, Dubins D, Allen C. Development and pharmacokinetic evaluation of a self-nanoemulsifying drug delivery system for the oral delivery of cannabidiol. Eur J Pharm Sci 2022; 168:106058. [PMID: 34763088 DOI: 10.1016/j.ejps.2021.106058] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 02/02/2023]
Abstract
The number of lipophilic drug candidates in pharmaceutical discovery pipelines has increased in recent years. These drugs often possess physicochemical properties that result in poor oral bioavailability, and their clinical potential may be limited without adequate formulation strategies. Cannabidiol (CBD) is an excellent example of a highly lipophilic compound with poor oral bioavailability, due to low water solubility and extensive first-pass metabolism. An approach that may overcome these limitations is formulation of the drug in self-nanoemulsifying drug delivery systems (SNEDDS). Herein, CBD-SNEDDS formulations were prepared and evaluated in vitro. Promising formulations (F2, F4) were administered to healthy female Sprague-Dawley rats via oral gavage (20 mg/kg CBD). Resulting pharmacokinetic parameters of CBD were compared to those obtained following administration of CBD in two oil-based formulations: a medium-chain triglyceride oil vehicle (MCT-CBD), and a sesame oil-based formulation similar in composition to an FDA-approved formulation of CBD, Epidiolex® (SO-CBD). Compared to MCT-CBD, administration of the SNEDDS formulations led to more rapid absorption of CBD (median Tmax values: 0.5 h (F2), 1 h (F4), 6 h (MCT-CBD)). Administration of F2 and F4 formulations also improved the systemic exposure to CBD by 2.2 and 2.8-fold compared to MCT-CBD; however, no improvement was found compared to SO-CBD.
Collapse
Affiliation(s)
- Lie Yun Kok
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Forugh Sanaee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - James C Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Michael Dunne
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | | | - Lubabah Ahmed
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - David Dubins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| |
Collapse
|
47
|
De Prá MAA, Vardanega R, Loss CG. Lipid-based formulations to increase cannabidiol bioavailability: In vitro digestion tests, pre-clinical assessment and clinical trial. Int J Pharm 2021; 609:121159. [PMID: 34624443 DOI: 10.1016/j.ijpharm.2021.121159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/31/2022]
Abstract
Herein, medium-chain triglycerides (MCT), glyceryl monolinoleate (GML), and a self-emulsifying drug delivery system (SEDDS) for cannabidiol (CBD) delivery were compared using in vitro and in vivo (mouse and human) studies. In vitro digestion tests showed that SEDDS yielded the highest CBD recovery in the aqueous phase (86 ± 2%), followed by GML (13 ± 2%) and MCT (5.6% ± 0.8%). In vivo tests (mouse) revealed that SEDDS promoted the highest CBD exposure, exhibiting an area under the plasma concentration-time curve (AUC0-6h) 1.48 times greater than GML and 3.97 times greater than that of the MCT formulation. A single-dose, open-label, crossover study performed in 11 volunteers showed that SEDDS increased CBD AUC0-12h by 1.12 and 1.48 times in relation to GML and MCT, respectively. The in vitro-in vivo correlation was r2 0.75 for mice and r2 0.66 for humans. The AUC correlation between mice and humans was 0.98. Collectively, these results indicate that the lipid profile substantially influences CBD delivery and highlights the potential of the SEDDS and GML formulations as candidate solutions for increasing CBD AUC and bioavailability.
Collapse
Affiliation(s)
- Manuel A A De Prá
- Entourage Phytolab, R. Tabapuã 111, 04533-010 São Paulo, SP, Brazil.
| | - Renata Vardanega
- Entourage Phytolab, R. Tabapuã 111, 04533-010 São Paulo, SP, Brazil
| | - Carla G Loss
- Entourage Phytolab, R. Tabapuã 111, 04533-010 São Paulo, SP, Brazil
| |
Collapse
|
48
|
Application of a liquisolid technique to cannabis sativa extract compacts: Effect of liquid vehicles on the dissolution enhancement and stability of cannabinoids. Int J Pharm 2021; 612:121277. [PMID: 34774694 DOI: 10.1016/j.ijpharm.2021.121277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 01/24/2023]
Abstract
This work describes the application of liquisolid technique to enhance cannabinoid dissolution from Cannabis sativa L. (CS) compacts. Effects of five vehicles, namely, volatile (ethanol) and nonvolatile (caprylocaproyl macrogolglycerides, polyethylene glycol 400, oleoyl macrogolglycerides and polysorbate 20) liquids, on tablet properties, dissolution and stability were investigated. The viscid oleoresin CS extract was mixed with vehicles before being transformed into free-flowing powder by the use of microcrystalline cellulose and colloidal silica as carrier and coating materials. Liquid vehicles had a nonsignificant effect on liquid load factor of CS extract. CS liquisolid compacts had acceptable tableting properties in terms of weight variation, friability, hardness, content uniformity and disintegration time. Different vehicles affected the hardness, disintegration, and wettability of CS compacts and thus the dissolution behaviors of cannabinoids to different extents. Dissolutions of cannabinoids from CS compacts were rate-limited by the disintegration process. Liquisolid formulations using nonvolatile liquids with low polarity or high hydrophilic-lipophilic balance yielded more than 90% cannabinoid dissolution. Stability studies revealed nonsignificant changes in tablet characteristics, cannabinoid content and dissolutions of CS compacts when stored at 5 ± 3 °C for 3 months. This work presents a general concept of how to successfully formulate CS extract with cannabinoid dissolution enhancement characteristics.
Collapse
|
49
|
Banerjee A, Binder J, Salama R, Trant JF. Synthesis, characterization and stress-testing of a robust quillaja saponin stabilized oil-in-water phytocannabinoid nanoemulsion. J Cannabis Res 2021; 3:43. [PMID: 34556180 PMCID: PMC8461879 DOI: 10.1186/s42238-021-00094-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study describes the design, optimization, and stress-testing of a novel phytocannabinoid nanoemulsion generated using high-pressure homogenization. [Formula: see text], a plant-derived commercial emulsifier containing quillaja saponin, was used to stabilize the lipid phase droplets in water. Stress-testing was performed on this nanoemulsion in order to evaluate its chemical and colloidal stability under the influence of different environmental factors, encompassing both physical and chemical stressors. METHODS Extensive optimization studies were conducted to arrive at an ideal nanoemulsion formulation. A coarse emulsion containing 16.6 wt% CBD-enriched cannabis distillate and 83.4 wt% carrier (soybean) oil dispersed in 10 wt% [Formula: see text] (1.5 wt% quillaja saponin) solution after 10 homogenization cycles at a pressure of 30,000 psi produced a stable nanoemulsion. This nanoemulsion was then subjected to the stress studies. RESULTS The optimized nanoemulsion had an average droplet diameter of ca. 120 nm and average droplet surface ζ potentials of ca. -30 mV. It was imaged and characterized by a variety of protocols. It proved to be stable to droplet agglomeration and phase separation upon storage under ambient conditions for 6 weeks, as well as under a variety of physical stressors such as heat, cold, dilution, and carbonation. pH values ≤2 and moderately high salt concentrations (> 100 mM), however, destabilized the nanoemulsion, eventually leading to phase separation. Cannabis potency, determined by HPLC, was detrimentally affected by any changes in the nanoemulsion phase stability. CONCLUSIONS Quillaja saponin stabilized cannabidiol(CBD)-enriched nanoemulsions are stable, robust systems even at low emulsifier concentrations, and are therefore significant from both a scientific as well as a commercial perspective.
Collapse
Affiliation(s)
- Abhinandan Banerjee
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| | | | - Rayan Salama
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| | - John F. Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| |
Collapse
|
50
|
Fei T, Wan Z, Wang T. Dispersing insoluble yolk low-density lipoprotein (LDL) recovered by complexing with carboxymethylcellulose (CMC) for the nanoencapsulation of hemp cannabidiol (CBD) through emulsification at neutral pH. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|