1
|
Loree JM, Chan D, Lim J, Stuart H, Fidelman N, Koea J, Posavad J, Cummins M, Doucette S, Myrehaug S, Naraev B, Bailey DL, Bellizzi A, Laidley D, Boyle V, Goodwin R, Del Rivero J, Michael M, Pasieka J, Singh S. Biomarkers to Inform Prognosis and Treatment for Unresectable or Metastatic GEP-NENs. JAMA Oncol 2024; 10:1707-1720. [PMID: 39361298 DOI: 10.1001/jamaoncol.2024.4330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Importance Evidence-based treatment decisions for advanced gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) require individualized patient-centered decision-making that accounts for patient and cancer characteristics. Objective To create an accessible guidance document to educate clinicians and patients on biomarkers informing prognosis and treatment in unresectable or metastatic GEP-NENs. Methods A multidisciplinary panel in-person workshop was convened to define methods. English language articles published from January 2016 to January 2023 in PubMed (MEDLINE) and relevant conference abstracts were reviewed to investigate prognostic and treatment-informing features in unresectable or metastatic GEP-NENs. Data from included studies were used to form evidence-based recommendations. Quality of evidence and strength of recommendations were determined using the Grading of Recommendations, Assessment, Development and Evaluations framework. Consensus was reached via electronic survey following a modified Delphi method. Findings A total of 131 publications were identified, including 8 systematic reviews and meta-analyses, 6 randomized clinical trials, 29 prospective studies, and 88 retrospective cohort studies. After 2 rounds of surveys, 24 recommendations and 5 good clinical practice statements were developed, with full consensus among panelists. Recommendations focused on tumor and functional imaging characteristics, blood-based biomarkers, and carcinoid heart disease. A single strong recommendation was made for symptomatic carcinoid syndrome informing treatment in midgut neuroendocrine tumors. Conditional recommendations were made to use grade, morphology, primary site, and urinary 5-hydroxyindoleacetic levels to inform treatment. The guidance document was endorsed by the Commonwealth Neuroendocrine Tumour Collaboration and the North American Neuroendocrine Tumor Society. Conclusions and Relevance The study results suggest that select factors have sufficient evidence to inform care in GEP-NENs, but the evidence for most biomarkers is weak. This article may help guide management and identify gaps for future research to advance personalized medicine and improve outcomes for patients with GEP-NENs.
Collapse
Affiliation(s)
- Jonathan M Loree
- BC Cancer, Vancouver Centre, Vancouver, British Columbia, Canada
| | - David Chan
- Northern Clinical School, University of Sydney, Sydney, Australia
- ENETS Centre of Excellence, Department of Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Jennifer Lim
- St George Hospital, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Heather Stuart
- University of British Columbia and BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Jonathan Koea
- Te Whatu Ora Waitemata and the University of Auckland, Auckland, New Zealand
| | - Jason Posavad
- Canadian Neuroendocrine Tumours Society, Cornwall, Ontario, Canada
| | | | | | - Sten Myrehaug
- Odette Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Boris Naraev
- Tampa General Hospital Cancer Institute, Tampa, Florida
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | | | - David Laidley
- Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Veronica Boyle
- School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Oncology, Auckland City Hospital, Te Whatu Ora Tamaki Makaurau, Auckland, New Zealand
| | - Rachel Goodwin
- Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Jaydi Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael Michael
- NET Unit and ENETS Centre of Excellence, Peter MacCallum Cancer Centre, Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Janice Pasieka
- Section of General Surgery, Division of Endocrine Surgery and Surgical Oncology, Department of Surgery and Oncology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Simron Singh
- University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Kong G, Noe G, Chiang C, Herrmann K, Hope TA, Michael M. Assessment of response to PRRT including anatomical and molecular imaging as well as novel biomarkers. J Neuroendocrinol 2024:e13461. [PMID: 39520276 DOI: 10.1111/jne.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Peptide receptor radionuclide therapy (PRRT) is an effective treatment for both oncological and hormone control and is a widely accepted standard of care treatment for patients with neuroendocrine neoplasms (NEN). Its use is anticipated to increase significantly, and this demands accurate tools and paradigms to assess treatment response post PRRT. This article outlines the current role and future developments of anatomical, molecular imaging and biomarkers for response assessment to PRRT, highlighting the challenges and provides perspectives for the need to focus on a multimodality, multidisciplinary and individualised approach for patients with this complex heterogeneous disease.
Collapse
Affiliation(s)
- Grace Kong
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Geertje Noe
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Cherie Chiang
- Department of Internal Medicine, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Department of Diabetes and Endocrinology, Melbourne Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Thomas A Hope
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael Michael
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Hoff CO, Manzi J, Ferreira R, Chauhan A, Housein P, Merchant N, Livingstone A, Vianna R, Abreu P. A neuroendocrine biomarker revolution from monoanalyte to multianalyte biomarkers in non-functioning gastro-entero-pancreatic neuroendocrine neoplasms. Crit Rev Oncol Hematol 2024; 203:104460. [PMID: 39153703 DOI: 10.1016/j.critrevonc.2024.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) arise from neuroendocrine cells in a wide variety of organs. One of the most affected disease sites is the gastrointestinal system, which originates the gastro-entero-pancreatic NENs (GEP-NENs), a heterogenous group of malignancies that are rapidly increasing in incidence. These tumors can be functioning, with secretory activity leading to identifiable clinical syndromes, or non-functioning, with no secretory activity but with local symptoms of tumor growth and metastasis. A limitation in biomarkers is a crucial unmet need in non-secretory NEN management, as clinical decision-making is made more difficult by obstacles in tumor classification, prognostic evaluation, assessment of treatment response and surveillance. The objective of this review is to present existing and novel biomarkers for NENs that can function as prognostic factors and monitor disease progression or regression longitudinally, with a special emphasis on innovative research into novel multianalyte biomarkers.
Collapse
Affiliation(s)
- Camilla O Hoff
- University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Brazil; Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, USA
| | - Joao Manzi
- University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Raphaella Ferreira
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, USA
| | - Aman Chauhan
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, USA
| | - Peter Housein
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, USA
| | - Nipun Merchant
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, USA
| | - Alan Livingstone
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, USA
| | - Rodrigo Vianna
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, USA
| | - Phillipe Abreu
- Division of Transplant Surgery, University of Colorado Anschutz Medical Campus, USA.
| |
Collapse
|
4
|
Sorbye H, Hjortland GO, Vestermark LW, Sundlov A, Assmus J, Couvelard A, Perren A, Langer SW. NETest in advanced high-grade gastroenteropancreatic neuroendocrine neoplasms. J Neuroendocrinol 2024; 36:e13428. [PMID: 38937137 DOI: 10.1111/jne.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Molecular blood biomarkers are lacking for high-grade (HG) gastroenteropancreatic (GEP) neuroendocrine neoplasms (NEN). To histologically distinguish between neuroendocrine carcinoma (NEC), neuroendocrine tumors G3 (NET G3), adenocarcinoma and MINEN is often challenging. The mRNA-based NETest has diagnostic, prognostic and predictive value in neuroendocrine tumors G1-2 but has not been studied in HG GEP-NEN. Patients with advanced HG GEP-NEN were prospectively included in an observational study. A blood sample was collected before the start of chemotherapy and pseudonymised before NETest was performed. NETest results are expressed as an activity index (NETest score) from 0 to 100. The normal score cut-off is 20. Histological sections were pseudonymised before centralized pathological re-evaluation. Samples from 60 patients were evaluable with the NETest. Main primary tumor sites were colon (14), rectum (12), pancreas (11) and esophagus (7). Re-classification: 30 NEC, 12 NET G3, 3 HG-NEN ambiguous morphology, 8 MiNEN, 3 adenocarcinomas with neuroendocrine differentiation (ADNE), 3 adenocarcinomas and 1 NET G2. Elevated NETest (>20) was seen in 38/45 (84%) HG GEP-NEN, all 17 large-cell NEC (100%), 11/13 (85%) small-cell NEC, all ambiguous cases and 7/12 (64%) NET G3. NETest was elevated in 5/8 (63%) MiNEN, 2/3 ADNE, however not in 3 adenocarcinomas. Median survival was 10.2 months (9.6-10.8 95%CI) for evaluable HG GEP-NEN treated with palliative chemotherapy (n = 39), and survival was significantly shorter in patients with NETest >60 with an OS of only 6.5 months. This is the first study to evaluate use of the NETest in advanced HG GEP-NEN. The NETest was almost always elevated in GEP-NEC and in all large-cell NEC. The NETest was also frequently elevated in NET G3 and MiNEN, however cases were limited. Baseline NETest was not predictive for benefit of chemotherapy, however a NETest >60 was prognostic with a shorter survival for patients receiving chemotherapy.
Collapse
Affiliation(s)
- H Sorbye
- Department of Oncology, Haukeland University Hospital and Department of Clinical Science, University of Bergen, Bergen, Norway
| | - G O Hjortland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - A Sundlov
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - J Assmus
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - A Couvelard
- Department of Pathology, AP-HP Bichat Hospital, Université Paris Cité, Paris, France
| | - A Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - S W Langer
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Almeida C, Gervaso L, Frigè G, Spada F, Benini L, Cella CA, Mazzarella L, Fazio N. The Role of Liquid Biopsy in Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2024; 16:3349. [PMID: 39409968 PMCID: PMC11475604 DOI: 10.3390/cancers16193349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Neuroendocrine neoplasms incidence has been increasing, arising the need for precise and early diagnostic tools. Liquid biopsy (LB) offers a less invasive alternative to tissue biopsy, providing real-time molecular information from circulating tumour components in body fluids. The aim of this review is to analyse the current evidence concerning LB in NENs and its role in clinical practice. We conducted a systematic review in July 2024 focusing on LB applications in NENs, including circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), micro RNA (miRNA), messenger RNA (mRNA) and extracellular vesicles. Sixty-five relevant articles were analysed. The LB showed potential in diagnosing and monitoring NENs. While CTCs face limitations due to low shedding, ctDNA provides valuable information on high-grade neoplasms. MiRNA and mRNA (e.g., the NETest) offer high sensitivity and specificity for diagnosis and prognosis, outperforming traditional markers like chromogranin A. The LB has significant potential for NEN diagnosis and monitoring but lacks widespread clinical integration due to limited prospective studies and guidelines, requiring further validation. Advances in sequencing technologies may enhance the clinical utility of LB in NENs. Future research should focus on refining LB methods, standardising protocols and exploring applications in high-grade NENs.
Collapse
Affiliation(s)
- Catarina Almeida
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO IRCCS, 20141 Milan, Italy; (C.A.); (F.S.); (L.B.); (C.A.C.); (L.M.)
- Department of Medical Oncology, São João University Hospital Center, 4200-319 Porto, Portugal
| | - Lorenzo Gervaso
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO IRCCS, 20141 Milan, Italy; (C.A.); (F.S.); (L.B.); (C.A.C.); (L.M.)
| | - Gianmaria Frigè
- Laboratory of Translational Oncology, European Institute of Oncology, IEO IRCCS, 20141 Milan, Italy;
| | - Francesca Spada
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO IRCCS, 20141 Milan, Italy; (C.A.); (F.S.); (L.B.); (C.A.C.); (L.M.)
| | - Lavinia Benini
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO IRCCS, 20141 Milan, Italy; (C.A.); (F.S.); (L.B.); (C.A.C.); (L.M.)
| | - Chiara Alessandra Cella
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO IRCCS, 20141 Milan, Italy; (C.A.); (F.S.); (L.B.); (C.A.C.); (L.M.)
| | - Luca Mazzarella
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO IRCCS, 20141 Milan, Italy; (C.A.); (F.S.); (L.B.); (C.A.C.); (L.M.)
- Laboratory of Translational Oncology, European Institute of Oncology, IEO IRCCS, 20141 Milan, Italy;
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO IRCCS, 20141 Milan, Italy; (C.A.); (F.S.); (L.B.); (C.A.C.); (L.M.)
| |
Collapse
|
6
|
De Jesus-Acosta A, Mohindroo C. Genomic Landscape of Pancreatic Neuroendocrine Tumors and Implications for Clinical Practice. JCO Precis Oncol 2024; 8:e2400221. [PMID: 39231376 DOI: 10.1200/po.24.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are the second most prevalent neoplasms of the pancreas with variable prognosis and clinical course. Our knowledge of the genetic alterations in patients with pNETs has expanded in the past decade with the availability of whole-genome sequencing and germline testing. This review will focus on potential clinical applications of the genetic testing in patients with pNETs. For somatic testing, we discuss the commonly prevalent somatic mutations and their impact on prognosis and treatment of patients with pNET. We also highlight the relevant genomic biomarkers that predict response to specific treatments. Previously, germline testing was only recommended for high-risk patients with syndromic features (MEN1, VHL, TSC, and NF1), we review the evolving paradigm of germline testing in pNETs as recent studies have now shown that sporadic-appearing pNETs can also harbor germline variants.
Collapse
Affiliation(s)
- Ana De Jesus-Acosta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chirayu Mohindroo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Ohlsson H, Spaak E, Gålne A, Sundlöv A, Almquist M. Optimal follow-up with somatostatin receptor PET/CT imaging in patients with small intestinal neuroendocrine tumours. J Neuroendocrinol 2024; 36:e13396. [PMID: 38679928 DOI: 10.1111/jne.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/07/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Somatostatin receptor positron emission tomography with computerised tomography imaging (SRI) has a high sensitivity for the detection of small intestinal neuroendocrine tumors (siNET), which makes it ideal for follow-up. The aim of the present study was to investigate whether follow-up with SRI in patients with siNET led to any change in the treatment of the patient and if patient and/or tumour factors were associated with such change. Adults with siNET who had undergone at least two SRI scans between 2013 and 2021 were identified. Data on age, sex, comorbidities, tumour stage, grade, and most recent levels of serum Chromogranin A (CgA) and 24-h urine 5-hydroxyindoleacetic acid (5-HIAA) before each SRI scan were obtained. The major change was defined as new treatment previously not received or discontinuation of ongoing treatment. Univariate and multivariate mixed models logistic regression on variables with a presumed biological relationship with major change and with backwards stepwise exclusion of variables with p > .1 was performed. A total of 164 patients with siNET diagnosis had undergone 570 SRI scans. The median follow-up was 3.1 years. Only 82 of 570, 14%, of SRI scans led to a major change in treatment. Female sex, age below 75 years, elevated or missing CgA, elevated or missing urine 5-HIAA, progress on last SRI scan and distant extrahepatic disease were all independently associated with increased odds ratios for major change after follow-up with SRI. A small proportion of SRI scans (14%) led to a major change in treatment. Six independent risk factors with increased odds of major change, all available before each SRI scan, were identified. While validation of these risk factors is needed in a separate cohort, these findings could help clinicians individualise follow-up for siNET patients in the future.
Collapse
Affiliation(s)
- Håkan Ohlsson
- Department of Surgery, Ystad Hospital, Ystad, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elisabeth Spaak
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Lund, Sweden
| | - Anni Gålne
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna Sundlöv
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Martin Almquist
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Endocrine-Sarcoma Unit, Department of Surgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
8
|
Liu Y, Cui R, Wang Z, Lin Q, Tang W, Zhang B, Li G, Wang Z. Evaluating Prognosis of Gastrointestinal Metastatic Neuroendocrine Tumors: Constructing a Novel Prognostic Nomogram Based on NETPET Score and Metabolic Parameters from PET/CT Imaging. Pharmaceuticals (Basel) 2024; 17:373. [PMID: 38543159 PMCID: PMC10975134 DOI: 10.3390/ph17030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION The goal of this study is to compare the prognostic performance of NETPET scores, based on gallium-68 DOTANOC (68Ga-DOTANOC) and fluorine-18 fluorodeoxyglucose (18F-FDG) Positron Emission Tomography-Computed Tomography (PET-CT), and PET-CT metabolic parameters in metastatic gastrointestinal neuroendocrine tumors (GI-NET), while constructing and validating a nomogram derived from dual-scan PET-CT. METHODS In this retrospective study, G1-G3 GI-NET patients who underwent 68Ga-DOTANOC and 18F-FDG PET scans were enrolled and divided into training and internal validation cohorts. Three grading systems were constructed based on NETPET scores and standardized uptake value maximum (SUVmax). LASSO regression selected variables for a multivariable Cox model, and nomograms predicting progression-free survival (PFS) and overall survival (OS) were created. The prognostic performance of these systems was assessed using time-dependent receiver-operating characteristic (ROC) curves, concordance index (C-index), and other methods. Nomogram evaluation involved calibration curves, decision curve analysis (DCA), and the aforementioned methods in both cohorts. RESULTS In this study, 223 patients (130 males; mean age ± SD: 52.6 ± 12 years) were divided into training (148) and internal validation (75) cohorts. Dual scans were classified based on NETPET scores (D1-D3). Single 68Ga-DOTANOC and 18F-FDG PET-CT scans were stratified into S1-S3 and F1-F3 based on SUVmax. The NETPET score-based grading system demonstrated the best OS and PFS prediction (C-index, 0.763 vs. 0.727 vs. 0.566). Nomograms for OS and PFS exhibited superior prognostic performance in both cohorts (all AUCs > 0.8). CONCLUSIONS New classification based on NETPET score predicts patient OS/PFS best. PET-CT-based nomograms show accurate OS/PFS forecasts.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Ruizhe Cui
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Qi Lin
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Wei Tang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Bing Zhang
- Department of Nuclear Medicine, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China;
| | - Guanghua Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Zhao Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| |
Collapse
|
9
|
Kiriakopoulos A, Giannakis P, Menenakos E. Pheochromocytoma: a changing perspective and current concepts. Ther Adv Endocrinol Metab 2023; 14:20420188231207544. [PMID: 37916027 PMCID: PMC10617285 DOI: 10.1177/20420188231207544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
This article aims to review current concepts in diagnosing and managing pheochromocytoma and paraganglioma (PPGL). Personalized genetic testing is vital, as 40-60% of tumors are linked to a known mutation. Tumor DNA should be sampled first. Next-generation sequencing is the best and most cost-effective choice and also helps with the expansion of current knowledge. Recent advancements have also led to the increased incorporation of regulatory RNA, metabolome markers, and the NETest in PPGL workup. PPGL presentation is highly volatile and nonspecific due to its multifactorial etiology. Symptoms mainly derive from catecholamine (CMN) excess or mass effect, primarily affecting the cardiovascular system. However, paroxysmal nature, hypertension, and the classic triad are no longer perceived as telltale signs. Identifying high-risk subjects and diagnosing patients at the correct time by using appropriate personalized methods are essential. Free plasma/urine catecholamine metabolites must be first-line examinations using liquid chromatography with tandem mass spectrometry as the gold standard analytical method. Reference intervals should be personalized according to demographics and comorbidity. The same applies to result interpretation. Threefold increase from the upper limit is highly suggestive of PPGL. Computed tomography (CT) is preferred for pheochromocytoma due to better cost-effectiveness and spatial resolution. Unenhanced attenuation of >10HU in non-contrast CT is indicative. The choice of extra-adrenal tumor imaging is based on location. Functional imaging with positron emission tomography/computed tomography and radionuclide administration improves diagnostic accuracy, especially in extra-adrenal/malignant or familial cases. Surgery is the mainstay treatment when feasible. Preoperative α-adrenergic blockade reduces surgical morbidity. Aggressive metastatic PPGL benefits from systemic chemotherapy, while milder cases can be managed with radionuclides. Short-term postoperative follow-up evaluates the adequacy of resection. Long-term follow-up assesses the risk of recurrence or metastasis. Asymptomatic carriers and their families can benefit from surveillance, with intervals depending on the specific gene mutation. Trials primarily focusing on targeted therapy and radionuclides are currently active. A multidisciplinary approach, correct timing, and personalization are key for successful PPGL management.
Collapse
Affiliation(s)
- Andreas Kiriakopoulos
- Department of Surgery, ‘Evgenidion Hospital’, National and Kapodistrian University of Athens School of Medicine, 5th Surgical Clinic, Papadiamantopoulou 20 Str, PO: 11528, Athens 11528, Greece
| | | | | |
Collapse
|
10
|
Bevere M, Masetto F, Carazzolo ME, Bettega A, Gkountakos A, Scarpa A, Simbolo M. An Overview of Circulating Biomarkers in Neuroendocrine Neoplasms: A Clinical Guide. Diagnostics (Basel) 2023; 13:2820. [PMID: 37685358 PMCID: PMC10486716 DOI: 10.3390/diagnostics13172820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of diseases that are characterized by different behavior and clinical manifestations. The diagnosis and management of this group of tumors are challenging due to tumor complexity and lack of precise and widely validated biomarkers. Indeed, the current circulating mono-analyte biomarkers (such as chromogranin A) are ineffective in describing such complex tumors due to their poor sensitivity and specificity. In contrast, multi-analytical circulating biomarkers (including NETest) are emerging as more effective tools to determine the real-time profile of the disease, both in terms of accurate diagnosis and effective treatment. In this review, we will analyze the capabilities and limitations of different circulating biomarkers focusing on three relevant questions: (1) accurate and early diagnosis; (2) monitoring of disease progression and response to therapy; and (3) detection of early relapse.
Collapse
Affiliation(s)
- Michele Bevere
- ARC-Net Research Center, University of Verona, 37134 Verona, Italy; (M.B.); (F.M.); (A.G.); (A.S.)
| | - Francesca Masetto
- ARC-Net Research Center, University of Verona, 37134 Verona, Italy; (M.B.); (F.M.); (A.G.); (A.S.)
| | - Maria Elena Carazzolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (M.E.C.); (A.B.)
| | - Alice Bettega
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (M.E.C.); (A.B.)
| | - Anastasios Gkountakos
- ARC-Net Research Center, University of Verona, 37134 Verona, Italy; (M.B.); (F.M.); (A.G.); (A.S.)
| | - Aldo Scarpa
- ARC-Net Research Center, University of Verona, 37134 Verona, Italy; (M.B.); (F.M.); (A.G.); (A.S.)
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (M.E.C.); (A.B.)
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (M.E.C.); (A.B.)
| |
Collapse
|
11
|
Alexander ES, Ziv E. Neuroendocrine Tumors: Genomics and Molecular Biomarkers with a Focus on Metastatic Disease. Cancers (Basel) 2023; 15:cancers15082249. [PMID: 37190177 DOI: 10.3390/cancers15082249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Neuroendocrine tumors (NETs) are considered rare tumors that originate from specialized endocrine cells. Patients often present with metastatic disease at the time of diagnosis, which negatively impacts their quality of life and overall survival. An understanding of the genetic mutations that drive these tumors and the biomarkers used to detect new NET cases is important to identify patients at an earlier disease stage. Elevations in CgA, synaptophysin, and 5-HIAA are most commonly used to identify NETs and assess prognosis; however, new advances in whole genome sequencing and multigenomic blood assays have allowed for a greater understanding of the drivers of NETs and more sensitive and specific tests to diagnose tumors and assess disease response. Treating NET liver metastases is important in managing hormonal or carcinoid symptoms and is imperative to improve patient survival. Treatment for liver-dominant disease is varied; delineating biomarkers that may predict response will allow for better patient stratification.
Collapse
Affiliation(s)
- Erica S Alexander
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Etay Ziv
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
12
|
van Beek DJ, Verschuur AVD, Brosens LAA, Valk GD, Pieterman CRC, Vriens MR. Status of Surveillance and Nonsurgical Therapy for Small Nonfunctioning Pancreatic Neuroendocrine Tumors. Surg Oncol Clin N Am 2023; 32:343-371. [PMID: 36925190 DOI: 10.1016/j.soc.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) occur in < 1/100,000 patients and most are nonfunctioning (NF). Approximately 5% occur as part of multiple endocrine neoplasia type 1. Anatomic and molecular imaging have a pivotal role in the diagnosis, staging and active surveillance. Surgery is generally recommended for nonfunctional pancreatic neuroendocrine tumors (NF-PNETs) >2 cm to prevent metastases. For tumors ≤2 cm, active surveillance is a viable alternative. Tumor size and grade are important factors to guide management. Assessment of death domain-associated protein 6/alpha-thalassemia/mental retardation X-linked and alternative lengthening of telomeres are promising novel prognostic markers. This review summarizes the status of surveillance and nonsurgical management for small NF-PNETs, including factors that can guide management.
Collapse
Affiliation(s)
- Dirk-Jan van Beek
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Internal Mail Number G.04.228, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Anna Vera D Verschuur
- Department of Pathology, University Medical Center Utrecht, Internal Mail Number G02.5.26, PO Box 85500, Utrecht 3508 GA, the Netherlands. https://twitter.com/annaveraverschu
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Internal Mail Number G4.02.06, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Internal Mail Number Q.05.4.300, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Carolina R C Pieterman
- Department of Endocrine Oncology, University Medical Center Utrecht, Internal Mail Number Q.05.4.300, PO Box 85500, Utrecht 3508 GA, the Netherlands.
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Internal Mail Number G.04.228, PO Box 85500, Utrecht 3508 GA, the Netherlands
| |
Collapse
|
13
|
Staal FC, Taghavi M, Hong EK, Tissier R, van Treijen M, Heeres BC, van der Zee D, Tesselaar ME, Beets-Tan RG, Maas M. CT-based radiomics to distinguish progressive from stable neuroendocrine liver metastases treated with somatostatin analogues: an explorative study. Acta Radiol 2023; 64:1062-1070. [PMID: 35702011 DOI: 10.1177/02841851221106598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Accurate response evaluation in patients with neuroendocrine liver metastases (NELM) remains a challenge. Radiomics has shown promising results regarding response assessment. PURPOSE To differentiate progressive (PD) from stable disease (SD) with radiomics in patients with NELM undergoing somatostatin analogue (SSA) treatment. MATERIAL AND METHODS A total of 46 patients with histologically confirmed gastroenteropancreatic neuroendocrine tumors (GEP-NET) with ≥1 NELM and ≥2 computed tomography (CT) scans were included. Response was assessed with Response Evaluation Criteria in Solid Tumors (RECIST1.1). Hepatic target lesions were manually delineated and analyzed with radiomics. Radiomics features were extracted from each NELM on both arterial-phase (AP) and portal-venous-phase (PVP) CT. Multiple instance learning with regularized logistic regression via LASSO penalization (with threefold cross-validation) was used to classify response. Three models were computed: (i) AP model; (ii) PVP model; and (iii) AP + PVP model for a lesion-based and patient-based outcome. Next, clinical features were added to each model. RESULTS In total, 19 (40%) patients had PD. Median follow-up was 13 months (range 1-50 months). Radiomics models could not accurately classify response (area under the curve 0.44-0.60). Adding clinical variables to the radiomics models did not significantly improve the performance of any model. CONCLUSION Radiomics features were not able to accurately classify response of NELM on surveillance CT scans during SSA treatment.
Collapse
Affiliation(s)
- Femke Cr Staal
- Department of Radiology, 1228The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, 5211Maastricht University Medical Centre, Maastricht, The Netherlands
- Center for Neuroendocrine Tumors, ENETS Center of Excellence, 1228Netherlands Cancer Institute Amsterdam/University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Taghavi
- Department of Radiology, 1228The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, 5211Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Eun K Hong
- Department of Radiology, 1228The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, 5211Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Radiology, 26725Seoul National University Hospital, Seoul, Republic of Korea
| | - Renaud Tissier
- Biostatistics Center, 1228The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark van Treijen
- Center for Neuroendocrine Tumors, ENETS Center of Excellence, 1228Netherlands Cancer Institute Amsterdam/University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Endocrine Oncology, 8124University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Birthe C Heeres
- Department of Radiology, 1228The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Margot Et Tesselaar
- Center for Neuroendocrine Tumors, ENETS Center of Excellence, 1228Netherlands Cancer Institute Amsterdam/University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Oncology, 1228The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Regina Gh Beets-Tan
- Department of Radiology, 1228The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, 5211Maastricht University Medical Centre, Maastricht, The Netherlands
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Monique Maas
- Department of Radiology, 1228The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Kaliszewski K, Ludwig M, Greniuk M, Mikuła A, Zagórski K, Rudnicki J. Advances in the Diagnosis and Therapeutic Management of Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs). Cancers (Basel) 2022; 14:2028. [PMID: 35454934 PMCID: PMC9030061 DOI: 10.3390/cancers14082028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are an increasingly common cause of neoplastic diseases. One of the largest groups of NENs are neoplasms localized to the gastroenteropancreatic system, which are known as gastroenteropancreatic NENs (GEP-NENs). Because of nonspecific clinical symptoms, GEP-NEN patient diagnosis and, consequently, their treatment, might be difficult and delayed. This situation has forced researchers all over the world to continue progress in the diagnosis and treatment of patients with GEP-NENs. Our review is designed to present the latest reports on the laboratory diagnostic techniques, imaging tests and surgical and nonsurgical treatment strategies used for patients with these rare neoplasms. We paid particular attention to the nuclear approach, the use of which has been applied to GEP-NEN patient diagnosis, and to nonsurgical and radionuclide treatment strategies. Recent publications were reviewed in search of reports on new strategies for effective disease management. Attention was also paid to those studies still in progress, but with successful results. A total of 248 papers were analyzed, from which 141 papers most relevant to the aim of the study were selected. Using these papers, we highlight the progress in the development of diagnostic and treatment strategies for patients with GEP-NENs.
Collapse
Affiliation(s)
- Krzysztof Kaliszewski
- Department of General, Minimally Invasive and Endocrine Surgery, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland; (M.L.); (M.G.); (A.M.); (K.Z.); (J.R.)
| | | | | | | | | | | |
Collapse
|
15
|
Okawa Y, Tsuchikawa T, Hatanaka KC, Matsui A, Tanaka K, Nakanishi Y, Asano T, Noji T, Nakamura T, Mitsuhashi T, Okamura K, Hatanaka Y, Hirano S. Clinical Features of Pancreatic Neuroendocrine Microadenoma: A Single-Center Experience and Literature Review. Pancreas 2022; 51:338-344. [PMID: 35699685 DOI: 10.1097/mpa.0000000000002029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Pancreatic neuroendocrine microadenoma (NEMA) is a nonfunctioning neuroendocrine tumor of less than 5 mm. Most studies of NEMA were based on autopsies, and few reports have revealed the clinical frequency of NEMA. We investigated the clinicopathological features of NEMA. METHODS The pathological results of the pancreatic resection specimens of patients, older than 18 years, who underwent pancreatic resection at Hokkaido University Hospital between April 2008 and December 2020 were retrospectively reviewed. The NEMAs were re-examined in detail and examined by immunohistochemical staining. RESULTS Among 850 patients enrolled in this study, 24 NEMAs were identified in 12 patients (1.4%). Of the 12 patients, 2 patients had multiple endocrine neoplasia type 1, and the others had no hereditary disease, including 2 patients with multiple NEMAs. A difference in the number of NEMA was observed between patients with multiple endocrine neoplasia type 1 and sporadic NEMA. Intratumoral Ki-67 heterogeneity was correlated with the Ki-67 index. One grade 2 NEMA (Ki-67 index, 4.6%) was detected, but ATRX and DAXX labeling showed intact nuclear protein expression. CONCLUSIONS Multiple sporadic NEMAs and grade 2 NEMAs were observed, suggesting that NEMA may have malignant potential. Thus, NEMAs should be carefully monitored for lymph node metastasis and postoperative recurrence.
Collapse
Affiliation(s)
- Yuki Okawa
- From the Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine
| | - Takahiro Tsuchikawa
- From the Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine
| | | | - Aya Matsui
- From the Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine
| | - Kimitaka Tanaka
- From the Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine
| | - Yoshitsugu Nakanishi
- From the Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine
| | - Toshimichi Asano
- From the Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine
| | - Takehiro Noji
- From the Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine
| | - Toru Nakamura
- From the Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine
| | | | - Keisuke Okamura
- From the Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine
| | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Satoshi Hirano
- From the Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine
| |
Collapse
|
16
|
van Treijen MJC, Schoevers JMH, Heeres BC, van der Zee D, Maas M, Valk GD, Tesselaar MET. Defining disease status in gastroenteropancreatic neuroendocrine tumors: Choi-criteria or RECIST? Abdom Radiol (NY) 2022; 47:1071-1081. [PMID: 34989825 DOI: 10.1007/s00261-021-03393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Adequate monitoring of changes in tumor load is fundamental for the assessment of the course of disease and response to treatment. There is an ongoing debate on the utility of RECIST v1.1 in gastroenteropancreatic neuroendocrine tumors (GEP-NETs). METHODS In this retrospective real-life cohort study, Choi-criteria were compared with RECIST v1.1. The agreement between both criteria and the association with survival endpoints were evaluated. RESULTS Seventy-five patients were included with a median follow-up of 35 months (range 8-53). Median progression-free survival (mPFS) according to RECIST v1.1 was 15 months (range 2-50) compared to 14 months (range 2-50) in Choi. According to RECIST, 33 (44%) patients were classified as having stable disease (SD), 40 (53%) as progressive disease (PD) and two (3%) patients as partial response (PR), compared to 9 (12%) patients classified as SD, 50 (67%) as PD and 16 (21%) as PR according to Choi-criteria. Overall concordance between the criteria was moderate (Cohen's Kappa = 0.408, p < 0.001) and agreement varied between 57 and 69% at each consecutive scan (p < 0.001). Survival analysis showed significant differences in overall survival (OS) for RECIST v1.1 categories PD and non-PD (log-rank p = 0.02), however, in Choi no significant differences in OS were found (p = 0.27). CONCLUSION RECIST v1.1 had a better clinical utility and prognostic value compared to Choi-criteria. Still, RECIST were also not sufficient to adequately predict OS. This outlines the need for new tools that provides accurate information on the disease course and treatment response to support precise prognostication in patients with GEP-NETs.
Collapse
Affiliation(s)
- M J C van Treijen
- Department of Endocrine Oncology, University Medical Center Utrecht Cancer Center, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands.
- The Netherlands Cancer Institute/University Medical Center Utrecht Center for Neuroendocrine Tumors, ENETs Center of Excellence, Amsterdam/Utrecht, The Netherlands.
| | - J M H Schoevers
- Department of Endocrine Oncology, University Medical Center Utrecht Cancer Center, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - B C Heeres
- The Netherlands Cancer Institute/University Medical Center Utrecht Center for Neuroendocrine Tumors, ENETs Center of Excellence, Amsterdam/Utrecht, The Netherlands
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D van der Zee
- Department of Radiology, Bernhoven Hospital, Uden, The Netherlands
| | - M Maas
- The Netherlands Cancer Institute/University Medical Center Utrecht Center for Neuroendocrine Tumors, ENETs Center of Excellence, Amsterdam/Utrecht, The Netherlands
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - G D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht Cancer Center, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
- The Netherlands Cancer Institute/University Medical Center Utrecht Center for Neuroendocrine Tumors, ENETs Center of Excellence, Amsterdam/Utrecht, The Netherlands
| | - M E T Tesselaar
- The Netherlands Cancer Institute/University Medical Center Utrecht Center for Neuroendocrine Tumors, ENETs Center of Excellence, Amsterdam/Utrecht, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Rinke A, Auernhammer CJ, Bodei L, Kidd M, Krug S, Lawlor R, Marinoni I, Perren A, Scarpa A, Sorbye H, Pavel ME, Weber MM, Modlin I, Gress TM. Treatment of advanced gastroenteropancreatic neuroendocrine neoplasia, are we on the way to personalised medicine? Gut 2021; 70:1768-1781. [PMID: 33692095 DOI: 10.1136/gutjnl-2020-321300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasia (GEPNEN) comprises clinically as well as prognostically diverse tumour entities often diagnosed at late stage. Current classification provides a uniform terminology and a Ki67-based grading system, thereby facilitating management. Advances in the study of genomic and epigenetic landscapes have amplified knowledge of tumour biology and enhanced identification of prognostic and potentially predictive treatment subgroups. Translation of this genomic and mechanistic biology into advanced GEPNEN management is limited. 'Targeted' treatments such as somatostatin analogues, peptide receptor radiotherapy, tyrosine kinase inhibitors and mammalian target of rapamycin inhibitors are treatment options but predictive tools are lacking. The inability to identify clonal heterogeneity and define critical oncoregulatory pathways prior to therapy, restrict therapeutic efficacy as does the inability to monitor disease status in real time. Chemotherapy in the poor prognosis NEN G3 group, though associated with acceptable response rates, only leads to short-term tumour control and their molecular biology requires delineation to provide new and more specific treatment options.The future requires an exploration of the NEN tumour genome, its microenvironment and an identification of critical oncologic checkpoints for precise drug targeting. In the advance to personalised medical treatment of patients with GEPNEN, clinical trials need to be based on mechanistic and multidimensional characterisation of each tumour in order to identify the therapeutic agent effective for the individual tumour.This review surveys advances in NEN research and delineates the current status of translation with a view to laying the basis for a genome-based personalised medicine management of advanced GEPNEN.
Collapse
Affiliation(s)
- Anja Rinke
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg and Philipps University, Marburg, Germany
| | - Christoph J Auernhammer
- Department of Internal Medicine IV and Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Ludwig Maximilian University, LMU Klinikum, Munich, Germany
| | - Lisa Bodei
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | - Sebastian Krug
- Clinic for Internal Medicine I, Martin Luther University, Halle, Germany
| | - Rita Lawlor
- Applied Research on Cancer Centre, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Aldo Scarpa
- Applied Research on Cancer Centre, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Halfdan Sorbye
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Marianne Ellen Pavel
- Department of Internal Medicine I, Endocrinology, University of Erlangen, Erlangen, Germany
| | - Matthias M Weber
- Department of Internal Medicine I, Endocrinology, Johannes Gutenberg University Hospital Mainz, Mainz, Germany
| | - Irvin Modlin
- Gastroenterological and Endoscopic Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg and Philipps University, Marburg, Germany
| |
Collapse
|
18
|
Modlin IM, Kidd M, Falconi M, Filosso PL, Frilling A, Malczewska A, Toumpanakis C, Valk G, Pacak K, Bodei L, Öberg KE. A multigenomic liquid biopsy biomarker for neuroendocrine tumor disease outperforms CgA and has surgical and clinical utility. Ann Oncol 2021; 32:1425-1433. [PMID: 34390828 DOI: 10.1016/j.annonc.2021.08.1746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Biomarkers are key tools in cancer management. In neuroendocrine tumors (NETs), Chromogranin A (CgA) was considered acceptable as a biomarker. We compared the clinical efficacy of a multigenomic blood biomarker (NETest) to CgA over a 5-year period. PATIENTS AND METHODS An observational, prospective, cross-sectional, multicenter, multinational, comparative cohort assessment. Cohort 1: NETest evaluation in NETs (n = 1684) and cancers, benign diseases, controls (n = 731). Cohort 2: (n = 1270): matched analysis of NETest/CgA in a sub-cohort of NETs (n = 922) versus other diseases and controls (n = 348). Disease status was assessed by response evaluation criteria in solid tumors (RECIST). NETest measurement: qPCR [upper limit of normal (ULN: 20)], CgA (EuroDiagnostica, ULN: 108 ng/ml). STATISTICS Mann-Whitney U-test, AUROC, chi-square and McNemar' test. RESULTS Cohort 1: NETest diagnostic accuracy was 91% (P < 0.0001) and identified pheochromocytomas (98%), small intestine (94%), pancreas (91%), lung (88%), gastric (80%) and appendix (79%). NETest reflected grading: G1: 40 ± 1, G2 (50 ± 1) and G3 (52 ± 1). Locoregional disease levels were lower (38 ± 1) than metastatic (52 ± 1, P < 0.0001). NETest accurately stratified RECIST-assessed disease extent: no disease (21 ± 1), stable (43 ± 2), progressive (62 ± 2) (P < 0.0001). NETest concordance with imaging (CT/MRI/68Ga-SSA-PET) 91%. Presurgery, all NETs (n = 153) were positive (100%). After palliative R1/R2 surgery (n = 51) all (100%) remained elevated. After curative R0-surgery (n = 102), NETest levels were normal in 81 (70%) with no recurrence at 2 years. In the 31 (30%) with elevated levels, 25 (81%) recurred within 2 years. Cohort #2: NETest diagnostic accuracy was 87% and CgA 54% (P < 0.0001). NETest was more accurate than CgA for grading (chi-square = 7.7, OR = 18.5) and metastatic identification (chi-square = 180, OR = 8.4). NETest identified progressive disease (95%) versus CgA (57%, P < 0.0001). Imaging concordance for NETest was 91% versus CgA (46%) (P < 0.0001). Recurrence prediction after surgery was NETest-positive in >94% versus CgA 11%. CONCLUSION NETest accurately diagnoses NETs and is an effective surrogate marker for imaging, grade, metastases and disease status compared to CgA. A multigenomic liquid biopsy is an accurate biomarker of NET disease.
Collapse
Affiliation(s)
- I M Modlin
- Department of Surgery, Yale University School of Medicine, New Haven, USA
| | - M Kidd
- Wren Laboratories, Branford, USA
| | - M Falconi
- Department of Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P L Filosso
- Department of Surgical Sciences, Università degli Studi di Torino, Turin, Italy
| | - A Frilling
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - A Malczewska
- Department of Endocrinology and Neuroendocrine Tumours, Medical University of Silesia, Katowice, Poland
| | - C Toumpanakis
- Neuroendocrine Tumour Unit, Royal Free Hospital, London, UK
| | - G Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - K Pacak
- Medical Neuroendocrinology, National Institutes of Health, Bethesda, USA
| | - L Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - K E Öberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden.
| |
Collapse
|
19
|
Modlin IM, Kidd M, Oberg K, Falconi M, Filosso PL, Frilling A, Malczewska A, Salem R, Toumpanakis C, Laskaratos FM, Partelli S, Roffinella M, von Arx C, Kudla BK, Bodei L, Drozdov IA, Kitz A. Early Identification of Residual Disease After Neuroendocrine Tumor Resection Using a Liquid Biopsy Multigenomic mRNA Signature (NETest). Ann Surg Oncol 2021; 28:7506-7517. [PMID: 34008138 DOI: 10.1245/s10434-021-10021-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Surgery is the only cure for neuroendocrine tumors (NETs), with R0 resection being critical for successful tumor removal. Early detection of residual disease is key for optimal management, but both imaging and current biomarkers are ineffective post-surgery. NETest, a multigene blood biomarker, identifies NETs with >90% accuracy. We hypothesized that surgery would decrease NETest levels and that elevated scores post-surgery would predict recurrence. METHODS This was a multicenter evaluation of surgically treated primary NETs (n = 153). Blood sampling was performed at day 0 and postoperative day (POD) 30. Follow-up included computed tomography/magnetic resonance imaging (CT/MRI), and messenger RNA (mRNA) quantification was performed by polymerase chain reaction (PCR; NETest score: 0-100; normal ≤20). Statistical analyses were performed using the Mann-Whitney U-test, Chi-square test, Kaplan-Meier survival, and area under the receiver operating characteristic curve (AUROC), as appropriate. Data are presented as mean ± standard deviation. RESULTS The NET cohort (n = 153) included 57 patients with pancreatic cancer, 62 patients with small bowel cancer, 27 patients with lung cancer, 4 patients with duodenal cancer, and 3 patients with gastric cancer, while the surgical cohort comprised patients with R0 (n = 102) and R1 and R2 (n = 51) resection. The mean follow-up time was 14 months (range 3-68). The NETest was positive in 153/153 (100%) samples preoperatively (mean levels of 68 ± 28). In the R0 cohort, POD30 levels decreased from 62 ± 28 to 22 ± 20 (p < 0.0001), but remained elevated in 30% (31/102) of patients: 28% lung, 29% pancreas, 27% small bowel, and 33% gastric. By 18 months, 25/31 (81%) patients with a POD30 NETest >20 had image-identifiable recurrence. An NETest score of >20 predicted recurrence with 100% sensitivity and correlated with residual disease (Chi-square 17.1, p < 0.0001). AUROC analysis identified an AUC of 0.97 (p < 0.0001) for recurrence-prediction. In the R1 (n = 29) and R2 (n = 22) cohorts, the score decreased (R1: 74 ± 28 to 45 ± 24, p = 0.0012; R2: 72 ± 24 to 60 ± 28, p = non-significant). At POD30, 100% of NETest scores were elevated despite surgery (p < 0.0001). CONCLUSION The preoperative NETest accurately identified all NETs (100%). All resections decreased NETest levels and a POD30 NETest score >20 predicted radiologically recurrent disease with 94% accuracy and 100% sensitivity. R0 resection appears to be ineffective in approximately 30% of patients. NET mRNA blood levels provide early objective genomic identification of residual disease and may facilitate management.
Collapse
Affiliation(s)
| | - Mark Kidd
- Wren Laboratories, Branford, CT, USA
| | | | | | | | | | | | - Ronald Salem
- Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | - Lisa Bodei
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
20
|
Malczewska A, Oberg K, Kos-Kudla B. NETest is superior to chromogranin A in neuroendocrine neoplasia: a prospective ENETS CoE analysis. Endocr Connect 2021; 10:110-123. [PMID: 33289691 PMCID: PMC7923057 DOI: 10.1530/ec-20-0417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The absence of a reliable, universal biomarker is a significant limitation in neuroendocrine neoplasia (NEN) management. We prospectively evaluated two CgA assays, (NEOLISA, EuroDiagnostica) and (CgA ELISA, Demeditec Diagnostics (DD)) and compared the results to the NETest. METHODS NEN cohort (n = 258): pancreatic, n = 67; small intestine, n = 40; appendiceal, n = 10; rectal, n = 45; duodenal, n = 9; gastric, n = 44; lung, n = 43. Image-positive disease (IPD) (n = 123), image & histology- negative (IND) (n = 106), and image-negative and histology positive (n = 29). CgA metrics: NEOLISA, ULN: 108 ng/mL, DD: ULN: 99 ng/mL. Data mean ± s.e.m. NETest: qRT-PCR - multianalyte analyses, ULN: 20. All samples de-identified and assessed blinded. Statistics: Mann-Whitney U-test, Pearson correlation and McNemar-test. RESULTS CgA positive in 53/258 (NEOLISA), 32 (DD) and NETest-positive in 157/258. In image- positive disease (IPD, n = 123), NEOLISA-positive: 33% and DD: 19%. NETest-positive: 122/123 (99%; McNemar's Chi2= 79-97, P < 0.0001). NEOLISA was more accurate than DD (P = 0.0003). In image- negative disease (IND), CgA was NEOLISA-positive (11%), DD (8%), P = NS, and NETest (33%). CgA assays could not distinguish progressive (PD) from stable disease (SD) or localized from metastatic disease (MD). NETest was significantly higher in PD (47 ± 5) than SD (29 ± 1, P = 0.0009). NETest levels in MD (35 ± 2) were elevated vs localized disease (24 ± 1.3, P = 0.008). CONCLUSIONS NETest, a multigenomic mRNA biomarker, was ~99% accurate in the identification of NEN disease. The CgA assays detected NEN disease in 19-33%. Multigenomic blood analysis using NETest is more accurate than CgA and should be considered the biomarker standard of care.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumours, Medical University of Silesia, Katowice, Poland
| | - Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden
| | - Beata Kos-Kudla
- Department of Endocrinology and Neuroendocrine Tumours, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
21
|
Survival in Patients with Neuroendocrine Tumours of the Small Intestine: Nomogram Validation and Predictors of Survival. J Clin Med 2020; 9:jcm9082502. [PMID: 32756529 PMCID: PMC7464451 DOI: 10.3390/jcm9082502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine tumours of the small intestine (SI-NETs) are rare and heterogeneous. There is an unmet need for prognostication of disease course and to aid treatment strategies. A previously developed nomogram based on clinical and tumour characteristics aims to predict disease-specific survival (DSS) in patients with a SI-NET. We aimed to validate the nomogram and identify predictors of survival. Four hundred patients with a grade 1 or 2 SI-NET were included, between January 2000 and June 2016. Predicted 5- and 10-year survival was compared to actual DSS. Multivariable analysis identified predictors for actual DSS. We found that in low-, medium- and high-risk groups 5-year nomogram DSS vs. actual DSS was 0.86 vs. 0.82 (p < 0.001), 0.52 vs. 0.71 (p < 0.001) and 0.26 vs. 0.53 (p < 0.001), respectively. Ten-year nomogram DSS vs. actual DSS was 0.68 vs. 0.69 (p < 0.001), 0.40 vs. 0.50 (p < 0.001) and 0.20 vs. 0.35 (p < 0.001), respectively. Age, WHO-performance score of 2, Ki-67 index ≥10, unknown primary tumour, CgA > 6x ULN and elevated liver tests were identified as independent predictors for a worse DSS. This shows that the nomogram was able to differentiate, but underestimated DSS for patients with a SI-NET. Improvement of prognostication incorporating new emerging biomarkers is necessary to adequately estimate survival.
Collapse
|