1
|
Liu Y, Li D, Yu X, Li X. Identification of a novel immunosenescence-related genes and integrative analyses in patients with psoriasis. Hum Immunol 2025; 86:111218. [PMID: 39673814 DOI: 10.1016/j.humimm.2024.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Immunosenescence, characterized by age-related changes in the immune system, may contribute to the onset and progression of psoriasis, a condition whose incidence increases with age and often requires intensified medication in older patients. METHODS This study utilized bioinformatics analyses to identify differentially expressed immunosenescence-related genes in psoriasis patients from the GEO database. Enrichment, correlation, and interaction network analyses were conducted to explore their involvement in immune and inflammation pathways. Machine learning models were employed to predict psoriasis onset and validated using external datasets. Patient stratification based on gene expression patterns assessed differential responses to biologic inhibitors targeting specific genes. RESULTS Immunosenescence emerged as a significant factor in psoriasis pathogenesis, with genes such as BACH2 potentially influencing T cell activation and disease outcomes. Lower BACH2 expression levels were associated with poorer treatment responses in psoriasis patients. CONCLUSIONS This study sheds light on immunosenescence-related mechanisms in psoriasis, suggesting BACH2 as a potential disease diagnosis biomarker. Further research into BACH2's role in psoriasis pathophysiology is warranted to advance tailored treatment strategies.
Collapse
Affiliation(s)
- Yiran Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Ding Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqian Yu
- Department of Dermatology, Qingdao Haici Hospital (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Xiaoyuan Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Chen YK, Mohamed AH, Amer Alsaiari A, Olegovich Bokov D, Ali Patel A, Al Abdulmonem W, Shafie A, Adnan Ashour A, Azhar Kamal M, Ahmad F, Ahmad I. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024; 182:156699. [PMID: 39033730 DOI: 10.1016/j.cyto.2024.156699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Collapse
Affiliation(s)
- Yan-Kun Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518109, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Hilla, Iraq.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
3
|
Yang X, Zhang S, Chen K, Shen D, Yang Y, Shen A, Liang J, Xu M, Yang Y, Zhao Y, Li H, Tong X. Hypoxic Preconditioned ADSC Exosomes Enhance Vaginal Wound Healing via Accelerated Keratinocyte Proliferation and Migration Through AKT/HIF‑1α Axis Activation. Cell Mol Bioeng 2024; 17:295-303. [PMID: 39372552 PMCID: PMC11450125 DOI: 10.1007/s12195-024-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Accelerating wound healing is a main consideration in surgery. The three stages of wound healing are inflammatory response, tissue repair and cell proliferation. Much research has focused on epidermal cell proliferation and migration because this is an essential step in wound healing. Methods and Results The current study discovered that exosomes from Adipose-derived stem cell (ADSC) following hypoxic preconditioning (HExo) have a greater promotional effect on vaginal wound healing. Protein kinase B (AKT)/hypoxia-inducible factor 1-alpha (HIF-1α) play an important role in HExo-mediated HaCaT cell migration and proliferation. The promotional effect of HExo on rat wound healing was reversed by both, HIF‑1α and AKT inhibition. Phosphorylation of AKT (p-AKT) or HIF‑1α suppression reversed the protective effect of HExo on vaginal wound healing. Conclusion Taken together, our study found that hypoxic preconditioning of adipose MSC exosomes enhances vaginal wound healing via accelerated keratinocyte proliferation and migration through AKT/HIF‑1α axis activation.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Shasha Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Kewei Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Aiqun Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Junhua Liang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Mengjiao Xu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yanhong Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| |
Collapse
|
4
|
Zhu Q, Zhao L, Ding H, Song J, Zhang Q, Yu S, Wang Y, Wang H. Interleukins and Psoriasis. J Cutan Med Surg 2024; 28:NP19-NP35. [PMID: 38314729 DOI: 10.1177/12034754241227623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease that affects 2% to 3% of the world's population. It is widely assumed that immune cells and cytokines acting together play a crucial part in the pathophysiology of psoriasis by promoting the excessive proliferation of skin keratinocytes and inflammatory infiltration. Interleukins (ILs), as a critical component of cytokines, have been closely associated with the pathogenesis and progression of psoriasis. This review summarizes the current contribution of ILs to psoriasis and describes the role each IL performs in psoriasis. Furthermore, the paper presents the therapeutic effects and application prospects of biologics developed for ILs in clinical treatment and experiments. The study aims to further the research on ILs in the treatment of psoriasis.
Collapse
Affiliation(s)
- Qi Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haining Ding
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingna Song
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuhua Yu
- Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Yi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongmei Wang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
5
|
Srikanth M, Rasool M. Resistin - A Plausible Therapeutic Target in the Pathogenesis of Psoriasis. Immunol Invest 2024; 53:115-159. [PMID: 38054436 DOI: 10.1080/08820139.2023.2288836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Resistin, a cytokine hormone predominantly secreted by adipose tissue, is elevated in various metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. In addition to its involvement in metabolic regulation, resistin has been implicated in the pathogenesis of psoriasis, a chronic inflammatory skin disorder. Numerous studies have reported increased resistin levels in psoriatic skin lesions, suggesting a possible association between resistin and psoriasis. Recent studies have suggested the potential involvement of resistin in the development and progression of certain cancers. Resistin is overexpressed in breast, colorectal, and gastric cancers. This suggests that it may play a role in the development of these cancers, possibly by inducing inflammation and cell growth. The link between resistin and cancer raises the possibility of shared underlying mechanisms driving the pathogenesis of psoriasis. Chronic inflammation, one such mechanism, is a hallmark of psoriasis and cancer. Further research is needed to fully understand the relationship between resistin and psoriasis. Identifying potential therapeutic targets is crucial for effective management of psoriasis. By doing so, we may be able to develop more effective treatment options for individuals living with psoriasis and ultimately improve their quality of life. Ultimately, a more comprehensive understanding of the mechanisms underlying the impact of resistin on psoriasis is essential for advancing our knowledge and finding new ways to treat and manage this challenging condition.
Collapse
Affiliation(s)
- Manupati Srikanth
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
6
|
Li J, Lu Y, Zhao X. Exploring the causal relationship between inflammatory cytokines and immunoinflammatory dermatoses: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1263714. [PMID: 38357652 PMCID: PMC10864622 DOI: 10.3389/fmed.2024.1263714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Objectives Previous studies have shown that the onset and progression of several immunoinflammatory dermatoses are closely related to specific immune-inflammatory responses. To further assess the causal relationship between 41 inflammatory cytokines and immunoinflammatory dermatoses, we used a Mendelian randomization method. Methods Mendelian two-sample randomization utilized inflammatory cytokines from a GWAS abstract containing 8,293 healthy participants as well as psoriasis (4,510 cases and 212,242 controls), atopic dermatitis (7,024 cases and 198,740 controls), and vitiligo (131 cases and 207,482 controls). The causal relationship between exposure and outcome was explored primarily using inverse variance weighting. In addition, multiple sensitivity analyses, including MR-Egger, weighted median, simple model, weighted model, and MR-PRESSO, were simultaneously applied to enhance the final results. Results The results showed that in clinical practice, IL-4 and IL-1RA were suggestive indicators of atopic dermatitis risk (OR = 0.878, 95% CI = 0.78-0.99, p = 0.036; OR = 0.902, 95% CI = 0.82-1.00, p = 0.045). SCGF-b was a suggestive indicator of psoriasis risk (OR = 1.095, 95% CI = 1.01-1.18, p = 0.023). IL-4 is a suggestive indicator of vitiligo risk (OR = 2.948, 95% CI = 1.28-6.79, p = 0.011). Conclusion Our findings suggest that circulating inflammatory cytokines may play a crucial role in the pathogenesis of chronic skin inflammation. IL-4 and IL-1RA may have inhibitory roles in the risk of developing atopic dermatitis, while SCGF-b may have a promoting role in the risk of developing psoriasis. Furthermore, IL-4 may contribute to the risk of developing vitiligo. These results provide insights into further understanding the mechanisms of chronic skin inflammation and offer new targets and strategies for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Jiaxuan Li
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yining Lu
- Department of Orthopedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuelian Zhao
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Mesenchymal Stem Cells and Psoriasis: Systematic Review. Int J Mol Sci 2022; 23:ijms232315080. [PMID: 36499401 PMCID: PMC9740222 DOI: 10.3390/ijms232315080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) are multipotent non-hematopoietic stromal cells found in different body tissues such as bone marrow, adipose tissue, periosteum, Wharton's jelly, umbilical cord, blood, placenta, amniotic fluid, and skin. The biological behavior of MSCs depends mainly on their interaction with the microenvironment in which they are found, whose quality deeply influences the regenerative and immunomodulatory properties of these cells. Several studies confirm the interaction between MSCs and inflammatory microenvironment in the pathogenesis of psoriasis, designating MSCs as an important factor driving psoriasis development. This review aims to describe the most recent evidence on how the inflammatory microenvironment that characterizes psoriasis influences the homeostasis of MSCs and how they can be used to treat the disease.
Collapse
|
9
|
Bellei B, Migliano E, Picardo M. Research update of adipose tissue-based therapies in regenerative dermatology. Stem Cell Rev Rep 2022; 18:1956-1973. [PMID: 35230644 DOI: 10.1007/s12015-022-10328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 12/09/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) have a spontaneous propensity to support tissue homeostasis and regeneration. Among the several sources of MSCs, adipose-derived tissue stem cells (ADSCs) have received major interest due to the higher mesenchymal stem cells concentration, ease, and safety of access. However, since a significant part of the natural capacity of ADSCs to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines, lipids, and extracellular matrix components, several studies focused on cell-free strategies. Furthermore, adipose cell-free derivatives are becoming more attractive especially for non-volumizing purposes, such as most dermatological conditions. However, when keratinocytes, fibroblasts, melanocytes, adipocytes, and hair follicle cells might not be locally sourced, graft of materials containing concentrated ADSCs is preferred. The usage of extracellular elements of adipose tissue aims to promote a self-autonomous regenerative microenvironment in the receiving area restoring physiological homeostasis. Hence, ADSCs or their paracrine activity are currently being studied in several dermatological settings including wound healing, skin fibrosis, burn, and aging.The present work analyzing both preclinical and clinical experiences gives an overview of the efficacy of adipose tissue-derivatives like autologous fat, the stromal vascular fraction (SVF), purified ADSCs, secretome and extracellular matrix graft in the field of regenerative medicine for the skin.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Emilia Migliano
- Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|