1
|
Foglia MJ, Raval JS, Hofmann JC, Carcillo JA. Therapeutic Plasma Exchange to Reverse Plasma Failure in Multiple Organ Dysfunction Syndrome. J Clin Apher 2024; 39:e22147. [PMID: 39420549 DOI: 10.1002/jca.22147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Plasma plays a crucial role in maintaining health through regulating coagulation and inflammation. Both are essential to respond to homeostatic threats such as traumatic injury or microbial infection; however, left unchecked, they can themselves cause damage. A well-functioning plasma regulatory milieu controls the location, intensity, and duration of the response to injury or infection. In contrast, plasma failure can be conceptualized as a state in which these mechanisms are overwhelmed and unable to constrain coagulation and inflammation appropriately. This dysregulated state causes widespread tissue damage and multiple organ dysfunction syndrome. Unlike plasma derangements caused by individual factors, plasma failure is characterized by a heterogeneous set of plasma component deficiencies and excesses. Targeted therapies such as factor replacement or recombinant antibodies are thus inadequate to restore plasma function. Therapeutic plasma exchange offers the unique ability to remove harmful factors and replete exhausted components, thereby reestablishing appropriate regulation of coagulation and inflammation.
Collapse
Affiliation(s)
- Matthew J Foglia
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Pediatric Critical Care, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jan C Hofmann
- Department of Pathology and Laboratory Medicine, University of California-San Francisco School of Medicine, San Francisco, California, USA
| | - Joseph A Carcillo
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Shaw RJ, Abrams ST, Badu S, Toh CH, Dutt T. The Highs and Lows of ADAMTS13 Activity. J Clin Med 2024; 13:5152. [PMID: 39274365 PMCID: PMC11396319 DOI: 10.3390/jcm13175152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Severe deficiency of ADAMTS13 (<10 iu/dL) is diagnostic of thrombotic thrombocytopenic purpura (TTP) and leads to accumulation of ultra-large vWF multimers, platelet aggregation, and widespread microthrombi, which can be life-threatening. However, the clinical implications of a low ADAMTS13 activity level are not only important in an acute episode of TTP. In this article, we discuss the effects of low ADAMTS13 activity in congenital and immune-mediated TTP patients not only at presentation but once in a clinical remission. Evidence is emerging of the clinical effects of low ADAMTS13 activity in other disease areas outside of TTP, and here, we explore the wider impact of low ADAMTS13 activity on the vascular endothelium and the potential for recombinant ADAMTS13 therapy in other thrombotic disease states.
Collapse
Affiliation(s)
- Rebecca J Shaw
- Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Simon T Abrams
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Samuel Badu
- Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK
| | - Cheng-Hock Toh
- Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Tina Dutt
- Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK
| |
Collapse
|
3
|
Wang X, Zhang X, Zhang C, Qi L, Liu J. Plasma von Willebrand factor levels in patients with cancer: A meta‑analysis. Oncol Lett 2024; 28:399. [PMID: 38979552 PMCID: PMC11228924 DOI: 10.3892/ol.2024.14532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
von Willebrand Factor (VWF) is well recognized for being dysregulated in various malignancies and has emerged as a potential biomarker for cancer detection. The present meta-analysis aimed to elucidate the association between plasma VWF and the incidence and metastasis of cancer. For this purpose, a comprehensive search was conducted across multiple databases from their inception until March 3, 2023. This culminated in the selection of 15 original studies on various types of cancer, including a collective sample of 1,403 individuals. The standardized mean difference (SMD) and 95% confidence intervals (CIs) were employed as statistical parameters to determine the association between plasma VWF and the incidence and metastasis of cancer. These were estimated using a random-effects model. The pooled data revealed that the plasma VWF levels of patients with cancer were significantly elevated compared with those of healthy controls (SMD, 0.98; 95% CI, 0.59-1.36), and a significant association was observed between plasma VWF levels and cancer metastasis (SMD, 0.69; 95% CI, 0.33-1.06). The symmetry of the Begg's funnel plots indicated that no significant bias was present in the analyses of VWF in cancer and its metastasis. In summary, the results of the present meta-analysis support the hypothesis that increased plasma VWF levels may serve as a biomarker for cancer and metastatic progression.
Collapse
Affiliation(s)
- Xitan Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Xiaoyu Zhang
- Department of Medical Physiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Chaonan Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Li Qi
- Department of Infectious Diseases, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Ju Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
4
|
Moser MM, Schoergenhofer C, Jilma B. Progress in von Willebrand Disease Treatment: Evolution towards Newer Therapies. Semin Thromb Hemost 2024; 50:720-732. [PMID: 38331000 DOI: 10.1055/s-0044-1779485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
von Willebrand disease (VWD) is a very heterogenous disease, resulting in different phenotypes and different degrees of bleeding severity. Established therapies (i.e., desmopressin, antifibrinolytic agents, hormone therapy for heavy menstrual bleeding, and von Willebrand factor [VWF] concentrates) may work in some subtypes, but not in all patients. In recent years, progress has been made in improving the diagnosis of VWD subtypes, allowing for more specific therapy. The impact of VWD on women's daily lives has also come to the fore in recent years, with hormone therapy, tranexamic acid, or recombinant VWF as treatment options. New treatment approaches, including the replacement of lacking factor VIII (FVIII) function, may work in those subgroups affected by severe FVIII deficiency. Reducing the clearance of VWF is an alternative treatment pathway; for example, rondaptivon pegol is a VWFA1 domain-binding aptamer which not only improves plasma VWF/FVIII levels, but also corrects platelet counts in thrombocytopenic type 2B VWD patients. These approaches are currently in clinical development, which will be the focus of this review. In addition, half-life extension methods are also important for the improvement of patients' quality of life. Targeting specific mutations may further lead to personalized treatments in the future. Finally, a few randomized controlled trials, although relatively small, have been published in recent years, aiming to achieve a higher level of evidence in future guidelines.
Collapse
Affiliation(s)
- Miriam M Moser
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
6
|
Hannan F, Hamilton J, Patriquin CJ, Pavenski K, Jurkiewicz MT, Tristao L, Owen AM, Kosalka PK, Deoni SCL, Théberge J, Mandzia J, Huang SHS, Thiessen JD. Cognitive decline in thrombotic thrombocytopenic purpura survivors: The role of white matter health as assessed by MRI. Br J Haematol 2024; 204:1005-1016. [PMID: 38083818 DOI: 10.1111/bjh.19246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 03/14/2024]
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare condition caused by severe ADAMTS13 deficiency, leading to platelet aggregation and thrombosis. Despite treatment, patients are prone to cognitive impairment and depression. We investigated brain changes in iTTP patients during remission using advanced magnetic resonance imaging (MRI) techniques, correlating these changes with mood and neurocognitive tests. Twenty iTTP patients in remission (30 days post-haematological remission) were compared with six healthy controls. MRI scans, including standard and specialized sequences, were conducted to assess white matter health. Increased T1 relaxation times were found in the cingulate cortex (p < 0.05), and elevated T2 relaxation times were observed in the cingulate cortex, frontal, parietal and temporal lobes (p < 0.05). Pathological changes in these areas are correlated with impaired cognitive and depressive scores in concentration, short-term memory and verbal memory. This study highlights persistent white matter damage in iTTP patients, potentially contributing to depression and cognitive impairment. Key regions affected include the frontal lobe and cingulate cortex. These findings have significant implications for the acute and long-term management of iTTP, suggesting a need for re-evaluation of treatment approaches during both active phases and remission. Further research is warranted to enhance our understanding of these complexities.
Collapse
Affiliation(s)
- F Hannan
- Department of Medical Biophysics, Western University, London, Canada
| | - J Hamilton
- Department of Medical Biophysics, Western University, London, Canada
| | - C J Patriquin
- Department of Hematology, University Health Network, Toronto, Canada
| | - K Pavenski
- Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada
| | - M T Jurkiewicz
- Department of Medical Imaging, Western University, London, Canada
| | - L Tristao
- Department of Medical Imaging, Western University, London, Canada
| | - A M Owen
- Department of Clinical Neurological Sciences, Western University, London, Canada
- Department of Physiology and Pharmacology and Department of Psychology, Western University, London, Canada
| | - P K Kosalka
- Department of Medicine, Division of Nephrology, Western University, London, Canada
| | - S C L Deoni
- Advanced Baby Imaging Lab, Rhode Island Hospital, Providence, Rhode Island, USA
- Department of Diagnostic Radiology, Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
- Lawson Health Research Institute, London, Canada
| | - J Théberge
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
| | - J Mandzia
- Department of Clinical Neurological Sciences, Western University, London, Canada
| | - S H S Huang
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medicine, Division of Nephrology, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
| | - J D Thiessen
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
| |
Collapse
|
7
|
Madarati H, Singh K, Sparring T, Andrisani P, Liaw PC, Fox-Robichaud AE, Kretz CA. REVIEWING THE DYSREGULATION OF ADAMTS13 AND VWF IN SEPSIS. Shock 2024; 61:189-196. [PMID: 38150358 DOI: 10.1097/shk.0000000000002291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Sepsis is defined as a life-threatening organ dysfunction caused by excessive host response to infection, and represents the most common cause of in-hospital deaths. Sepsis accounts for 30% of all critically ill patients in the intensive care unit (ICU), and has a global mortality rate of 20%. Activation of blood coagulation during sepsis and septic shock can lead to disseminated intravascular coagulation, which is characterized by microvascular thrombosis. Von Willebrand factor (VWF) and ADAMTS13 are two important regulators of blood coagulation that may be important links between sepsis and mortality in the ICU. Herein we review our current understanding of VWF and ADAMTS13 in sepsis and other critical illnesses and discuss their contribution to disease pathophysiology, their use as markers of severe illness, and potential targets for new therapeutic development.
Collapse
Affiliation(s)
- Hasam Madarati
- Department of Medicine and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Gao D, Zhou Z, Ma R, Wu H, Nguyen T, Liu L, Dong J. Recombinant ADAMTS-13 Improves Survival of Mice Subjected to Endotoxemia. Int J Mol Sci 2023; 24:11782. [PMID: 37511541 PMCID: PMC10380474 DOI: 10.3390/ijms241411782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
When stimulated by proinflammatory mediators, endothelial cells release ultra-large von Willebrand factor (ULVWF) multimers that are hyperactive in activating and aggregating platelets. These ULVWF multimers can accumulate in the circulation and on the inflamed endothelium because they are insufficiently cleaved by the metalloprotease ADAMTS-13, which becomes moderately deficient under conditions of systemic inflammation. This moderate ADAMTS-13 deficiency may lead to thrombotic complications that contribute to ischemic tissue injury and organ failure that are associated with severe infections. To test this hypothesis, we investigated whether recombinant ADAMTS-13 improves the pathological course of endotoxemia in lipopolysaccharide (LPS)-treated mice. C57BL/J6 mice received a bolus infusion of either 5 µg/mouse of ADAMTS-13 or vehicle control 30 min after LPS challenge and were monitored for seven-day survival. During the monitoring period, platelet counts, VWF antigen, and ADAMTS-13 activity were measured. Thrombosis was also examined by the immunohistochemistry in the liver. We found that ADAMTS-13 reduced mortality from 66% to 34.9%. The improved survival was associated with a greater recovery from thrombocytopenia, higher plasma ADAMTS-13 activity, and less thrombotic vascular occlusion. These results suggest that systemic inflammation could result in deficient ULVWF proteolysis by ADAMTS-13 and that ADAMTS-13 improves the outcomes of endotoxemia-induced inflammation.
Collapse
Affiliation(s)
- Daniel Gao
- Bloodworks Research Institute, Seattle, WA 98102, USA
- Department of Chemistry, Pomona College, Claremont, CA 91711, USA
| | - Zhou Zhou
- Bloodworks Research Institute, Seattle, WA 98102, USA
| | - Ruidong Ma
- Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huaizhu Wu
- Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Trung Nguyen
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX 77030, USA
| | - Li Liu
- Tianjin Neurology Research Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jingfei Dong
- Bloodworks Research Institute, Seattle, WA 98102, USA
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Gatto L, Ricciotti I, Tosoni A, Di Nunno V, Bartolini S, Ranieri L, Franceschi E. CAR-T cells neurotoxicity from consolidated practice in hematological malignancies to fledgling experience in CNS tumors: fill the gap. Front Oncol 2023; 13:1206983. [PMID: 37397356 PMCID: PMC10312075 DOI: 10.3389/fonc.2023.1206983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) therapy has marked a paradigm shift in the treatment of hematological malignancies and represent a promising growing field also in solid tumors. Neurotoxicity is a well-recognized common complication of CAR-T therapy and is at the forefront of concerns for CAR-based immunotherapy widespread adoption, as it necessitates a cautious approach. The non-specific targeting of the CAR-T cells against normal tissues (on-target off-tumor toxicities) can be life-threatening; likewise, immune-mediate neurological symptoms related to CAR-T cell induced inflammation in central nervous system (CNS) must be precociously identified and recognized and possibly distinguished from non-specific symptoms deriving from the tumor itself. The mechanisms leading to ICANS (Immune effector Cell-Associated Neurotoxicity Syndrome) remain largely unknown, even if blood-brain barrier (BBB) impairment, increased levels of cytokines, as well as endothelial activation are supposed to be involved in neurotoxicity development. Glucocorticoids, anti-IL-6, anti-IL-1 agents and supportive care are frequently used to manage patients with neurotoxicity, but clear therapeutic indications, supported by high-quality evidence do not yet exist. Since CAR-T cells are under investigation in CNS tumors, including glioblastoma (GBM), understanding of the full neurotoxicity profile in brain tumors and expanding strategies aimed at limiting adverse events become imperative. Education of physicians for assessing individualized risk and providing optimal management of neurotoxicity is crucial to make CAR-T therapies safer and adoptable in clinical practice also in brain tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Ranieri
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
10
|
Martin C, Clift S, Leisewitz A. Lung pathology of natural Babesia rossi infection in dogs. J S Afr Vet Assoc 2023; 94:59-69. [PMID: 37358318 DOI: 10.36303/jsava.523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
A proportion of Babesia rossi infections in dogs are classified as complicated and one of the most lethal complications is acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Most dogs that die succumb within 24 hours of presentation. The pulmonary pathology caused by B. rossi in dogs has not been described. The aim of this study was to provide a thorough macroscopic, histological and immunohistochemical description of the lung changes seen in dogs naturally infected with B. rossi that succumbed to the infection. Death was invariably accompanied by alveolar oedema. Histopathology showed acute interstitial pneumonia characterised by alveolar oedema and haemorrhages, with increased numbers of mononuclear leucocytes in alveolar walls and lumens. Intra-alveolar polymerised fibrin aggregates were observed in just over half the infected cases. Immunohistochemistry showed increased numbers of MAC387- and CD204-reactive monocyte-macrophages in alveolar walls and lumens, and increased CD3-reactive T-lymphocytes in alveolar walls, compared with controls. These histological features overlap to some extent (but far from perfectly) with the histological pattern of lung injury referred to as the exudative stage of diffuse alveolar damage (DAD) as is quite commonly reported in ALI/ARDS.
Collapse
Affiliation(s)
- C Martin
- Idexx Laboratories (Pty) Ltd, South Africa
| | - S Clift
- Section of Pathology, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - A Leisewitz
- Department of Clinical Sciences, Bailey Small Animal Teaching Hospital, Auburn University College of Veterinary Medicine, United States of America and Section of Small Animal Medicine, Companion Animal Clinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| |
Collapse
|
11
|
Treatment with recombinant ADAMTS13, alleviates hypoxia/reoxygenation-induced pathologies in a mouse model of human sickle cell disease. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:269-275. [PMID: 36700507 DOI: 10.1016/j.jtha.2022.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Sickle cell disease (SCD) is an inherited red blood cell disorder with a causative substitution in the beta-globin gene that encodes beta-globin in hemoglobin. Furthermore, the ensuing vasculopathy in the microvasculature involves heightened endothelial cell adhesion, inflammation, and coagulopathy, all of which contribute to vaso-occlusive crisis (VOC) and the sequelae of SCD. In particular, dysregulation of the von Willebrand factor (VWF) and a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13) axis has been implicated in human SCD pathology. OBJECTIVES To investigate the beneficial potential of treatment with recombinant ADAMTS13 (rADAMTS13) to alleviate VOC. METHODS Pharmacologic treatment with rADAMTS13 in vitro or in vivo was performed in a humanized mouse model of SCD that was exposed to hypoxia/reoxygenation stress as a model of VOC. Then, pharmacokinetic, pharmacodynamic, and behavioral analyses were performed. RESULTS Administration of rADAMTS13 to SCD mice dose-dependently increased plasma ADAMTS13 activity, reduced VWF activity/antigen ratios, and reduced baseline hemolysis (free hemoglobin and total bilirubin) within 24 hours. rADAMTS13 was administered in SCD mice, followed by hypoxia/reoxygenation stress, and reduced VWF activity/antigen ratios in parallel to significantly (p < .01) improved recovery during the reoxygenation phase. Consistent with the results in SCD mice, we demonstrate in a human in vitro system that treatment with rADAMTS13 counteracts the inhibitory activity of hemoglobin on the VWF/ADAMTS13-axis. CONCLUSION Collectively, our data provide evidence that relative ADAMTS13 insufficiency in SCD mice is corrected by pharmacologic treatment with rADAMTS13 and provides an effective disease-modifying approach in a human SCD mouse model.
Collapse
|
12
|
Kalita E, Panda M, Rao A, Prajapati VK. Exploring the role of secretory proteins in the human infectious diseases diagnosis and therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:231-269. [PMID: 36707203 DOI: 10.1016/bs.apcsb.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secretory proteins are playing important role during the host-pathogen interaction to develop the infection or protection into the cell. Pathogens developing infectious disease to human being are taken up by host macrophages or number of immune cells, play an important role in physiological, developmental and immunological function. At the same time, infectious agents are also secreting various proteins to neutralize the resistance caused by host cells and also helping the pathogens to develop the infection. Secretory proteins (secretome) are only developed at the time of host-pathogen interaction, therefore they become very important to develop the targeted and potential therapeutic strategies. Pathogen specific secretory proteins released during interaction with host cell provide opportunity to develop point of care and rapid diagnostic kits. Proteins secreted by pathogens at the time of interaction with host cell have also been found as immunogenic in nature and numbers of vaccines have been developed to control the spread of human infectious diseases. This chapter highlights the importance of secretory proteins in the development of diagnostic and therapeutic strategies to fight against human infectious diseases.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
13
|
Muacevic A, Adler JR, Zamora N, Aaron Lee HT, Balassiano N, Abdelmoteleb S, Khan MG, Abosheaishaa H, Ahmed K. Silent Bowels From a Silent Bite: A Rare Case of Paralytic Ileus Complicating Plasmodium falciparum Infection. Cureus 2023; 15:e34061. [PMID: 36824555 PMCID: PMC9943535 DOI: 10.7759/cureus.34061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2023] [Indexed: 01/23/2023] Open
Abstract
Malaria is a life-threatening, parasitic disease that continues to infect millions of people, especially in endemic regions. Despite advancements in malaria treatment, treating the disease remains challenging. One major challenge is identifying the disease from its unconventional manifestations. Therefore, recognizing its unusual clinical presentations is imperative in early detection and management with a better prognosis. This case report highlights the unique finding of paralytic ileus from a patient with confirmed malaria. Further investigation on the concurrence between paralytic ileus and malaria may aid in identifying the disease and subsequent improvement in treatment.
Collapse
|
14
|
Ellsworth P, Sparkenbaugh EM. Targeting the von Willebrand Factor-ADAMTS-13 axis in sickle cell disease. J Thromb Haemost 2023; 21:2-6. [PMID: 36695390 PMCID: PMC10413208 DOI: 10.1016/j.jtha.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Patrick Ellsworth
- Department of Medicine, Division of Hematology and Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Erica M Sparkenbaugh
- Department of Medicine, Division of Hematology and Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
15
|
Genoud V, Migliorini D. Novel pathophysiological insights into CAR-T cell associated neurotoxicity. Front Neurol 2023; 14:1108297. [PMID: 36970518 PMCID: PMC10031128 DOI: 10.3389/fneur.2023.1108297] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/29/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy represents a scientific breakthrough in the treatment of advanced hematological malignancies. It relies on cell engineering to direct the powerful cytotoxic T-cell activity toward tumor cells. Nevertheless, these highly powerful cell therapies can trigger substantial toxicities such as cytokine release syndrome (CRS) and immune cell-associated neurological syndrome (ICANS). These potentially fatal side effects are now better understood and managed in the clinic but still require intensive patient follow-up and management. Some specific mechanisms seem associated with the development of ICANS, such as cytokine surge caused by activated CAR-T cells, off-tumor targeting of CD19, and vascular leak. Therapeutic tools are being developed aiming at obtaining better control of toxicity. In this review, we focus on the current understanding of ICANS, novel findings, and current gaps.
Collapse
Affiliation(s)
- Vassilis Genoud
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Haematology, University of Geneva, Geneva, Switzerland
| | - Denis Migliorini
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Haematology, University of Geneva, Geneva, Switzerland
- Brain Tumor and Immune Cell Engineering Laboratory, AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne and Geneva, Geneva, Switzerland
- *Correspondence: Denis Migliorini
| |
Collapse
|
16
|
Van Hove S, Werion A, Anantharajah A, Belkhir L, van Dievoet MA, Hantson P. Streptococcus Pneumoniae Bacteremia with Acute Kidney Injury and Transient ADAMTS13 Deficiency. Case Rep Infect Dis 2023; 2023:3283606. [PMID: 37159753 PMCID: PMC10163968 DOI: 10.1155/2023/3283606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
A 43-year-old woman with a medical history of splenectomy for immune thrombocytopenic purpura was diagnosed with Streptococcus pneumoniae bacteremia. Her initial complaints were fever and more importantly painful extremities that appeared cyanotic. During her hospitalisation, she never developed cardiocirculatory failure but presented acute kidney injury (AKI) with oliguria. Laboratory investigations confirmed AKI with serum creatinine 2.55 mg/dL which peaked at 6.49 mg/dL. There was also evidence for disseminated intravascular coagulation (DIC) with decreased platelet count, low fibrinogen levels, and high D-dimer levels. There were no signs of haemolytic anaemia. The initial ADAMTS13 activity was low (17%) but slowly recovered. Renal function progressively improved with supportive therapy, as opposed to the progressing skin necrosis. The association of DIC and low ADAMTS13 activity may have contributed to the severity of microthrombotic complications, even in the absence of thrombotic microangiopathy as thrombotic thrombocytopenic purpura (TTP) or pneumococcal-associated haemolytic uremic syndrome (pa-HUS).
Collapse
Affiliation(s)
- Sam Van Hove
- Department of Intensive Care, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Alexis Werion
- Department of Intensive Care, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Neuve, Belgium
| | | | - Leila Belkhir
- Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Neuve, Belgium
- Department of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | | | - Philippe Hantson
- Department of Intensive Care, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
17
|
Lin Y, Huang L, Tu Y, Huang B, Zhang S, Chen Y, Li W. Case report of Salmonella derby septicemia complicated with co-occurrence of disseminated intravascular coagulation and thrombotic microangiopathy. BMC Infect Dis 2022; 22:914. [PMID: 36476209 PMCID: PMC9730593 DOI: 10.1186/s12879-022-07913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Both disseminated intravascular coagulation and thrombotic microangiopathy are complications of sepsis as Salmonella septicemia, respectively. They are related and have similar clinical characteristics as thrombopenia and organ dysfunctions. They rarely co-occur in some specific cases, which requires a clear distinction. CASE PRESENTATION A 22-year-old woman had just undergone intracranial surgery and suffered from Salmonella derby septicemia with multiorgan involvement in the hospital. Laboratory workup demonstrated coagulation disorder, hemolytic anemia, thrombocytopenia, and acute kidney injury, leading to the co-occurrence of disseminated intravascular coagulation and secondary thrombotic microangiopathy. She received antibiotics, plasma exchange therapy, dialysis, mechanical ventilation, fluids, and vasopressors and gained full recovery without complications. CONCLUSION Disseminated intravascular coagulation and secondary thrombotic microangiopathy can co-occur in Salmonella derby septicemia. They should be treated cautiously in diagnosis and differential diagnosis. Thrombotic microangiopathy should not be missed just because of the diagnosis of disseminated intravascular coagulation. Proper and timely identification of thrombotic microangiopathy with a diagnostic algorithm is essential for appropriate treatment and better outcomes.
Collapse
Affiliation(s)
- Yingxin Lin
- grid.440601.70000 0004 1798 0578Department of Intensive Care, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lei Huang
- grid.440601.70000 0004 1798 0578Department of Intensive Care, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yunliang Tu
- grid.440601.70000 0004 1798 0578Department of Intensive Care, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bin Huang
- grid.440601.70000 0004 1798 0578Department of Intensive Care, Peking University Shenzhen Hospital, Shenzhen, China
| | - Sheng Zhang
- grid.440601.70000 0004 1798 0578Department of Intensive Care, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yingqun Chen
- grid.440601.70000 0004 1798 0578Department of Intensive Care, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weijia Li
- grid.440601.70000 0004 1798 0578Department of Intensive Care, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
18
|
Altered VWF:ADAMTS13 homeostasis is a target for therapeutic intervention in sickle cell disease. Proc Natl Acad Sci U S A 2022; 119:e2213079119. [PMID: 36170252 PMCID: PMC9546592 DOI: 10.1073/pnas.2213079119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Xu X, Feng Y, Jia Y, Zhang X, Li L, Bai X, Jiao L. Prognostic value of von Willebrand factor and ADAMTS13 in patients with COVID-19: A systematic review and meta-analysis. Thromb Res 2022; 218:83-98. [PMID: 36027630 PMCID: PMC9385270 DOI: 10.1016/j.thromres.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Endotheliopathy and coagulopathy appear to be the main causes for critical illness and death in patients with coronavirus disease 2019 (COVID-19). The adhesive ligand von Willebrand factor (VWF) has been involved in immunothrombosis responding to endothelial injury. Here, we reviewed the current literature and performed meta-analyses on the relationship between both VWF and its cleaving protease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13) with the prognosis of COVID-19. METHODS We searched MEDLINE, Cochrane Library, Web of Science, and EMBASE databases from inception to 4 March 2022 for studies analyzing the relationship between VWF-related variables and composite clinical outcomes of patients with COVID-19. The VWF-related variables analyzed included VWF antigen (VWF:Ag), VWF ristocetin cofactor (VWF:Rco), ADAMTS13 activity (ADAMTS13:Ac), the ratio of VWF:Ag to ADAMTS13:Ac, and coagulation factor VIII (FVIII). The unfavorable outcomes were defined as mortality, intensive care unit (ICU) admission, and severe disease course. We used random or fixed effects models to create summary estimates of risk. Risk of bias was assessed based on the principle of the Newcastle-Ottawa Scale. RESULTS A total of 3764 patients from 40 studies were included. The estimated pooled means indicated increased plasma levels of VWF:Ag, VWF:Rco, and VWF:Ag/ADAMTS13:Ac ratio, and decreased plasma levels of ADAMTS13:Ac in COVID-19 patients with unfavorable outcomes when compared to those with favorable outcomes (composite outcomes or subgroup analyses of non-survivor versus survivor, ICU versus non-ICU, and severe versus non-severe). In addition, FVIII were higher in COVID-19 patients with unfavorable outcomes. Subgroup analyses indicated that FVIII was higher in patients admitting to ICU, while there was no significant difference between non-survivors and survivors. CONCLUSIONS The imbalance of the VWF-ADAMTS13 axis (massive quantitative and qualitative increases of VWF with relative deficiency of ADAMTS13) is associated with poor prognosis of patients with COVID-19.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China.
| | - Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Yitong Jia
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China; Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China..
| |
Collapse
|
20
|
Abudoukelimu M, Ba B, Kai Guo Y, Xu J. Von Willebrand factor (vWF) in patients with heart failure with preserved ejection fraction (HFpEF): A retrospective observational study. Medicine (Baltimore) 2022; 101:e29854. [PMID: 35945712 PMCID: PMC9351886 DOI: 10.1097/md.0000000000029854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 01/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial damage and inflammation. In addition, von Willebrand factor (vWF) has been discovered as a biomarker of endothelial dysfunction. Therefore, the study aims to investigate the association between vWF level and HFpEF. Moreover, we analyzed a potential correlation between vWF and inflammatory factors, such as C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-6. We recruited altogether 272 hospitalized patients from The Fifth Affiliated Hospital of Xinjiang Medical University, 88 of whom were HFpEF patients, 88 were non-heart failure patients, and 96 were healthy controls from the medical examination center of the hospital. Enzyme-linked immunosorbent assay and double antibody sandwich immunochromatography were used for testing vWF, tissue plasminogen activator, galectin-3, nitric oxide, TNF-α, IL-6, and CRP. The HFpEF group's levels of vWF, IL-6, TNF-α, CRP, tissue plasminogen activator, galectin-3, and nitric oxide were statistically higher than those of non-heart failure and healthy control ones (F = 403.563, 21.825, 20.678, 39.609, 35.411, 86.407, 74.605; all P = .000). the highest level of vWF was observed in class IV (New York Heart Association) of HFpEF patients and the significant difference is <.05 (P < .001). An increasing level of vWF were shown in groups (CRP: CRP >3 mg/L group and CRP ≤3 mg/L group; IL-6: IL-6 <7.0 pg/mL group and IL-6 ≥7.0 pg/mL group; TNF-α: TNF-α <5.5 pg/mL group and TNF-α ≥5.5 pg/mL group) with higher level of IL-6, TNF-α, CRP. A multiple regression analysis regarding the relationship of vWF and inflammation markers was performed among the HFpEF patients. Further, statistical significance of the analysis remained after adjusting variables such as body mass index, low-density lipoprotein cholesterol, total cholesterol, coronary artery disease, and type 2 diabetes mellitus (β = 0.406, t = 4.579, P < .001; β = 0.323, t = 3.218, P < .001; β = 0.581, t = 6.922, P < .001). Our study shows that elevated vWF levels are associated with HFpEF, and it may serve as a potential biomarker for HFpEF severity. We also found that increased vWF levels are positively correlated to IL-6, TNF-α, and CRP, which may provide a clue for further researching the pathogenesis of HFpEF.
Collapse
Affiliation(s)
- Mayila Abudoukelimu
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Bayinsilema Ba
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Yan Kai Guo
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jie Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| |
Collapse
|
21
|
Gu T, Hu K, Si X, Hu Y, Huang H. Mechanisms of immune effector cell-associated neurotoxicity syndrome after CAR-T treatment. WIREs Mech Dis 2022; 14:e1576. [PMID: 35871757 PMCID: PMC9787013 DOI: 10.1002/wsbm.1576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptor T-cell (CAR-T) treatment has revolutionized the landscape of cancer therapy with significant efficacy on hematologic malignancy, especially in relapsed and refractory B cell malignancies. However, unexpected serious toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) still hamper its broad application. Clinical trials using CAR-T cells targeting specific antigens on tumor cell surface have provided valuable information about the characteristics of ICANS. With unclear mechanism of ICANS after CAR-T treatment, unremitting efforts have been devoted to further exploration. Clinical findings from patients with ICANS strongly indicated existence of overactivated peripheral immune response followed by endothelial activation-induced blood-brain barrier (BBB) dysfunction, which triggers subsequent central nervous system (CNS) inflammation and neurotoxicity. Several animal models have been built but failed to fully replicate the whole spectrum of ICANS in human. Hopefully, novel and powerful technologies like single-cell analysis may help decipher the precise cellular response within CNS from a different perspective when ICANS happens. Moreover, multidisciplinary cooperation among the subjects of immunology, hematology, and neurology will facilitate better understanding about the complex immune interaction between the peripheral, protective barriers, and CNS in ICANS. This review elaborates recent findings about ICANS after CAR-T treatment from bed to bench, and discusses the potential cellular and molecular mechanisms that may promote effective management in the future. This article is categorized under: Cancer > Biomedical Engineering Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Tianning Gu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Kejia Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaohui Si
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Yongxian Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - He Huang
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| |
Collapse
|
22
|
Fernández S, Moreno-Castaño AB, Palomo M, Martinez-Sanchez J, Torramadé-Moix S, Téllez A, Ventosa H, Seguí F, Escolar G, Carreras E, Nicolás JM, Richardson E, García-Bernal D, Carlo-Stella C, Moraleda JM, Richardson PG, Díaz-Ricart M, Castro P. Distinctive Biomarker Features in the Endotheliopathy of COVID-19 and Septic Syndromes. Shock 2022; 57:95-105. [PMID: 34172614 PMCID: PMC8662948 DOI: 10.1097/shk.0000000000001823] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Endotheliopathy is a key element in COVID-19 pathophysiology, contributing to both morbidity and mortality. Biomarkers distinguishing different COVID-19 phenotypes from sepsis syndrome remain poorly understood. OBJECTIVE To characterize circulating biomarkers of endothelial damage in different COVID-19 clinical disease stages compared with sepsis syndrome and normal volunteers. METHODS Patients with COVID-19 pneumonia (n = 49) were classified into moderate, severe, or critical (life-threatening) disease. Plasma samples were collected within 48 to 72 h of hospitalization to analyze endothelial activation markers, including soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), von Willebrand Factor (VWF), A disintegrin-like and metalloprotease with thrombospondin type 1 motif no. 13 (ADAMTS-13) activity, thrombomodulin (TM), and soluble TNF receptor I (sTNFRI); heparan sulfate (HS) for endothelial glycocalyx degradation; C5b9 deposits on endothelial cells in culture and soluble C5b9 for complement activation; circulating dsDNA for neutrophil extracellular traps (NETs) presence, and α2-antiplasmin and PAI-1 as parameters of fibrinolysis. We compared the level of each biomarker in all three COVID-19 groups and healthy donors as controls (n = 45). Results in critically ill COVID-19 patients were compared with other intensive care unit (ICU) patients with septic shock (SS, n = 14), sepsis (S, n = 7), and noninfectious systemic inflammatory response syndrome (NI-SIRS, n = 7). RESULTS All analyzed biomarkers were increased in COVID-19 patients versus controls (P < 0.001), except for ADAMTS-13 activity that was normal in both groups. The increased expression of sVCAM-1, VWF, sTNFRI, and HS was related to COVID-19 disease severity (P < 0.05). Several differences in these parameters were found between ICU groups: SS patients showed significantly higher levels of VWF, TM, sTNFRI, and NETS compared with critical COVID-19 patients and ADAMTS-13 activity was significantly lover in SS, S, and NI-SIRS versus critical COVID-19 (P < 0.001). Furthermore, α2-antiplasmin activity was higher in critical COVID-19 versus NI-SIRS (P < 0.01) and SS (P < 0.001), whereas PAI-1 levels were significantly lower in COVID-19 patients compared with NI-SIRS, S, and SS patients (P < 0.01). CONCLUSIONS COVID-19 patients present with increased circulating endothelial stress products, complement activation, and fibrinolytic dysregulation, associated with disease severity. COVID-19 endotheliopathy differs from SS, in which endothelial damage is also a critical feature of pathobiology. These biomarkers could help to stratify the severity of COVID-19 disease and may also provide information to guide specific therapeutic strategies to mitigate endotheliopathy progression.
Collapse
Affiliation(s)
- Sara Fernández
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
| | - Ana B. Moreno-Castaño
- Hematopathology, Pathology Department, CDB, Hospital Clinic, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
| | - Marta Palomo
- Barcelona Endothelium Team, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Julia Martinez-Sanchez
- Barcelona Endothelium Team, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Sergi Torramadé-Moix
- Hematopathology, Pathology Department, CDB, Hospital Clinic, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
| | - Adrián Téllez
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
| | - Helena Ventosa
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
| | - Ferran Seguí
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
| | - Ginés Escolar
- Hematopathology, Pathology Department, CDB, Hospital Clinic, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
| | - Enric Carreras
- Barcelona Endothelium Team, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Josep M. Nicolás
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| | - Edward Richardson
- Frank H. Netter M.D. School of Medicine at Quinnipiac University, North Haven, Connecticut
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Carmelo Carlo-Stella
- Department of Oncology and Hematology, Humanitas Clinical and Research Center-IRCCS, Rozzano-Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano-Milano, Italy
| | - José M. Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Paul G. Richardson
- Division of Hematologic Malignancy, Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Harvard Medical School, Boston, Massachusetts
| | - Maribel Díaz-Ricart
- Hematopathology, Pathology Department, CDB, Hospital Clinic, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
| | - Pedro Castro
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Jang J, Gu J, Kim HK. Prognostic value of the ADAMTS13-vWF axis in disseminated intravascular coagulation: Platelet count/vWF:Ag ratio as a strong prognostic marker. Int J Lab Hematol 2021; 44:595-602. [PMID: 34939330 DOI: 10.1111/ijlh.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION ADAMTS13 deficiency increases the circulating level of von Willebrand factor (vWF). Low ADAMTS13 and high vWF can provide a milieu for microthrombosis, including disseminated intravascular coagulation (DIC). This study investigated the prognostic values of ADAMTS13-vWF axis markers and their correlation with DIC severity. METHODS ADAMTS13-vWF axis markers (vWF antigen (vWF:Ag), vWF ristocetin cofactor (vWF:Rco), ADAMTS13 activity, and anti-ADAMTS13 antibody) were measured in patients (n = 152) suspected of having DIC along with the well-known DIC markers including antithrombin and protein C. RESULT The vWF:Ag level was significantly increased, and ADAMTS13 activity was significantly decreased in overt DIC. The vWF:Ag level (hazard ratio 7.365, p = .009), ADAMTS13 activity/vWF:Ag ratio (hazard ratio 3.777, p = .037), ADAMTS13 activity/vWF:Rco ratio (hazard ratio 3.027, p = .028), and platelet count/vWF:Ag ratio (hazard ratio 8.538, p < .001) were significant prognostic markers in Cox regression analysis and correlated well with DIC score and antithrombin and protein C levels. CONCLUSION The platelet count/vWF:Ag was the strongest prognostic marker among ADAMTS13-vWF axis markers. The measurement of vWF:Ag may improve prognostic insights of DIC in clinical practice.
Collapse
Affiliation(s)
- Joowon Jang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - JaYoon Gu
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Association between ADAMTS13 deficiency and cardiovascular events in chronic hemodialysis patients. Sci Rep 2021; 11:22816. [PMID: 34819564 PMCID: PMC8613234 DOI: 10.1038/s41598-021-02264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
A mild decrease of ADAMTS13 (a disintegrin and metalloprotease with thrombospodin type 1 motif 13) could attribute to stroke and coronary heart disease in general population. However, the role of ADAMTS13 in hemodialysis (HD) patients remains to be explored. This cross-sectional and observational cohort study enrolled 98 chronic HD patients and 100 normal subjects with the aims to compare the ADAMTS13 activity between chronic HD patients and normal subjects, and to discover the role of ADAMTS13 on the newly developed cardiovascular events for HD patients in a 2-year follow-up. Our HD patients had a significantly lower ADAMTS13 activity than normal subjects, 41.0 ± 22.8% versus 102.3 ± 17.7%, p < 0.001. ADAMTS13 activity was positively correlated with diabetes, triglyceride and hemoglobin A1c, and negatively with high-density lipoprotein cholesterol levels in HD patients. With a follow-up of 20.3 ± 7.3 months, the Cox proportional hazards model revealed that low ADAMTS13, comorbid diabetes, and coronary heart diseases have independent correlations with the development of cardiovascular events. Our study demonstrated that chronic HD patients have a markedly decreased ADAMTS13 activity than normal subjects. Although ADAMTS13 seems to correlate well with diabetes, high triglyceride and low high-density lipoprotein cholesterol levels, ADAMTS13 deficiency still carries an independent risk for cardiovascular events in chronic HD patients.
Collapse
|
25
|
Xiao X, Huang S, Chen S, Wang Y, Sun Q, Xu X, Li Y. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:367. [PMID: 34794490 PMCID: PMC8600921 DOI: 10.1186/s13046-021-02148-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has yielded impressive outcomes and transformed treatment algorithms for hematological malignancies. To date, five CAR T-cell products have been approved by the US Food and Drug Administration (FDA). Nevertheless, some significant toxicities pose great challenges to the development of CAR T-cell therapy, most notably cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Understanding the mechanisms underlying these toxicities and establishing prevention and treatment strategies are important. In this review, we summarize the mechanisms underlying CRS and ICANS and provide potential treatment and prevention strategies.
Collapse
Affiliation(s)
- Xinyi Xiao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Shengkang Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Sifei Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Yazhuo Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.,Medical College of Rehabilitation, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Qihang Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510623, People's Republic of China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, People's Republic of China.
| |
Collapse
|
26
|
Menotti S, Donini M, Pessolano G, Tiro L, Cantini M, Croce J, Morandi M, Mazzi F, Donadello K, Olivieri O, Dima F, De Marchi S, Gambaro G, Polati E, De Franceschi L. Atypical hemolytic uremic syndrome: Unique clinical presentation linked to rare CFHR5 mutation. EJHAEM 2021; 2:838-841. [PMID: 35845199 PMCID: PMC9175842 DOI: 10.1002/jha2.288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Sofia Menotti
- Department of MedicineUniversity of Verona and AOUI VeronaVeronaItaly
| | - Martino Donini
- Department of MedicineUniversity of Verona and AOUI VeronaVeronaItaly
| | | | - Livia Tiro
- Department of MedicineUniversity of Verona and AOUI VeronaVeronaItaly
| | - Maurizio Cantini
- Department of Transfusion MedicineUniversity HospitalVeronaItaly
| | - Jacopo Croce
- Department of MedicineUniversity of Verona and AOUI VeronaVeronaItaly
| | - Matteo Morandi
- Department of MedicineUniversity of Verona and AOUI VeronaVeronaItaly
| | - Filippo Mazzi
- Department of MedicineUniversity of Verona and AOUI VeronaVeronaItaly
| | - Katia Donadello
- Department of Neuroscience, Biomedicine and Movement, Section of Clinical BiochemistryUniversity of Verona and AOUIVeronaItaly
| | - Oliviero Olivieri
- Department of MedicineUniversity of Verona and AOUI VeronaVeronaItaly
| | - Francesco Dima
- Department of Surgery, Dentistry, Paediatrics and GynaecologyUniversity of Verona & AOUIVeronaItaly
| | - Sergio De Marchi
- Department of MedicineUniversity of Verona and AOUI VeronaVeronaItaly
| | - Giovanni Gambaro
- Department of MedicineUniversity of Verona and AOUI VeronaVeronaItaly
| | - Enrico Polati
- Department of Neuroscience, Biomedicine and Movement, Section of Clinical BiochemistryUniversity of Verona and AOUIVeronaItaly
| | | |
Collapse
|
27
|
Martín-Rojas RM, Chasco-Ganuza M, Casanova-Prieto S, Delgado-Pinos VE, Pérez-Rus G, Duque-González P, Sancho M, Díez-Martín JL, Pascual-Izquierdo C. A mild deficiency of ADAMTS13 is associated with severity in COVID-19: comparison of the coagulation profile in critically and noncritically ill patients. Blood Coagul Fibrinolysis 2021; 32:458-467. [PMID: 34310402 PMCID: PMC8527912 DOI: 10.1097/mbc.0000000000001068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022]
Abstract
Early descriptions of COVID-19 associated coagulopathy identified it as a disseminated intravascular coagulation (DIC). However, recent studies have highlighted the potential role of endothelial cell injury in its pathogenesis, and other possible underlying mechanisms are being explored. This study aimed to analyse the coagulation parameters of critically and noncritically ill patients with COVID-19 bilateral pneumonia, determine if coagulation factors consumption occurs and explore other potential mechanisms of COVID-19 coagulopathy. Critically and noncritically ill patients with a diagnosis of COVID-19 bilateral pneumonia were recruited. For each patient, we performed basic coagulation tests, quantification of coagulation factors and physiological inhibitor proteins, an evaluation of the fibrinolytic system and determination of von Willebrand Factor (vWF) and ADAMTS13. Laboratory data were compared with clinical data and outcomes. The study involved 62 patients (31 ICU, 31 non-ICU). The coagulation parameters assessment demonstrated normal median prothrombin time (PT), international normalized ratio (INR) and activated partial thromboplastin time (APTT) in our cohort and all coagulation factors were within normal range. PAI-1 median levels were elevated (median 52.6 ng/ml; IQR 37.2-85.7), as well as vWF activity (median 216%; IQR 196-439) and antigen (median 174%; IQR 153.5-174.1). A mild reduction of ADAMTS13 was observed in critically ill patients and nonsurvivors. We demonstrated an inverse correlation between ADAMTS13 levels and inflammatory markers, D-dimer and SOFA score in our cohort. Elevated vWF and PAI-1 levels, and a mild reduction of ADAMTS13 in the most severe patients, suggest that COVID-19 coagulopathy is an endotheliopathy that has shared features with thrombotic microangiopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Patricia Duque-González
- Department of Anesthesiology and Reanimation
- Instituto de Investigación Sanitaria Gregorio Marañon, Madrid, Spain
| | - Milagros Sancho
- Intensive Care Unit, University General Hospital Gregorio Marañon
- Instituto de Investigación Sanitaria Gregorio Marañon, Madrid, Spain
| | - José Luis Díez-Martín
- Department of Hematology
- Universidad Complutense de Madrid
- Instituto de Investigación Sanitaria Gregorio Marañon, Madrid, Spain
| | | |
Collapse
|
28
|
Popa M, Hecker M, Wagner AH. Inverse Regulation of Confluence-Dependent ADAMTS13 and von Willebrand Factor Expression in Human Endothelial Cells. Thromb Haemost 2021; 122:611-622. [PMID: 34352896 DOI: 10.1055/s-0041-1733800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) is a zinc-containing metalloprotease also known as von Willebrand factor (vWF)-cleaving protease. Low ADAMTS13 plasma levels are associated with an increased risk of arterial thrombosis, including myocardial infarction and cerebrovascular disease. The expression and regulation of this metalloprotease in human endothelial cells have not been systematically investigated. In this study, we demonstrate that ADAMTS13 expression is inhibited by proinflammatory cytokines tumor necrosis factor-α and interferon-γ as well as by CD40 ligand, which was hitherto unknown. Factors protecting against atherosclerosis such as exposure to continuous unidirectional shear stress, interleukin-10, or different HMG-CoA reductase inhibitors like, e.g., simvastatin, atorvastatin, or rosuvastatin, did not influence ADAMTS13 expression. Unidirectional periodic orbital shear stress, mimicking oscillatory flow conditions found at atherosclerosis-prone arterial bifurcations, had also no effect. In contrast, a reciprocal correlation between ADAMTS13 and vWF expression in endothelial cells depending on the differentiation state was noted. ADAMTS13 abundance significantly rose on both the mRNA and intracellular protein level and also tethered to the endothelial glycocalyx with the degree of confluency while vWF protein levels were highest in proliferating cells but significantly decreased upon reaching confluence. This finding could explain the anti-inflammatory and antithrombotic phenotype of dormant endothelial cells mediated by contact inhibition.
Collapse
Affiliation(s)
- Miruna Popa
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Andreas H Wagner
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
29
|
Favaloro EJ, Pasalic L, Henry B, Lippi G. Laboratory testing for ADAMTS13: Utility for TTP diagnosis/exclusion and beyond. Am J Hematol 2021; 96:1049-1055. [PMID: 33991361 DOI: 10.1002/ajh.26241] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
The metalloproteinase ADAMTS13 (a disintegrin with a thrombospondin type 1 motif, member 13), also known as VWF (von Willebrand factor) protease, may be assessed in a vast array of clinical conditions. Notably, a severe deficiency of ADAMTS13 characterizes TTP (thrombotic thrombocytopenic purpura), a rare but potentially fatal disorder associated with thrombosis due to accumulation of prothrombotic ultra-large VWF multimers. Although prompt identification/exclusion of TTP can be facilitated by rapid ADAMTS13 testing, the most commonly utilized assays are based on ELISA (enzyme linked immunosorbent assay) and require long turnaround time and have relatively limited throughput. Nevertheless, several rapid ADAMTS13 assays are now available, at least in select geographies. The current mini-review discusses these issues, as well as the potential utility of ADAMTS13 testing in a range of other conditions, including coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Emmanuel J. Favaloro
- Department of Haematology Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital Westmead New South Wales Australia
- Sydney Centres for Thrombosis and Haemostasis Westmead New South Wales Australia
- School of Biomedical Sciences Charles Sturt University Wagga Wagga New South Wales Australia
| | - Leonardo Pasalic
- Department of Haematology Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital Westmead New South Wales Australia
- Sydney Centres for Thrombosis and Haemostasis Westmead New South Wales Australia
| | - Brandon Henry
- Cardiac Intensive Care Unit, The Heart Institute Cincinnati Children's Hospital Medical Center Cincinnati Ohio USA
| | - Giuseppe Lippi
- Section of Clinical Biochemistry University of Verona Verona Italy
| |
Collapse
|
30
|
Getu S, Tiruneh T, Andualem H, Hailemichael W, Kiros T, Mesfin Belay D, Kiros M. Coagulopathy in SARS-CoV-2 Infected Patients: Implication for the Management of COVID-19. J Blood Med 2021; 12:635-643. [PMID: 34305416 PMCID: PMC8296964 DOI: 10.2147/jbm.s304783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 disease has led to an extraordinary inclusive health crisis globally. Elevation of D-dimer is the major remarkable abnormal coagulation test in seriously ill COVID-19 patients. In nearly 50% of COVID-19 patients, the value of D-dimer was significantly enhancing. Recent literature indicated that COVID-19 patients were at higher risk of developing disseminated intravascular coagulation. Pro-inflammatory cytokines and chemokines are some of the factors leading to these conditions. The majority of COVID-19 patients showed a higher profile of pro-inflammatory cytokines and chemokines in severe clinical conditions. Tumor necrosis factor-α (TNF-α) and interleukins (ILs) elevated in COVID-19 infected patients. TNF-α, IL-6, and IL-1 are major cytokines vital for the inhibition of intrinsic anticoagulant pathways. COVID-19 becomes a higher complication with a significant effect on blood cell production and hemostasis cascades. Deep vein thrombosis and arterial thrombosis are common complications. Changes in hematological parameters are also frequently observed in COVID-19 patients. Especially, thrombocytopenia is an indicator for poor prognosis of the disease and is highly expected and aggravates the likelihood of death of SARS-CoV-2 infected individuals. Thrombopoiesis reduction in COVID-19 patients might be due to viral abuse of the bone marrow/the viral load may affect thrombopoietin production and function. In other ways, immune-inflammation-mediated destruction and increased consumption of platelets are also the possible proposed mechanisms for thrombocytopenia. Therefore, the counting of platelet cells is an easily accessible biomarker for disease monitoring. All SARS-CoV-2 infected patients should be admitted and identifying potential higher-risk patients. It is also obligatory to provide appropriate treatments with intensive care and strict follow-up. In addition, considerations of chronic diseases are essential for better prognosis and recovery. The current review discusses coagulopathy among SARS-CoV-2 infected individuals and its complication for the management of the disease.
Collapse
Affiliation(s)
- Sisay Getu
- Hematology and Immuno-hematology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tegenaw Tiruneh
- Hematology and Immuno-hematology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Henok Andualem
- Immunology and Molecular Biology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Wasihun Hailemichael
- Immunology and Molecular Biology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Teklehayimanot Kiros
- Microbiology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Demeke Mesfin Belay
- Pediatrics and Child Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Kiros
- Microbiology, Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
31
|
Wu X, Li Y, Tong H. Research Advances in the Subtype of Sepsis-Associated Thrombocytopenia. Clin Appl Thromb Hemost 2021; 26:1076029620959467. [PMID: 33054353 PMCID: PMC7573720 DOI: 10.1177/1076029620959467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The incidence and mortality of sepsis in the intensive care unit (ICU) are extremely high. Thrombocytopenia, one of the most common laboratory abnormalities, is correlated with prognosis in sepsis. The pathophysiology of sepsis-associated thrombocytopenia (SAT) remains unclear and may be associated with several factors such as platelet activation due to vascular injury and pathogen, suppression of bone marrow, platelet-targeted antibodies and desialylation. This review summarized all these possible mechanisms in the 3 subtypes of SAT: increased platelet consumption, reduced platelet production and increased platelet destruction. Based on the clinically available platelet parameters, the evidence for identifying SAT subtypes and the recent progress in treatments according to these subtypes are proposed to provide new prospects for the management of SAT.
Collapse
Affiliation(s)
- Xinghui Wu
- The First School of Clinical Medicine, 70570Southern Medical University, Guangzhou, People's Republic of China
| | - Yue Li
- Department of Intensive Care Unit, 26470PLA General Hospital of Southern Theatre Command, Key Laboratory of Tropical Zone Trauma Care and Tissue Repair of PLA, Guangzhou, People's Republic of China
| | - Huasheng Tong
- Department of Intensive Care Unit, 26470PLA General Hospital of Southern Theatre Command, Key Laboratory of Tropical Zone Trauma Care and Tissue Repair of PLA, Guangzhou, People's Republic of China
| |
Collapse
|
32
|
Häußler KS, Keese M, Weber CF, Geisen C, Miesbach W. Prospective Evaluation of the Pre-, Intra-, and Postoperative Kinetics of ADAMTS-13, von Willebrand Factor, and Interleukin-6 in Vascular Surgery. Clin Appl Thromb Hemost 2021; 26:1076029620930273. [PMID: 33023308 PMCID: PMC7545751 DOI: 10.1177/1076029620930273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Postoperative thrombotic thrombocytopenic purpura (TTP) shows clinical presentation similar to classical TTP, whereas exact pathophysiological contexts remain unexplained. In this study, we investigated intraoperative and postoperative changes in ADAMTS-13 (a disintegrin and metalloprotease with thrombospondin type 1 motifs, member 13), von Willebrand factor (VWF), large VWF multimers, and interleukin-6 (IL-6) in vascular surgery patients. The objective was to compare the impact of endovascular, peripheral, and aortic surgery on target parameters which are supposed to play a role in surgery-associated TTP. A total of 93 vascular surgery patients were included and divided into 4 groups according to the specific type of intervention they underwent. Blood samples were taken preoperatively, intraoperatively, and postoperatively on days 2 and 4. The ADAMTS-13 activity decreased significantly in 3 of the 4 groups during surgery (from median 81% to 49%, P < .001, in the group undergoing aortoiliacal interventions), whereas the percentage of large VWF multimers increased in all groups of patients. von Willebrand factor antigen increased significantly in all groups on postoperative day 2 and IL-6 increased significantly in the intraoperative and early postoperative period. There was no significant correlation between the intraoperative decrease in ADAMTS-13 and the increase in VWF or IL-6. No patient in this study showed clinical picture of TTP; the precise cause and clinical significance of moderately reduced ADAMTS-13 activity in the perioperative setting have not yet been definitely determined.
Collapse
Affiliation(s)
- Katja Susanne Häußler
- University Hospital Frankfurt, Medical Clinic II, Institute of Transfusion Medicine and Immunohematology, Hemophilia Center, Frankfurt, Germany
| | - Michael Keese
- Department for Vascular Surgery, University Hospital Mannheim, Mannheim, Germany
| | - Christian Friedrich Weber
- Department for Anesthesiology, Intensive Care Medicine and Emergency Medicine, Asklepios Klinik Wandsbek, Hamburg, Germany
| | - Christof Geisen
- German Red Cross Blood Center Frankfurt am Main, Institute of Transfusion Medicine and Immunohematology, Frankfurt, Germany
| | - Wolfgang Miesbach
- University Hospital Frankfurt, Medical Clinic II, Institute of Transfusion Medicine and Immunohematology, Hemophilia Center, Frankfurt, Germany
| |
Collapse
|
33
|
Abstract
A paradigm shift has recently occurred in the field of cancer therapeutics. Traditional anticancer agents, such as chemotherapy, radiotherapy and small-molecule drugs targeting specific signalling pathways, have been joined by cellular immunotherapies based on T cell engineering. The rapid adoption of novel, patient-specific cellular therapies builds on scientific developments in tumour immunology, genetic engineering and cell manufacturing, best illustrated by the curative potential of chimeric antigen receptor (CAR) T cell therapy targeting CD19-expressing malignancies. However, the clinical benefit observed in many patients may come at a cost. In up to one-third of patients, significant toxicities occur that are directly associated with the induction of powerful immune effector responses. The most frequently observed immune-mediated toxicities are cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. This Review discusses our current understanding of their pathophysiology and clinical features, as well as the development of novel therapeutics for their prevention and/or management. This Review discusses our current understanding of the pathophysiological mechanisms of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome associated with chimeric antigen receptor (CAR) T cell therapies, and how this might be used for the prevention or management of these toxicities.
Collapse
|
34
|
Miao L, Zhang Z, Ren Z, Li Y. Reactions Related to CAR-T Cell Therapy. Front Immunol 2021; 12:663201. [PMID: 33995389 PMCID: PMC8113953 DOI: 10.3389/fimmu.2021.663201] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
The application of chimeric antigen receptor (CAR) T-cell therapy as a tumor immunotherapy has received great interest in recent years. This therapeutic approach has been used to treat hematological malignancies solid tumors. However, it is associated with adverse reactions such as, cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), off-target effects, anaphylaxis, infections associated with CAR-T-cell infusion (CTI), tumor lysis syndrome (TLS), B-cell dysplasia, hemophagocytic lymphohistiocytosis (HLH)/macrophage activation syndrome (MAS) and coagulation disorders. These adverse reactions can be life-threatening, and thus they should be identified early and treated effectively. In this paper, we review the adverse reactions associated with CAR-T cells, the mechanisms driving such adverse reactions, and strategies to subvert them. This review will provide important reference data to guide clinical application of CAR-T cell therapy.
Collapse
Affiliation(s)
- Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhijian Ren
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
35
|
Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021; 21:319-329. [PMID: 33824483 PMCID: PMC8023349 DOI: 10.1038/s41577-021-00536-9] [Citation(s) in RCA: 568] [Impact Index Per Article: 189.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a clinical syndrome caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe disease show hyperactivation of the immune system, which can affect multiple organs besides the lungs. Here, we propose that SARS-CoV-2 infection induces a process known as immunothrombosis, in which activated neutrophils and monocytes interact with platelets and the coagulation cascade, leading to intravascular clot formation in small and larger vessels. Microthrombotic complications may contribute to acute respiratory distress syndrome (ARDS) and other organ dysfunctions. Therapeutic strategies aimed at reducing immunothrombosis may therefore be useful. Several antithrombotic and immunomodulating drugs have been proposed as candidates to treat patients with SARS-CoV-2 infection. The growing understanding of SARS-CoV-2 infection pathogenesis and how it contributes to critical illness and its complications may help to improve risk stratification and develop targeted therapies to reduce the acute and long-term consequences of this disease. Here, the authors propose that SARS-CoV-2 induces a prothrombotic state, with dysregulated immunothrombosis in lung microvessels and endothelial injury, which drive the clinical manifestations of severe COVID-19. They discuss potential antithrombotic and immunomodulating drugs that are being considered in the treatment of patients with COVID-19.
Collapse
|
36
|
Sweeney JM, Barouqa M, Krause GJ, Gonzalez-Lugo JD, Rahman S, Gil MR. Low ADAMTS13 Activity Correlates with Increased Mortality in COVID-19 Patients. TH OPEN 2021; 5:e89-e103. [PMID: 33709050 PMCID: PMC7943318 DOI: 10.1055/s-0041-1723784] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023] Open
Abstract
The causes of coagulopathy associated with coronavirus disease 2019 (COVID-19) are poorly understood. We aimed to investigate the relationship between von Willebrand factor (VWF) biomarkers, intravascular hemolysis, coagulation, and organ damage in COVID-19 patients and study their association with disease severity and mortality. We conducted a retrospective study of 181 hospitalized COVID-19 patients randomly selected with balanced distribution of survivors and nonsurvivors. Patients who died had significantly lower ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity, significantly elevated lactate dehydrogenase levels, significantly increased shistocyte/RBC fragment counts, and significantly elevated VWF antigen and activity levels compared with patients discharged alive. These biomarkers correlate with markedly elevated D-dimers. Additionally, only 30% of patients who had an ADAMTS13 activity level of less than 43% on admission survived, yet 60% of patients survived who had an ADAMTS13 activity level of greater than 43% on admission. In conclusion, COVID-19 may present with low ADAMTS13 activity in a subset of hospitalized patients. Presence of schistocytes/RBC fragment and elevated D-dimer on admission may warrant a work-up for ADAMTS13 activity and VWF antigen and activity levels. These findings indicate the need for future investigation to study the relationship between endothelial and coagulation activation and the efficacy of treatments aimed at prevention and/or amelioration of microangiopathy in COVID-19.
Collapse
Affiliation(s)
- Joseph M Sweeney
- Department Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Mohammad Barouqa
- Department of Pathology Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States.,Institute of Aging Studies, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Jesus D Gonzalez-Lugo
- Division of Hematology, Department of Medical Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States
| | - Shafia Rahman
- Division of Hematology, Department of Medical Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States
| | - Morayma Reyes Gil
- Department of Pathology Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|
37
|
Grigoreva KN, Bitsadze VO, Khizroeva JK, Tretyakova MV, Ponomarev DA, Tsvetnova KY, Doronicheva DA, Mamaeva AR, Mekhedova KV, Rizzo G, Gris JC, Elalamy I, Makatsariya AD. Clinical significance of measuring ADAMTS-13, its inhibitor and von Willebrand factor in obstetric and gynecological practice. OBSTETRICS, GYNECOLOGY AND REPRODUCTION 2021. [DOI: 10.17749/2313-7347/ob.gyn.rep.2021.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ADAMTS-13 is a crucial metalloproteinase involved in liberating fragments of von Willebrand factor (vWF) into the plasma as well as regulating its activity by cleaving "ultra-large" multimers into smaller and less active counterparts. Many pathological conditions, including those emerged during pregnancy are characterized by increased level of vWF and decreased ADAMTS-13 activity. In this regard, it is necessary to monitor the levels of vWF and ADAMTS-13 activity to prevent thrombotic thrombocytopenic purpura (Moschcowitz disease) as one of the most severe forms of thrombotic microangiopathy.
Collapse
Affiliation(s)
| | | | | | | | - D. A. Ponomarev
- Maternity Hospital № 4, Branch of Vinogradov City Clinical Hospital, Moscow Healthcare Department
| | - K. Yu. Tsvetnova
- Maternity Hospital № 4, Branch of Vinogradov City Clinical Hospital, Moscow Healthcare Department
| | | | | | | | - G. Rizzo
- Sechenov University; Tor Vergata University of Rome
| | - J.-C. Gris
- Sechenov University; University of Montpellier
| | - I. Elalamy
- Sechenov University; Medicine Sorbonne University; 2 Hospital Tenon
| | | |
Collapse
|
38
|
Flores-Pliego A, Miranda J, Vega-Torreblanca S, Valdespino-Vázquez Y, Helguera-Repetto C, Espejel-Nuñez A, Borboa-Olivares H, Espino y Sosa S, Mateu-Rogell P, León-Juárez M, Ramírez-Santes V, Cardona-Pérez A, Villegas-Mota I, Torres-Torres J, Juárez-Reyes Á, Rizo-Pica T, González RO, González-Mariscal L, Estrada-Gutierrez G. Molecular Insights into the Thrombotic and Microvascular Injury in Placental Endothelium of Women with Mild or Severe COVID-19. Cells 2021; 10:cells10020364. [PMID: 33578631 PMCID: PMC7916402 DOI: 10.3390/cells10020364] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Clinical manifestations of coronavirus disease 2019 (COVID-19) in pregnant women are diverse, and little is known of the impact of the disease on placental physiology. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been detected in the human placenta, and its binding receptor ACE2 is present in a variety of placental cells, including endothelium. Here, we analyze the impact of COVID-19 in placental endothelium, studying by immunofluorescence the expression of von Willebrand factor (vWf), claudin-5, and vascular endothelial (VE) cadherin in the decidua and chorionic villi of placentas from women with mild and severe COVID-19 in comparison to healthy controls. Our results indicate that: (1) vWf expression increases in the endothelium of decidua and chorionic villi of placentas derived from women with COVID-19, being higher in severe cases; (2) Claudin-5 and VE-cadherin expression decrease in the decidua and chorionic villus of placentas from women with severe COVID-19 but not in those with mild disease. Placental histological analysis reveals thrombosis, infarcts, and vascular wall remodeling, confirming the deleterious effect of COVID-19 on placental vessels. Together, these results suggest that placentas from women with COVID-19 have a condition of leaky endothelium and thrombosis, which is sensitive to disease severity.
Collapse
Affiliation(s)
- Arturo Flores-Pliego
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico; (A.F.-P.); (C.H.-R.); (A.E.-N.); (M.L.-J.)
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Ciudad de México 07360, Mexico; (J.M.); (S.V.-T.)
| | - Sara Vega-Torreblanca
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Ciudad de México 07360, Mexico; (J.M.); (S.V.-T.)
| | | | - Cecilia Helguera-Repetto
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico; (A.F.-P.); (C.H.-R.); (A.E.-N.); (M.L.-J.)
| | - Aurora Espejel-Nuñez
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico; (A.F.-P.); (C.H.-R.); (A.E.-N.); (M.L.-J.)
| | - Héctor Borboa-Olivares
- Community Interventions Research Branch, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Salvador Espino y Sosa
- Clinical Research Branch, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico; (S.E.yS.); (P.M.-R.)
| | - Paloma Mateu-Rogell
- Clinical Research Branch, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico; (S.E.yS.); (P.M.-R.)
| | - Moisés León-Juárez
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico; (A.F.-P.); (C.H.-R.); (A.E.-N.); (M.L.-J.)
| | - Victor Ramírez-Santes
- Department of Obstetrics, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Arturo Cardona-Pérez
- General Direction, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Isabel Villegas-Mota
- Department of Epidemiology, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Johnatan Torres-Torres
- Hospital General de México Dr Eduardo Liceaga, Ciudad de México 06720, Mexico; (J.T.-T.); (Á.J.-R.); (T.R.-P.)
| | - Ángeles Juárez-Reyes
- Hospital General de México Dr Eduardo Liceaga, Ciudad de México 06720, Mexico; (J.T.-T.); (Á.J.-R.); (T.R.-P.)
| | - Thelma Rizo-Pica
- Hospital General de México Dr Eduardo Liceaga, Ciudad de México 06720, Mexico; (J.T.-T.); (Á.J.-R.); (T.R.-P.)
| | - Rosa O. González
- Department of Mathematics, Autonomous Metropolitan University-Iztapalapa (UAM-I), Ciudad de México 14387, Mexico;
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Ciudad de México 07360, Mexico; (J.M.); (S.V.-T.)
- Correspondence: (L.G.-M.); (G.E.-G.); Tel.: +5255-5-747-3800 (ext. 3966) (L.G.-M.); +5255-5-520-9900 (ext. 160) (G.E.-G.)
| | - Guadalupe Estrada-Gutierrez
- Research Division, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
- Correspondence: (L.G.-M.); (G.E.-G.); Tel.: +5255-5-747-3800 (ext. 3966) (L.G.-M.); +5255-5-520-9900 (ext. 160) (G.E.-G.)
| |
Collapse
|
39
|
Adelborg K, Larsen JB, Hvas AM. Disseminated intravascular coagulation: epidemiology, biomarkers, and management. Br J Haematol 2021; 192:803-818. [PMID: 33555051 DOI: 10.1111/bjh.17172] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disseminated intravascular coagulation (DIC) is a systemic activation of the coagulation system, which results in microvascular thrombosis and, simultaneously, potentially life-threatening haemorrhage attributed to consumption of platelets and coagulation factors. Underlying conditions, e.g. infection, cancer, or obstetrical complications are responsible for the initiation and propagation of the DIC process. This review provides insights into the epidemiology of DIC and the current understanding of its pathophysiology. It details the use of diagnostic biomarkers, current diagnostic recommendations from international medical societies, and it provides an overview of emerging diagnostic and prognostic biomarkers. Last, it provides guidance on management. It is concluded that timely and accurate diagnosis of DIC and its underlying condition is essential for the prognosis. Treatment should primarily focus on the underlying cause of DIC and supportive treatment should be individualised according to the underlying aetiology, patient's symptoms and laboratory records.
Collapse
Affiliation(s)
- Kasper Adelborg
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Denmark
| | - Julie B Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
40
|
Favaloro EJ, Mohammed S, Chapman K, Swanepoel P, Zebeljan D, Sefhore O, Malan E, Clifford J, Yuen A, Donikian D, Kondo M, Duncan E, Abraham S, Beggs J, Chatrapati R, Perel J, Coleman R, Klose N, Hsu D, Motum P, Tan CW, Brighton T, Pasalic L. A multicenter laboratory assessment of a new automated chemiluminescent assay for ADAMTS13 activity. J Thromb Haemost 2021; 19:417-428. [PMID: 33124748 DOI: 10.1111/jth.15157] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Thrombotic thrombocytopenic purpura (TTP) is a rare but potentially fatal disorder caused by ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) deficiency. Prompt identification/exclusion of TTP can thus be facilitated by rapid ADAMTS13 testing. The most commonly utilized (enzyme-linked immunosorbent assay [ELISA]-based) assay takes several hours to perform and so does not generally permit rapid testing. OBJECTIVES To evaluate the utility of a new automated test for ADAMTS13 activity, the HemosIL AcuStar ADAMTS13 Activity assay, based on chemiluminescence and able to be performed on an ACL AcuStar instrument within 33 minutes. PATIENTS/METHODS This multicenter (n = 8) assessment included testing of more than 700 test samples, with similar numbers of prospective (n = 348) and retrospective (n = 385) samples. The main comparator was the Technozym ADAMTS13 Activity ELISA. We also assessed comparative performance for detection of ADAMTS13 inhibitors using a Bethesda assay. RESULTS Overall, the chemiluminescent assay yielded similar results to the comparator ELISA, albeit with slight negative bias. ADAMTS13 inhibitor detection was also comparable, albeit with slight positive bias with the AcuStar assay. Assay precision was similar with both assays, and we also verified assay normal reference ranges. CONCLUSIONS The HemosIL AcuStar ADAMTS13 Activity assay provided results rapidly, which were largely comparable with the Technozym ADAMTS13 Activity ELISA assay, albeit lower on average. Conversely, inhibitor levels tended to be identified at a higher level on average. Thus, the HemosIL AcuStar ADAMTS13 Activity assay provides a fast and accurate means to quantitate plasma levels of ADAMTS13 for TTP/ADAMTS13 identification/exclusion, and potentially also for other applications.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- NSW Health Pathology, NSW, Australia
- Sydney Centres for Thrombosis and Haemostasis, Westmead, NSW, Australia
| | - Soma Mohammed
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- NSW Health Pathology, NSW, Australia
| | - Kent Chapman
- NSW Health Pathology, NSW, Australia
- John Hunter Hospital, NSW Health Pathology, Newcastle, NSW, Australia
| | - Priscilla Swanepoel
- NSW Health Pathology, NSW, Australia
- John Hunter Hospital, NSW Health Pathology, Newcastle, NSW, Australia
| | - Diane Zebeljan
- NSW Health Pathology, NSW, Australia
- Liverpool Hospital, NSW Health Pathology, Liverpool, NSW, Australia
| | - Opelo Sefhore
- NSW Health Pathology, NSW, Australia
- Liverpool Hospital, NSW Health Pathology, Liverpool, NSW, Australia
| | | | | | - Agnes Yuen
- Monash Health, Melbourne, Vic., Australia
| | - Dea Donikian
- NSW Health Pathology, NSW, Australia
- Prince of Wales Hospital, NSW Health Pathology, Randwick, NSW, Australia
| | - Mayuko Kondo
- NSW Health Pathology, NSW, Australia
- Prince of Wales Hospital, NSW Health Pathology, Randwick, NSW, Australia
| | | | | | | | | | | | - Robyn Coleman
- Sullivan Nicolaides Pathology, Brisbane, Qld, Australia
| | - Nathan Klose
- Sullivan Nicolaides Pathology, Brisbane, Qld, Australia
| | - Danny Hsu
- NSW Health Pathology, NSW, Australia
- Liverpool Hospital, NSW Health Pathology, Liverpool, NSW, Australia
| | - Penelope Motum
- NSW Health Pathology, NSW, Australia
- Liverpool Hospital, NSW Health Pathology, Liverpool, NSW, Australia
| | - Chee Wee Tan
- SA Pathology, Adelaide, SA, Australia
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Timothy Brighton
- NSW Health Pathology, NSW, Australia
- Prince of Wales Hospital, NSW Health Pathology, Randwick, NSW, Australia
| | - Leonardo Pasalic
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- NSW Health Pathology, NSW, Australia
- Sydney Centres for Thrombosis and Haemostasis, Westmead, NSW, Australia
| |
Collapse
|
41
|
Iba T, Warkentin TE, Thachil J, Levi M, Levy JH. Proposal of the Definition for COVID-19-Associated Coagulopathy. J Clin Med 2021; 10:jcm10020191. [PMID: 33430431 PMCID: PMC7827226 DOI: 10.3390/jcm10020191] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Thrombotic events are common complications in COVID-19 patients that include both thrombus formation in large vessels and the microvasculature of the lung and other organs. COVID-19-associated coagulopathy (CAC) and disseminated intravascular coagulation (DIC) have similarities and differences, and whether CAC is a form of DIC is the subject of debate. Reported mechanisms of CAC include activated coagulation, endotheliopathy, up-regulated innate and adaptive immunity, and activated complement system. Although the clinical features and laboratory findings of CAC and DIC seem different, there are fundamental similarities that should be considered. Basically, the pathological findings of COVID-19 fall within the scope of the definition of DIC, i.e., systemic activation of coagulation caused by or resulting from the microvascular damage. Therefore, we suggest that although CAC differs from usual infection-associated DIC, its various features indicate that it can be considered a thrombotic phenotype DIC. This review summarizes the current knowledge about CAC including differences and similarities with sepsis-associated DIC.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-3813-3111
| | - Theodore E. Warkentin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester M13 9WL, UK;
| | - Marcel Levi
- Department of Medicine, University College London Hospitals NHS Foundation Trust, and Cardio-Metabolic Programme-NIHR UCLH/UCL BRC, London NW1 2BU, UK;
| | - Jerrold H. Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC 27710, USA;
| |
Collapse
|
42
|
Cañas CA, Cañas F, Bautista-Vargas M, Bonilla-Abadía F. Role of Tissue Factor in the Pathogenesis of COVID-19 and the Possible Ways to Inhibit It. Clin Appl Thromb Hemost 2021; 27:10760296211003983. [PMID: 33784877 PMCID: PMC8020089 DOI: 10.1177/10760296211003983] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 (Coronavirus Disease 2019) is a highly contagious infection and associated with high mortality rates, primarily in elderly; patients with heart failure; high blood pressure; diabetes mellitus; and those who are smokers. These conditions are associated to increase in the level of the pulmonary epithelium expression of angiotensin-converting enzyme 2 (ACE-2), which is a recognized receptor of the S protein of the causative agent SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Severe cases are manifested by parenchymal lung involvement with a significant inflammatory response and the development of microvascular thrombosis. Several factors have been involved in developing this prothrombotic state, including the inflammatory reaction itself with the participation of proinflammatory cytokines, endothelial dysfunction/endotheliitis, the presence of antiphospholipid antibodies, and possibly the tissue factor (TF) overexpression. ARS-Cov-19 ACE-2 down-regulation has been associated with an increase in angiotensin 2 (AT2). The action of proinflammatory cytokines, the increase in AT2 and the presence of antiphospholipid antibodies are known factors for TF activation and overexpression. It is very likely that the overexpression of TF in COVID-19 may be related to the pathogenesis of the disease, hence the importance of knowing the aspects related to this protein and the therapeutic strategies that can be derived. Different therapeutic strategies are being built to curb the expression of TF as a therapeutic target for various prothrombotic events; therefore, analyzing this treatment strategy for COVID-19-associated coagulopathy is rational. Medications such as celecoxib, cyclosporine or colchicine can impact on COVID-19, in addition to its anti-inflammatory effect, through inhibition of TF.
Collapse
Affiliation(s)
- Carlos A. Cañas
- Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
| | - Felipe Cañas
- Unit of Cardiology, Clínica Medellín, Medellín, Colombia
| | | | - Fabio Bonilla-Abadía
- Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
| |
Collapse
|
43
|
Katneni UK, Alexaki A, Hunt RC, Schiller T, DiCuccio M, Buehler PW, Ibla JC, Kimchi-Sarfaty C. Coagulopathy and Thrombosis as a Result of Severe COVID-19 Infection: A Microvascular Focus. Thromb Haemost 2020; 120:1668-1679. [PMID: 32838472 PMCID: PMC7869056 DOI: 10.1055/s-0040-1715841] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023]
Abstract
Coronavirus disease of 2019 (COVID-19) is the clinical manifestation of the respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While primarily recognized as a respiratory disease, it is clear that COVID-19 is systemic illness impacting multiple organ systems. One defining clinical feature of COVID-19 has been the high incidence of thrombotic events. The underlying processes and risk factors for the occurrence of thrombotic events in COVID-19 remain inadequately understood. While severe bacterial, viral, or fungal infections are well recognized to activate the coagulation system, COVID-19-associated coagulopathy is likely to have unique mechanistic features. Inflammatory-driven processes are likely primary drivers of coagulopathy in COVID-19, but the exact mechanisms linking inflammation to dysregulated hemostasis and thrombosis are yet to be delineated. Cumulative findings of microvascular thrombosis has raised question if the endothelium and microvasculature should be a point of investigative focus. von Willebrand factor (VWF) and its protease, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS-13), play important role in the maintenance of microvascular hemostasis. In inflammatory conditions, imbalanced VWF-ADAMTS-13 characterized by elevated VWF levels and inhibited and/or reduced activity of ADAMTS-13 has been reported. Also, an imbalance between ADAMTS-13 activity and VWF antigen is associated with organ dysfunction and death in patients with systemic inflammation. A thorough understanding of VWF-ADAMTS-13 interactions during early and advanced phases of COVID-19 could help better define the pathophysiology, guide thromboprophylaxis and treatment, and improve clinical prognosis.
Collapse
Affiliation(s)
- Upendra K. Katneni
- Department of Pediatrics, The Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Aikaterini Alexaki
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, U.S. FDA, Silver Spring, Maryland, United States
| | - Ryan C. Hunt
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, U.S. FDA, Silver Spring, Maryland, United States
| | - Tal Schiller
- Diabetes, Endocrinology and Metabolic Disease Unit, Kaplan Medical Center, Rehovot, Israel
| | - Michael DiCuccio
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul W. Buehler
- Department of Pediatrics, The Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Juan C. Ibla
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, U.S. FDA, Silver Spring, Maryland, United States
| |
Collapse
|
44
|
Makatsariya AD, Slukhanchuk EV, Bitsadze VO, Khizroeva JK, Tretyakova MV, Tsibizova VI, Shkoda AS, Grandone E, Elalamy I, Rizzo G, Gris JCR, Schulman S, Brenner B. COVID-19, hemostasis disorders and risk of thrombotic complications. ANNALS OF THE RUSSIAN ACADEMY OF MEDICAL SCIENCES 2020. [DOI: 10.15690/vramn1368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The spread of a new coronavirus infection worldwide since the end of 2019 has becomes a pandemic. Thrombotic complications are the leading cause of death in this disease. After entering the human body, the virus starts a cascade of reactions leading to the development of a cytokine storm, activation of all parts of the hemostasis and complement systems and other changes that result in disturbances in the circulation system with the development of multiple organ failures. Numerous studies have shown that a predictor of a severe course of COVID-19 is a sharp increase of D-dimer concentration in the blood and rise of some other markers of hemostasis activation. Based on the pathogenesis, the developed schemes for the prevention and treatment of COVID-19 severe complications include low molecular weight heparins (LMWH) which are also recommended for an outpatient COVID-19 patient. The prescription of low molecular weight heparin, the duration of their use and doses should be decided on the basis of a risk assessment of factors for each individual patient in combination with laboratory monitoring.
Collapse
|
45
|
Levi M, Thachil J. Coronavirus Disease 2019 Coagulopathy: Disseminated Intravascular Coagulation and Thrombotic Microangiopathy-Either, Neither, or Both. Semin Thromb Hemost 2020; 46:781-784. [PMID: 32512589 PMCID: PMC7645819 DOI: 10.1055/s-0040-1712156] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marcel Levi
- Department of Medicine, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- NIHR UCLH/UCL Biomedical Research Centre, London, United Kingdom
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, United Kingdom
| |
Collapse
|
46
|
Möller C, Schutte AE, Smith W, Botha-Le Roux S. Von Willebrand factor, its cleaving protease (ADAMTS13), and inflammation in young adults: The African-PREDICT study. Cytokine 2020; 136:155265. [PMID: 32927287 DOI: 10.1016/j.cyto.2020.155265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/30/2020] [Accepted: 08/21/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The role of inflammation in the early development of vascular dysfunction remains complex. Interleukin-6 (IL-6) and C-reactive protein (CRP) can cause an acute imbalance in the von Willebrand factor (vWF)-ADAMTS13 interaction, indicating a possible link between markers of haemostasis and low-grade inflammation. To better understand these inter-relationships in the early phases of disease development, we investigated whether vWF and ADAMTS13 associate with the pro-inflammatory markers, IL-6 and CRP in healthy young adults. We considered the role of blood types, sex and race on these relationships. METHODS In healthy black and white men and women (n = 1113; 24 ± 5 years; no previous diagnosis or medication use for chronic diseases) we analysed von Willebrand factor antigen (vWFag), ADAMTS13, IL-6 and CRP, and grouped blood types as non-O (A, B and AB) and O. Covariates included socioeconomic status, age, estimated glomerular filtration rate, 24-hour systolic blood pressure, waist circumference, glucose, total cholesterol, platelet count, γ-glutamyl transferase and total energy expenditure. RESULTS In the total group, vWFag was highest in the third tertile of both IL-6 and CRP (p ≤ 0.014), while ADAMTS13 was lowest in the third compared to the first IL-6 tertile (p = 0.006). In multivariate regression, vWFag associated positively with IL-6 (Adj R2 = 0.169; β = 0.123; p = 0.001) and CRP (Adj R2 = 0.163; β=0.094; p = 0.019) in the total group, in the O blood group (all p ≤ 0.051) and white men (all p ≤ 0.035). ADAMTS13 associated negatively with IL-6 (Adj R2 = 0.053; β = -0.154; p = 0.015) and CRP (Adj R2 = 0.055; β = -0.177; p = 0.009), only in the O blood group. CONCLUSIONS Markers of haemostasis associated independently with low-grade inflammation in the O type blood group and white men. An interplay between the haemostatic and inflammatory systems may already exist in young healthy adults and is dependent on blood groups, sex and race. This extends our understanding on the role of inflammation in the early development of vascular dysfunction prior to cardiovascular compromise.
Collapse
Affiliation(s)
- Christine Möller
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; Medical Research Council: Research Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; Faculty of Medicine, University of New South Wales, The George Institute for Global Health, Sydney, Australia
| | - Wayne Smith
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; Medical Research Council: Research Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Shani Botha-Le Roux
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; Medical Research Council: Research Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
47
|
Kraisin S, Martinod K, Desender L, Pareyn I, Verhenne S, Deckmyn H, Vanhoorelbeke K, Van den Steen PE, De Meyer SF. von Willebrand factor increases in experimental cerebral malaria but is not essential for late-stage pathogenesis in mice. J Thromb Haemost 2020; 18:2377-2390. [PMID: 32485089 DOI: 10.1111/jth.14932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cerebral malaria (CM) is the most severe complication of malaria. Endothelial activation, cytokine release, and vascular obstruction are essential hallmarks of CM. Clinical studies have suggested a link between von Willebrand factor (VWF) and malaria pathology. OBJECTIVES To investigate the contribution of VWF in the pathogenesis of experimental cerebral malaria (ECM). METHODS Both Vwf+/+ and Vwf-/- mice were infected with Plasmodium berghei ANKA (PbANKA) to induce ECM. Alterations of plasma VWF and ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), platelet count, neurological features, and accumulation of platelets and leukocytes in the brain were examined following infection. RESULTS Plasma VWF levels significantly increased upon PbANKA infection in Vwf+/+ animals. While ADAMTS13 activity was not affected, high molecular weight VWF multimers disappeared at the end-stage ECM, possibly due to an ongoing hypercoagulability. Although the number of reticulocytes, a preferential target for the parasites, was increased in Vwf-/- mice compared to Vwf+/+ mice early after infection, parasitemia levels did not markedly differ between the two groups. Interestingly, Vwf-/- mice manifested overall clinical ECM features similar to those observed in Vwf+/+ animals. At day 8.5 post-infection, however, clinical ECM features in Vwf-/- mice were slightly more beneficial than in Vwf+/+ animals. Despite these minor differences, overall survival was not different between Vwf-/- and Vwf+/+ mice. Similarly, PbANKA-induced thrombocytopenia, leukocyte, and platelet accumulations in the brain were not altered by the absence of VWF. CONCLUSIONS Our study suggests that increased VWF concentration is a hallmark of ECM. However, VWF does not have a major influence in modulating late-stage ECM pathogenesis.
Collapse
Affiliation(s)
- Sirima Kraisin
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Kimberly Martinod
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Linda Desender
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Inge Pareyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Sebastien Verhenne
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
48
|
Liu L, Ma Z, Zhou X, Yin J, Lu J, Su J, Shen F, Xie L, Hu S, Ling J. Tryptophan 387 and 390 residues in ADAMTS13 are crucial to the ability of vascular tube formation and cell migration of endothelial cells. Clin Exp Pharmacol Physiol 2020; 47:1402-1409. [PMID: 32222985 DOI: 10.1111/1440-1681.13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 01/02/2023]
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13) was mainly generated and secreted from endothelial cells (ECs). Our previous study showed that tryptophan (Trp) residues at 387 and 390 in ADAMTS13 are required for its secretion and enzymatic activity. However, the effects on its host cell as well as the potential mechanism have not been clear. The aim of the study was to examine the effects of Trp residues 387 and 390 of ADAMTS13 on the biological processes of ECs. Herein, Trp was substituted with alanine in ADAMTS13 to generate ADAMTS13 mutants at 387 (W387A), 390 (W390A), and double mutants at 387 and 390 (2WA), respectively. We found that substitution mutation impaired vascular endothelial growth factor (VEGF) secretion and the downstream JAK1/STAT3 activation, the binding ability to Von Willebrand factor, cell proliferation, migration, and vascular tube formation. Overall, our study concluded that Trp387 and Trp390 of ADAMTS13 play vital roles in the biological function of ECs.
Collapse
Affiliation(s)
- Ling Liu
- Department of Orthopedics, Clinical Medical Research Center of Jiangsu Province, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xuemei Zhou
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Yin
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Su
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Fei Shen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Liqian Xie
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Ling
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
49
|
Martinelli N, Montagnana M, Pizzolo F, Friso S, Salvagno GL, Forni GL, Gianesin B, Morandi M, Lunardi C, Lippi G, Polati E, Olivieri O, De Franceschi L. A relative ADAMTS13 deficiency supports the presence of a secondary microangiopathy in COVID 19. Thromb Res 2020; 193:170-172. [PMID: 32707276 PMCID: PMC7367811 DOI: 10.1016/j.thromres.2020.07.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 02/09/2023]
Affiliation(s)
| | - Martina Montagnana
- Dept of Neuroscience, Biomedicine and Movement, Section of Clinical Biochemistry, University of Verona & AOUI, Verona, Italy
| | | | - Simonetta Friso
- Dept of Medicine, University of Verona & AOUI, Verona, Italy
| | - Gian Luca Salvagno
- Dept of Neuroscience, Biomedicine and Movement, Section of Clinical Biochemistry, University of Verona & AOUI, Verona, Italy
| | - Gian Luca Forni
- Centro della Microcitemia, Anemie Congenite, Galliera Hospital, 16128 Genova, Italy
| | - Barbara Gianesin
- Centro della Microcitemia, Anemie Congenite, Galliera Hospital, 16128 Genova, Italy
| | - Matteo Morandi
- Dept of Medicine, University of Verona & AOUI, Verona, Italy
| | - Claudio Lunardi
- Dept of Medicine, University of Verona & AOUI, Verona, Italy
| | - Giuseppe Lippi
- Dept of Neuroscience, Biomedicine and Movement, Section of Clinical Biochemistry, University of Verona & AOUI, Verona, Italy
| | - Enrico Polati
- Dept of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona & AOUI, Verona, Italy
| | | | | |
Collapse
|
50
|
Huisman A, Beun R, Sikma M, Westerink J, Kusadasi N. Involvement of ADAMTS13 and von Willebrand factor in thromboembolic events in patients infected with SARS-CoV-2. Int J Lab Hematol 2020; 42:e211-e212. [PMID: 32441844 PMCID: PMC7280565 DOI: 10.1111/ijlh.13244] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Albert Huisman
- Department of Clinical Chemistry and Laboratory Medicine, University Medical Center Utrecht and University Utrecht, Utrecht, The Netherlands
| | - Robert Beun
- Department of Intensive Care, University Medical Center Utrecht and University Utrecht, Utrecht, The Netherlands
| | - Maaike Sikma
- Department of Intensive Care, University Medical Center Utrecht and University Utrecht, Utrecht, The Netherlands.,Dutch Poisons Information Center, University Medical Center Utrecht and University Utrecht, Utrecht, The Netherlands
| | - Jan Westerink
- Department of Vascular Medicine, University Medical Center Utrecht and University Utrecht, Utrecht, The Netherlands
| | - Nuray Kusadasi
- Department of Intensive Care, University Medical Center Utrecht and University Utrecht, Utrecht, The Netherlands
| |
Collapse
|