1
|
Ren Y, Liang H, Xie M, Zhang M. Natural plant medications for the treatment of retinal diseases: The blood-retinal barrier as a clue. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155568. [PMID: 38795692 DOI: 10.1016/j.phymed.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Retinal diseases significantly contribute to the global burden of visual impairment and blindness. The occurrence of retinal diseases is often accompanied by destruction of the blood‒retinal barrier, a vital physiological structure responsible for maintaining the stability of the retinal microenvironment. However, detailed summaries of the factors damage the blood‒retinal barrier and treatment methods involving natural plant medications are lacking. PURPOSE To comprehensively summarize and analyze the protective effects of active substances in natural plant medications on damage to the blood-retina barrier that occurs when retinal illnesses, particularly diabetic retinopathy, and examine their medicinal value and future development prospects. METHODS In this study, we searched for studies published in the ScienceDirect, PubMed, and Web of Science databases. The keywords used included natural plant medications, plants, natural herbs, blood retinal barrier, retinal diseases, diabetic retinopathy, age-related macular degeneration, and uveitis. Chinese herbal compound articles, non-English articles, warning journals, and duplicates were excluded from the analysis. RESULTS The blood‒retinal barrier is susceptible to high glucose, aging, immune responses, and other factors that destroy retinal homeostasis, resulting in pathological changes such as apoptosis and increased vascular permeability. Existing studies have shown that the active compounds or extracts of many natural plants have the effect of repairing blood-retinal barrier dysfunction. Notably, berberine, puerarin, and Lycium barbarum polysaccharides exhibited remarkable therapeutic effects. Additionally, curcumin, astragaloside IV, hesperidin, resveratrol, ginsenoside Rb1, luteolin, and Panax notoginseng saponins can effectively protect the blood‒retinal barrier by interfering with distinct pathways. The active ingredients found in natural plant medications primarily repair the blood‒retinal barrier by modulating pathological factors such as oxidative stress, inflammation, pyroptosis, and autophagy, thereby alleviating retinal diseases. CONCLUSION This review summarizes a series of plant extracts and plant active compounds that can treat retinal diseases by preventing and treating blood‒retinal barrier damage and provides reference for the research of new drugs for treating retinal diseases.
Collapse
Affiliation(s)
- Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mengjun Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
2
|
Wu Q, Liu C, Shu X, Duan L. Mechanistic and therapeutic perspectives of non-coding RNA-modulated apoptotic signaling in diabetic retinopathy. Cell Biol Toxicol 2024; 40:53. [PMID: 38970639 PMCID: PMC11227466 DOI: 10.1007/s10565-024-09896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
Diabetic retinopathy (DR), a significant and vision-endangering complication associated with diabetes mellitus, constitutes a substantial portion of acquired instances of preventable blindness. The progression of DR appears to prominently feature the loss of retinal cells, encompassing neural retinal cells, pericytes, and endothelial cells. Therefore, mitigating the apoptosis of retinal cells in DR could potentially enhance the therapeutic approach for managing the condition by suppressing retinal vascular leakage. Recent advancements have highlighted the crucial regulatory roles played by non-coding RNAs (ncRNAs) in diverse biological processes. Recent advancements have highlighted that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), act as central regulators in a wide array of biogenesis and biological functions, exerting control over gene expression associated with histogenesis and cellular differentiation within ocular tissues. Abnormal expression and activity of ncRNAs has been linked to the regulation of diverse cellular functions such as apoptosis, and proliferation. This implies a potential involvement of ncRNAs in the development of DR. Notably, ncRNAs and apoptosis exhibit reciprocal regulatory interactions, jointly influencing the destiny of retinal cells. Consequently, a thorough investigation into the complex relationship between apoptosis and ncRNAs is crucial for developing effective therapeutic and preventative strategies for DR. This review provides a fundamental comprehension of the apoptotic signaling pathways associated with DR. It then delves into the mutual relationship between apoptosis and ncRNAs in the context of DR pathogenesis. This study advances our understanding of the pathophysiology of DR and paves the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Qin Wu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, 250021, China.
| | | | - Xiangwen Shu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, 250021, China
| | - Lian Duan
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
3
|
Wu CY, Yang YH, Lin YS, Shu LH, Liu HT, Lu CK, Wu YH, Wu YH. The Effect and Mechanism of Astragalus Polysaccharides on T Cells and Macrophages in Inhibiting Prostate Cancer. Biomed J 2024:100741. [PMID: 38677490 DOI: 10.1016/j.bj.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The impact and underlying mechanisms of astragalus polysaccharide (APS) on prostate cancer, particularly its role in immunomodulation, remain inadequately elucidated. METHODS This study employed the XTT assay for assessing proliferation in prostate cancer cells and macrophages. T cell proliferation was determined using the Carboxyfluorescein diacetate succinimidyl ester labeling assay. APS's effect on T cells and macrophages was scrutinized via flow cytometry, Western blot analysis, ELISA, quantitative PCR and cytokine membrane arrays. The effect of APS on interaction between PD-L1 and PD-1 was investigated by the PD-L1/PD-1 homogeneous assay. Additionally, the impact of conditioned medium from T cells and macrophages on PC-3 cell migration was explored through migration assays. RESULTS It was observed that APS at concentrations of 1 and 5 mg/mL enhanced the proliferation of CD8+ T cells. At a concentration of 5 mg/mL, APS activated both CD4+ and CD8+ T cells, attenuated PD-L1 expression in prostate cancer cells stimulated with interferon gamma (IFN-γ) or oxaliplatin, and moderately decreased the population of PD-1+ CD4+ and PD-1+ CD8+ T cells. Furthermore, APS at this concentration impeded the interaction between PD-L1 and PD-1, inhibited the promotion of prostate cancer migration mediated by RAW 264.7 cells, THP-1 cells, CD4+ T cells, and CD8+ T cells, and initiated apoptosis in prostate cancer cells treated with conditioned medium from APS (5 mg/mL)-treated CD8+ T cells, RAW 264.7 cells, or THP-1 cells. CONCLUSION The findings indicate a potential role of 5 mg/mL APS in modulating the PD-1/PD-L1 pathway and influencing the immune response, encompassing T cells and macrophages. Consequently, further in vivo research is recommended to assess the efficacy of APS.
Collapse
Affiliation(s)
- Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese medicine, College of Medicine, Chang Gung University, TaoYuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese medicine, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chung-Kuang Lu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Huei Wu
- Department of Biomedical Sciences, Chang Gung University, TaoYuan, Taiwan
| | - Yu-Heng Wu
- Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Ma Y, Guo X, He Q, Liu L, Li Z, Zhao X, Gu W, Zhong Q, Li N, Yao G, Ma X. Integrated analysis of microRNA and messenger RNA expression profiles reveals functional microRNA in infectious bovine rhinotracheitis virus-induced mitochondrial damage in Madin-Darby bovine kidney cells. BMC Genomics 2024; 25:158. [PMID: 38331736 PMCID: PMC10851472 DOI: 10.1186/s12864-024-10042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Studies have confirmed that Infectious bovine rhinotracheitis virus (IBRV) infection induces mitochondrial damage. MicroRNAs (miRNAs) are a class of noncoding RNA molecules, which are involved in various biological processes and pathological changes associated with mitochondrial damage. It is currently unclear whether miRNAs participate in IBRV-induced mitochondrial damage in Madin-Darby bovine kidney (MDBK) cells. RESULTS In the present study, we used high-throughput sequencing technology, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to screen for mitochondria-related miRNAs and messenger RNAs (mRNAs). In total, 279 differentially expressed miRNAs and 832 differentially expressed mRNAs were identified in 6 hours (IBRV1) versus 24 hours (IBRV2) after IBRV infection in MDBK cells. GO and KEGG enrichment analysis revealed that 42 differentially expressed mRNAs and 348 target genes of differentially expressed miRNAs were correlated with mitochondrial damage, and the miRNA-mitochondria-related target genes regulatory network was constructed to elucidate their potential regulatory relationships. Among the 10 differentially expressed miRNAs, 8 showed expression patterns consistent with the high-throughput sequencing results. Functional validation results showed that overexpression of miR-10a and miR-182 aggravated mitochondrial damage, while inhibition of miR-10a and miR-182 alleviated mitochondrial damage. CONCLUSIONS This study not only revealed the expression changes of miRNAs and mRNAs in IBRV-infected MDBK cells, but also revealed possible biological regulatory relationship between them. MiR-10a and miR-182 may have the potential to be developed as biomarkers for the diagnosis and treatment of IBRV. Together, Together, these data and analyses provide additional insights into the roles of miRNA and mRNA in IBRV-induced mitochondria damage.
Collapse
Affiliation(s)
- Yingcai Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xueping Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qin He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zelong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, China
| | - Wenxi Gu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Qi Zhong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Na Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
5
|
Zhong Y, Xia J, Liao L, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review. Int J Biol Macromol 2024; 259:128182. [PMID: 37977468 DOI: 10.1016/j.ijbiomac.2023.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes, having extensive and resilient effects on those who suffer from it. As yet, the underlying cell mechanisms of this microvascular disorder are largely unclear. Recently, growing evidence suggests that epigenetic mechanisms can be responsible for gene deregulation leading to the alteration of key processes in the development and progression of DR, in addition to the widely recognized pathological mechanisms. It is noteworthy that seemingly unending epigenetic modifications, caused by a prolonged period of hyperglycemia, may be a prominent factor that leads to metabolic memory, and brings epigenetic entities such as non-coding RNA into the equation. Consequently, further investigation is necessary to truly understand this mechanism. Exosomes are responsible for carrying signals from cells close to the vasculature that are participating in abnormal signal transduction to faraway organs and cells by sailing through the bloodstream. These signs indicate metabolic disorders. With the aid of their encased structure, they can store diverse signaling molecules, which then can be dispersed into the blood, urine, and tears. Herein, we summarized various non-coding RNAs (ncRNAs) that are related to DR pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in this disease.
Collapse
Affiliation(s)
- Yuhong Zhong
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Juan Xia
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Li Liao
- Department of Respiratory and Critical Care Medicine 3, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China.
| | - Mohammad Reza Momeni
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
6
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
7
|
Wei J, Mu J, Tang Y, Qin D, Duan J, Wu A. Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy. J Nanobiotechnology 2023; 21:282. [PMID: 37598148 PMCID: PMC10440041 DOI: 10.1186/s12951-023-01974-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/29/2023] [Indexed: 08/21/2023] Open
Abstract
Ophthalmic inflammatory diseases, including conjunctivitis, keratitis, uveitis, scleritis, and related conditions, pose considerable challenges to effective management and treatment. This review article investigates the potential of advanced nanomaterials in revolutionizing ocular anti-inflammatory drug interventions. By conducting an exhaustive analysis of recent advancements and assessing the potential benefits and limitations, this review aims to identify promising avenues for future research and clinical applications. The review commences with a detailed exploration of various nanomaterial categories, such as liposomes, dendrimers, nanoparticles (NPs), and hydrogels, emphasizing their unique properties and capabilities for accurate drug delivery. Subsequently, we explore the etiology and pathophysiology of ophthalmic inflammatory disorders, highlighting the urgent necessity for innovative therapeutic strategies and examining recent preclinical and clinical investigations employing nanomaterial-based drug delivery systems. We discuss the advantages of these cutting-edge systems, such as biocompatibility, bioavailability, controlled release, and targeted delivery, alongside potential challenges, which encompass immunogenicity, toxicity, and regulatory hurdles. Furthermore, we emphasize the significance of interdisciplinary collaborations among material scientists, pharmacologists, and clinicians in expediting the translation of these breakthroughs from laboratory environments to clinical practice. In summary, this review accentuates the remarkable potential of advanced nanomaterials in redefining ocular anti-inflammatory drug therapy. We fervently support continued research and development in this rapidly evolving field to overcome existing barriers and improve patient outcomes for ophthalmic inflammatory disorders.
Collapse
Affiliation(s)
- Jing Wei
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinyu Mu
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Junguo Duan
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
8
|
Yang J, Hua Z, Zheng Z, Ma X, Zhu L, Li Y. Acteoside inhibits high glucose-induced oxidative stress injury in RPE cells and the outer retina through the Keap1/Nrf2/ARE pathway. Exp Eye Res 2023; 232:109496. [PMID: 37268044 DOI: 10.1016/j.exer.2023.109496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Diabetes retinopathy (DR) is one of the most common microvascular complications of diabetes. Retinal pigment epithelial (RPE) cells exposed to a high glucose environment experience a series of functional damages, which is an important factor in promoting the progression of DR. Acteoside (ACT) has strong antioxidant and anti-apoptotic properties, but the mechanism of ACT in DR is not completely clear. Therefore, the purpose of the present study was to explore whether ACT inhibits the damage to RPE cells in a high glucose environment through antioxidative effects to alleviate the DR process. The DR in vitro cell model was constructed by treating RPE cells with high glucose, and the DR in vivo animal model was constructed by injecting streptozotocin (STZ) into the peritoneal cavity of mice to induce diabetes. The proliferation and apoptosis of RPE cells were detected by CCK-8 and flow cytometry assays, respectively. The expression changes in Nrf2, Keap1, NQO1 and HO-1 were evaluated by qRT‒PCR, Western blot and immunohistochemistry analyses. The MDA, SOD, GSH-Px and T-AOC contents were detected by kits. The changes in ROS and nuclear translocation of Nrf2 were observed by immunofluorescence assays. HE staining was used to measure the thickness of the outer nuclear layer (ONL) of the retina, and TUNEL staining was used to detect the number of apoptotic cells in the retinas of mice. In the present study, ACT effectively ameliorated outer retina damage in diabetic mice. In high glucose (HG)-induced RPE cells, ACT treatment had the following effects: improved proliferation, decreased apoptosis, inhibited Keap1 expression, promoted the nuclear translocation and expression of Nrf2, upregulated NQO1 and HO-1 (the target genes of Nrf2) expression, decreased ROS concentration, and increased the levels of the SOD, GSH-Px and T-AOC antioxidant indicators. However, knockdown of Nrf2 reversed the above phenomena, which indicated that the protective function of ACT in HG-induced RPE cells are closely related to Nrf2. In summary, the present study demonstrated that HG-induced oxidative stress injury is inhibited by ACT in RPE cells and the outer retina through the Keap1/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Jingfei Yang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Zhijuan Hua
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Zhikun Zheng
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Xuan Ma
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Liang Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
9
|
Xiao H, Tang J, Zhang F, Liu L, Zhou J, Chen M, Li M, Wu X, Nie Y, Duan J. Global trends and performances in diabetic retinopathy studies: A bibliometric analysis. Front Public Health 2023; 11:1128008. [PMID: 37124794 PMCID: PMC10136779 DOI: 10.3389/fpubh.2023.1128008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
Objective The objective of this study is to conduct a comprehensive bibliometric analysis to identify and evaluate global trends in diabetic retinopathy (DR) research and visualize the focus and frontiers of this field. Methods Diabetic retinopathy-related publications from the establishment of the Web of Science (WOS) through 1 November 2022 were retrieved for qualitative and quantitative analyses. This study analyzed annual publication counts, prolific countries, institutions, journals, and the top 10 most cited literature. The findings were presented through descriptive statistics. VOSviewer 1.6.17 was used to exhibit keywords with high frequency and national cooperation networks, while CiteSpace 5.5.R2 displayed the timeline and burst keywords for each term. Results A total of 10,709 references were analyzed, and the number of publications continuously increased over the investigated period. America had the highest h-index and citation frequency, contributing to the most influence. China was the most prolific country, producing 3,168 articles. The University of London had the highest productivity. The top three productive journals were from America, and Investigative Ophthalmology Visual Science had the highest number of publications. The article from Gulshan et al. (2016; co-citation counts, 2,897) served as the representative and symbolic reference. The main research topics in this area were incidence, pathogenesis, treatment, and artificial intelligence (AI). Deep learning, models, biomarkers, and optical coherence tomography angiography (OCTA) of DR were frontier hotspots. Conclusion Bibliometric analysis in this study provided valuable insights into global trends in DR research frontiers. Four key study directions and three research frontiers were extracted from the extensive DR-related literature. As the incidence of DR continues to increase, DR prevention and treatment have become a pressing public health concern and a significant area of research interest. In addition, the development of AI technologies and telemedicine has emerged as promising research frontiers for balancing the number of doctors and patients.
Collapse
Affiliation(s)
- Huan Xiao
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinfan Tang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Luping Liu
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Zhou
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Chen
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyue Li
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoxiao Wu
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Nie
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junguo Duan
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Song M, Huai B, Shi Z, Li W, Xi Y, Liu Z, Zhang J, Zhou J, Qiao Y, Liu D. The efficacy and safety of Chinese herbal medicine in the treatment of painful diabetic neuropathy: A systematic review and meta-analysis. Front Pharmacol 2023; 14:1072991. [PMID: 36950007 PMCID: PMC10025494 DOI: 10.3389/fphar.2023.1072991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Objective: The objective of this systematic review and meta-analysis is to assess the effectiveness and security of Chinese herbal medicine (CHM) in the therapy of painful diabetic neuropathy (PDN). Methods: We searched databases for randomized controlled trials (RCTs) of CHM in the treatment of PDN. Outcome indicators included nerve conduction velocity, clinical efficiency, pain score, TCM syndrome score, and adverse events. Stata 16.0 was used to carry out the Meta-analysis. Results: A total of 21 RCTs with 1,737 participants were included. This meta-analysis found that using CHM as adjuvant treatment or as monotherapy for PDN can improve SCV of median nerve [mean difference (MD) = 3.56, 95% Confidence interval (CI) (2.19, 4.92) ], MCV of median nerve [ MD = 3.82, 95% CI (2.51, 5.12) ], SCV of common peroneal nerve [ MD = 4.16, 95% CI (1.62, 6.70) ], MCV of common peroneal nerve [ MD = 4.37, 95% CI (1.82, 6.93) ], SCV of gastrocnemius nerve [ MD = 4.95, 95% CI (3.52, 6.37) ], SCV of tibial nerve [ MD = 3.17, 95% CI (-2.64, 8.99) ], MCV of tibial nerve [MD = 6.30, 95%CI (5.00, 7.60)] and clinical effective rate [ odds ratio (OR) = 4.00, 95% CI (2.89, 5.52) ] and reduce pain score [standardized mean difference (SMD) = -2.23, 95% CI (-3.04, -1.41) ], TCM syndrome score [ MD = -4.70, 95% CI (-6.61, -2.80) ]. In addition, compared to the control group, adverse events of Chinese medicine intervention occurred less. Conclusion: CHM as adjuvant therapy or single treatment has a good curative effect and is safe for patients with PDN, which is worthy of clinical promotion and use, however; higher quality clinical studies are still needed to prove. Systematic Review Registration: https://www.crd.york.ac.uk/, identifier CRD42022327967.
Collapse
Affiliation(s)
- Min Song
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Baogeng Huai
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenpeng Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenyi Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yutan Xi
- Department of Oncology, Henan Provincial University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhenguo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jihang Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junyu Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Deshan Liu,
| |
Collapse
|
11
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
12
|
Wei L, Sun X, Fan C, Li R, Zhou S, Yu H. The pathophysiological mechanisms underlying diabetic retinopathy. Front Cell Dev Biol 2022; 10:963615. [PMID: 36111346 PMCID: PMC9468825 DOI: 10.3389/fcell.2022.963615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes mellitus (DM), which can lead to visual impairment and even blindness in severe cases. DR is generally considered to be a microvascular disease but its pathogenesis is still unclear. A large body of evidence shows that the development of DR is not determined by a single factor but rather by multiple related mechanisms that lead to different degrees of retinal damage in DR patients. Therefore, this article briefly reviews the pathophysiological changes in DR, and discusses the occurrence and development of DR resulting from different factors such as oxidative stress, inflammation, neovascularization, neurodegeneration, the neurovascular unit, and gut microbiota, to provide a theoretical reference for the development of new DR treatment strategies.
Collapse
Affiliation(s)
- Lindan Wei
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Xin Sun
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Chenxi Fan
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Rongli Li
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Shuanglong Zhou
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Hongsong Yu
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
- *Correspondence: Hongsong Yu,
| |
Collapse
|
13
|
Sun L, Ye X, Wang L, Yu J, Wu Y, Wang M, Dai L. A Review of Traditional Chinese Medicine, Buyang Huanwu Decoction for the Treatment of Cerebral Small Vessel Disease. Front Neurosci 2022; 16:942188. [PMID: 35844225 PMCID: PMC9278698 DOI: 10.3389/fnins.2022.942188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is often referred to as “collaterals disease” in traditional Chinese medicine (TCM), and commonly includes ischemic and hemorrhagic CSVD. TCM has a long history of treating CSVD and has demonstrated unique efficacy. Buyang Huanwu Decoction (BHD) is a classical TCM formula that has been used for the prevention and treatment of stroke for hundreds of years. BHD exerts its therapeutic effects on CSVD through a variety of mechanisms. In this review, the clinical and animal studies on BHD and CSVD were systematically introduced. In addition, the pharmacological mechanisms, active components, and clinical applications of BHD in the treatment of CSVD were reviewed. We believe that an in-depth understanding of BHD, its pharmacological mechanism, disease-drug interaction, and other aspects will help in laying the foundation for its development as a new therapeutic strategy for the treatment of CSVD.
Collapse
|
14
|
Wang C, Wang K, Li P. Blueberry anthocyanins extract attenuated diabetic retinopathy by inhibiting endoplasmic reticulum stress via the miR-182/OGG1 axis. J Pharmacol Sci 2022; 150:31-40. [DOI: 10.1016/j.jphs.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022] Open
|