1
|
Pirabe A, Schrottmaier WC, Mehic D, Hackl H, Frühwirth S, Schmuckenschlager A, Beck S, Gebhart J, Gleixner K, Sperr W, Assinger A. Impaired hemostatic and immune functions of platelets after acute thrombocytopenia. J Thromb Haemost 2024:S1538-7836(24)00721-9. [PMID: 39675567 DOI: 10.1016/j.jtha.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Platelets are pivotal in maintaining vascular integrity, hemostasis, and immune modulation, with newly generated, immature platelets being the most responsive in fulfilling these tasks. Therefore, the immature platelet fraction provides insights into thrombopoiesis dynamics and clinical prognostication. However, it is currently unclear how immature platelet functions change in settings of acute thrombocytopenia. OBJECTIVES We aimed to investigate the functional consequences of acute thrombocytopenia on newly generated immature platelets in various mouse models and human subjects. METHODS To examine platelet functionality after acute thrombocytopenia, we depleted either megakaryocytes using a platelet factor 4-specific inducible diphtheria toxin receptor transgenic mouse model or platelets via antibody-mediated depletion in mice, and collected blood from acute myeloid leukemia (AML) patients before and after consolidation or induction chemotherapy. Chemotherapy treatment was further repeated in an animal model. We assessed surface receptor expression of activation markers (CD62P, active GPIIb/IIIa, CD40L, CD63, CD107a) and toll-like receptors (TLR2, TLR4, TLR9) on immature and mature platelets following activation. Additionally, we investigated procoagulant platelet formation and platelet-leukocyte interactions in mouse models and patients with AML. RESULTS In murine models, acute thrombocytopenia led to impaired hemostatic function and altered surface receptor expression in newly generated immature platelets. Similarly, AML patients during regeneration post chemotherapy exhibited reduced platelet activation and procoagulant function, alongside altered receptor expression and diminished platelet-leukocyte interactions. CONCLUSION After acute thrombocytopenia platelet-mediated hemostasis and immune modulation by newly generated platelets are impaired, underscoring the clinical relevance of understanding platelet function alterations in (post)thrombocytopenic conditions for therapeutic optimization.
Collapse
Affiliation(s)
- Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria. https://twitter.com/WaltraudSchrottmaier
| | - Dino Mehic
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Frühwirth
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sarah Beck
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany; Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Johanna Gebhart
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karoline Gleixner
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Sperr
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Peshkova AD, Saliakhutdinova SM, Sounbuli K, Selivanova YA, Andrianova IA, Khabirova AI, Litvinov RI, Weisel JW. The differential formation and composition of leukocyte-platelet aggregates induced by various cellular stimulants. Thromb Res 2024; 241:109092. [PMID: 39024901 PMCID: PMC11411814 DOI: 10.1016/j.thromres.2024.109092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Leukocyte-platelet aggregates comprise a pathogenic link between hemostasis and immunity, but the prerequisites and mechanisms of their formation remain not understood. AIMS To quantify the formation, composition, and morphology of leukocyte-platelet aggregates in vitro under the influence of various cellular activators. METHODS Phorbol-12-myristate-13-acetate (PMA), lipopolysaccharide (LPS), thrombin receptor-activating peptide (TRAP-6), and adenosine diphosphate (ADP) were used as cellular activators. Flow cytometry was utilized to identify and quantify aggregates in whole human blood and platelet-rich plasma. Cell types and cellular aggregates were identified using fluorescently labeled antibodies against the appropriate cellular markers, and cell activation was assessed by the expression of appropriate surface markers. For confocal fluorescent microscopy, cell membranes and nuclei were labeled. Neutrophil-platelet aggregates were studied using scanning electron microscopy. RESULTS In the presence of PMA, ADP or TRAP-6, about 17-38 % of neutrophils and 61-77 % of monocytes formed aggregates with platelets in whole blood, whereas LPS did not induce platelet aggregation with either neutrophils or monocytes due the inability to activate platelets. Similar results were obtained when isolated neutrophils were added to platelet-rich plasma. All the cell types involved in the heterotypic aggregation expressed molecular markers of activation. Fluorescent and electron microscopy of the aggregates showed that the predominant platelet/leukocyte ratios were 1:1 and 2:1. CONCLUSIONS Formation of leukocyte-platelet aggregates depends on the nature of the cellular activator and the spectrum of its cell-activating ability. An indispensable condition for formation of leukocyte-platelet aggregates is activation of all cell types including platelets, which is the restrictive step.
Collapse
Affiliation(s)
- Alina D Peshkova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | | | - Khetam Sounbuli
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Yuliya A Selivanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Izabella A Andrianova
- Department of Internal Medicine, Division of Hematology and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Alina I Khabirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Rustem I Litvinov
- Departments of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John W Weisel
- Departments of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Na SP, Ning ML, Ma JF, Liang S, Wang YL, Sui MS, Guo XF, Ji Y, Lyu HY, Yuan XY, Bao YS. Association of elevated circulating monocyte-platelet aggregates with hypercoagulability in patients with nephrotic syndrome. Thromb J 2024; 22:56. [PMID: 38943162 PMCID: PMC11212416 DOI: 10.1186/s12959-024-00626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Hypercoagulability emerges as a central pathological feature and clinical complication in nephrotic syndrome. Increased platelet activation and aggregability are closely related to hypercoagulability in nephrotic syndrome. Monocyte-platelet aggregates (MPAs) have been proposed to represent a robust biomarker of platelet activation. The aim of this study was to investigate levels of the circulating MPAs and MPAs with the different monocyte subsets to evaluate the association of MPAs with hypercoagulability in nephrotic syndrome. METHODS Thirty-two patients with nephrotic syndrome were enrolled. In addition, thirty-two healthy age and sex matched adult volunteers served as healthy controls. MPAs were identified by CD14 monocytes positive for CD41a platelets. The classical (CD14 + + CD16-, CM), the intermediate (CD14 + + CD16+, IM) and the non-classical (CD14 + CD16++, NCM) monocytes, as well as subset specific MPAs, were measured by flow cytometry. RESULTS Patients with nephrotic syndrome showed a higher percentage of circulating MPAs as compared with healthy controls (p < 0.001). The percentages of MPAs with CM, IM, and NCM were higher than those of healthy controls (p = 0.012, p < 0.001 and p < 0.001, respectively). Circulating MPAs showed correlations with hypoalbuminemia (r=-0.85; p < 0.001), hypercholesterolemia (r = 0.54; p < 0.001), fibrinogen (r = 0.70; p < 0.001) and D-dimer (r = 0.37; p = 0.003), but not with hypertriglyceridemia in nephrotic syndrome. The AUC for the prediction of hypercoagulability in nephrotic syndrome using MPAs was 0.79 (95% CI 0.68-0.90, p < 0.001). The sensitivity of MPAs in predicting hypercoagulability was 0.71, and the specificity was 0.78. CONCLUSION Increased MPAs were correlated with hypercoagulability in nephrotic syndrome. MPAs may serve as a potential biomarker for thrombophilic or hypercoagulable state and provide novel insight into the mechanisms of anticoagulation in nephrotic syndrome.
Collapse
Affiliation(s)
- Shi-Ping Na
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Mei-Liang Ning
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Ji-Fang Ma
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Shuang Liang
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Yan-Li Wang
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Man-Shu Sui
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Xiao-Fang Guo
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Ying Ji
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Hui-Yan Lyu
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Xue-Ying Yuan
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Yu-Shi Bao
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China.
| |
Collapse
|
4
|
Nicolai L, Pekayvaz K, Massberg S. Platelets: Orchestrators of immunity in host defense and beyond. Immunity 2024; 57:957-972. [PMID: 38749398 DOI: 10.1016/j.immuni.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Platelets prevent blood loss during vascular injury and contribute to thrombus formation in cardiovascular disease. Beyond these classical roles, platelets are critical for the host immune response. They guard the vasculature against pathogens via specialized receptors, intracellular signaling cascades, and effector functions. Platelets also skew inflammatory responses by instructing innate immune cells, support adaptive immunosurveillance, and influence antibody production and T cell polarization. Concomitantly, platelets contribute to tissue reconstitution and maintain vascular function after inflammatory challenges. However, dysregulated activation of these multitalented cells exacerbates immunopathology with ensuing microvascular clotting, excessive inflammation, and elevated risk of macrovascular thrombosis. This dichotomy underscores the critical importance of precisely defining and potentially modulating platelet function in immunity.
Collapse
Affiliation(s)
- Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
5
|
Fayazzadeh S, Ghorbaninejad M, Rabbani A, Zahiri J, Meyfour A. Predictive three-biomarker panel in peripheral blood mononuclear cells for detecting hepatocellular carcinoma. Sci Rep 2024; 14:7527. [PMID: 38553531 PMCID: PMC10980807 DOI: 10.1038/s41598-024-58158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent cancers and accounts for a significant proportion of cancer-associated deaths worldwide. This disease, marked by multifaceted etiology, often poses diagnostic challenges. Finding a reliable and non-invasive diagnostic method seems to be necessary. In this study, we analyzed the gene expression profiles of 20 HCC patients, 12 individuals with chronic hepatitis, and 15 healthy controls. Enrichment analysis revealed that platelet aggregation, secretory granule lumen, and G-protein-coupled purinergic nucleotide receptor activity were common biological processes, cellular components, and molecular function in HCC and chronic hepatitis B (CHB) compared to healthy controls, respectively. Furthermore, pathway analysis demonstrated that "estrogen response" was involved in the pathogenesis of HCC and CHB conditions, while, "apoptosis" and "coagulation" pathways were specific for HCC. Employing computational feature selection and logistic regression classification, we identified candidate genes pivotal for diagnostic panel development and evaluated the performance of these panels. Subsequent machine learning evaluations assessed these panels' performance in an independent cohort. Remarkably, a 3-marker panel, comprising RANSE2, TNF-α, and MAP3K7, demonstrated the best performance in qRT-PCR-validated experimental data, achieving 98.4% accuracy and an area under the curve of 1. Our findings highlight this panel's promising potential as a non-invasive approach not only for detecting HCC but also for distinguishing HCC from CHB patients.
Collapse
Affiliation(s)
- Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhassan Rabbani
- Department of Transplant and Hepatobiliary Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Costantini TW, Kornblith LZ, Pritts T, Coimbra R. The intersection of coagulation activation and inflammation after injury: What you need to know. J Trauma Acute Care Surg 2024; 96:347-356. [PMID: 37962222 PMCID: PMC11001294 DOI: 10.1097/ta.0000000000004190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Affiliation(s)
- Todd W Costantini
- From the Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery (T.W.C.), UC San Diego School of Medicine, San Diego; Department of Surgery (L.Z.K.), Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California; Department of Surgery (T.P.), University of Cincinnati College of Medicine, Cincinnati, Ohio; and Comparative Effectiveness and Clinical Outcomes Research Center (R.C.), Riverside University Health System, Loma Linda University School of Medicine, Riverside, California
| | | | | | | |
Collapse
|
7
|
Schrottmaier WC, Assinger A. The Concept of Thromboinflammation. Hamostaseologie 2024; 44:21-30. [PMID: 38417802 DOI: 10.1055/a-2178-6491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Inflammation and thrombosis are intricate and closely interconnected biological processes that are not yet fully understood and lack effective targeted therapeutic approaches. Thrombosis initiated by inflammatory responses, known as immunothrombosis, can confer advantages to the host by constraining the spread of pathogens within the bloodstream. Conversely, platelets and the coagulation cascade can influence inflammatory responses through interactions with immune cells, endothelium, or complement system. These interactions can lead to a state of heightened inflammation resulting from thrombotic processes, termed as thromboinflammation. This review aims to comprehensively summarize the existing knowledge of thromboinflammation and addressing its significance as a challenging clinical issue.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Schrottmaier WC, Schmuckenschlager A, Thunberg T, Wigren-Byström J, Fors-Connolly AM, Assinger A, Ahlm C, Forsell MNE. Direct and indirect effects of Puumala hantavirus on platelet function. Thromb Res 2024; 233:41-54. [PMID: 38006765 DOI: 10.1016/j.thromres.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Thrombocytopenia is a cardinal symptom of hantavirus-induced diseases including Puumala virus (PUUV)-induced hemorrhagic fever with renal syndrome (HFRS), which is associated with impaired platelet function, bleeding manifestations and augmented thrombotic risk. However, the underlying mechanisms causing thrombocytopenia and platelet hypo-responsiveness are unknown. Thus, we investigated the direct and indirect impact of PUUV on platelet production, function and degradation. Analysis of PUUV-HFRS patient blood revealed that platelet hypo-responsiveness in PUUV infection was cell-intrinsic and accompanied by reduced platelet-leukocyte aggregates (PLAs) and upregulation of monocyte tissue factor (TF), whereas platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation was comparable to healthy controls. Plasma CXCL4 levels followed platelet count dynamics throughout disease course. PUUV activated both neutrophils and monocytes in vitro, but platelet desialylation, degranulation and GPIIb/IIIa activation as well as PLA formation and endothelial adhesion under flow remained unaltered in the presence of PUUV. Further, MEG-01 megakaryocytes infected with PUUV displayed unaltered polyploidization, expression of surface receptors and platelet production. However, infection of endothelial cells with PUUV significantly increased platelet sequestration. Our data thus demonstrate that although platelet production, activation or degradation are not directly modulated, PUUV indirectly fosters thrombocytopenia by sequestration of platelets to infected endothelium. Upregulation of immunothrombotic processes in PUUV-HFRS may further contribute to platelet dysfunction and consumption. Given the pathophysiologic similarities of hantavirus infections, our findings thus provide important insights into the mechanisms underlying thrombocytopenia and highlight immune-mediated coagulopathy as potential therapeutic target.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Therese Thunberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | | | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
9
|
Foer D, Amin T, Nagai J, Tani Y, Feng C, Liu T, Newcomb DC, Lai J, Hayashi H, Snyder WE, McGill A, Lin A, Laidlaw T, Niswender KD, Boyce JA, Cahill KN. Glucagon-like Peptide-1 Receptor Pathway Attenuates Platelet Activation in Aspirin-Exacerbated Respiratory Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1806-1813. [PMID: 37870292 PMCID: PMC10842986 DOI: 10.4049/jimmunol.2300102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Platelets are key contributors to allergic asthma and aspirin-exacerbated respiratory disease (AERD), an asthma phenotype involving platelet activation and IL-33-dependent mast cell activation. Human platelets express the glucagon-like peptide-1 receptor (GLP-1R). GLP-1R agonists decrease lung IL-33 release and airway hyperresponsiveness in mouse asthma models. We hypothesized that GLP-1R agonists reduce platelet activation and downstream platelet-mediated airway inflammation in AERD. GLP-1R expression on murine platelets was assessed using flow cytometry. We tested the effect of the GLP-1R agonist liraglutide on lysine-aspirin (Lys-ASA)-induced changes in airway resistance, and platelet-derived mediator release in a murine AERD model. We conducted a prospective cohort study comparing the effect of pretreatment with liraglutide or vehicle on thromboxane receptor agonist-induced in vitro activation of platelets from patients with AERD and nonasthmatic controls. GLP-1R expression was higher on murine platelets than on leukocytes. A single dose of liraglutide inhibited Lys-ASA-induced increases in airway resistance and decreased markers of platelet activation and recruitment to the lung in AERD-like mice. Liraglutide attenuated thromboxane receptor agonist-induced activation as measured by CXCL7 release in plasma from patients with AERD and CD62P expression in platelets from both patients with AERD (n = 31) and nonasthmatic, healthy controls (n = 11). Liraglutide, a Food and Drug Administration-approved GLP-1R agonist for treatment of type 2 diabetes and obesity, attenuates in vivo platelet activation in an AERD murine model and in vitro activation in human platelets in patients with and without AERD. These data advance the GLP-1R axis as a new target for platelet-mediated inflammation warranting further study in asthma.
Collapse
Affiliation(s)
- Dinah Foer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Taneem Amin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jun Nagai
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Yumi Tani
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Chunli Feng
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Tao Liu
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Juying Lai
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hiroaki Hayashi
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - William E. Snyder
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alanna McGill
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Anabel Lin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tanya Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Kevin D. Niswender
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Joshua A. Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Katherine N. Cahill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Hua Y, Wang R, Yang J, Ou X. Platelet count predicts mortality in patients with sepsis: A retrospective observational study. Medicine (Baltimore) 2023; 102:e35335. [PMID: 37746944 PMCID: PMC10519494 DOI: 10.1097/md.0000000000035335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Platelet count is a key component of sepsis severity score. However, the predictive value of the platelet count at admission for mortality in sepsis remains unclear. We designed a retrospective observational study of patients with sepsis admitted to our hospital from January 2017 to September 2021 to explore the predictive value of platelet count at admission for mortality. A total of 290 patients with sepsis were included in this study. Multivariate logistic regression analysis was used to evaluate the risk factors for mortality and construct a predictive model with statistically significant factors. Compared with survivors, nonsurvivors tended to be much older and had significantly higher acute physiology and chronic health evaluation II and sequential organ failure assessment scores (P < .001). The platelet count was significantly lower in the nonsurvivor group than in the survivor group (P < .001). Multivariate logistic regression analysis indicated that age (P = .003), platelet count (P < .001) and lactate level (P = .018) were independent risk factors for mortality in patients with sepsis. Finally, the area under the receiver operating characteristic curve of platelet count predicting mortality in sepsis was 0.763 (95% confidence interval, 0.709-0.817, P < .001), with a sensitivity of 55.6% and a specificity of 91.8%. In our study, platelet count at admission as a single biomarker showed good predictability for mortality in patients with sepsis.
Collapse
Affiliation(s)
- Yusi Hua
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Yang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu China
| | - Xiaofeng Ou
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu China
| |
Collapse
|
11
|
Gao LC, Gong FQ. [Recent research on platelet-leukocyte aggregates and their role in the pathogenesis of Kawasaki disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:587-594. [PMID: 37382127 DOI: 10.7499/j.issn.1008-8830.2302066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Activated platelets may interact with various types of leukocytes such as monocytes, neutrophils, dendritic cells, and lymphocytes, trigger intercellular signal transduction, and thus lead to thrombosis and synthesis of massive inflammatory mediators. Elevated levels of circulating platelet-leukocyte aggregates have been found in patients with thrombotic or inflammatory diseases. This article reviews the latest research on the formation, function, and detection methods of platelet-leukocyte aggregates and their role in the onset of Kawasaki disease, so as to provide new ideas for studying the pathogenesis of Kawasaki disease.
Collapse
Affiliation(s)
- Li-Chao Gao
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Fang-Qi Gong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
12
|
Zhang WJ, Li MY, Wang CY, Feng X, Hu DX, Wu LD, Hu JL. P2Y12 receptor involved in the development of chronic nociceptive pain as a sensory information mediator. Biomed Pharmacother 2023; 164:114975. [PMID: 37267639 DOI: 10.1016/j.biopha.2023.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Direct or indirect damage to the nervous system (such as inflammation or tumor invasion) can lead to dysfunction and pain. The generation of pain is mainly reflected in the activation of glial cells and the abnormal discharge of sensory neurons, which transmit stronger sensory information to the center. P2Y12 receptor plays important roles in physiological and pathophysiological processes including inflammation and pain. P2Y12 receptor involved in the occurrence of pain as a sensory information mediator, which enhances the activation of microglia and the synaptic plasticity of primary sensory neurons, and reaches the higher center through the ascending conduction pathway (mainly spinothalamic tract) to produce pain. While the application of P2Y12 receptor antagonists (PBS-0739, AR-C69931MX and MRS2359) have better antagonistic activity and produce analgesic pharmacological properties. Therefore, in this article, we discussed the role of the P2Y12 receptor in different chronic pains and its use as a pharmacological target for pain relief.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Mei-Yong Li
- Department of Laboratory medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng-Yi Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Xiao Feng
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Li-Dong Wu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Jia-Ling Hu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
13
|
Rolling CC, Barrett TJ, Berger JS. Platelet-monocyte aggregates: molecular mediators of thromboinflammation. Front Cardiovasc Med 2023; 10:960398. [PMID: 37255704 PMCID: PMC10225702 DOI: 10.3389/fcvm.2023.960398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Platelets, key facilitators of primary hemostasis and thrombosis, have emerged as crucial cellular mediators of innate immunity and inflammation. Exemplified by their ability to alter the phenotype and function of monocytes, activated platelets bind to circulating monocytes to form monocyte-platelet aggregates (MPA). The platelet-monocyte axis has emerged as a key mechanism connecting thrombosis and inflammation. MPA are elevated across the spectrum of inflammatory and autoimmune disorders, including cardiovascular disease, systemic lupus erythematosus (SLE), and COVID-19, and are positively associated with disease severity. These clinical disorders are all characterized by an increased risk of thromboembolic complications. Intriguingly, monocytes in contact with platelets become proinflammatory and procoagulant, highlighting that this interaction is a central element of thromboinflammation.
Collapse
Affiliation(s)
- Christina C. Rolling
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Yang K, Wu B, Wei W, Li C, Li L, Cong Z, Xiang Q. Curdione ameliorates sepsis-induced lung injury by inhibiting platelet-mediated neutrophil extracellular trap formation. Int Immunopharmacol 2023; 118:110082. [PMID: 36989889 DOI: 10.1016/j.intimp.2023.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Sepsis-associated acute lung injury remains to be a major cause of morbidity and mortality worldwide, and there is a lack of effective therapeutic drugs. Curdione, an activeingredient of Curcuma zedoary, a traditional Chinese medicine (TCM), possesses a variety of pharmacological actions, such as anti-inflammatory, antioxidant and inhibition of platelet aggregation. However, whether curdione protects against sepsis-induced lung injury is still undetermined. In this study, we investigated the effects of curdione on sepsis-induced lung injury. Cecal ligation and puncture (CLP) surgery was performed in mice to establish a model of sepsis. Twenty-four hours after CLP, bronchoalveolar lavage fluid (BALF) and lung tissue samples were harvested for investigation. The protective effects of curdione on acute lung injury and potential mechanisms were explored by detecting pathological sections, exudative proteins, oxidative responses, inflammatory factors, platelet activation, neutrophil infiltration, and neutrophil extracellular trap (NET) formation in the lung and were further verified in vitro. We showed that treatment with curdione clearly relieved histopathological changes, reduced inflammatory cytokine elevation and total protein concentrations in BALF, and decreased oxidative stress responses in lung tissues. In addition, curdione inhibited platelet activation, further blocking the interaction between platelets and neutrophils. Finally, neutrophil infiltration and NET formation was also reduced in mice treated with curdione. In conclusion, curdione alleviates sepsis-induced lung injury by inhibiting platelet-mediated neutrophil recruitment, infiltration, and NET formation as well as its anti-inflammatory and antioxidant properties. Curdione has great therapeutic potential in sepsis.
Collapse
Affiliation(s)
- Kai Yang
- Department of Anesthesiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, South Wanping Road, Xuhui District, Shanghai 200032, China
| | - Bin Wu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Wu Wei
- Department of Anesthesiology, the Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, No. A17, Heishanhu Road, Haidian District, Beijing 100091, China
| | - Cuiyu Li
- Department of Anesthesiology, the Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, No. A17, Heishanhu Road, Haidian District, Beijing 100091, China
| | - Lu Li
- Department of Infectious Diseases, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Zhukai Cong
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| | - Qian Xiang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| |
Collapse
|
15
|
Schmuckenschlager A, Pirabe A, Assinger A, Schrottmaier WC. Platelet count, temperature and pH value differentially affect hemostatic and immunomodulatory functions of platelets. Thromb Res 2023; 223:111-122. [PMID: 36738664 DOI: 10.1016/j.thromres.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Platelets are primarily recognized for their role in hemostasis, but also regulate immune responses by interacting with leukocytes. Their highly sensitive nature enables platelets to rapidly respond to micro-environmental changes, which is crucial under physiological condition but can jeopardize in vitro analyses. Thus, we tested how platelet count and changes in pH and temperatures, which are commonly experienced during inflammation and infection but also affected by ex vivo analyses, influence platelet-leukocyte interaction and immunomodulation. Reducing platelet count by up to 90 % slightly decreased platelet activation and platelet-leukocyte aggregate formation, but did not affect CD11b activation nor CD62L shedding of monocytes or neutrophils. Acidosis (pH 6.9) slightly elevated platelet degranulation and binding to innate leukocytes, though pH changes did not modulate leukocyte activation. While platelet responsiveness was higher at room temperature than at 37 °C, incubation temperature did not affect platelet-leukocyte aggregate formation. In contrast, platelet-mediated CD11b activation and CD62L expression increased with temperature. Our data thus demonstrate the importance of standardized protocols for sample preparation and assay procedure to obtain comparable data. Further, unspecific physiologic responses such as thrombocytopenia, acidosis or temperature changes may contribute to platelet dysfunction and altered platelet-mediated immunomodulation in inflammatory and infectious disease.
Collapse
Affiliation(s)
- Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Li Y, Wang H, Zhao Z, Yang Y, Meng Z, Qin L. Effects of the interactions between platelets with other cells in tumor growth and progression. Front Immunol 2023; 14:1165989. [PMID: 37153586 PMCID: PMC10158495 DOI: 10.3389/fimmu.2023.1165989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
It has been confirmed that platelets play a key role in tumorigenesis. Tumor-activated platelets can recruit blood cells and immune cells to migrate, establish an inflammatory tumor microenvironment at the sites of primary and metastatic tumors. On the other hand, they can also promote the differentiation of mesenchymal cells, which can accelerate the proliferation, genesis and migration of blood vessels. The role of platelets in tumors has been well studied. However, a growing number of studies suggest that interactions between platelets and immune cells (e.g., dendritic cells, natural killer cells, monocytes, and red blood cells) also play an important role in tumorigenesis and tumor development. In this review, we summarize the major cells that are closely associated with platelets and discuss the essential role of the interaction between platelets with these cells in tumorigenesis and tumor development.
Collapse
|
17
|
Li Z, Hadlich F, Wimmers K, Murani E. Glucocorticoid receptor hypersensitivity enhances inflammatory signaling and inhibits cell cycle progression in porcine PBMCs. Front Immunol 2022; 13:976454. [PMID: 36505401 PMCID: PMC9730246 DOI: 10.3389/fimmu.2022.976454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
The consequences of glucocorticoid receptor (GR) hypersensitivity during infection have so far received little attention. We previously discovered that a natural gain-of-function Ala610Val substitution in the porcine GR aggravates response of pigs to lipopolysaccharide (LPS)-induced endotoxemia, which can be alleviated by dexamethasone (DEX) pretreatment. In this work, we investigated the relevant molecular basis of these phenotypes by transcriptomic profiling of porcine peripheral blood mononuclear cells (PBMCs) carrying different GR genotypes, in unstimulated conditions or in response to DEX and/or LPS in vitro. The Val allele differentially regulated abunda+nt genes in an additive-genetic manner. A subset of more than 200 genes was consistently affected by the substitution across treatments. This was associated with upregulation of genes related i.a. to endo-lysosomal system, lipid and protein catabolism, and immune terms including platelet activation, and antigen presentation, while downregulated genes were mainly involved in cell cycle regulation. Most importantly, the set of genes constitutively upregulated by Val includes members of the TLR4/LPS signaling pathway, such as LY96. Consequently, when exposing PBMCs to LPS treatment, the Val variant upregulated a panel of additional genes related to TLR4 and several other pattern recognition receptors, as well as cell death and lymphocyte signaling, ultimately amplifying the inflammatory responses. In contrast, when stimulated by DEX treatment, the Val allele orchestrated several genes involved in anti-inflammatory responses during infection. This study provides novel insights into the impact of GR hypersensitivity on the fate and function of immune cells, which may be useful for endotoxemia therapy.
Collapse
Affiliation(s)
- Zhiwei Li
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Eduard Murani
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,*Correspondence: Eduard Murani,
| |
Collapse
|
18
|
Schrottmaier WC, Kral-Pointner JB, Salzmann M, Mussbacher M, Schmuckenschlager A, Pirabe A, Brunnthaler L, Kuttke M, Maier B, Heber S, Datler H, Ekici Y, Niederreiter B, Heber U, Blomgren B, Gorki AD, Söderberg-Nauclér C, Payrastre B, Gratacap MP, Knapp S, Schabbauer G, Assinger A. Platelet p110β mediates platelet-leukocyte interaction and curtails bacterial dissemination in pneumococcal pneumonia. Cell Rep 2022; 41:111614. [PMID: 36351402 DOI: 10.1016/j.celrep.2022.111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Phosphatidylinositol 3-kinase catalytic subunit p110β is involved in tumorigenesis and hemostasis. However, it remains unclear if p110β also regulates platelet-mediated immune responses, which could have important consequences for immune modulation during anti-cancer treatment with p110β inhibitors. Thus, we investigate how platelet p110β affects inflammation and infection. Using a mouse model of Streptococcus pneumoniae-induced pneumonia, we find that both platelet-specific p110β deficiency and pharmacologic inhibition of p110β with TGX-221 exacerbate disease pathogenesis by preventing platelet-monocyte and neutrophil interactions, diminishing their infiltration and enhancing bacterial dissemination. Platelet p110β mediates neutrophil phagocytosis of S. pneumoniae in vitro and curtails bacteremia in vivo. Genetic deficiency or inhibition of platelet p110β also impairs macrophage recruitment in an independent model of sterile peritonitis. Our results demonstrate that platelet p110β dysfunction exacerbates pulmonary infection by impeding leukocyte functions. Thereby, our findings provide important insights into the immunomodulatory potential of PI3K inhibitors in bacterial infection.
Collapse
Affiliation(s)
- Waltraud Cornelia Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Julia Barbara Kral-Pointner
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Manuel Salzmann
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Marion Mussbacher
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Anna Schmuckenschlager
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Anita Pirabe
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Laura Brunnthaler
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Mario Kuttke
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Barbara Maier
- Department of Medicine I, Research Division of Infection Biology, Medical University Vienna, 1090 Vienna, Austria
| | - Stefan Heber
- Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Datler
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Yasemin Ekici
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrike Heber
- Department of Pathology and Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Bo Blomgren
- Department of Clinical Sciences, Danderyd Hospital, Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anna-Dorothea Gorki
- Department of Medicine I, Research Division of Infection Biology, Medical University Vienna, 1090 Vienna, Austria
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, Centre for Molecular Medicine, Microbial Pathogenesis Unit, Karolinska University Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Bernard Payrastre
- INSERM UMR1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 31024 Toulouse, France
| | - Marie-Pierre Gratacap
- INSERM UMR1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 31024 Toulouse, France
| | - Sylvia Knapp
- Department of Medicine I, Research Division of Infection Biology, Medical University Vienna, 1090 Vienna, Austria
| | - Gernot Schabbauer
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Corken A, Ware J, Dai J, Arthur JM, Smyth S, Davis CL, Liu J, Harville TO, Phadnis MA, Mehta JL, Rahmatallah Y, Jain N. Platelet-Dependent Inflammatory Dysregulation in Patients with Stages 4 or 5 Chronic Kidney Disease: A Mechanistic Clinical Study. KIDNEY360 2022; 3:2036-2047. [PMID: 36591354 PMCID: PMC9802560 DOI: 10.34067/kid.0005532022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Background Chronic kidney disease (CKD) is characterized by dysregulated inflammation that worsens with CKD severity. The role of platelets in modulating inflammation in stage 4 or 5 CKD remains unexplored. We investigated whether there are changes in platelet-derived thromboinflammatory markers in CKD with dual antiplatelet therapy (DAPT; aspirin 81 mg/d plus P2Y12 inhibitor). Methods In a mechanistic clinical trial, we compared platelet activation markers (aggregation and surface receptor expression), circulating platelet-leukocyte aggregates, leukocyte composition (monocyte subtypes and CD11b surface expression), and plasma cytokine profile (45 analytes) of non-CKD controls (n=26) and CKD outpatients (n=48) with a glomerular filtration rate (GFR) <30 ml/min per 1.73 m2 on 2 weeks of DAPT. Results Patients with CKD demonstrated a reduced mean platelet count, elevated mean platelet volume, reduced platelet-leukocyte aggregates, reduced platelet-bound monocytes, higher total non-classic monocytes in the circulation, and higher levels of IL-1RA, VEGF, and fractalkine (all P<0.05). There were no differences in platelet activation markers between CKD and controls. Although DAPT reduced platelet aggregation in both groups, it had multifaceted effects on thromboinflammatory markers in CKD, including a reduction in PDGF levels in all CKD individuals, reductions in IL-1β and TNF-α levels in select CKD individuals, and no change in a number of other cytokines. Significant positive correlations existed for baseline IL-1β, PDGF, and TNF-α levels with older age, and for baseline TNF-α levels with presence of diabetes mellitus and worse albuminuria. Mean change in IL-1β and PDGF levels on DAPT positively correlated with younger age, mean change in TNF-α levels with higher GFR, and mean changes in PDGF, and TRAIL levels correlated with worse albuminuria. Minimum spanning trees plot of cytokines showed platelet-derived CD40L had a large reduction in weight factor after DAPT in CKD. Additionally, platelet-derived IL-1β and PDGF were tightly correlated with other cytokines, with IL-1β as the hub cytokine. Conclusions Attenuated interactions between platelets and leukocytes in the CKD state coincided with no change in platelet activation status, an altered differentiation state of monocytes, and heightened inflammatory markers. Platelet-derived cytokines were one of the central cytokines in patients with CKD that were tightly correlated with others. DAPT had multifaceted effects on thromboinflammation, suggesting that there is platelet-dependent and -independent inflammation in stage 4 or 5 CKD.
Collapse
Affiliation(s)
- Adam Corken
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jerry Ware
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Junqiang Dai
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - John M. Arthur
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas,Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Susan Smyth
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Clayton L. Davis
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Juan Liu
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Terry O. Harville
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas,Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Milind A. Phadnis
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Jawahar L. Mehta
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas,Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nishank Jain
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas,Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| |
Collapse
|
20
|
Edlmann E, Giorgi-Coll S, Thelin EP, Hutchinson PJ, Carpenter KLH. Dexamethasone reduces vascular endothelial growth factor in comparison to placebo in post-operative chronic subdural hematoma samples: A target for future drug therapy? Front Neurol 2022; 13:952308. [PMID: 36158966 PMCID: PMC9492873 DOI: 10.3389/fneur.2022.952308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Chronic subdural hematoma (CSDH) is a collection of blood and fluid that arises on the brain surface due to a combination of trauma and/or inflammation. The mainstay of treatment is surgical drainage, but CSDH can recur. Dexamethasone has been shown to reduce CSDH recurrence, but its mechanism of action has not been fully elucidated. Understanding the inflammatory mediators driving CSDH formation and recurrence and how dexamethasone alters this can help develop new therapeutic strategies. Methods A subgroup of adult patients recruited to the Dex-CSDH trial, randomized to dexamethasone or placebo, who had surgery for their CSDH, were included. CSDH fluid and peripheral blood were collected intraoperatively, from post-operative drains and operated recurrences. Samples were analyzed using a 12-plex panel of inflammatory mediators. Clinical patient data were also reviewed. Results A total of 52 patients, with a mean age of 76 years, were included. Five recurrent CSDHs occurred. Vascular endothelial growth factor (VEGF) had the highest concentration across all CSDHs, and only matrix metalloproteinase (MMP)-9 had lower concentrations in CSDH compared to plasma but was increased in recurrent CSDHs. The interleukin (IL)-10 concentration was significantly lower in primary CSDHs that recurred. Most inflammatory mediators increased post-operatively, and dexamethasone significantly reduced the post-operative peak in VEGF on day 2, compared to placebo. Conclusion It is evident that VEGF plays a critical role in the inflammatory response in CSDH. The post-operative reduction with dexamethasone could signal the mechanism by which it reduces recurrence. Novel therapies with a better side-effect profile than dexamethasone should be targeted at VEGF or potential alternatives such as IL-10 supplementation.
Collapse
Affiliation(s)
- Ellie Edlmann
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
- Southwest Neurosurgical Centre, Derriford Hospital, Plymouth, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Eric P. Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Sun X, Zhou M, Pu J, Wang T. Stachydrine exhibits a novel antiplatelet property and ameliorates platelet-mediated thrombo-inflammation. Biomed Pharmacother 2022; 152:113184. [PMID: 35679717 DOI: 10.1016/j.biopha.2022.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Platelets are versatile anucleate cells involved in thrombosis as well as inflammation. Stachydrine (STA), a major bioactive compound extracted from Motherwort, has multiple pharmacological properties. Nevertheless, the significance of STA in platelet regulation and whether STA could ameliorate platelet-mediated thrombo-inflammation still remain elusive. METHODS Human platelets were used to assess the regulatory effects of STA on platelet activation and interactions with neutrophils in vitro. FeCl3 injury-induced carotid/mesenteric thrombosis and collagen/epinephrine-induced pulmonary thromboembolism model were used to explore whether STA could regulate thrombosis in vivo. Furthermore, a cecal ligation and puncture-induced sepsis model was employed to investigate the role of STA in thrombo-inflammatory diseases. RESULTS STA markedly suppressed platelet activation represented by aggregation, secretion, αIIbβ3-mediated signaling events and calcium mobilization, etc. by inhibiting agonists-induced activation signaling and potentiating cGMP-dependent inhibitory signaling. Mice receiving STA-treated platelets were less susceptible to thrombosis in vivo. In addition, decreased platelet-neutrophil interactions including platelet-neutrophil aggregates and neutrophil extracellular traps, and alleviative sepsis-induced multiorgan damage were observed due to STA-mediated platelet inhibition. CONCLUSION This study suggested the potential therapeutic role of STA in thrombotic and thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Xianting Sun
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meng Zhou
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China.
| | - Ting Wang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
22
|
Xu P, Shao X, Ou Y, Zhan Y, Ji L, Zhuang X, Li Y, Ma Y, Wu D, Qiao T, Wang X, Chen H, Cheng Y. Neutrophils contribute to elevated BAFF levels to modulate adaptive immunity in patients with primary immune thrombocytopenia by CD62P and PSGL1 interaction. Clin Transl Immunology 2022; 11:e1399. [PMID: 35782911 PMCID: PMC9237625 DOI: 10.1002/cti2.1399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
Objectives Immune thrombocytopenia (ITP) is an autoimmune disease characterised by impaired platelet production and increased platelet destruction. However, the involvement of neutrophils in ITP is yet to be explored. Methods B-cell activating factor (BAFF) expression and activation markers of neutrophils, as well as activation of platelets in ITP patients and healthy controls were measured. The interaction of CD62P on platelets and BAFF in neutrophils was analysed by correlation analysis and verified by co-culture. The effects of neutrophils on apoptosis of acquired immune cells were evaluated in co-culture systems with or without belimumab. Results The BAFF expression and activation of neutrophils were increased in active ITP patients. BAFF levels in neutrophils were positively correlated with CD62P+ platelets and neutrophils produced increased BAFF by interfering with CD62P on platelets. Neutrophils inhibited the apoptosis of CD4+, CD8+ and CD19+ cells dependent on BAFF levels, and belimumab could interrupt the effects of neutrophils. Conclusions Neutrophils were overactivated in ITP patients and participated in the progression of disease by producing excessive BAFF, which could be regulated by CD62P on platelets. Targeting BAFF by belimumab may be a novel potential therapy for ITP.
Collapse
Affiliation(s)
- Pengcheng Xu
- Center for Tumor Diagnosis & TherapyJinshan Hospital, Fudan UniversityShanghaiChina
| | - Xia Shao
- Center for Tumor Diagnosis & TherapyJinshan Hospital, Fudan UniversityShanghaiChina
| | - Yang Ou
- Center for Tumor Diagnosis & TherapyJinshan Hospital, Fudan UniversityShanghaiChina
| | - Yanxia Zhan
- Department of HematologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Lili Ji
- Department of HematologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Xibing Zhuang
- Center for Tumor Diagnosis & TherapyJinshan Hospital, Fudan UniversityShanghaiChina
| | - Ying Li
- Center for Tumor Diagnosis & TherapyJinshan Hospital, Fudan UniversityShanghaiChina
| | - Yanna Ma
- Center for Tumor Diagnosis & TherapyJinshan Hospital, Fudan UniversityShanghaiChina
| | - Duojiao Wu
- Center for Tumor Diagnosis & TherapyJinshan Hospital, Fudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Tiankui Qiao
- Center for Tumor Diagnosis & TherapyJinshan Hospital, Fudan UniversityShanghaiChina
| | - Xiangdong Wang
- Center for Tumor Diagnosis & TherapyJinshan Hospital, Fudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hao Chen
- Department of Thoracic SurgeryZhongshan Hospital Xuhui Branch, Fudan UniversityShanghaiChina
| | - Yunfeng Cheng
- Center for Tumor Diagnosis & TherapyJinshan Hospital, Fudan UniversityShanghaiChina
- Department of HematologyZhongshan Hospital, Fudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
23
|
Prognostic Value of Platelet to Lymphocyte Ratio in Sepsis: A Systematic Review and Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9056363. [PMID: 35707370 PMCID: PMC9192240 DOI: 10.1155/2022/9056363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
The goal of this study was to conduct a systematic review of the literature on the relationship between peripheral blood platelet to lymphocyte ratio (PLR) and mortality in sepsis and to integrate the findings in a meta-analysis. An electronic search of three main databases was performed: PubMed, Embase, and Scopus on 19 December 2021. Finally, 16 studies comprising 2403 septic patients, including 1249 survivors and 1154 nonsurvivors, were included in this meta-analysis. We found that PLR levels were significantly higher in nonsurvivors than in survivors (random effect model: SMD = 0.72, 95% CI; 0.35–1.10, p < 0.001). However, significant heterogeneity was observed across the studies (I2 = 94.1%, p < 0.01). So, we used random effect model in our meta-analysis. In the subgroup analysis, according to mortality time, patients deceased during one month after sepsis had elevated levels of PLR compared to survivors (SMD = 1.03, 95% CI = 0.15-1.92, p = 0.22). However, in-hospital mortality was not associated with PLR level (SMD = 0.41, 95% CI = −0.18-0.99, p = 0.175). Our findings support PLR to be a promising biomarker that can be readily integrated into clinical settings to aid in the prediction and prevention of sepsis mortality.
Collapse
|
24
|
Ferrari D, Rubini M, Burns JS. The Potential of Purinergic Signaling to Thwart Viruses Including SARS-CoV-2. Front Immunol 2022; 13:904419. [PMID: 35784277 PMCID: PMC9248768 DOI: 10.3389/fimmu.2022.904419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
A long-shared evolutionary history is congruent with the multiple roles played by purinergic signaling in viral infection, replication and host responses that can assist or hinder viral functions. An overview of the involvement of purinergic signaling among a range of viruses is compared and contrasted with what is currently understood for SARS-CoV-2. In particular, we focus on the inflammatory and antiviral responses of infected cells mediated by purinergic receptor activation. Although there is considerable variation in a patient's response to SARS-CoV-2 infection, a principle immediate concern in Coronavirus disease (COVID-19) is the possibility of an aberrant inflammatory activation causing diffuse lung oedema and respiratory failure. We discuss the most promising potential interventions modulating purinergic signaling that may attenuate the more serious repercussions of SARS-CoV-2 infection and aspects of their implementation.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Michele Rubini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Jorge S. Burns
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
25
|
Ludwig N, Hilger A, Zarbock A, Rossaint J. Platelets at the Crossroads of Pro-Inflammatory and Resolution Pathways during Inflammation. Cells 2022; 11:cells11121957. [PMID: 35741086 PMCID: PMC9221767 DOI: 10.3390/cells11121957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Platelets are among the most abundant cells in the mammalian circulation. Classical platelet functions in hemostasis and wound healing have been intensively explored and are generally accepted. During the past decades, the research focus broadened towards their participation in immune-modulatory events, including pro-inflammatory and, more recently, inflammatory resolution processes. Platelets are equipped with a variety of abilities enabling active participation in immunological processes. Toll-like receptors mediate the recognition of pathogens, while the release of granule contents and microvesicles promotes direct pathogen defense and an interaction with leukocytes. Platelets communicate and physically interact with neutrophils, monocytes and a subset of lymphocytes via soluble mediators and surface adhesion receptors. This interaction promotes leukocyte recruitment, migration and extravasation, as well as the initiation of effector functions, such as the release of extracellular traps by neutrophils. Platelet-derived prostaglandin E2, C-type lectin-like receptor 2 and transforming growth factor β modulate inflammatory resolution processes by promoting the synthesis of pro-resolving mediators while reducing pro-inflammatory ones. Furthermore, platelets promote the differentiation of CD4+ T cells in T helper and regulatory T cells, which affects macrophage polarization. These abilities make platelets key players in inflammatory diseases such as pneumonia and the acute respiratory distress syndrome, including the pandemic coronavirus disease 2019. This review focuses on recent findings in platelet-mediated immunity during acute inflammation.
Collapse
|
26
|
Schrottmaier WC, Schmuckenschlager A, Pirabe A, Assinger A. Platelets in Viral Infections - Brave Soldiers or Trojan Horses. Front Immunol 2022; 13:856713. [PMID: 35419008 PMCID: PMC9001014 DOI: 10.3389/fimmu.2022.856713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections are often associated with platelet activation and haemostatic complications. In line, low platelet counts represent a hallmark for poor prognosis in many infectious diseases. The underlying cause of platelet dysfunction in viral infections is multifaceted and complex. While some viruses directly interact with platelets and/or megakaryocytes to modulate their function, also immune and inflammatory responses directly and indirectly favour platelet activation. Platelet activation results in increased platelet consumption and degradation, which contributes to thrombocytopenia in these patients. The role of platelets is often bi-phasic. Initial platelet hyper-activation is followed by a state of platelet exhaustion and/or hypo-responsiveness, which together with low platelet counts promotes bleeding events. Thereby infectious diseases not only increase the thrombotic but also the bleeding risk or both, which represents a most dreaded clinical complication. Treatment options in these patients are limited and new therapeutic strategies are urgently needed to prevent adverse outcome. This review summarizes the current literature on platelet-virus interactions and their impact on viral pathologies and discusses potential intervention strategies. As pandemics and concomitant haemostatic dysregulations will remain a recurrent threat, understanding the role of platelets in viral infections represents a timely and pivotal challenge.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Wang M, Li X, Wang Q, Zhang M, He J, Ming S, Wang Z, Cao C, Zhang S, Geng L, Gong S, Huang X, Chen K, Wu Y. TLT-1 Promotes Platelet-Monocyte Aggregate Formation to Induce IL-10-Producing B Cells in Tuberculosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1642-1651. [PMID: 35277419 DOI: 10.4049/jimmunol.2001218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The immunoregulation of platelets and platelet-monocyte aggregates (PMAs) is increasingly recognized, but it roles in tuberculosis (TB) remain to be elucidated. In this study, we found that CD14+CD41+ PMAs were increased in peripheral blood of patients with active TB. CD14+CD41+ PMAs highly expressed triggering receptors expressed on myeloid cells (TREMs)-like transcript-1 (TLT-1), P-selectin (CD62P), and CD40L. Our in vitro study found that platelets from patients with active TB aggregate with monocytes to induce IL-1β and IL-6 production by monocytes. Importantly, we identified that TLT-1 was required for formation of PMAs. The potential TLT-1 ligand was expressed and increased on CD14+ monocytes of patients with TB determined by using TLT-1 fusion protein (TLT-1 Fc). Blocking of ligand-TLT-1 interaction with TLT-1 Fc reduced PMA formation and IL-1β and IL-6 production by monocytes. Further results demonstrated that PMAs induced IL-10 production by B cells (B10) dependent on IL-1β, IL-6, and CD40L signals in a coculture system. Moreover, TLT-1 Fc treatment suppressed B10 polarization via blocking PMA formation. Taking all of these data together, we elucidated that TLT-1 promoted PMA-mediated B10 polarization through enhancing IL-1β, IL-6, and CD40L origin from PMAs, which may provide potential targeting strategies for TB disease treatment.
Collapse
Affiliation(s)
- Manni Wang
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xingyu Li
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Qiaohua Wang
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Mei Zhang
- Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, China
| | - Jianzhong He
- Department of Pathology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Siqi Ming
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ziqing Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Can Cao
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Shunxian Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Xi Huang
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, China
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China
| | - Kang Chen
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Yongjian Wu
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
28
|
Tang X, Ma X, Cao J, Sheng X, Xing J, Chi H, Zhan W. The Influence of Temperature on the Antiviral Response of mIgM+ B Lymphocytes Against Hirame Novirhabdovirus in Flounder (Paralichthys olivaceus). Front Immunol 2022; 13:802638. [PMID: 35197977 PMCID: PMC8858815 DOI: 10.3389/fimmu.2022.802638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Hirame novirhabdovirus (HIRRV) is an ongoing threat to the aquaculture industry. The water temperature for the onset of HIRRV is below 15°C, the peak is about 10°C, but no mortality is observed over 20°C. Previous studies found the positive signal of matrix protein of HIRRV (HIRRV-M) was detected in the peripheral blood leukocytes of viral-infected flounder. Flow cytometry and indirect immunofluorescence assay showed that HIRRV-M was detected in mIgM+ B lymphocytes in viral-infected flounder maintained at 10°C and 20°C, and 22% mIgM+ B lymphocytes are infected at 10°C while 13% are infected at 20°C, indicating that HIRRV could invade into mIgM+ B lymphocytes. Absolute quantitative RT-PCR showed that the viral copies in mIgM+ B lymphocytes were significantly increased at 24 h post infection (hpi) both at 10°C and 20°C, but the viral copies in 10°C infection group were significantly higher than that in 20°C infection group at 72 hpi and 96 hpi. Furthermore, the B lymphocytes were sorted from HIRRV-infected flounder maintained at 10°C and 20°C for RNA-seq. The results showed that the differentially expression genes in mIgM+ B lymphocyte of healthy flounder at 10°C and 20°C were mainly enriched in metabolic pathways. Lipid metabolism and Amino acid metabolism were enhanced at 10°C, while Glucose metabolism was enhanced at 20°C. In contrast, HIRRV infection at 10°C induced the up-regulation of the Complement and coagulation cascades, FcγR-mediated phagocytosis, Platelets activation, Leukocyte transendothelial migration and Natural killer cell mediated cytotoxicity pathways at 72 hpi. HIRRV infection at 20°C induced the up-regulation of the Antigen processing and presentation pathway at 72 hpi. Subsequently, the temporal expression patterns of 16 genes involved in Antigen processing and presentation pathway were investigated by qRT-PCR, and results showed that the pathway was significantly activated by HIRRV infection at 20°C but inhibited at 10°C. In conclusion, HIRRV could invade into mIgM+ B lymphocytes and elicit differential immune response under 10°C and 20°C, which provide a deep insight into the antiviral response in mIgM+ B lymphocytes.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinbiao Ma
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Jing Cao
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Wenbin Zhan,
| |
Collapse
|
29
|
Popp SK, Vecchio F, Brown DJ, Fukuda R, Suzuki Y, Takeda Y, Wakamatsu R, Sarma MA, Garrett J, Giovenzana A, Bosi E, Lafferty AR, Brown KJ, Gardiner EE, Coupland LA, Thomas HE, Chong BH, Parish CR, Battaglia M, Petrelli A, Simeonovic CJ. Circulating platelet-neutrophil aggregates characterize the development of type 1 diabetes in humans and NOD mice. JCI Insight 2022; 7:153993. [PMID: 35076023 PMCID: PMC8855805 DOI: 10.1172/jci.insight.153993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Platelet-neutrophil aggregates (PNAs) facilitate neutrophil activation and migration and could underpin the recruitment of neutrophils to the pancreas during type 1 diabetes (T1D) pathogenesis. PNAs, measured by flow cytometry, were significantly elevated in the circulation of autoantibody-positive (Aab+) children and new-onset T1D children, as well as in pre-T1D (at 4 weeks and 10–12 weeks) and T1D-onset NOD mice, compared with relevant controls, and PNAs were characterized by activated P-selectin+ platelets. PNAs were similarly increased in pre-T1D and T1D-onset NOD isolated islets/insulitis, and immunofluorescence staining revealed increased islet-associated neutrophil extracellular trap (NET) products (myeloperoxidase [MPO] and citrullinated histones [CitH3]) in NOD pancreata. In vitro, cell-free histones and NETs induced islet cell damage, which was prevented by the small polyanionic drug methyl cellobiose sulfate (mCBS) that binds to histones and neutralizes their pathological effects. Elevated circulating PNAs could, therefore, act as an innate immune and pathogenic biomarker of T1D autoimmunity. Platelet hyperreactivity within PNAs appears to represent a previously unrecognized hematological abnormality that precedes T1D onset. In summary, PNAs could contribute to the pathogenesis of T1D and potentially function as a pre-T1D diagnostic.
Collapse
Affiliation(s)
- Sarah K. Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| | - Federica Vecchio
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Debra J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| | - Riho Fukuda
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Yuri Suzuki
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Yuma Takeda
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Rikako Wakamatsu
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Mahalakshmi A. Sarma
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| | - Jessica Garrett
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Anna Giovenzana
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emanuele Bosi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- San Raffaele Vita Salute University, Milan, Italy
| | - Antony R.A. Lafferty
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Department of Pediatrics, The Canberra Hospital, Canberra, Australia
| | - Karen J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Department of Pediatrics, The Canberra Hospital, Canberra, Australia
| | - Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Lucy A. Coupland
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Helen E. Thomas
- St. Vincent’s Institute of Medical Research, Melbourne, Australia
| | - Beng H. Chong
- Hematology Research Unit, St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Christopher R. Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Manuela Battaglia
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Charmaine J. Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| |
Collapse
|
30
|
Jiang H, Jin Y, Shang Y, Yuan G, Liu D, Li J, Wang C, Ding L, Tong X, Guo S, Gong F, Zhou F. Therapeutic Plateletpheresis in Patients With Thrombocytosis: Gender, Hemoglobin Before Apheresis Significantly Affect Collection Efficiency. Front Med (Lausanne) 2022; 8:762419. [PMID: 35004735 PMCID: PMC8738088 DOI: 10.3389/fmed.2021.762419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Thrombocytosis is a common symptom in myeloproliferative neoplasms (MPN), and excessive proliferation may deteriorate into thrombosis, bleeding, myelofibrosis, and may ultimately convert to acute leukemia. This study aimed to investigate the collection efficiency of plateletpheresis (CEPP) and factors influencing its efficacy in patients with thrombocytosis. Materials and Methods: From September 2010 to December 2016, 81 patients from two institutions in China with myeloproliferative neoplasms and thrombocytosis accompanied by severe symptoms were treated with plateletpheresis by Fresenius COM. TEC machine. Results: After apheresis, the median CEPP was 20.71% (IQR: 9.99–36.69%) and median PLT reduction rate was 25.87% (IQR: 21.78–36.23%). Further analysis showed that no significant difference was observed between PLT count with 800–1,000 × 109/L and > 1,000 × 109/L. The PLT counts significantly decreased (P < 0.001) after plateletpheresis, the red blood cell (RBC), white blood cell (WBC), hemoglobin (HGB), and hematocrit (HCT) levels showed no significant differences before- or after- plateletpheresis. Multivariate analysis showed that female sex (P = 0.009) and HGB (P = 0.010) before apheresis were associated with CEPP. Female (P = 0.022), HCT (P = 0.001) and blood volume (P = 0.015) were associated with the PLT reduction rate. Furthermore, symptoms were relieved after apheresis in patients whose PLT count was 800–1,000 × 109/L accompanied with symptoms. Conclusions: It is reasonable to perform plateletpheresis when the PLT count is over 800 × 109/L and patients are complicated by clinical symptoms such as dizziness, headache, somnolence, and stupor. Plateletpheresis is effective in removing PLTs especially in females with high HGB.
Collapse
Affiliation(s)
- Hongqiang Jiang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanxia Jin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.,College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Yufeng Shang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guolin Yuan
- Department of Hematology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Dandan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianfang Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cong Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lu Ding
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shishang Guo
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structure of Ministry of Education, Wuhan University, Wuhan, China
| | - Fayun Gong
- School of Mechanical Engineering, Hubei University of Technology, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Schrottmaier WC, Mussbacher M, Salzmann M, Kral-Pointner JB, Assinger A. PI3K Isoform Signalling in Platelets. Curr Top Microbiol Immunol 2022; 436:255-285. [PMID: 36243848 DOI: 10.1007/978-3-031-06566-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Platelets are unique anucleated blood cells that constantly patrol the vasculature to seal and prevent injuries in a process termed haemostasis. Thereby they rapidly adhere to the subendothelial matrix and recruit further platelets, resulting in platelet aggregates. Apart from their central role in haemostasis, they also kept some of their features inherited by their evolutionary ancestor-the haemocyte, which was also involved in immune defences. Together with leukocytes, platelets fight pathogenic invaders and guide many immune processes. In addition, they rely on several signalling pathways which are also relevant to immune cells. Among these, one of the central signalling hubs is the PI3K pathway. Signalling processes in platelets are unique as they lack a nucleus and therefore transcriptional regulation is absent. As a result, PI3K subclasses fulfil distinct roles in platelets compared to other cells. In contrast to leukocytes, the central PI3K subclass in platelet signalling is PI3K class Iβ, which underlines the uniqueness of this cell type and opens new ways for potential platelet-specific pharmacologic inhibition. An overview of platelet function and signalling with emphasis on PI3K subclasses and their respective inhibitors is given in this chapter.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, USA
| | - Manuel Salzmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Dai XP, Wu FY, Cui C, Liao XJ, Jiao YM, Zhang C, Song JW, Fan X, Zhang JY, He Q, Wang FS. Increased Platelet-CD4+ T Cell Aggregates Are Correlated With HIV-1 Permissiveness and CD4+ T Cell Loss. Front Immunol 2021; 12:799124. [PMID: 34987521 PMCID: PMC8720770 DOI: 10.3389/fimmu.2021.799124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic HIV-1 infection is associated with persistent inflammation, which contributes to disease progression. Platelet-T cell aggregates play a critical role in maintaining inflammation. However, the phenotypic characteristics and clinical significance of platelet-CD4+ T cell aggregates remain unclear in different HIV-infected populations. In this study, we quantified and characterized platelet-CD4+ T cell aggregates in the peripheral blood of treatment-naïve HIV-1-infected individuals (TNs), immunological responders to antiretroviral therapy (IRs), immunological non-responders to antiretroviral therapy (INRs), and healthy controls (HCs). Flow cytometry analysis and immunofluorescence microscopy showed increased platelet-CD4+ T cell aggregate formation in TNs compared to HCs during HIV-1 infection. However, the frequencies of platelet-CD4+ T cell aggregates decreased in IRs compared to TNs, but not in INRs, which have shown severe immunological dysfunction. Platelet-CD4+ T cell aggregate frequencies were positively correlated with HIV-1 viral load but negatively correlated with CD4+ T cell counts and CD4/CD8 ratios. Furthermore, we observed a higher expression of CD45RO, HIV co-receptors, HIV activation/exhaustion markers in platelet-CD4+ T cell aggregates, which was associated with HIV-1 permissiveness. High levels of caspase-1 and caspase-3, and low levels of Bcl-2 in platelet-CD4+ T cell aggregates imply the potential role in CD4+ T cell loss during HIV-1 infection. Furthermore, platelet-CD4+ T cell aggregates contained more HIV-1 gag viral protein and HIV-1 DNA than their platelet-free CD4+ T cell counterparts. The platelet-CD4+ T cell aggregate levels were positively correlated with plasma sCD163 and sCD14 levels. Our findings demonstrate that platelet-CD4+ T cell aggregate formation has typical characteristics of HIV-1 permissiveness and is related to immune activation during HIV-1 infection.
Collapse
Affiliation(s)
- Xiao-Peng Dai
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Noncommissioned Officer School, Army Medical University, Shijiazhuang, China
| | - Feng-Ying Wu
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng Cui
- Noncommissioned Officer School, Army Medical University, Shijiazhuang, China
| | - Xue-Jiao Liao
- The Third People’s Hospital of Shenzhen, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| | - Qing He
- The Third People’s Hospital of Shenzhen, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| | - Fu-Sheng Wang
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| |
Collapse
|
33
|
Heinzmann ACA, Coenen DM, Vajen T, Cosemans JMEM, Koenen RR. Combined Antiplatelet Therapy Reduces the Proinflammatory Properties of Activated Platelets. TH OPEN 2021; 5:e533-e542. [PMID: 34901735 PMCID: PMC8651446 DOI: 10.1055/a-1682-3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
The cause of atherothrombosis is rupture or erosion of atherosclerotic lesions, leading to an increased risk of myocardial infarction or stroke. Here, platelet activation plays a major role, leading to the release of bioactive molecules, for example, chemokines and coagulation factors, and to platelet clot formation. Several antiplatelet therapies have been developed for secondary prevention of cardiovascular events, in which anticoagulant drugs are often combined. Besides playing a role in hemostasis, platelets are also involved in inflammation. However, it is unclear whether current antiplatelet therapies also affect platelet immune functions. In this study, the possible anti-inflammatory effects of antiplatelet medications on chemokine release were investigated using enzyme-linked immunosorbent assay and on the chemotaxis of THP-1 cells toward platelet releasates. We found that antiplatelet medication acetylsalicylic acid (ASA) led to reduced chemokine (CC motif) ligand 5 (CCL5) and chemokine (CXC motif) ligand 4 (CXCL4) release from platelets, while leukocyte chemotaxis was not affected. Depending on the agonist, α
IIb
β
3
and P2Y
12
inhibitors also affected CCL5 or CXCL4 release. The combination of ASA with a P2Y
12
inhibitor or a phosphodiesterase (PDE) inhibitor did not lead to an additive reduction in CCL5 or CXCL4 release. Interestingly, these combinations did reduce leukocyte chemotaxis. This study provides evidence that combined therapy of ASA and a P2Y
12
or PDE3 inhibitor can decrease the inflammatory leukocyte recruiting potential of the releasate of activated platelets.
Collapse
Affiliation(s)
- Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Daniëlle M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.,Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Tanja Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.,Cardiovascular Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
34
|
Schrottmaier WC, Pirabe A, Pereyra D, Heber S, Hackl H, Schmuckenschlager A, Brunnthaler L, Santol J, Kammerer K, Oosterlee J, Pawelka E, Treiber SM, Khan AO, Pugh M, Traugott MT, Schörgenhofer C, Seitz T, Karolyi M, Jilma B, Rayes J, Zoufaly A, Assinger A. Adverse Outcome in COVID-19 Is Associated With an Aggravating Hypo-Responsive Platelet Phenotype. Front Cardiovasc Med 2021; 8:795624. [PMID: 34957266 PMCID: PMC8702807 DOI: 10.3389/fcvm.2021.795624] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Thromboembolic complications are frequently observed in Coronavirus disease 2019 (COVID-19). While COVID-19 is linked to platelet dysregulation, the association between disease outcome and platelet function is less clear. We prospectively monitored platelet activation and reactivity in 97 patients during the first week of hospitalization and determined plasma markers of platelet degranulation and inflammation. Adverse outcome in COVID-19 was associated with increased basal platelet activation and diminished platelet responses, which aggravated over time. Especially GPIIb/IIIa responses were abrogated, pointing toward impeded platelet aggregation. Moreover, platelet-leukocyte aggregate formation was diminished, pointing toward abrogated platelet-mediated immune responses in COVID-19. No general increase in plasma levels of platelet-derived granule components could be detected, arguing against platelet exhaustion. However, studies on platelets from healthy donors showed that plasma components in COVID-19 patients with unfavorable outcome were at least partly responsible for diminished platelet responses. Taken together this study shows that unfavorable outcome in COVID-19 is associated with a hypo-responsive platelet phenotype that aggravates with disease progression and may impact platelet-mediated immunoregulation.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - David Pereyra
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Stefan Heber
- Institute of Physiology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Schmuckenschlager
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Laura Brunnthaler
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jonas Santol
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Kerstin Kammerer
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Justin Oosterlee
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Erich Pawelka
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Sonja M Treiber
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Christian Schörgenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Tamara Seitz
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Mario Karolyi
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Xiong W, Wang Y, Zhou X. Low-dose aspirin might alleviate the symptoms of preeclampsia by increasing the expression of antioxidative enzymes. Exp Ther Med 2021; 22:1418. [PMID: 34707700 PMCID: PMC8543183 DOI: 10.3892/etm.2021.10853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy-related syndrome that is characterized by new onset of hypertension combined with proteinuria or end-organ dysfunction occurring after 20 weeks of pregnancy. Endothelial dysfunction is also commonly observed in patients with PE. PE remains a leading cause of maternal morbidity and mortality, resulting in ~76,000 maternal and 500,000 fetus and newborn deaths worldwide annually. The present study aimed to investigate the protective effect of aspirin in patients with PE. A PE model was established in C57/BL mice, followed by the detection of expression levels of antioxidative enzymes, including superoxide dismutase 1, catalase, periaxin and thioredoxin and AKT/mTOR signaling pathway-related proteins by performing western blotting. The concentration of these enzymes in serum samples from PE model mice was also assessed. Compared with the negative control group, the expression of these antioxidative enzymes was decreased in PE model mice (P<0.05). High-dose aspirin treatment enhanced PE-induced effects, whereas low-dose aspirin treatment partially reversed PE-induced effects (P<0.05). Moreover, the results indicated that the effects of aspirin treatment on PE might be mediated via the AKT/mTOR signaling pathway. Therefore, low-dose aspirin administration may serve as a therapeutic strategy for PE.
Collapse
Affiliation(s)
- Wen Xiong
- Department of Obstetrics, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Yanjun Wang
- Department of Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Xine Zhou
- Department of Obstetrics, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
36
|
P 2Y 12 receptor blockers are anti-inflammatory drugs inhibiting both circulating monocytes and macrophages including THP-1 cells. Sci Rep 2021; 11:17459. [PMID: 34465804 PMCID: PMC8408182 DOI: 10.1038/s41598-021-95710-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/22/2021] [Indexed: 01/11/2023] Open
Abstract
P2Y12 blockade improves patient outcomes after myocardial infarction. As well as antithrombotic effects, anti-inflammatory effects may contribute to this beneficial clinical outcome. Here we aimed to identify potential anti-inflammatory effects of P2Y12 receptor blockers on monocytes and macrophages. Using flow cytometry, migration assays, flow chambers and RNA microarrays, we investigated the effects of adenosine diphosphate (ADP) and P2Y12 receptor blockers on blood monocytes, THP-1 monocytes and THP-1 monocytes after differentiation to macrophages. P2Y12 -expressing platelets can form aggregates with monocytes in circulating blood. Mediated by platelets, ADP results in activation of the integrin receptor Mac-1 on blood monocytes, as detected by the conformation-specific single-chain antibody MAN-1. Via the same association with platelets, THP-1 monocyte adhesion to the endothelial intercellular adhesion molecule 1 (ICAM-1) is induced by ADP. P2Y12 receptor blockers prevent these ADP effects on monocytes. Interestingly, in contrast to THP-1 monocytes, THP-1 monocytes, after differentiation to macrophages, directly expressed the P2Y12 receptor and consequently ADP was found to be a potent chemoattractant. Again, P2Y12 receptor blockers antagonised this effect. Accordingly, stimulation of THP-1 macrophages with ADP caused a substantial change in gene expression pattern and upregulation of several genes associated with inflammation and atherogenesis. These data establish novel anti-inflammatory effects of P2Y12 receptor blockers on monocytes and macrophages, which are expected to contribute to cardiovascular risk reduction.
Collapse
|
37
|
Li F, Xu D, Hou K, Gou X, Li Y. The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. J Thromb Thrombolysis 2021; 50:874-885. [PMID: 32248335 DOI: 10.1007/s11239-020-02098-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
P2Y12 receptors on platelets have long been the main target of antiplatelet drugs. However, a growing number of studies have revealed that P2Y12 receptor activation on microglia and vascular smooth muscle cells (VSMCs) also aggravates ischemic stroke injury. The proliferation and migration of VSMCs in the vascular wall have important influence on the early lesion of atherosclerosis, which may lead to the origin of cerebral ischemic attack of atherosclerosis. Blockage of cellular P2Y12 receptors could inhibit microglial activation, block formation of platelet-leukocyte aggregates, reduce proinflammatory cytokine levels and suppress migration and proliferation of VSMCs, implying that apart from anti-thrombotic effect, P2Y12 inhibitors have additional neuroprotective, anti-inflammatory and anti-atherosclerotic therapeutic benefits against ischemic stroke. In this review, we will summarize recent advances in studies on P2Y12 receptors and emphatically introduce their significance in microglia, platelets and VSMCs after ischemic stroke, discussing how to exert the beneficial effects of P2Y12 inhibition.
Collapse
Affiliation(s)
- Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xue Gou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
38
|
Gusev E, Sarapultsev A, Hu D, Chereshnev V. Problems of Pathogenesis and Pathogenetic Therapy of COVID-19 from the Perspective of the General Theory of Pathological Systems (General Pathological Processes). Int J Mol Sci 2021; 22:7582. [PMID: 34299201 PMCID: PMC8304657 DOI: 10.3390/ijms22147582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
The COVID-19 pandemic examines not only the state of actual health care but also the state of fundamental medicine in various countries. Pro-inflammatory processes extend far beyond the classical concepts of inflammation. They manifest themselves in a variety of ways, beginning with extreme physiology, then allostasis at low-grade inflammation, and finally the shockogenic phenomenon of "inflammatory systemic microcirculation". The pathogenetic core of critical situations, including COVID-19, is this phenomenon. Microcirculatory abnormalities, on the other hand, lie at the heart of a specific type of general pathological process known as systemic inflammation (SI). Systemic inflammatory response, cytokine release, cytokine storm, and thrombo-inflammatory syndrome are all terms that refer to different aspects of SI. As a result, the metabolic syndrome model does not adequately reflect the pathophysiology of persistent low-grade systemic inflammation (ChSLGI). Diseases associated with ChSLGI, on the other hand, are risk factors for a severe COVID-19 course. The review examines the role of hypoxia, metabolic dysfunction, scavenger receptors, and pattern-recognition receptors, as well as the processes of the hemophagocytic syndrome, in the systemic alteration and development of SI in COVID-19.
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia; (E.G.); (V.C.)
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia; (E.G.); (V.C.)
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 200092, China;
| | - Valeriy Chereshnev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia; (E.G.); (V.C.)
| |
Collapse
|
39
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
40
|
Enhos A, Karacop E. Impact of Antecedent Aspirin Use on Infarct Size, Bleeding and Composite Endpoint in Patients with de Novo Acute Myocardial Infarction. Ther Clin Risk Manag 2021; 17:441-452. [PMID: 34054296 PMCID: PMC8149313 DOI: 10.2147/tcrm.s307768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The study aimed to evaluate the impact of antecedent aspirin use on infarct size, bleeding and composite endpoint in patients with de novo acute myocardial infarction. PATIENTS AND METHODS A total of 562 consecutive patients with de novo acute myocardial infarction were included in this prospective cohort study. Patients were assigned into two groups based on presence (n=212) and absence (n=350) of prior aspirin use. Primary endpoint was myocardial infarct size, as estimated by troponin I peak. In-hospital mortality, bleeding and composite clinical endpoint including cardiogenic shock, stroke, in-hospital mortality and major bleeding were also evaluated. RESULTS Although GRACE and CRUSADE scores were higher, troponin I peak was lower in prior aspirin users. This result was maintained after adjustment for baseline ischemic risk profile and other major confounders including MI type and location. Despite high CRUSADE score, there was no increase in major and minor bleeding. Minimal bleeding was higher in antecedent aspirin users. When it was adjusted for the CRUSADE score, a similar risk was reported. CONCLUSION Patients with de novo acute myocardial infarction using aspirin for primary prevention have an unexpectedly smaller infarct size and similar bleeding rates.
Collapse
Affiliation(s)
- Asim Enhos
- Bezmialem Foundation University, Faculty of Medicine, Department of Cardiology, Istanbul, Turkey
| | - Erdem Karacop
- Bezmialem Foundation University, Faculty of Medicine, Department of Cardiology, Istanbul, Turkey
| |
Collapse
|
41
|
Platelets mediate serological memory to neutralize viruses in vitro and in vivo. Blood Adv 2021; 4:3971-3976. [PMID: 32841338 DOI: 10.1182/bloodadvances.2020001786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Key Points
Platelets contain virus-specific IgGs that potently diminish viral infection in vitro and in vivo. Release of platelet IgG is more efficient at virus neutralization than equal amounts of plasma IgG.
Collapse
|
42
|
Jiang X, Sun X, Lin J, Ling Y, Fang Y, Wu J. MD Simulations on a Well-Built Docking Model Reveal Fine Mechanical Stability and Force-Dependent Dissociation of Mac-1/GPIbα Complex. Front Mol Biosci 2021; 8:638396. [PMID: 33968982 PMCID: PMC8100526 DOI: 10.3389/fmolb.2021.638396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Interaction of leukocyte integrin macrophage-1 antigen (Mac-1) to platelet glycoprotein Ibα (GPIbα) is critical for platelet-leukocyte crosstalk in hemostasis and inflammatory responses to vessel injuries under hemodynamic environments. The mechano-regulation and its molecular basis for binding of Mac-1 to GPIbα remain unclear, mainly coming from the lack of crystal structure of the Mac-1/GPIbα complex. We herein built a Mac-1/GPIbα complex model through a novel computer strategy, which included a flexible molecular docking and system equilibrium followed by a "force-ramp + snapback" molecular dynamics (MD) simulation. With this model, a series of "ramp-clamp" steered molecular dynamics (SMD) simulations were performed to examine the GPIbα-Mac-1 interaction under various loads. The results demonstrated that the complex was mechano-stable for both the high rupture force (>250 pN) at a pulling velocity of 3 Å/ns and the conformational conservation under various constant tensile forces (≤75 pN); a catch-slip bond transition was predicted through the dissociation probability, examined with single molecular AFM measurements, reflected by the interaction energy and the interface H-bond number, and related to the force-induced allostery of the complex; besides the mutation-identified residues D222 and R218, the residues were also dominant in the binding of Mac-1 to GPIbα. This study recommended a valid computer strategy for building a likely wild-type docking model of a complex, provided a novel insight into the mechanical regulation mechanism and its molecular basis for the interaction of Mac-1 with GPIbα, and would be helpful for understanding the platelet-leukocyte interaction in hemostasis and inflammatory responses under mechano-microenvironments.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoxi Sun
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingchen Ling
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Fang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jianhua Wu
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
43
|
Canzano P, Brambilla M, Porro B, Cosentino N, Tortorici E, Vicini S, Poggio P, Cascella A, Pengo MF, Veglia F, Fiorelli S, Bonomi A, Cavalca V, Trabattoni D, Andreini D, Omodeo Salè E, Parati G, Tremoli E, Camera M. Platelet and Endothelial Activation as Potential Mechanisms Behind the Thrombotic Complications of COVID-19 Patients. ACTA ACUST UNITED AC 2021; 6:202-218. [PMID: 33649738 PMCID: PMC7904280 DOI: 10.1016/j.jacbts.2020.12.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022]
Abstract
The authors hypothesized that the cytokine storm described in COVID-19 patients may lead to consistent cell-based tissue factor (TF)-mediated activation of coagulation, procoagulant microvesicles (MVs) release, and massive platelet activation. COVID-19 patients have higher levels of TF+ platelets, TF+ granulocytes, and TF+ MVs than healthy subjects and coronary artery disease patients. Plasma MV-associated thrombin generation is present in prophylactic anticoagulated patients. A sustained platelet activation in terms of P-selectin expression and platelet-leukocyte aggregate formation, and altered nitric oxide/prostacyclin synthesis are also observed. COVID-19 plasma, added to the blood of healthy subjects, induces platelet activation similar to that observed in vivo. This effect was blunted by pre-incubation with tocilizumab, aspirin, or a P2Y12 inhibitor.
Collapse
Key Words
- ADP, adenosine diphosphate
- CAD, coronary artery disease
- COVID-19
- COVID-19, coronavirus disease-2019
- CRP, C-reactive protein
- GPA, granulocyte–platelet aggregates
- HS, healthy subject
- IL, interleukin
- IL-6
- IL-6R, interleukin-6 receptor
- LMWH, low-molecular-weight heparin
- MPA, monocyte–platelet aggregates
- MV, microvesicle
- NO, nitric oxide
- NOS, nitric oxide synthase
- PGI2, prostacyclin
- PLA, platelet–leukocyte aggregates
- PS, phosphatidylserine
- SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2
- TF, tissue factor
- antiplatelet drugs
- circulating microvesicles
- platelet activation
- tissue factor
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy.,Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
44
|
Fu G, Deng M, Neal MD, Billiar TR, Scott MJ. Platelet-Monocyte Aggregates: Understanding Mechanisms and Functions in Sepsis. Shock 2021; 55:156-166. [PMID: 32694394 PMCID: PMC8008955 DOI: 10.1097/shk.0000000000001619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT Platelets have been shown to play an important immunomodulatory role in the pathogenesis of various diseases through their interactions with other immune and nonimmune cells. Sepsis is a major cause of death in the United States, and many of the mechanisms driving sepsis pathology are still unresolved. Monocytes have recently received increasing attention in sepsis pathogenesis, and multiple studies have associated increased levels of platelet-monocyte aggregates observed early in sepsis with clinical outcomes in sepsis patients. These findings suggest platelet-monocyte aggregates may be an important prognostic indicator. However, the mechanisms leading to platelet interaction and aggregation with monocytes, and the effects of aggregation during sepsis are still poorly defined. There are few studies that have really investigated functions of platelets and monocytes together, despite a large body of research showing separate functions of platelets and monocytes in inflammation and immune responses during sepsis. The goal of this review is to provide insights into what we do know about mechanisms and biological meanings of platelet-monocyte interactions, as well as some of the technical challenges and limitations involved in studying this important potential mechanism in sepsis pathogenesis. Improving our understanding of platelet and monocyte biology in sepsis may result in identification of novel targets that can be used to positively affect outcomes in sepsis.
Collapse
Affiliation(s)
- Guang Fu
- Department of General Surgery, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China (visiting scholar in Pittsburgh 2018-09/2020-09)
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Tan YQ, Li YT, Yan TF, Xu Y, Liu BH, Yang JA, Yang X, Chen QX, Zhang HB. Six Immune Associated Genes Construct Prognostic Model Evaluate Low-Grade Glioma. Front Immunol 2020; 11:606164. [PMID: 33408717 PMCID: PMC7779629 DOI: 10.3389/fimmu.2020.606164] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Background The immunotherapy of Glioma has always been a research hotspot. Although tumor associated microglia/macrophages (TAMs) proves to be important in glioma progression and drug resistance, our knowledge about how TAMs influence glioma remains unclear. The relationship between glioma and TAMs still needs further study. Methods We collected the data of TAMs in glioma from NCBI Gene Expression Omnibus (GEO) that included 20 glioma samples and 15 control samples from four datasets. Six genes were screened from the Differential Expression Gene through Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction (PPI) network and single-cell sequencing analysis. A risk score was then constructed based on the six genes and patients' overall survival rates of 669 patients from The Cancer Genome Atlas (TCGA). The efficacy of the risk score in prognosis and prediction was verified in Chinese Glioma Genome Atlas (CGGA). Results Six genes, including CD163, FPR3, LPAR5, P2ry12, PLAUR, SIGLEC1, that participate in signal transduction and plasma membrane were selected. Half of them, like CD163, FPR3, SIGLEC1, were mainly expression in M2 macrophages. FPR3 and SIGLEC1 were high expression genes in glioma associated with grades and IDH status. The overall survival rates of the high risk score group was significantly lower than that of the low risk score group, especially in LGG. Conclusion Joint usage of the 6 candidate genes may be an effective method to diagnose and evaluate the prognosis of glioma, especially in Low-grade glioma (LGG).
Collapse
Affiliation(s)
- Yin Qiu Tan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yun Tao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Teng Feng Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bao Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji An Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Bo Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
46
|
Surgical Stress Promotes Tumor Progression: A Focus on the Impact of the Immune Response. J Clin Med 2020; 9:jcm9124096. [PMID: 33353113 PMCID: PMC7766515 DOI: 10.3390/jcm9124096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Despite advances in systemic therapies, surgery is crucial for the management of solid malignancy. There is increasing evidence suggesting that the body's response to surgical stress resulting from tumor resection has direct effects on tumor cells or can alter the tumor microenvironment. Surgery can lead to the activation of early and key components of the innate and adaptative immune systems. Platelet activation and the subsequent pro-coagulation state can accelerate the growth of micrometastases. Neutrophil extracellular traps (NETs), an extracellular network of DNA released by neutrophils in response to inflammation, promote the adhesion of circulating tumor cells and the growth of existing micrometastatic disease. In addition, the immune response following cancer surgery can modulate the tumor immune microenvironment by promoting an immunosuppressive state leading to impaired recruitment of natural killer (NK) cells and regulatory T cells (Tregs). In this review, we will summarize the current understanding of mechanisms of tumor progression secondary to surgical stress. Furthermore, we will describe emerging and novel peri-operative solutions to decrease pro-tumorigenic effects from surgery.
Collapse
|
47
|
Mastenbroek TG, Karel MFA, Nagy M, Chayoua W, Korsten EIJ, Coenen DM, Debets J, Konings J, Brouns AE, Leenders PJA, van Essen H, van Oerle R, Heitmeier S, Spronk HM, Kuijpers MJE, Cosemans JMEM. Vascular protective effect of aspirin and rivaroxaban upon endothelial denudation of the mouse carotid artery. Sci Rep 2020; 10:19360. [PMID: 33168914 PMCID: PMC7653917 DOI: 10.1038/s41598-020-76377-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
While in recent trials the dual pathway inhibition with aspirin plus rivaroxaban has shown to be efficacious in patients with atherosclerotic cardiovascular disease, little is known about the effects of this combination treatment on thrombus formation and vascular remodelling upon vascular damage. The aim of this study was to examine the effects of aspirin and/or rivaroxaban on injury-induced murine arterial thrombus formation in vivo and in vitro, vessel-wall remodelling, and platelet-leukocyte aggregates. Temporary ligation of the carotid artery of C57BL/6 mice, fed a western type diet, led to endothelial denudation and sub-occlusive thrombus formation. At the site of ligation, the vessel wall stiffened and the intima-media thickened. Aspirin treatment antagonized vascular stiffening and rivaroxaban treatment led to a positive trend towards reduced stiffening. Local intima-media thickening was antagonized by both aspirin or rivaroxaban treatment. Platelet-leukocyte aggregates and the number of platelets per leukocyte were reduced in aspirin and/or rivaroxaban treatment groups. Furthermore, rivaroxaban restricted thrombus growth and height in vitro. In sum, this study shows vascular protective effects of aspirin and rivaroxaban, upon vascular injury of the mouse artery.
Collapse
Affiliation(s)
- T G Mastenbroek
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - M F A Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - W Chayoua
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - E I J Korsten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - D M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J Debets
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J Konings
- Synapse Research Institute, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A E Brouns
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - P J A Leenders
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - H van Essen
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R van Oerle
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - S Heitmeier
- Cardiovascular Research Institute, Bayer AG, Wuppertal, Germany
| | - H M Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
48
|
Teklu T, Wondale B, Taye B, Hailemariam M, Bekele S, Tamirat M, Zewude A, Mohamed T, Medhin G, Legesse M, Yu Y, Ameni G, Pieper R. Differences in plasma proteomes for active tuberculosis, latent tuberculosis and non-tuberculosis mycobacterial lung disease patients with and without ESAT-6/CFP10 stimulation. Proteome Sci 2020; 18:10. [PMID: 33292280 PMCID: PMC7603755 DOI: 10.1186/s12953-020-00165-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is one of the world's most problematic infectious diseases. The pathogen Mycobacterium tuberculosis (Mtb) is contained by the immune system in people with latent TB infection (LTBI). No overt disease symptoms occur. The environmental and internal triggers leading to reactivation of TB are not well understood. Non-tuberculosis Mycobacteria (NTM) can also cause TB-like lung disease. Comparative analysis of blood plasma proteomes from subjects afflicted by these pathologies in an endemic setting may yield new differentiating biomarkers and insights into inflammatory and immunological responses to Mtb and NTM. METHODS Blood samples from 40 human subjects in a pastoral region of Ethiopia were treated with the ESAT-6/CFP-10 antigen cocktail to stimulate anti-Mtb and anti-NTM immune responses. In addition to those of active TB, LTBI, and NTM cohorts, samples from matched healthy control (HC) subjects were available. Following the generation of sample pools, proteomes were analyzed via LC-MS/MS. These experiments were also performed without antigen stimulation steps. Statistically significant differences using the Z-score method were determined and interpreted in the context of the proteins' functions and their contributions to biological pathways. RESULTS More than 200 proteins were identified from unstimulated and stimulated plasma samples (UPSs and SPSs, respectively). Thirty-four and 64 proteins were differentially abundant with statistical significance (P < 0.05; Benjamini-Hochberg correction with an FDR < 0.05) comparing UPS and SPS proteomic data of four groups, respectively. Bioinformatics analysis of such proteins via the Gene Ontology Resource was indicative of changes in cellular and metabolic processes, responses to stimuli, and biological regulations. The m7GpppN-mRNA hydrolase was increased in abundance in the LTBI group compared to HC subjects. Charged multivesicular body protein 4a and platelet factor-4 were increased in abundance in NTM as compared to HC and decreased in abundance in NTM as compared to active TB. C-reactive protein, α-1-acid glycoprotein 1, sialic acid-binding Ig-like lectin 16, and vitamin K-dependent protein S were also increased (P < 0.05; fold changes≥2) in SPSs and UPSs comparing active TB with LTBI and NTM cases. These three proteins, connected in a STRING functional network, contribute to the acute phase response and influence blood coagulation. CONCLUSION Plasma proteomes are different comparing LTBI, TB, NTM and HC cohorts. The changes are augmented following prior blood immune cell stimulation with the ESAT-6/CFP-10 antigen cocktail. The results encourage larger-cohort studies to identify specific biomarkers to diagnose NTM infection, LTBI, and to predict the risk of TB reactivation.
Collapse
Affiliation(s)
- Takele Teklu
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia.
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Biniam Wondale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Biruhalem Taye
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- European Molecular Biology Laboratory, Notkestraβe 85, 22607, Hamburg, Germany
| | | | | | - Mesfin Tamirat
- Laboratory department, Jinka General Hospital, Jinka, Ethiopia
| | - Aboma Zewude
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Public health Institute, P.O box 1242, Addis Ababa, Ethiopia
| | - Temesgen Mohamed
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mengistu Legesse
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yanbao Yu
- J. Craig Venter Institute, Rockville, MD, USA
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | | |
Collapse
|
49
|
Pavlović N, Kopsida M, Gerwins P, Heindryckx F. Inhibiting P2Y12 in Macrophages Induces Endoplasmic Reticulum Stress and Promotes an Anti-Tumoral Phenotype. Int J Mol Sci 2020; 21:ijms21218177. [PMID: 33142937 PMCID: PMC7672568 DOI: 10.3390/ijms21218177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The P2Y12 receptor is an adenosine diphosphate responsive G protein-coupled receptor expressed on the surface of platelets and is the pharmacologic target of several anti-thrombotic agents. In this study, we use liver samples from mice with cirrhosis and hepatocellular carcinoma to show that P2Y12 is expressed by macrophages in the liver. Using in vitro methods, we show that inhibition of P2Y12 with ticagrelor enhances tumor cell phagocytosis by macrophages and induces an anti-tumoral phenotype. Treatment with ticagrelor also increases the expression of several actors of the endoplasmic reticulum (ER) stress pathways, suggesting activation of the unfolded protein response (UPR). Inhibiting the UPR with tauroursodeoxycholic acid (Tudca) diminishes the pro-phagocytotic effect of ticagrelor, thereby indicating that P2Y12 mediates macrophage function through activation of ER stress pathways. This could be relevant in the pathogenesis of chronic liver disease and cancer, as macrophages are considered key players in these inflammation-driven pathologies.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cholagogues and Choleretics/pharmacology
- Endoplasmic Reticulum Stress/drug effects
- Humans
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Purinergic P2Y Receptor Antagonists/pharmacology
- Receptors, Purinergic P2Y12/chemistry
- Receptors, Purinergic P2Y12/metabolism
- Taurochenodeoxycholic Acid/pharmacology
- Ticagrelor/pharmacology
- Unfolded Protein Response/drug effects
Collapse
Affiliation(s)
- Nataša Pavlović
- Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden; (N.P.); (M.K.); (P.G.)
| | - Maria Kopsida
- Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden; (N.P.); (M.K.); (P.G.)
| | - Pär Gerwins
- Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden; (N.P.); (M.K.); (P.G.)
- Radiology, Uppsala University Hospital, 75237 Uppsala, Sweden
| | - Femke Heindryckx
- Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden; (N.P.); (M.K.); (P.G.)
- Correspondence:
| |
Collapse
|
50
|
Yu Z, Zhou H, Shan B, Fu J, Zhu H, Feng Q, Shen R, Jin X. Clopidogrel increases risk of pneumonia compared with aspirin in acute ischemic minor stroke patients. J Thromb Thrombolysis 2020; 52:301-307. [PMID: 33034814 DOI: 10.1007/s11239-020-02306-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 01/06/2023]
Abstract
Antiplatelet agents may increase the risk of infections via suppressing platelet-mediated immune response. Here we assessed the contribution of clopidogrel versus aspirin to the development of pneumonia during an acute ischemic stroke admission. A retrospective cohort study was conducted of acute ischemic stroke patients who were admitted to our hospital from 2015 to 2018. Included patients received uninterrupted clopidogrel or aspirin therapy and did not take other antiplatelet agents throughout their stay. The interest outcome was development of pneumonia after stroke. Conditional logistic regression model after propensity score matching and adjusted logistic regression model were used to assess the impact of clopidogrel versus aspirin on post-stroke pneumonia. Among 1470 included patients, 1135 received aspirin and 335 received clopidogrel. Total 149 patients (10.1%) experienced pneumonia during the stroke hospitalization period. No difference was observed between clopidogrel cohort and aspirin cohort in the incidence of post-stroke pneumonia after propensity score matching (relative risk, 1.04; 95% confidence interval (CI) 0.65-1.65; P = 0.875). However, we found that clopidogrel was associated with increased risk of pneumonia compared with aspirin in minor stroke patients (adjusted odds ratio, 2.21; 95% CI 1.12-4.34; P = 0.021), and a statistically insignificant increase of pneumonia in diabetics (adjusted odds ratio, 1.94; 95% CI 0.96-3.94; P = 0.065). Compared with aspirin, clopidogrel is associated with increased pneumonia in minor stroke patients among who the interference of stroke-induced immunosuppression is minimized. Hence, aspirin may be a better choice for minor stroke patients in acute phase of ischemic stroke when pneumonia most frequently occurs.
Collapse
Affiliation(s)
- Zhangfeng Yu
- Department of Emergency Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Hua Zhou
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Baoshuai Shan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jianzhong Fu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Hao Zhu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Qian Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Rong Shen
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Xing Jin
- Department of Clinical Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, 16 Baita West Road, Suzhou, 215001, Jiangsu Province, China.
| |
Collapse
|