1
|
Marino L, Kim A, Ni B, Celi FS. Thyroid hormone action and liver disease, a complex interplay. Hepatology 2025; 81:651-669. [PMID: 37535802 PMCID: PMC11737129 DOI: 10.1097/hep.0000000000000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Thyroid hormone action is involved in virtually all physiological processes. It is well known that the liver and thyroid are intimately linked, with thyroid hormone playing important roles in de novo lipogenesis, beta-oxidation (fatty acid oxidation), cholesterol metabolism, and carbohydrate metabolism. Clinical and mechanistic research studies have shown that thyroid hormone can be involved in chronic liver diseases, including alcohol-associated or NAFLD and HCC. Thyroid hormone action and synthetic thyroid hormone analogs can exert beneficial actions in terms of lowering lipids, preventing chronic liver disease and as liver anticancer agents. More recently, preclinical and clinical studies have indicated that some analogs of thyroid hormone could also play a role in the treatment of liver disease. These synthetic molecules, thyromimetics, can modulate lipid metabolism, particularly in NAFLD/NASH. In this review, we first summarize the thyroid hormone signaling axis in the context of liver biology, then we describe the changes in thyroid hormone signaling in liver disease and how liver diseases affect the thyroid hormone homeostasis, and finally we discuss the use of thyroid hormone-analog for the treatment of liver disease.
Collapse
Affiliation(s)
- Luigi Marino
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Adam Kim
- Division of Gastroenterology and Hepatology, Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Bin Ni
- Alliance Pharma, Philadelphia, Pennsylvania, USA
| | - Francesco S. Celi
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Tahir S, Abdo A, Mobashar A, Shabbir A, Najam K, Ibrahim A, Hussain K, Jardan YAB, Ibenmoussa S, Younous YA. Potential antihyperlipidemic effects of myrcenol and curzerene in high-fat fed rats. BMC Pharmacol Toxicol 2025; 26:9. [PMID: 39825436 PMCID: PMC11742224 DOI: 10.1186/s40360-025-00838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The study evaluated the anti-hyperlipidemic effects of myrcenol and curzerene on a high fat diet induced hyperlipidemia rat model. Thirty male albino rats were fed on a high-fat diet for four months. The HFD-induced hyperperlipidemia rats were treated with rosuvastatin (10 mg/kg), curzerene (130 mg/kg) and myrcenol (100 mg/kg) for four weeks. Blood samples were collected for further analysis. Aorta and heart were harvested for histopathological evaluation. Hepatic lipase and HMG-CoA reductase were determined by ELISA. FST and Y-maze tests were performed to assess the stress level in hyperlipidemia rats. The phytochemical compounds (Curzerene and Myrcenol) and the standard drug (Rosuvastatin) resulted in decreased body weight as well as reduced levels of LDL, TG, TC, AST and ALT as compared to the diseased group. Additionally, the treated groups displayed improved HDL levels and less depressed behavior. The ELISA results revealed that the Curzerene and myrcenol had significantly increased the protein concentration of hepatic lipase than the diseased group whereas both compounds significantly lowered the HMG-CoA reductase concentrations compared to the diseased group. The findings suggested that myrcenol and curzerene had the potential to be therapeutic agents for managing hyperlipidemia and reducing the risk of heart-related conditions associated with high lipid levels.
Collapse
Affiliation(s)
- Sana Tahir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Abdullah Abdo
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.
- Faculty of Health Sciences, Equator University of Science and Technology, Masaka, Uganda.
| | - Arham Shabbir
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Komal Najam
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Aisha Ibrahim
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Khalid Hussain
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | | |
Collapse
|
3
|
Soares De Oliveira L, Kaserman JE, Van Der Spek AH, Lee NJ, Undeutsch HJ, Werder RB, Wilson AA, Hollenberg AN. Thyroid hormone receptor beta (THRβ1) is the major regulator of T3 action in human iPSC-derived hepatocytes. Mol Metab 2024; 90:102057. [PMID: 39481850 PMCID: PMC11615914 DOI: 10.1016/j.molmet.2024.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Thyroid hormone (TH) action is mediated by thyroid hormone receptor (THR) isoforms. While THRβ1 is likely the main isoform expressed in liver, its role in human hepatocytes is not fully understood. METHODS To elucidate the role of THRβ1 action in human hepatocytes we used CRISPR/Cas9 editing to knock out THRβ1 in induced pluripotent stem cells (iPSC). Following directed differentiation to the hepatic lineage, iPSC-derived hepatocytes were then interrogated to determine the role of THRβ1 in ligand-independent and -dependent functions. RESULTS We found that the loss of THRβ1 promoted alterations in proliferation rate and metabolic pathways regulated by T3, including gluconeogenesis, lipid oxidation, fatty acid synthesis, and fatty acid uptake. We observed that key genes involved in liver metabolism are regulated through both T3 ligand-dependent and -independent THRβ1 signaling mechanisms. Finally, we demonstrate that following THRβ1 knockout, several key metabolic genes remain T3 responsive suggesting they are THRα targets. CONCLUSIONS These results highlight that iPSC-derived hepatocytes are an effective platform to study mechanisms regulating TH signaling in human hepatocytes.
Collapse
Affiliation(s)
- Lorraine Soares De Oliveira
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Joseph E Kaserman
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chobanian & Avedisian School of Medicine, Boston Medical Center, MA 02118, USA
| | - Anne H Van Der Spek
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam 1081 HV, Netherlands
| | - Nora J Lee
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Hendrik J Undeutsch
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chobanian & Avedisian School of Medicine, Boston Medical Center, MA 02118, USA.
| | - Anthony N Hollenberg
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
4
|
Liu MX, Liu YC, Cai YT, Gu YY, Zhu YQ, Zhang N, Zhu WZ, Liu YH, Yu L, Zhang QT, Zhang XL. Self-Produced O 2 CNs-Based Nanocarriers of DNA Hydrophobization Strategy Triggers Photodynamic and Mitochondrial-Derived Ferroptosis for Hepatocellular Carcinoma Combined Treatment. Adv Healthc Mater 2024; 13:e2402110. [PMID: 39205543 DOI: 10.1002/adhm.202402110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hypoxia can aggravate tumor occurrence, development, invasion, and metastasis, and greatly inhibit the photodynamic therapy (PDT) effect. Herein, carbon nitride (CNs)-based DNA and photosensitizer co-delivery systems (BPSCNs) with oxygen-producing functions are developed to address this problem. Selenide glucose (Seglu) is used as the dopant to prepare red/NIR-active CNs (SegluCNs). The tumor-targeting unit Bio-PEG2000 is utilized to construct BPSCNs nanoparticles through esterification reactions. Furthermore, DNA hydrophobization is realized via mixing P53 gene with a positively charged mitochondrial-targeted near-infrared (NIR) emitting photosensitizer (MTTPY), which is encapsulated in non-cationic BPSCNs for synergistic delivery. Ester bonds in BPSCNs@MTTPY-P53 complexes can be disrupted by lipase in the liver to facilitate P53 release, upregulated P53 expression, and promoted HIF-1α degradation in mitochondria. In addition, the oxygen produced by the complexes improved the hypoxic microenvironment of hepatocellular carcinoma (HCC), synergistically downregulated HIF-1α expression in mitochondria, promoted mitochondrial-derived ferroptosis and enhanced the PDT effect of the MTTPY unit. Both in vivo and in vitro experiments indicated that the transfected P53-DNA, produced O2 and ROS by these complexes synergistically led to mitochondrial-derived ferroptosis in hepatoma cells through the HIF-1α/SLC7A11 pathway, and completely avoiding PDT resistance caused by hypoxia, exerting a significant therapeutic role in HCC treatment.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yan-Chao Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yu-Ting Cai
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Ying-Ying Gu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Ya-Qi Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Nan Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Wei-Zhong Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yong-Hong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Qi-Tao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| |
Collapse
|
5
|
Xu Z, Yang S, Cui L. Understanding the heterogeneity and dysfunction of HDL in chronic kidney disease: insights from recent reviews. BMC Nephrol 2024; 25:400. [PMID: 39511510 PMCID: PMC11542271 DOI: 10.1186/s12882-024-03808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic kidney disease (CKD) is a complex disease that affects the global population's health, with dyslipidemia being one of its major complications. High density lipoprotein (HDL) is regarded as the "hero" in the bloodstream due to its role in reverse cholesterol transport, which lowers cholesterol levels in the blood and prevents atherosclerosis. However, in the complex internal environment of CKD, even this "hero" may struggle to perform its beneficial functions and could potentially become harmful. This article reviews HDL heterogeneity, HDL subclasses, functional changes in HDL during the progression of CKD, and the application of HDL in CKD treatment. This review aims to deepen understanding of lipid metabolism abnormalities in CKD patients and provide a basis for new therapeutic strategies.
Collapse
Affiliation(s)
- Zhen Xu
- Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Peking University Third Hospital, Beijing, China.
| |
Collapse
|
6
|
Duan Y, Deng M, Liu B, Meng X, Liao J, Qiu Y, Wu Z, Lin J, Dong Y, Duan Y, Sun Y. Mitochondria targeted drug delivery system overcoming drug resistance in intrahepatic cholangiocarcinoma by reprogramming lipid metabolism. Biomaterials 2024; 309:122609. [PMID: 38754290 DOI: 10.1016/j.biomaterials.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The challenge of drug resistance in intrahepatic cholangiocarcinoma (ICC) is intricately linked with lipid metabolism reprogramming. The hepatic lipase (HL) and the membrane receptor CD36 are overexpressed in BGJ398-resistant ICC cells, while they are essential for lipid uptake, further enhancing lipid utilization in ICC. Herein, a metal-organic framework-based drug delivery system (OB@D-pMOF/CaP-AC, DDS), has been developed. The specifically designed DDS exhibits a successive targeting property, enabling it to precisely target ICC cells and their mitochondria. By specifically targeting the mitochondria, DDS produces reactive oxygen species (ROS) through its sonodynamic therapy effect, achieving a more potent reduction in ATP levels compared to non-targeted approaches, through the impairment of mitochondrial function. Additionally, the DDS strategically minimizes lipid uptake through the incorporation of the anti-HL drug, Orlistat, and anti-CD36 monoclonal antibody, reducing lipid-derived energy production. This dual-action strategy on both mitochondria and lipids can hinder energy utilization to restore drug sensitivity to BGJ398 in ICC. Moreover, an orthotopic mice model of drug-resistant ICC was developed, which serves as an exacting platform for evaluating the multifunction of designed DDS. Upon in vivo experiments with this model, the DDS demonstrated exceptional capabilities in suppressing tumor growth, reprogramming lipid metabolism and improving immune response, thereby overcoming drug resistance. These findings underscore the mitochondria-targeted DDS as a promising and innovative solution in ICC drug resistance.
Collapse
Affiliation(s)
- Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Mengqiong Deng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Xianwei Meng
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinghan Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yijie Qiu
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Ying Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Cueto R, Shen W, Liu L, Wang X, Wu S, Mohsin S, Yang L, Khan M, Hu W, Snyder N, Wu Q, Ji Y, Yang XF, Wang H. SAH is a major metabolic sensor mediating worsening metabolic crosstalk in metabolic syndrome. Redox Biol 2024; 73:103139. [PMID: 38696898 PMCID: PMC11070633 DOI: 10.1016/j.redox.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
In this study, we observed worsening metabolic crosstalk in mouse models with concomitant metabolic disorders such as hyperhomocysteinemia (HHcy), hyperlipidemia, and hyperglycemia and in human coronary artery disease by analyzing metabolic profiles. We found that HHcy worsening is most sensitive to other metabolic disorders. To identify metabolic genes and metabolites responsible for the worsening metabolic crosstalk, we examined mRNA levels of 324 metabolic genes in Hcy, glucose-related and lipid metabolic systems. We examined Hcy-metabolites (Hcy, SAH and SAM) by LS-ESI-MS/MS in 6 organs (heart, liver, brain, lung, spleen, and kidney) from C57BL/6J mice. Through linear regression analysis of Hcy-metabolites and metabolic gene mRNA levels, we discovered that SAH-responsive genes were responsible for most metabolic changes and all metabolic crosstalk mediated by Serine, Taurine, and G3P. SAH-responsive genes worsen glucose metabolism and cause upper glycolysis activation and lower glycolysis suppression, indicative of the accumulation of glucose/glycogen and G3P, Serine synthesis inhibition, and ATP depletion. Insufficient Serine due to negative correlation of PHGDH with SAH concentration may inhibit the folate cycle and transsulfurarion pathway and consequential reduced antioxidant power, including glutathione, taurine, NADPH, and NAD+. Additionally, we identified SAH-activated pathological TG loop as the consequence of increased fatty acid (FA) uptake, FA β-oxidation and Ac-CoA production along with lysosomal damage. We concluded that HHcy is most responsive to other metabolic changes in concomitant metabolic disorders and mediates worsening metabolic crosstalk mainly via SAH-responsive genes, that organ-specific Hcy metabolism determines organ-specific worsening metabolic reprogramming, and that SAH, acetyl-CoA, Serine and Taurine are critical metabolites mediating worsening metabolic crosstalk, redox disturbance, hypomethylation and hyperacetylation linking worsening metabolic reprogramming in metabolic syndrome.
Collapse
Affiliation(s)
- Ramon Cueto
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Wen Shen
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Lu Liu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xianwei Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sheng Wu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ling Yang
- Medical Genetics & Molecular Biochemistry, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Nathaniel Snyder
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA; Cardiovascular Research Center, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Chen J, Fang Z, Luo Q, Wang X, Warda M, Das A, Oldoni F, Luo F. Unlocking the mysteries of VLDL: exploring its production, intracellular trafficking, and metabolism as therapeutic targets. Lipids Health Dis 2024; 23:14. [PMID: 38216994 PMCID: PMC10785355 DOI: 10.1186/s12944-023-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024] Open
Abstract
Reducing circulating lipid levels is the centerpiece of strategies for preventing and treating atherosclerotic cardiovascular disease (ASCVD). Despite many available lipid-lowering medications, a substantial residual cardiovascular risk remains. Current clinical guidelines focus on plasma levels of low-density lipoprotein (LDL). Recent attention has been given to very low-density lipoprotein (VLDL), the precursor to LDL, and its role in the development of coronary atherosclerosis. Preclinical investigations have revealed that interventions targeting VLDL production or promoting VLDL metabolism, independent of the LDL receptor, can potentially decrease cholesterol levels and provide therapeutic benefits. Currently, methods, such as mipomersen, lomitapide, and ANGPTL3 inhibitors, are used to reduce plasma cholesterol and triglyceride levels by regulating the lipidation, secretion, and metabolism of VLDL. Targeting VLDL represents an avenue for new lipid-lowering strategies. Interventions aimed at reducing VLDL production or enhancing VLDL metabolism, independent of the LDL receptor, hold promise for lowering cholesterol levels and providing therapeutic benefits beyond LDL in the management of ASCVD.
Collapse
Affiliation(s)
- Jingfei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhenfei Fang
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qin Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey
| | - Avash Das
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215-5400, USA
| | - Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fei Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, Shao Y, Hao M, Zhang S, Hu W, Wang Y, Zhang M, Zhu M, Wang C, Wu Y, Wang J, Xing D. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol 2024; 23:21. [PMID: 38195542 PMCID: PMC10777520 DOI: 10.1186/s12933-024-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Xiaolin Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianfeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421001, Hunan, China
| | - Yingchun Shao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Minglu Hao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shuangshuang Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Weichao Hu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China
| | - Yanhong Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Miao Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Meng Zhu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Chao Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Jie Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Wu TY, Tien N, Lin CL, Cheah YC, Hsu CY, Tsai FJ, Fang YJ, Lim YP. Influence of antipsychotic medications on hyperlipidemia risk in patients with schizophrenia: evidence from a population-based cohort study and in vitro hepatic lipid homeostasis gene expression. Front Med (Lausanne) 2023; 10:1137977. [PMID: 37425327 PMCID: PMC10324036 DOI: 10.3389/fmed.2023.1137977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Schizophrenia increases the risk of mortality and cardiovascular disease (CVD) risk. However, the correlation between antipsychotics (APs) and CVD remains controversial. Hyperlipidemia is a significant risk factor for CVD. Methods We conducted a nationwide population-based retrospective cohort study to investigate the effects of APs on the risk of hyperlipidemia and lipid homeostasis gene expression. We used data from the Longitudinal Health Insurance Database of Taiwan on new-onset schizophrenia patients and a comparison cohort without schizophrenia. We used a Cox proportional hazards regression model to analyze the differences in hyperlipidemia development between the two cohorts. Furthermore, we examined the effects of APs on the hepatic expression of lipid homeostasis-related genes. Results After adjusting for potential interrelated confounding factors, the case group (N = 4,533) was found to have a higher hyperlipidemia risk than the control cohort (N = 4,533) [adjusted hazard ratio (aHR), 1.30, p < 0.001]. Patients with schizophrenia without APs had a significantly higher risk of hyperlipidemia (aHR, 2.16; p < 0.001). However, patients receiving APs had a significantly lower risk of hyperlipidemia than patients not receiving APs (all aHR ≤ 0.42, p < 0.001). First-generation antipsychotics (FGAs) induce the expression of hepatic lipid catabolism genes in an in vitro model. Discussion Patients with schizophrenia had a higher risk of hyperlipidemia than controls; however, compared with non-treated patients, AP users had a lower risk of hyperlipidemia. Early diagnosis and management of hyperlipidemia may help prevent CVD.
Collapse
Affiliation(s)
- Tien-Yuan Wu
- Graduate Institute of Clinical Pharmacy, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cun Cheah
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chung Y. Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yi-Jen Fang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Department of Environmental Health, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung, Taiwan
- Digestive Disease Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Li B, George EW, Vachali P, Chang FY, Gorusupudi A, Arunkumar R, Giauque NA, Wan Z, Frederick JM, Bernstein PS. Mechanism for the selective uptake of macular carotenoids mediated by the HDL cholesterol receptor SR-BI. Exp Eye Res 2023; 229:109429. [PMID: 36863431 PMCID: PMC10076185 DOI: 10.1016/j.exer.2023.109429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/24/2022] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
The macular carotenoids lutein and zeaxanthin are taken up from the bloodstream into the human retina through a selective process, for which the HDL cholesterol receptor scavenger receptor BI (SR-BI) in the cells of retinal pigment epithelium (RPE) is thought to be a key mediator. However, the mechanism of SR-BI-mediated selective uptake of macular carotenoids is still not fully understood. Here, we investigate possible mechanisms using biological assays and cultured HEK293 cells, a cell line without endogenous SR-BI expression. Binding affinities between SR-BI and various carotenoids were measured by surface plasmon resonance (SPR) spectroscopy, which shows that SR-BI cannot bind lutein or zeaxanthin specifically. Overexpression of SR-BI in HEK293 cells results in more lutein and zeaxanthin taken up than β-carotene, and this effect can be eliminated by an SR-BI mutant (C384Y) whose cholesterol uptake tunnel is blocked. Next, we determined the effects of HDL and hepatic lipase (LIPC), SR-BI's partners in HDL cholesterol transport, on SR-BI-mediated carotenoid uptake. HDL addition dramatically reduced lutein, zeaxanthin, and β-carotene in HEK293 cells expressing SR-BI, but the cellular lutein and zeaxanthin are higher than β-carotene. LIPC addition increases the uptake of all three carotenoids in HDL-treated cells, and promotes the transport of lutein and zeaxanthin better than β-carotene. Our results suggest that SR-BI and its HDL cholesterol partner HDL and LIPC may be involved in the selective uptake of macular carotenoids.
Collapse
Affiliation(s)
- Binxing Li
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Evan W George
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Preejith Vachali
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Fu-Yen Chang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Ranganathan Arunkumar
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Nathan A Giauque
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Zihe Wan
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
12
|
Evers P, Pezacki JP. Unraveling Complex MicroRNA Signaling Pathways with Activity‐Based Protein Profiling to Guide Therapeutic Discovery**. Isr J Chem 2023. [DOI: 10.1002/ijch.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Parrish Evers
- Department of Chemistry and Biomolecular Sciences University of Ottawa 150 Louis-Pasteur Pvt. K1N 6N5 Ottawa Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences University of Ottawa 150 Louis-Pasteur Pvt. K1N 6N5 Ottawa Canada
- Department of Biochemistry Microbiology, and Immunology University of Ottawa 451 Smyth Rd. K1H 8M5 Ottawa Canada
| |
Collapse
|
13
|
Bond P, Smit DL, de Ronde W. Anabolic-androgenic steroids: How do they work and what are the risks? Front Endocrinol (Lausanne) 2022; 13:1059473. [PMID: 36644692 PMCID: PMC9837614 DOI: 10.3389/fendo.2022.1059473] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Anabolic-androgenic steroids (AAS) are a class of hormones that are widely abused for their muscle-building and strength-increasing properties in high, nontherapeutic, dosages. This review provides an up-to-date and comprehensive overview on how these hormones work and what side effects they might elicit. We discuss how AAS are absorbed into the circulation after intramuscular injection or oral ingestion and how they are subsequently transported to the tissues, where they will move into the extravascular compartment and diffuse into their target cells. Inside these cells, AAS can biotransform into different metabolites or bind to their cognate receptor: the androgen receptor. AAS and their metabolites can cause side effects such as acne vulgaris, hypertension, hepatotoxicity, dyslipidemia, testosterone deficiency, erectile dysfunction, gynecomastia, and cardiomyopathy. Where applicable, we mention treatment options and self-medication practices of AAS users to counteract these side effects. Clinicians may use this review as a guide for understanding how AAS use can impact health and to assist in patient education and, in some cases, the management of side effects.
Collapse
Affiliation(s)
| | - Diederik L. Smit
- Department of Internal Medicine, Elisabeth-TweeSteden Hospital, Tilburg, Netherlands
| | - Willem de Ronde
- Department of Internal Medicine, Spaarne Gasthuis, Haarlem, Netherlands
| |
Collapse
|
14
|
Foguet C, Xu Y, Ritchie SC, Lambert SA, Persyn E, Nath AP, Davenport EE, Roberts DJ, Paul DS, Di Angelantonio E, Danesh J, Butterworth AS, Yau C, Inouye M. Genetically personalised organ-specific metabolic models in health and disease. Nat Commun 2022; 13:7356. [PMID: 36446790 PMCID: PMC9708841 DOI: 10.1038/s41467-022-35017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding how genetic variants influence disease risk and complex traits (variant-to-function) is one of the major challenges in human genetics. Here we present a model-driven framework to leverage human genome-scale metabolic networks to define how genetic variants affect biochemical reaction fluxes across major human tissues, including skeletal muscle, adipose, liver, brain and heart. As proof of concept, we build personalised organ-specific metabolic flux models for 524,615 individuals of the INTERVAL and UK Biobank cohorts and perform a fluxome-wide association study (FWAS) to identify 4312 associations between personalised flux values and the concentration of metabolites in blood. Furthermore, we apply FWAS to identify 92 metabolic fluxes associated with the risk of developing coronary artery disease, many of which are linked to processes previously described to play in role in the disease. Our work demonstrates that genetically personalised metabolic models can elucidate the downstream effects of genetic variants on biochemical reactions involved in common human diseases.
Collapse
Affiliation(s)
- Carles Foguet
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Elodie Persyn
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Artika P Nath
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - David J Roberts
- BRC Haematology Theme, Radcliffe Department of Medicine, and NHSBT-Oxford, John Radcliffe Hospital, Oxford, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Science Centre, Human Technopole, Milan, Italy
| | - John Danesh
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Adam S Butterworth
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Christopher Yau
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, OX3 9DU, UK
- Health Data Research UK, Gibbs Building, 215 Euston Road, London, NW1 2BE, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- The Alan Turing Institute, London, UK.
| |
Collapse
|
15
|
Zhang X, Wu Q, Zheng W, Liu C, Huang L, Zuo X, Xiao W, Han X, Ye H, Wang W, Yang L, Zhu Y. Developmental changes in lipid and fatty acid metabolism and the inhibition by in ovo feeding oleic acid in Muscovy duck embryogenesis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:321-333. [PMID: 36733781 PMCID: PMC9873582 DOI: 10.1016/j.aninu.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Hepatic lipid and fatty acid (FA) metabolism are critical for regulating energetic homeostasis during embryogenesis. At present, it remains unclear how an exogenous FA intervention affects embryonic development in an avian embryo model. In Exp. 1, 30 fertilized eggs were sampled on embryonic days (E) 16, 19, 22, 25, 28, 31 and the day of hatch (DOH) to determine the critical period of lipid metabolism. In Exp. 2, a total of 120 fertilized eggs were divided into two groups (60 eggs/group) for in ovo feeding (IOF) procedures on E25. Eggs were injected into the yolk sac with PBS as the control group and with oleic acid (OA) as the IOF-OA treatment group. Samples were collected on E28 and E31. In Exp. 1, hepatic triacylglycerol (TG) and cholesterol (CHO) contents increased while serum TG content decreased from E16 to DOH (P < 0.05). Both serum and liver displayed an increase in unsaturated FA and a decrease in saturated FA (P < 0.05). There was a quadratic increase in the target gene and protein expression related to hepatic FA de novo synthesis and oxidation (P < 0.05), whose inflection period was between E22 and E28. In Exp. 2, compared with the control embryos, IOF-OA embryos had an increased yolk sac TG content on E28 and E31, and a decreased serum TG and CHO content on E28 (P < 0.05). The IOF-OA embryos had less OA in the yolk sac and liver on E28, and less unsaturated FA in the serum and liver on E31 than did the control embryos (P < 0.05). Hepatic gene mRNA expression related to FA uptake, synthesis, and oxidation on E28 was lower in IOF-OA than in control embryos (P < 0.05), not on E31 (P > 0.05). Maximal metabolic changes in lipid and FA metabolism occurred on E22-E28 in Muscovy duck embryogenesis, along with the altered target gene and protein expression related to lipogenesis and lipolysis. IOF-OA intervention on E25 could inhibit the target gene expression related to FA uptake, synthesis, and oxidation, which may influence the normal FA metabolism on E28 during embryogenesis.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenxuan Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | | | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| |
Collapse
|
16
|
Dijk W, Di Filippo M, Kooijman S, van Eenige R, Rimbert A, Caillaud A, Thedrez A, Arnaud L, Pronk A, Garçon D, Sotin T, Lindenbaum P, Ozcariz Garcia E, Pais de Barros JP, Duvillard L, Si-Tayeb K, Amigo N, Le Questel JY, Rensen PC, Le May C, Moulin P, Cariou B. Identification of a Gain-of-Function LIPC Variant as a Novel Cause of Familial Combined Hypocholesterolemia. Circulation 2022; 146:724-739. [PMID: 35899625 PMCID: PMC9439636 DOI: 10.1161/circulationaha.121.057978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Atherosclerotic cardiovascular disease is the main cause of mortality worldwide and is strongly influenced by circulating low-density lipoprotein (LDL) cholesterol levels. Only a few genes causally related to plasma LDL cholesterol levels have been identified so far, and only 1 gene, ANGPTL3, has been causally related to combined hypocholesterolemia. Here, our aim was to elucidate the genetic origin of an unexplained combined hypocholesterolemia inherited in 4 generations of a French family. METHODS Using next-generation sequencing, we identified a novel dominant rare variant in the LIPC gene, encoding for hepatic lipase, which cosegregates with the phenotype. We characterized the impact of this LIPC-E97G variant on circulating lipid and lipoprotein levels in family members using nuclear magnetic resonance-based lipoprotein profiling and lipidomics. To uncover the mechanisms underlying the combined hypocholesterolemia, we used protein homology modeling, measured triglyceride lipase and phospholipase activities in cell culture, and studied the phenotype of APOE*3.Leiden.CETP mice after LIPC-E97G overexpression. RESULTS Family members carrying the LIPC-E97G variant had very low circulating levels of LDL cholesterol and high-density lipoprotein cholesterol, LDL particle numbers, and phospholipids. The lysophospholipids/phospholipids ratio was increased in plasma of LIPC-E97G carriers, suggestive of an increased lipolytic activity on phospholipids. In vitro and in vivo studies confirmed that the LIPC-E97G variant specifically increases the phospholipase activity of hepatic lipase through modification of an evolutionarily conserved motif that determines substrate access to the hepatic lipase catalytic site. Mice overexpressing human LIPC-E97G recapitulated the combined hypocholesterolemic phenotype of the family and demonstrated that the increased phospholipase activity promotes catabolism of triglyceride-rich lipoproteins by different extrahepatic tissues but not the liver. CONCLUSIONS We identified and characterized a novel rare variant in the LIPC gene in a family who presents with dominant familial combined hypocholesterolemia. This gain-of-function variant makes LIPC the second identified gene, after ANGPTL3, causally involved in familial combined hypocholesterolemia. Our mechanistic data highlight the critical role of hepatic lipase phospholipase activity in LDL cholesterol homeostasis and suggest a new LDL clearance mechanism.
Collapse
Affiliation(s)
- Wieneke Dijk
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Mathilde Di Filippo
- UF Dyslipidémies, Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiStites, Hospices Civils de Lyon, Bron, France (M.D.F.).,CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France (M.D.F., P.M.)
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Robin van Eenige
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Antoine Rimbert
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Amandine Caillaud
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Aurélie Thedrez
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Lucie Arnaud
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Amanda Pronk
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Damien Garçon
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Thibaud Sotin
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Pierre Lindenbaum
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | | | - Jean-Paul Pais de Barros
- Lipidomic Platform, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France (J.-P.P.d.B.)
| | - Laurence Duvillard
- University of Burgundy, INSERM LNC UMR1231, Dijon, France (L.D.).,CHU Dijon, Department of Biochemistry, Dijon, France (L.D.)
| | - Karim Si-Tayeb
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain (E.O.G., N.A.).,Department of Basic Medical Sciences, Rovira I Virgili University, IISPV, CIBERDEM, Reus, Spain (N.A.)
| | | | - Patrick C.N. Rensen
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Philippe Moulin
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France (M.D.F., P.M.).,Fédération d’endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France (P.M.)
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| |
Collapse
|
17
|
Luo J, Wang JK, Song BL. Lowering low-density lipoprotein cholesterol: from mechanisms to therapies. LIFE METABOLISM 2022; 1:25-38. [PMID: 39872686 PMCID: PMC11749099 DOI: 10.1093/lifemeta/loac004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 05/13/2022] [Indexed: 01/30/2025]
Abstract
Low-density lipoprotein (LDL) is the main carrier of cholesterol and cholesteryl ester in circulation. High plasma levels of LDL cholesterol (LDL-C) are a major risk factor of atherosclerotic cardiovascular disease (ASCVD). LDL-C lowering is recommended by many guidelines for the prevention and treatment of ASCVD. Statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors are the mainstay of LDL-C-lowering therapy. Novel therapies are also emerging for patients who are intolerant to statins or respond poorly to standard treatments. Here, we review the most recent advances on LDL-C-lowering drugs, focusing on the mechanisms by which they act to reduce LDL-C levels. The article starts with the cornerstone therapies applicable to most patients at risk for ASCVD. Special treatments for those with little or no LDL receptor function then follow. The inhibitors of ATP-citrate lyase and cholesteryl ester transfer protein, which are recently approved and still under investigation for LDL-C lowering, respectively, are also included. Strategies targeting the stability of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cholesterol catabolism can be novel regimens to reduce LDL-C levels and cardiovascular risk.
Collapse
Affiliation(s)
- Jie Luo
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jin-Kai Wang
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Westerman KE, Majarian TD, Giulianini F, Jang DK, Miao J, Florez JC, Chen H, Chasman DI, Udler MS, Manning AK, Cole JB. Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers. Nat Commun 2022; 13:3993. [PMID: 35810165 PMCID: PMC9271055 DOI: 10.1038/s41467-022-31625-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Gene-environment interactions represent the modification of genetic effects by environmental exposures and are critical for understanding disease and informing personalized medicine. These often induce differential phenotypic variance across genotypes; these variance-quantitative trait loci can be prioritized in a two-stage interaction detection strategy to greatly reduce the computational and statistical burden and enable testing of a broader range of exposures. We perform genome-wide variance-quantitative trait locus analysis for 20 serum cardiometabolic biomarkers by multi-ancestry meta-analysis of 350,016 unrelated participants in the UK Biobank, identifying 182 independent locus-biomarker pairs (p < 4.5×10-9). Most are concentrated in a small subset (4%) of loci with genome-wide significant main effects, and 44% replicate (p < 0.05) in the Women's Genome Health Study (N = 23,294). Next, we test each locus-biomarker pair for interaction across 2380 exposures, identifying 847 significant interactions (p < 2.4×10-7), of which 132 are independent (p < 0.05) after accounting for correlation between exposures. Specific examples demonstrate interaction of triglyceride-associated variants with distinct body mass- versus body fat-related exposures as well as genotype-specific associations between alcohol consumption and liver stress at the ADH1B gene. Our catalog of variance-quantitative trait loci and gene-environment interactions is publicly available in an online portal.
Collapse
Affiliation(s)
- Kenneth E Westerman
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA.
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Timothy D Majarian
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dong-Keun Jang
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jenkai Miao
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Medical and Population Genetics Program, Broad Institute, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Miriam S Udler
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alisa K Manning
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joanne B Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
19
|
Zhang Q, Zhou X, Zhang J, Li Q, Qian Z. Selenium and vitamin B6 co-supplementation improve dyslipidemia and fatty liver syndrome by SIRT1/SREBP-1c pathway in hyperlipidemic Sprague-Dawley rats induced by high-fat diet. Nutr Res 2022; 106:101-118. [DOI: 10.1016/j.nutres.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
|
20
|
Guo W, Pencina KM, Furtado JD, Sacks FM, Vaisar T, Cheng M, Sniderman AD, Page ST, Bhasin S. Effect of Selective Androgen Receptor Modulator on Cholesterol Efflux Capacity, Size and Subspecies of HDL Particles. J Endocr Soc 2022; 6:bvac099. [PMID: 35822201 PMCID: PMC9271272 DOI: 10.1210/jendso/bvac099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/28/2022] Open
Abstract
Context Selective androgen receptor modulators (SARMs), because of their preferential muscle vs prostate selectivity, are being developed for muscle-wasting conditions. Oral SARMs suppress high-density lipoprotein cholesterol (HDL-C) but their effects on functional capacity and atherogenic potential of HDL particles are unknown. Objective To determine the effects of an oral SARM (OPK-88004) on cholesterol efflux capacity, HDL particle number and size, apolipoprotein particle number and size and HDL subspecies Methods We measured cholesterol efflux capacity (CEC); HDL particle number and size; APOB; APOA1; and protein-defined HDL subspecies associated with coronary heart disease (CHD) risk in men, who had undergone prostatectomy for low-grade prostate cancer during 12-week treatment with placebo or 1, 5, or 15 mg of an oral SARM (OPK-88004). Results SARM significantly suppressed HDL-C (P < .001) but HDL particle size did not change significantly. SARM had minimal effect on CEC of HDL particles (change + 0.016, –0.036, +0.070, and –0.048%/µmol-HDL/L–1 at 0, 1, 5, and 15 mg SARM, P = .045). SARM treatment suppressed APOAI (P < .001) but not APOB (P = .077), and reduced APOA1 in HDL subspecies associated with increased (subspecies containing α2-macroglobulin, complement C3, or plasminogen) as well as decreased (subspecies containing APOC1 or APOE) CHD risk; relative proportions of APOA1 in these HDL subspecies did not change. SARM increased hepatic triacylglycerol lipase (HTGL) (P < .001). Conclusion SARM treatment suppressed HDL-C but had minimal effect on its size or cholesterol efflux function. SARM reduced APOA1 in HDL subspecies associated with increased as well as decreased CHD risk. SARM-induced increase in HTGL could contribute to HDL-C suppression. These data do not support the simplistic notion that SARM-associated suppression of HDL-C is necessarily proatherogenic; randomized trials are needed to determine SARM’s effects on cardiovascular events.
Collapse
Affiliation(s)
- Wen Guo
- Research Program in Men's Health: Aging and Metabolism; Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - Karol M Pencina
- Research Program in Men's Health: Aging and Metabolism; Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - Jeremy D Furtado
- Department of Nutrition, Harvard TH Chan School of Public Health , Boston, MA
| | - Frank M Sacks
- Department of Nutrition, Harvard TH Chan School of Public Health , Boston, MA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition , University of Washington, Seattle, WA
| | - Ming Cheng
- Research Program in Men's Health: Aging and Metabolism; Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - Allan D Sniderman
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre , Montreal, Quebec, Canada
| | - Stephanie T Page
- Division of Metabolism, Endocrinology, and Nutrition , University of Washington, Seattle, WA
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism; Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| |
Collapse
|
21
|
Zocchi M, Della Porta M, Lombardoni F, Scrimieri R, Zuccotti GV, Maier JA, Cazzola R. A Potential Interplay between HDLs and Adiponectin in Promoting Endothelial Dysfunction in Obesity. Biomedicines 2022; 10:1344. [PMID: 35740366 PMCID: PMC9220412 DOI: 10.3390/biomedicines10061344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
Obesity is an epidemic public health problem that has progressively worsened in recent decades and is associated with low-grade chronic inflammation (LGCI) in metabolic tissues and an increased risk of several diseases. In particular, LGCI alters metabolism and increases cardiovascular risk by impairing endothelial function and altering the functions of adiponectin and high-density lipoproteins (HDLs). Adiponectin is an adipokine involved in regulating energy metabolism and body composition. Serum adiponectin levels are reduced in obese individuals and negatively correlate with chronic sub-clinical inflammatory markers. HDLs are a heterogeneous and complex class of lipoproteins that can be dysfunctional in obesity. Adiponectin and HDLs are strictly interdependent, and the maintenance of their interplay is essential for vascular function. Since such a complex network of interactions is still overlooked in clinical settings, this review aims to highlight the mechanisms involved in the impairment of the HDLs/adiponectin axis in obese patients to predict the risk of cardiovascular diseases and activate preventive countermeasures. Here, we provide a narrative review of the role of LGCI in altering HDLs, adiponectin and endothelial functions in obesity to encourage new studies about their synergic effects on cardiovascular health and disease.
Collapse
Affiliation(s)
- Monica Zocchi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Matteo Della Porta
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Federico Lombardoni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Roberta Scrimieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
- Department of Pediatrics, Ospedale dei Bambini, 20154 Milan, Italy
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| |
Collapse
|
22
|
Cadby G, Giles C, Melton PE, Huynh K, Mellett NA, Duong T, Nguyen A, Cinel M, Smith A, Olshansky G, Wang T, Brozynska M, Inouye M, McCarthy NS, Ariff A, Hung J, Hui J, Beilby J, Dubé MP, Watts GF, Shah S, Wray NR, Lim WLF, Chatterjee P, Martins I, Laws SM, Porter T, Vacher M, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Taddei K, Arnold M, Kastenmüller G, Nho K, Saykin AJ, Han X, Kaddurah-Daouk R, Martins RN, Blangero J, Meikle PJ, Moses EK. Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease. Nat Commun 2022; 13:3124. [PMID: 35668104 PMCID: PMC9170690 DOI: 10.1038/s41467-022-30875-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∼456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P < 1 × 10-3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases.
Collapse
Affiliation(s)
- Gemma Cadby
- School of Population and Global Health, University of Western Australia, Crawley, WA, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Phillip E Melton
- School of Population and Global Health, University of Western Australia, Crawley, WA, Australia
- Menzies Research Institute, University of Tasmania, Hobart, TAS, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | | | - Thy Duong
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Anh Nguyen
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Michelle Cinel
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Alex Smith
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gavriel Olshansky
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Tingting Wang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Marta Brozynska
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mike Inouye
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nina S McCarthy
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Amir Ariff
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Joseph Hung
- School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Department of Cardiovascular Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Busselton Population Medical Research Institute Inc., Perth, WA, Australia
| | - Jennie Hui
- Busselton Population Medical Research Institute Inc., Perth, WA, Australia
- PathWest Laboratory Medicine WA, Perth, WA, Australia
| | - John Beilby
- Busselton Population Medical Research Institute Inc., Perth, WA, Australia
- PathWest Laboratory Medicine WA, Perth, WA, Australia
| | - Marie-Pierre Dubé
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal Heart Institute, Montreal, QC, Canada
| | - Gerald F Watts
- School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, WA, Australia
| | - Sonia Shah
- Institute for Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Naomi R Wray
- Institute for Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Wei Ling Florence Lim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative research Centre (CRC) for Mental Health, Joondalup, WA, Australia
| | - Pratishtha Chatterjee
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia
| | - Ian Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- The Australian e-Health Research Centre, Health and Biosecurity, CSIRO, Floreat, WA, Australia
| | - Ashley I Bush
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Christopher C Rowe
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia
- University of Melbourne Academic Unit for Psychiatry of Old Age, St George's Hospital, Kew, VIC, Australia
| | - Colin L Masters
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Ralph N Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative research Centre (CRC) for Mental Health, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.
- Monash University, Melbourne, VIC, Australia.
| | - Eric K Moses
- Menzies Research Institute, University of Tasmania, Hobart, TAS, Australia.
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
23
|
Zhu W, Zhang Z, Gui W, Shen Z, Chen Y, Yin X, Liang L, Li L. Identification of the Key Pathways and Genes in Hypoxia Pulmonary Arterial Hypertension Following Intrauterine Growth Retardation. Front Mol Biosci 2022; 9:789736. [PMID: 35433826 PMCID: PMC9008831 DOI: 10.3389/fmolb.2022.789736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
High-throughput sequencing and weighted gene co-expression network analysis (WGCNA) were used to identify susceptibility modules and genes in liver tissue for the hypoxic pulmonary arterial hypertension (PAH) animal model following intrauterine growth retardation (IUGR). A total of 5,000 genes were clustered into eight co-expression modules via WGCNA. Module blue was mostly significantly correlated with the IUGR–hypoxia group. Gene Ontology analysis showed that genes in the module blue were mainly enriched in the fatty acid metabolic process, lipid modification, and fatty acid catabolic process. The Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the genes in module blue were mainly associated with fatty acid metabolism, PPAR signaling pathway, and biosynthesis of unsaturated fatty acids. In addition, the maximal clique centrality method was used to identify the hub genes in the subnetworks, and the obtained results were verified using real-time quantitative PCR. Finally, we identified that four genes including Cyp2f4, Lipc, Acadl, and Hacl1 were significantly associated with IUGR-hypoxia. Our study identified a module and several key genes that acted as essential components in the etiology of the long-term metabolic consequences in hypoxia PAH following IUGR.
Collapse
Affiliation(s)
- Weifen Zhu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziming Zhang
- Department of Neonatology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Gui
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zheng Shen
- Department of Central Laboratory, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yixin Chen
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueyao Yin
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Liang
- Department of Pediatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Lin Li,
| |
Collapse
|
24
|
Metz S, Krarup NT, Bryrup T, Støy J, Andersson EA, Christoffersen C, Neville MJ, Christiansen MR, Jonsson AE, Witte DR, Kampmann U, Nielsen LB, Jørgensen NR, Karpe F, Grarup N, Pedersen O, Kilpeläinen TO, Hansen T. The Arg82Cys polymorphism of the protein nepmucin implies a role in HDL metabolism. J Endocr Soc 2022; 6:bvac034. [PMID: 35382499 PMCID: PMC8974852 DOI: 10.1210/jendso/bvac034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Context Blood lipid levels are linked to the risk of cardiovascular disease and regulated by genetic factors. A low-frequency polymorphism Arg82Cys (rs72836561) in the membrane protein nepmucin, encoded by CD300LG, is associated with lower fasting concentration of high-density lipoprotein cholesterol (HDLc) and higher fasting triglycerides. However, whether the variant is linked to postprandial lipids and glycemic status remains elusive. Objective Here, we augment the genetic effect of Arg82Cys on fasting plasma concentrations of HDL subclasses, postprandial lipemia after a standardized high-fat meal, and glycemic status to further untangle its role in HDL metabolism. Methods We elucidated fasting associations with HDL subclasses in a population-based cohort study (Oxford BioBank, OBB), including 4522 healthy men and women. We investigated fasting and postprandial consequences on HDL metabolism in recall-by-genotype (RbG) studies (fasting: 20 carrier/20 noncarrier; postprandial: 7 carrier/17 noncarrier), and shed light on the synergistic interaction with glycemic status. Results A lower fasting plasma concentration of cholesterol in large HDL particles was found in healthy male carriers of the Cys82 polymorphism compared to noncarriers, both in the OBB (P = .004) and RbG studies (P = .005). In addition, the Cys82 polymorphism was associated with low fasting plasma concentrations of ApoA1 (P = .008) in the OBB cohort. On the contrary, we did not find differences in postprandial lipemia or 2-hour plasma glucose levels. Conclusion Taken together, our results indicate an association between the Arg82Cys variant and a lower concentration of HDL particles and HDLc, especially in larger HDL subclasses, suggesting a link between nepmucin and HDLc metabolism or maturation.
Collapse
Affiliation(s)
- Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj T Krarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Aalborg University Hospital, Department of Cardiology, Aalborg, Denmark
| | - Thomas Bryrup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Støy
- Aarhus University Hospital, Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Ehm A Andersson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology & Metabolism, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Malene R Christiansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna E Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel R Witte
- Department of Public Health, Section of Epidemiology, Aarhus University, Denmark
| | - Ulla Kampmann
- Aarhus University Hospital, Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Denmark
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology & Metabolism, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Li B, Vachali P, Chang FY, Gorusupudi A, Arunkumar R, Shi L, Rognon GT, Frederick JM, Bernstein PS. HDL is the primary transporter for carotenoids from liver to retinal pigment epithelium in transgenic ApoA-I -/-/Bco2 -/- mice. Arch Biochem Biophys 2022; 716:109111. [PMID: 34942193 PMCID: PMC8792244 DOI: 10.1016/j.abb.2021.109111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 11/02/2022]
Abstract
Supplementation with antioxidant carotenoids is a therapeutic strategy to protect against age-related macular degeneration (AMD); however, the transport mechanism of carotenoids from the liver to the retina is still not fully understood. Here, we investigate if HDL serves as the primary transporter for the macular carotenoids. ApoA-I, the key apolipoprotein of HDL, was genetically deleted from BCO2 knockout (Bco2-/-) mice, a macular pigment mouse model capable of accumulating carotenoids in the retina. We then conducted a feeding experiment with a mixed carotenoid chow (lutein:zeaxanthin:β-carotene = 1:1:1) for one month. HPLC data demonstrated that the total carotenoids were increased in the livers but decreased in the serum, retinal pigment epithelium (RPE)/choroids, and retinas of ApoA-I-/-/Bco2-/- mice compared to Bco2-/- mice. In detail, ApoA-I deficiency caused a significant increase of β-carotene but not lutein and zeaxanthin in the liver, decreased all three carotenoids in the serum, blocked the majority of zeaxanthin and β-carotene transport to the RPE/choroid, and dramatically reduced β-carotene and zeaxanthin but not lutein in the retina. Furthermore, surface plasmon resonance spectroscopy (SPR) data showed that the binding affinity between ApoA-I and β-carotene ≫ zeaxanthin > lutein. Our results show that carotenoids are transported from the liver to the eye mainly by HDL, and ApoA-I may be involved in the selective delivery of macular carotenoids to the RPE.
Collapse
Affiliation(s)
- Binxing Li
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Preejith Vachali
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Fu-Yen Chang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Ranganathan Arunkumar
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Linjia Shi
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Gregory T Rognon
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
26
|
Huang CC, Lin TC, Liu CH, Hu HC, Yu SY, Wu SJ, Yen MH, Tsai YH, Chang FR. Lipid Metabolism and its Mechanism Triggered by Supercritical CO 2 Extract of Adlay ( Coix lacryma-jobi var. ma-yuen (Rom. Caill.) Stapf) Bran in High-Fat Diet Induced Hyperlipidemic Hamsters. Front Pharmacol 2021; 12:785944. [PMID: 34867418 PMCID: PMC8635772 DOI: 10.3389/fphar.2021.785944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Adlay (Coix lacryma-jobi var. ma-yuen (Rom. Caill.) Stapf) seeds are edible crop classified as Traditional Chinese Medicine (TCM). Adlay bran (AB) is one of the wastes generated during adlay refining processes. In this work, supercritical fluid extract of AB (AB-SCF) was investigated to reveal its lipid regulating potential and decode its bifunctional ingredients. AB-SCF×0.5 (30.84 mg/kg/body weight), AB-SCF×1 (61.67 mg/kg/BW), AB-SCF×5 (308.35 mg/kg/BW) and AB-SCF×10 (616.70 mg/kg/BW) were administrated to high fat-diet (HFD) induced hyperglycemic hamsters for 8 weeks. The results indicates that AB-SCF displays a prevention of dramatic body weight gains, lower levels of serum TG, TC, LDL-C and higher in HDL-C, amelioration of cardiovascular risk, alleviation of hepatic TG, TC and lipid peroxidation, and enhancement on cholesterol metabolism with higher bile acid excretion. Investigations on energy metabolic mechanism demonstrates that the hyperlipidemia mitigating capacities of AB-SCF are up-regulated on lipoprotein lipase, AMPK, p-AMPK and down-regulated at fatty acid synthase. Major bio-functional lipid compositions are identified as linoleic acid (28.59%) and oleic acid (56.95%). Non-lipid chemical and active markers are confirmed as 3-O-(trans-4-feruloyl)-β-sitostanol (1463.42 ppm), 3-O-(cis-4-feruloyl)-β-sitostanol (162.60 ppm), and β-sitosterol (4117.72 ppm). These compositions might synergistically responsible for the mentioned activities and can be regarded as analytical targets in quality control. AB-SCF may be considered as a promising complementary supplement, and developed as a functional food or new botanical drug in the future.
Collapse
Affiliation(s)
- Chiao-Chih Huang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Ching Lin
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiung-Hui Liu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hao-Chun Hu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Jing Wu
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Kardassis D, Thymiakou E, Chroni A. Genetics and regulation of HDL metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159060. [PMID: 34624513 DOI: 10.1016/j.bbalip.2021.159060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The inverse association between plasma HDL cholesterol (HDL-C) levels and risk for cardiovascular disease (CVD) has been demonstrated by numerous epidemiological studies. However, efforts to reduce CVD risk by pharmaceutically manipulating HDL-C levels failed and refused the HDL hypothesis. HDL-C levels in the general population are highly heterogeneous and are determined by a combination of genetic and environmental factors. Insights into the causes of HDL-C heterogeneity came from the study of monogenic HDL deficiency syndromes but also from genome wide association and Μendelian randomization studies which revealed the contribution of a large number of loci to low or high HDL-C cases in the general or in restricted ethnic populations. Furthermore, HDL-C levels in the plasma are under the control of transcription factor families acting primarily in the liver including members of the hormone nuclear receptors (PPARs, LXRs, HNF-4) and forkhead box proteins (FOXO1-4) and activating transcription factors (ATFs). The effects of certain lipid lowering drugs used today are based on the modulation of the activity of specific members of these transcription factors. During the past decade, the roles of small or long non-coding RNAs acting post-transcriptionally on the expression of HDL genes have emerged and provided novel insights into HDL regulation and new opportunities for therapeutic interventions. In the present review we summarize recent progress made in the genetics and the regulation (transcriptional and post-transcriptional) of HDL metabolism.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
28
|
Khetarpal SA, Vitali C, Levin MG, Klarin D, Park J, Pampana A, Millar JS, Kuwano T, Sugasini D, Subbaiah PV, Billheimer JT, Natarajan P, Rader DJ. Endothelial lipase mediates efficient lipolysis of triglyceride-rich lipoproteins. PLoS Genet 2021; 17:e1009802. [PMID: 34543263 PMCID: PMC8483387 DOI: 10.1371/journal.pgen.1009802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/30/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Triglyceride-rich lipoproteins (TRLs) are circulating reservoirs of fatty acids used as vital energy sources for peripheral tissues. Lipoprotein lipase (LPL) is a predominant enzyme mediating triglyceride (TG) lipolysis and TRL clearance to provide fatty acids to tissues in animals. Physiological and human genetic evidence support a primary role for LPL in hydrolyzing TRL TGs. We hypothesized that endothelial lipase (EL), another extracellular lipase that primarily hydrolyzes lipoprotein phospholipids may also contribute to TRL metabolism. To explore this, we studied the impact of genetic EL loss-of-function on TRL metabolism in humans and mice. Humans carrying a loss-of-function missense variant in LIPG, p.Asn396Ser (rs77960347), demonstrated elevated plasma TGs and elevated phospholipids in TRLs, among other lipoprotein classes. Mice with germline EL deficiency challenged with excess dietary TG through refeeding or a high-fat diet exhibited elevated TGs, delayed dietary TRL clearance, and impaired TRL TG lipolysis in vivo that was rescued by EL reconstitution in the liver. Lipidomic analyses of postprandial plasma from high-fat fed Lipg-/- mice demonstrated accumulation of phospholipids and TGs harboring long-chain polyunsaturated fatty acids (PUFAs), known substrates for EL lipolysis. In vitro and in vivo, EL and LPL together promoted greater TG lipolysis than either extracellular lipase alone. Our data positions EL as a key collaborator of LPL to mediate efficient lipolysis of TRLs in humans and mice.
Collapse
Affiliation(s)
- Sumeet A. Khetarpal
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Cecilia Vitali
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael G. Levin
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Derek Klarin
- Boston VA Healthcare System, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joseph Park
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Akhil Pampana
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America,Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John S. Millar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Takashi Kuwano
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dhavamani Sugasini
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago; Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Papasani V. Subbaiah
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago; Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Jeffrey T. Billheimer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America,Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel J. Rader
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,* E-mail:
| |
Collapse
|
29
|
Bianchini K, Crump D, Farhat A, Morrissey CA. Polycyclic Aromatic Hydrocarbons Alter the Hepatic Expression of Genes Involved in Sanderling (Calidris alba) Pre-migratory Fueling. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1983-1991. [PMID: 33818817 DOI: 10.1002/etc.5056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) impaired pre-migratory fueling in 49 orally dosed Sanderling (Calidris alba). In the present study, 8 genes related to fat deposition and PAH exposure were measured in liver subsamples from these same shorebirds. At the highest dose (1260 µg total PAH [tPAH]/kg body wt/day), PAH exposure decreased liver basic fatty acid binding protein 1 (Lbfabp) and hepatic lipase (Lipc) expression. The present study reveals candidate molecular-level pathways for observed avian pre-migratory refueling impairment. Environ Toxicol Chem 2021;40:1983-1991. © 2021 SETAC.
Collapse
Affiliation(s)
- Kristin Bianchini
- Long Point Waterfowl and Wetlands Research Program, Birds Canada, Port Rowan, Ontario, Canada
- Biology Department, Acadia University, Wolfville, Nova Scotia, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Amani Farhat
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Christy A Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
30
|
McCullough D, Webb R, Enright KJ, Lane KE, McVeigh J, Stewart CE, Davies IG. How the love of muscle can break a heart: Impact of anabolic androgenic steroids on skeletal muscle hypertrophy, metabolic and cardiovascular health. Rev Endocr Metab Disord 2021; 22:389-405. [PMID: 33269425 PMCID: PMC8087567 DOI: 10.1007/s11154-020-09616-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
It is estimated 6.4% of males and 1.6% of females globally use anabolic-androgenic steroids (AAS), mostly for appearance and performance enhancing reasons. In combination with resistance exercise, AAS use increases muscle protein synthesis resulting in skeletal muscle hypertrophy and increased performance. Primarily through binding to the androgen receptor, AAS exert their hypertrophic effects via genomic, non-genomic and anti-catabolic mechanisms. However, chronic AAS use also has a detrimental effect on metabolism ultimately increasing the risk of cardiovascular disease (CVD). Much research has focused on AAS effects on blood lipids and lipoproteins, with abnormal concentrations of these associated with insulin resistance, hypertension and increased visceral adipose tissue (VAT). This clustering of interconnected abnormalities is often referred as metabolic syndrome (MetS). Therefore, the aim of this review is to explore the impact of AAS use on mechanisms of muscle hypertrophy and markers of MetS. AAS use markedly decreases high-density lipoprotein cholesterol (HDL-C) and increases low-density lipoprotein cholesterol (LDL-C). Chronic AAS use also appears to cause higher fasting insulin levels and impaired glucose tolerance and possibly higher levels of VAT; however, research is currently lacking on the effects of AAS use on glucose metabolism. While cessation of AAS use can restore normal lipid levels, it may lead to withdrawal symptoms such as depression and hypogonadism that can increase CVD risk. Research is currently lacking on effective treatments for withdrawal symptoms and further long-term research is warranted on the effects of AAS use on metabolic health in males and females.
Collapse
Affiliation(s)
- Deaglan McCullough
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK.
| | - Richard Webb
- Faculty of Science, Liverpool Hope University, Liverpool, UK
| | - Kevin J Enright
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Katie E Lane
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Jim McVeigh
- Substance Use and Associated Behaviours Group, Manchester Metropolitan University, Manchester, UK
| | - Claire E Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
31
|
Thomas DG, Wei Y, Tall AR. Lipid and metabolic syndrome traits in coronary artery disease: a Mendelian randomization study. J Lipid Res 2021; 62:100044. [PMID: 32907989 PMCID: PMC7933489 DOI: 10.1194/jlr.p120001000] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/20/2020] [Indexed: 01/14/2023] Open
Abstract
Mendelian randomization (MR) of lipid traits in CAD has provided evidence for causal associations of LDL-C and TGs in CAD, but many lipid trait genetic variants have pleiotropic effects on other cardiovascular risk factors that may bias MR associations. The goal of this study was to evaluate pleiotropic effects of lipid trait genetic variants and to account for these effects in MR of lipid traits in CAD. We performed multivariable MR using inverse variance-weighted and MR-Egger methods in large (n ≥ 300,000) GWAS datasets. We found that 30% of lipid trait genetic variants have effects on metabolic syndrome traits, including BMI, T2D, and systolic blood pressure (SBP). Nonetheless, in multivariable MR analysis, LDL-C, HDL-C, TGs, BMI, T2D, and SBP are independently associated with CAD, and each of these associations is robust to adjustment for directional pleiotropy. MR at loci linked to direct effects on HDL-C and TGs suggests locus- and mechanism-specific causal effects of these factors on CAD.
Collapse
Affiliation(s)
- David G Thomas
- Department of Medicine, New York Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Ying Wei
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
32
|
High-Density Lipoprotein (HDL) in Allergy and Skin Diseases: Focus on Immunomodulating Functions. Biomedicines 2020; 8:biomedicines8120558. [PMID: 33271807 PMCID: PMC7760586 DOI: 10.3390/biomedicines8120558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
From an evolutionary perspective, lipoproteins are not only lipid transporters, but they also have important functions in many aspects of immunity. High-density lipoprotein (HDL) particles are the most abundant lipoproteins and the most heterogeneous in terms of their composition, structure, and biological functions. Despite strong evidence that HDL potently influences the activity of several immune cells, the role of HDL in allergies and skin diseases is poorly understood. Alterations in HDL-cholesterol levels have been observed in allergic asthma, allergic rhinitis, atopic dermatitis (eczema), psoriasis, urticaria, and angioedema. HDL-associated apolipoprotein (apo) A-I, apoA-IV, and apoC-III, and lyso-phosphatidylcholines potently suppress immune cell effector responses. Interestingly, recent studies provided evidence that allergies and skin diseases significantly affect HDL composition, metabolism, and function, which, in turn, could have a significant impact on disease progression, but may also affect the risk of cardiovascular disease and infections. Interestingly, not only a loss in function, but also, sometimes, a gain in function of certain HDL properties is observed. The objective of this review article is to summarize the newly identified changes in the metabolism, composition, and function of HDL in allergies and skin diseases. We aim to highlight the possible pathophysiological consequences with a focus on HDL-mediated immunomodulatory activities.
Collapse
|
33
|
Gohar A, Shakeel M, Atkinson RL, Haleem DJ. Potential mechanisms of improvement in body weight, metabolic profile, and liver metabolism by honey in rats on a high fat diet. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Consensus document of an expert group from the Spanish Society of Arteriosclerosis (SEA) on the clinical use of nuclear magnetic resonance to assess lipoprotein metabolism (Liposcale®). CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2020; 32:219-229. [PMID: 32798078 DOI: 10.1016/j.arteri.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 01/24/2023]
Abstract
The assessment and prevention of cardiovascular risk (CVR) that persists in patients with dyslipidaemia despite treatment and achievement of goals specific to the plasma concentration of cholesterol linked to low density (c-LDL) is a clinical challenge today, and suggests that conventional lipid biomarkers are insufficient for an accurate assessment of CVR. Apart from their lipid content, there are other lipid particle characteristics. The results of this study show that there are a number of lipoprotein compounds that determine atherogenic potential and its influence on the CVR. However, such additional characteristics cannot be analysed by the techniques commonly used in clinical laboratories. Nuclear Magnetic Resonance (NMR) is a technique that allows a detailed analysis to be made of the amount, composition, and size of lipoproteins, as well as providing more information about the detailed status of lipid metabolism and CVR in dyslipidaemia patients. In this article a group of lipidologists from the Spanish Society of Arteriosclerosis review the existing evidence on the atherogenic mechanisms of particles and describe the technical basis and interpretation of the profiles lipoproteins obtained by MRI, with special reference to the test available in Spain (Liposcale®). Likewise, the main patient profiles are defined as such that an analysis would provide information of greater clinical interest. These include: a) Suspected mismatch between lipid concentrations and particles, a common situation in diabetes, obesity, metabolic syndrome; b) Early atherothrombotic cardiovascular disease (ECVA) or recurrent without CVR factors to justify it; c) Lipid disorders, rare or complex, such as extreme concentrations of c-HDL, and d) Clinical situations where classical analytical techniques cannot be applied, such as very low c-LDL values.
Collapse
|
35
|
Ibi D, Noordam R, van Klinken JB, Li-Gao R, de Mutsert R, Trompet S, Christen T, Blauw LL, van Heemst D, Mook-Kanamori DO, Rosendaal FR, Jukema JW, Dollé MET, Rensen PCN, van Dijk KW. Genome-Wide Association Study of the Postprandial Triglyceride Response Yields Common Genetic Variation in LIPC (Hepatic Lipase). CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002693. [PMID: 32603185 DOI: 10.1161/circgen.119.002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The increase in serum triglyceride (TG) concentrations in response to a meal is considered a risk factor for cardiovascular disease. We aimed to elucidate the genetics of the postprandial TG response through genome-wide association studies (GWAS). METHODS Participants of the NEO (Netherlands Epidemiology of Obesity) study (n=5630) consumed a liquid mixed meal after an overnight fast. GWAS of fasting and postprandial serum TG at 150 minutes were performed. To identify genetic variation of postprandial TG independent of fasting TG, we calculated the TG response at 150 minutes by the residuals of a nonlinear regression that predicted TG at 150 minutes as a function of fasting TG. Association analyses were adjusted for age, sex, and principal components in a linear regression model. Next, using the identified variants as determinants, we performed linear regression analyses on the residuals of the postprandial response of 149 nuclear magnetic resonance-based metabolite measures. RESULTS GWAS of fasting TG and postprandial serum TG at 150 minutes resulted in completely overlapping loci, replicating previous GWAS. From GWAS of the TG response, we identified rs7350789-A (allele frequency=0.36), mapping to hepatic lipase (LIPC), to be associated with a smaller increase in TG concentrations at 150 minutes (β=-0.11; P-value=5.1×10-8). Rs7350789-A was associated with responses of 33 metabolite measures (P-value <1.34×10-3), mainly smaller increases of the TG-component in almost all HDL (high-density lipoprotein) subparticles (HDL-TG), a smaller decrease of HDL diameter and smaller increases of most components of VLDL (very low density lipoprotein) subparticles. CONCLUSIONS GWAS of the TG response identified a variant near LIPC as a main contributor to postprandial TG metabolism independent of fasting TG concentrations, resulting in smaller increases of HDL-TG and VLDL subparticles.
Collapse
Affiliation(s)
- Dorina Ibi
- Department of Human Genetics (D.I., J.B.v.K., K.W.v.D.)
| | - Raymond Noordam
- Division of Gerontology and Geriatrics, Department of Internal Medicine (R.N., D.v.H.)
| | | | - Ruifang Li-Gao
- Department of Clinical Epidemiology (R.L.-G., R.d.M., D.O.M.-K., F.R.R.)
| | - Renée de Mutsert
- Department of Clinical Epidemiology (R.L.-G., R.d.M., D.O.M.-K., F.R.R.)
| | | | - Tim Christen
- Department of Human Genetics (D.I., J.B.v.K., K.W.v.D.)
| | - Lisanne L Blauw
- Division of Endocrinology, Department of Internal Medicine (J.B.v.K., L.L.B., P.C.N.R., K.W.v.D.)
| | - Diana van Heemst
- Division of Gerontology and Geriatrics, Department of Internal Medicine (R.N., D.v.H.)
| | | | - Frits R Rosendaal
- Department of Clinical Epidemiology (R.L.-G., R.d.M., D.O.M.-K., F.R.R.)
| | | | - Martijn E T Dollé
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands (D.I., M.E.T.D.)
| | - Patrick C N Rensen
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (P.C.N.R., K.W.v.D.)
| | - Ko Willems van Dijk
- Division of Endocrinology, Department of Internal Medicine (J.B.v.K., L.L.B., P.C.N.R., K.W.v.D.)
| |
Collapse
|
36
|
Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020; 21:E4501. [PMID: 32599910 PMCID: PMC7350010 DOI: 10.3390/ijms21124501] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidylcholines are a group of bioactive lipids heavily investigated in the context of inflammation and atherosclerosis development. While present in plasma during physiological conditions, their concentration can drastically increase in certain inflammatory states. Lysophosphatidylcholines are widely regarded as potent pro-inflammatory and deleterious mediators, but an increasing number of more recent studies show multiple beneficial properties under various pathological conditions. Many of the discrepancies in the published studies are due to the investigation of different species or mixtures of lysophatidylcholines and the use of supra-physiological concentrations in the absence of serum or other carrier proteins. Furthermore, interpretation of the results is complicated by the rapid metabolism of lysophosphatidylcholine (LPC) in cells and tissues to pro-inflammatory lysophosphatidic acid. Interestingly, most of the recent studies, in contrast to older studies, found lower LPC plasma levels associated with unfavorable disease outcomes. Being the most abundant lysophospholipid in plasma, it is of utmost importance to understand its physiological functions and shed light on the discordant literature connected to its research. LPCs should be recognized as important homeostatic mediators involved in all stages of vascular inflammation. In this review, we want to point out potential pro- and anti-inflammatory activities of lysophospholipids in the vascular system and highlight recent discoveries about the effect of lysophosphatidylcholines on immune cells at the endothelial vascular interface. We will also look at their potential clinical application as biomarkers.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
37
|
Wu TY, Wang CH, Tien N, Lin CL, Chu FY, Chang HY, Lim YP. A Population-Based Cohort Study on the Association of Hyperthyroidism With the Risk of Hyperlipidemia and the Effects of Anti-thyroid Drugs on Hepatic Gene Expression. Front Med (Lausanne) 2020; 7:228. [PMID: 32549042 PMCID: PMC7273307 DOI: 10.3389/fmed.2020.00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
There have been no reports on the association of hyperthyroidism with hyperlipidemia in patients undergoing treatment especially in Asia. To determine the association between hyperthyroidism and the risk of hyperlipidemia in patients, we conducted a retrospective cohort study using Longitudinal Health Insurance Database (LHID) from Taiwan, R.O.C. We also evaluate the influence of 6-n-propyl-2-thiouracil (PTU) and methimazole (MMI) on hepatic genes to explain changes in blood lipid levels in a hepatic cell line model. The cohort study involved 13,667 patients with hyperthyroidism, and the corresponding comparison cohort had four times as many patients. Using Kaplan-Meier analysis method, the results showed that, compared to patients without hyperthyroidism, the overall incidence of hyperlipidemia was significantly higher in the hyperthyroidism patients (18.7 vs. 11.8 cases/1,000 persons-years; adjusted HR 1.5; 95% CI, 1.41–1.59). With only PTU or MMI/carbimazole (CBM) treatment, patients with hyperthyroidism showed a 1.78-fold (95% CI, 1.50–2.11) and 1.43-fold (95% CI, 1.27–1.60) higher risk of hyperlipidemia than those without hyperthyroidism, respectively. Additionally, hyperthyroidism patients that received surgery only or surgery with I131 therapy tended to have a higher risk of hyperlipidemia. Although PTU and MMI treatment decreased the expression levels of genes responsible for circulating remnant lipoproteins, they increased the levels of lipogenic gene expression in hepatic cells. Thus, treatment of hyperthyroid patients with anti-thyroid drugs (ATDs), I131, or surgery is likely to induce hyperlipidemia. ATDs downregulate the expression of genes involved in lipoproteins clearance; increases lipogenic genes expression, which may partly contribute to abnormal blood lipid profiles.
Collapse
Affiliation(s)
- Tien-Yuan Wu
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City, Taiwan.,Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Chung-Hsing Wang
- Children's Hospital of China Medical University, Taichung City, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung City, Taiwan
| | - Fang-Yi Chu
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung City, Taiwan
| | - Hsiao-Yun Chang
- Department of Biotechnology, Asia University, Taichung City, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung City, Taiwan.,Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
38
|
Roy N, Gaudet D, Tremblay G, Brisson D. Association of common gene-smoking interactions with elevated plasma apolipoprotein B concentration. Lipids Health Dis 2020; 19:98. [PMID: 32430061 PMCID: PMC7236958 DOI: 10.1186/s12944-020-01287-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
Background Increased apolipoprotein (apo) B level (hyperapoB) is a strong predictor of cardiovascular disease (CVD), even in patients who achieve recommended LDL-Cholesterol (LDL-C) goals. ApoB level, an important correlate of metabolic syndrome (MetS), is influenced by several gene-environment interactions. Some of them are rare and can explain a large proportion of apoB variance, whereas others more common have variable effects. The aim of this study was to evaluate the association of interaction between smoking and common hyperapoB gene variants (PPARα-L162V, lipoprotein lipase loss-of function mutation, apo e4 allele or apo E2/2 genotype) with plasma apoB concentrations, according to the expression of MetS. Methods This study was performed among 1798 subjects. Smoking was defined as non/mild smokers vs. moderate-to-heavy smokers. ApoB levels were determined using nephelometry. Logistic regression models were used to document interactions between smoking habits and the presence of hyperapoB gene variants on the relative odds to exhibit increased plasma apoB concentrations. Results Around 29% of individuals with a low-risk lipid profile without MetS component had hyperapoB. Smoking and the presence of hyperapoB gene variants tended to be associated with higher plasma apoB levels even in presence of low-LDL-C. There was a significant interaction (P = 0.04) between the presence of ≥1 gene variants and smoking on the risk to exhibit hyperapoB among subjects with low risk profile in primary prevention. Conclusions Combination of life habits assessment and some common genes variants may detect a significant proportion of patients with increased apoB levels, and therefore a higher risk of CVD, who could have been initially perceived as low-risk.
Collapse
Affiliation(s)
- Nathalie Roy
- Department of Medicine, Université de Montréal, ECOGENE-21 Clinical and Translational Research Center, 930 Jacques-Cartier, Chicoutimi, Quebec, G7H 7K9, Canada
| | - Daniel Gaudet
- Department of Medicine, Université de Montréal, ECOGENE-21 Clinical and Translational Research Center, 930 Jacques-Cartier, Chicoutimi, Quebec, G7H 7K9, Canada.,Lipid Clinic, Chicoutimi Hospital, Saguenay, Quebec, Canada
| | - Gérald Tremblay
- Department of Medicine, Université de Montréal, ECOGENE-21 Clinical and Translational Research Center, 930 Jacques-Cartier, Chicoutimi, Quebec, G7H 7K9, Canada.,Lipid Clinic, Chicoutimi Hospital, Saguenay, Quebec, Canada
| | - Diane Brisson
- Department of Medicine, Université de Montréal, ECOGENE-21 Clinical and Translational Research Center, 930 Jacques-Cartier, Chicoutimi, Quebec, G7H 7K9, Canada.
| |
Collapse
|
39
|
Wei W, Hu T, Luo H, Ye Z, Lu F, Wu Y, Ying M. The cross-sectional study of hepatic lipase SNPs and plasma lipid levels. Food Sci Nutr 2020; 8:1162-1172. [PMID: 32341780 PMCID: PMC7180388 DOI: 10.1002/fsn3.1403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/29/2022] Open
Abstract
By the combination of meta-analysis, the data of the 1,000 Genomes Project Phase 3, and the promoter sequence of hepatic lipase (LIPC), we performed the cross-sectional study to explore the associations of four variants (rs1077835; rs1077834; rs1800588 [C-514T], and rs2070895 [G-250A]) in LIPC promoter with plasma lipid levels. Our results indicate that the first and the next three of the four SNPs are, respectively, reported to be associated with the decreased and increased HDL-c level. Meta-analysis of 87 studies with 101,988 participants indicates that HDL-c level in rs1800588 (C-514T) (pooled mean difference = 0.03, 95%CI (0.03, 0.04), p < .001) and rs2070895 (G-250A) (pooled mean difference = 0.07, 95%CI (0.05, 0.09), p < .001) is higher in allele T or A carriers. Similarly, LDL-c, TC, TG, and BMI levels are generally increased in T or A alleles carriers. We failed to conduct the meta-analysis of rs1077835 and rs1077834 due to the limited previous reports. Data from the 1,000 Genomes indicate that the allele frequencies of the four SNPs in total or subpopulations are almost equal to each other. The paired value r 2 and D' of the four SNPs are larger than 0.8, which indicate the linkage disequilibrium of the four variants. The analysis of LIPC promoter indicate that C-514T and G-250A are, respectively, located in transcriptional factor binding sites of USF1and Pbx1b, which may partly explain the effect of the two SNPs on the decreased LIPC activity in the alleles carriers and the corresponding increased plasma lipids hydrolyzed by LIPC. These results may help us to better understand the different effects of the four SNPs on the plasma lipid levels among subpopulations and offer clues for future clinical treatment of dyslipidemia-related diseases.
Collapse
Affiliation(s)
- Wang Wei
- Department of Molecular Biology and BiochemistryBasic Medical College of Nanchang UniversityJiangxiChina
- Department of CardiologyThe Second Affiliated Hospital of Nanchang UniversityJiangxiChina
| | - Tian Hu
- Department of Molecular Biology and BiochemistryBasic Medical College of Nanchang UniversityJiangxiChina
| | - Huilong Luo
- Department of Molecular Biology and BiochemistryBasic Medical College of Nanchang UniversityJiangxiChina
| | - Zhang Ye
- Department of CardiologyThe Second Affiliated Hospital of Nanchang UniversityJiangxiChina
| | - Feiteng Lu
- Department of Molecular Biology and BiochemistryBasic Medical College of Nanchang UniversityJiangxiChina
| | - Yanqing Wu
- Department of Emergency and Critical Care Medicinethe Second Affiliated Hospital of Nanchang UniversityJiangxiChina
| | - Muying Ying
- Department of Molecular Biology and BiochemistryBasic Medical College of Nanchang UniversityJiangxiChina
| |
Collapse
|
40
|
Tuteja S, Qu L, Vujkovic M, Dunbar RL, Chen J, DerOhannessian S, Rader DJ. Genetic Variants Associated With Plasma Lipids Are Associated With the Lipid Response to Niacin. J Am Heart Assoc 2019; 7:e03488. [PMID: 30371334 PMCID: PMC6404865 DOI: 10.1161/jaha.117.008461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Niacin is a broad-spectrum lipid-modulating drug, but its mechanism of action is unclear. Genome-wide association studies have identified multiple loci associated with blood lipid levels and lipoprotein (a). It is unknown whether these loci modulate response to niacin. Methods and Results Using data from the AIM - HIGH (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL /High Triglycerides and Impact on Global Health Outcomes) trial (n=2054 genotyped participants), we determined whether genetic variations at validated loci were associated with a differential change in plasma lipids and lipoprotein (a) 1 year after randomization to either statin+placebo or statin+niacin in a variant-treatment interaction model. Nominally significant interactions ( P<0.05) were found for genetic variants in MVK , LIPC , PABPC 4, AMPD 3 with change in high-density lipoprotein cholesterol; SPTLC 3 with change in low-density lipoprotein cholesterol; TOM 1 with change in total cholesterol; PDXDC 1 and CYP 26A1 with change in triglycerides; and none for lipoprotein (a). We also investigated whether these loci were associated with cardiovascular events. The risk of coronary disease related death was higher in the minor allele carriers at the LIPC locus in the placebo group (odds ratio 2.08, 95% confidence interval 1.11-3.90, P=0.02) but not observed in the niacin group (odds ratio 0.89, 95% confidence interval 0.48-1.65, P=0.7); P-interaction =0.02. There was a greater risk for acute coronary syndrome (odds ratio 1.85, 95% confidence interval 1.16-2.77, P=0.02) and revascularization events (odds ratio 1.64, 95% confidence interval 1.2-2.22, P=0.002) in major allele carriers at the CYP 26A1 locus in the placebo group not seen in the niacin group. Conclusions Genetic variation at loci previously associated with steady-state lipid levels displays evidence for lipid response to niacin treatment. Clinical Trials Registration URL: https://www.clinicaltrials.gov . Unique identifier: NCT00120289.
Collapse
Affiliation(s)
- Sony Tuteja
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Liming Qu
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Marijana Vujkovic
- 2 Department of Biostatistics and Epidemiology Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Richard L Dunbar
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA.,4 Cardiometabolic and Lipid Clinic Corporal Michael J. Crescenz VA Medical Center Philadelphia PA.,5 ICON plc North Wales PA
| | - Jinbo Chen
- 2 Department of Biostatistics and Epidemiology Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Stephanie DerOhannessian
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Daniel J Rader
- 1 Department of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia PA.,3 Department of Genetics Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| |
Collapse
|
41
|
Chroni A, Kardassis D. HDL Dysfunction Caused by Mutations in apoA-I and Other Genes that are Critical for HDL Biogenesis and Remodeling. Curr Med Chem 2019. [DOI: 10.2174/0929867325666180313114950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The “HDL hypothesis” which suggested that an elevation in HDL cholesterol
(HDL-C) levels by drugs or by life style changes should be paralleled by a decrease in the
risk for Cardiovascular Disease (CVD) has been challenged by recent epidemiological and
clinical studies using HDL-raising drugs. HDL components such as proteins, lipids or small
RNA molecules, but not cholesterol itself, possess various atheroprotective functions in different
cell types and accumulating evidence supports the new hypothesis that HDL functionality
is more important than HDL-C levels for CVD risk prediction. Thus, the detailed characterization
of changes in HDL composition and functions in various pathogenic conditions
is critically important in order to identify new biomarkers for diagnosis, prognosis and therapy
monitoring of CVD. Here we provide an overview of how HDL composition, size and
functionality are affected in patients with monogenic disorders of HDL metabolism due to
mutations in genes that participate in the biogenesis and the remodeling of HDL. We also review
the findings from various mouse models with genetic disturbances in the HDL biogenesis
pathway that have been generated for the validation of the data obtained in human patients
and how these models could be utilized for the evaluation of novel therapeutic strategies such
as the use of adenovirus-mediated gene transfer technology that aim to correct HDL abnormalities.
Collapse
Affiliation(s)
- Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research , Greece
| | - Dimitris Kardassis
- Department of Basic Medical Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 71003, Greece
| |
Collapse
|
42
|
Yu X, Lu J, Li J, Guan W, Deng S, Deng Q, Ye H, Han W, Yu Y, Zhang R. Serum Triglyceride Lipase Concentrations are Independent Risk Factors for Coronary Artery Disease and In-Stent Restenosis. J Atheroscler Thromb 2019; 26:762-774. [PMID: 30651409 PMCID: PMC6753239 DOI: 10.5551/jat.46821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Endothelial lipase (EL), hepatic lipase (HL), and lipoprotein lipase (LPL) are all triglyceride lipases and are associated with coronary artery disease (CAD). However, whether they can be simultaneous independent risk factors for CAD is unknown. In the present study, we investigated whether the three lipases can be independent risk factors simultaneously for CAD and whether combining these lipases could provide greater predictive power than high-density lipoprotein cholesterol (HDL-c) for the development of CAD. Methods: Eighty-six patients with CAD and 65 healthy controls were enrolled in the study. Additionally, 38 patients who underwent one-year follow-up angiography after percutaneous coronary intervention with stent implantation were collected to investigate in-stent restenosis. Serum EL, HL, and LPL concentrations were measured and compared with other coronary risk factors. Results: Serum EL and HL concentrations were both significantly increased in patients with CAD or in-stent restenosis, whereas serum LPL concentration was reduced significantly in patients with CAD. Multivariate logistic regression analysis indicated that the three lipases were simultaneous independent risk factors for CAD. However, only serum EL concentration was considered an independent risk factor for in-stent restenosis. Importantly, the receiver operating characteristic curve showed that the combined measurement of the three lipases displayed better predictive power than HDL-c or any one of the three lipases for CAD. Conclusions: Serum EL concentration was an independent risk factor for both CAD and in-stent restenosis. Moreover, the combined assessment of serum EL, HL, and LPL concentrations as multiple risk factors provided potent predictive power for CAD.
Collapse
Affiliation(s)
- Xiaolan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University
| | - Jianping Lu
- Department of Physical examinations, The Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Jingjing Li
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University
| | - Shaorong Deng
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University
| | - Qing Deng
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University
| | - Hao Ye
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University
| | - Wei Han
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University
| | - Ruiyan Zhang
- Department of Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University
| |
Collapse
|
43
|
Liu X, Zuo J, Fang Y, Wen J, Deng F, Zhong H, Jiang B, Wang J, Nie B. Downregulation of hepatic lipase is associated with decreased CD133 expression and clone formation in HepG2 cells. Int J Mol Med 2018; 42:2137-2144. [PMID: 30015857 DOI: 10.3892/ijmm.2018.3756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/07/2018] [Indexed: 11/05/2022] Open
Abstract
The drug resistance of cancer remains a major obstacle to successful chemotherapy. New strategies for improving chemotherapeutic efficacy are urgently required. Recent studies have indicated that LIPC plays a role in promoting the liver metastasis of colorectal cancer. In the present study, we aimed to investigate the effects of LIPC on theproliferation and clone formation of colorectal cancer-derived cells, and chemoresistance in hepatoblastoma-derived HepG2 cells. The activity and expression of LIPC were determined in the cell lines by RT-qPCR and western blot analysis. HepG2 cells in which LIPC was knocked down by LIPC short hairpin RNA (shRNA) and control cells [shRNA control (shCON)] were established and analyzed for cell proliferation and colony formation rates. FACS analysis was used to explore the association between LIPC and the tumor-derived cell biomarker, CD133, and the percentages of CD133-positive cells were assessed by FACS. Additionally, shLIPC- and shCON-transfected cells were treated with various concentrations of doxorubicin and 5-floxuridine (5-FU), and cell viability was determined by MTT assay. mRNA levels in the shLIPC- and shCON-transfected cells were compared by cDNA microarray and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The results revealed that the HepG2 cells exhibited a relatively higher LIPC activity and expression levels compared to the other colon cancer cell lines. The downregulation of LIPC in the HepG2 cells was associated with the decreased expression of CD133, decreased cell proliferation and colony formation, as well as increased resistance to chemotherapy. KEGG analysis of the cDNA microarray data revealed increased levels in the cell adhesion molecule (CAM) pathway, including CLDN10 and CLDN1, indicating that CAMs may play a role in LIPC-mediated tumor progression. The present findings indicate a potential role of LIPC as a promising therapeutic target in cancer.
Collapse
Affiliation(s)
- Xuehua Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Junhua Zuo
- Department of Gastroenterology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Yuan Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Wen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Feihong Deng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hui Zhong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bo Jiang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, P.R. China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Biao Nie
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, P.R. China
| |
Collapse
|
44
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Andrés-Blasco I, Vinué À, Herrero-Cervera A, Martínez-Hervás S, Nuñez L, Piqueras L, Ascaso JF, Sanz MJ, Burks DJ, González-Navarro H. Hepatic lipase inactivation decreases atherosclerosis in insulin resistance by reducing LIGHT/Lymphotoxin β-Receptor pathway. Thromb Haemost 2018; 116:379-93. [DOI: 10.1160/th15-10-0773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/24/2016] [Indexed: 01/03/2023]
Abstract
SummaryCoexistence of insulin resistance (IR) and metabolic syndrome (MetS) increases the risk of cardiovascular disease (CVD). Genetic studies in diabetes have linked Hepatic Lipase (HL) to an enhanced risk of CVD while others indicate a role of HL in inflammatory cells. Thus, we explored the role of HL on atherosclerosis and inflammation in a mouse model of MetS/IR, (apoE-/-Irs2+/- mice) and in patients with MetS and IR. HL-deficiency in apoE-/-Irs2+/- mice reduced atheroma size, plaque vulnerability, leukocyte infiltration and macrophage proliferation. Compared with apoE-/-Irs2+/-HL+/+ mice, MCP1, TNFa and IL6 plasma levels, pro-inflammatory Ly6Chi monocytes and activated(CD69+)-T lymphocytes were also decreased in apoE-/-Irs2+/-HL-/- mice. The LIGHT (Tumour necrosis factor ligand superfamily member 14, TNFSF14)/ Lymphotoxin β-Receptor(LTβ-R) pathway, which is involved in T-cell and macrophage activation, was diminished in plasma and in apoE-/-Irs2+/-HL-/- mouse atheromas. Treatment of apoE-/-Irs2+/-HL-/- mice with LIGHT increased the number of Ly6Chi-monocytes and lesion size. Acutely LIGHT-treated apoE-/- mice displayed enhanced proliferating Ly6Chi-monocytes and increased activation of the mitogen-activated protein kinase p38, suggesting that LIGHT/LTβ-R axis might promote atherogenesis by increasing proinflammatory monocytes and proliferation. Notably, MetS-IR subjects with increased atherosclerosis displayed up-regulation of the LIGHT/LTβ-R axis, enhanced inflammatory monocytes and augmented HL mRNA expression in circulating leukocytes. Thus, HL-deficiency decreases atherosclerosis in MetS/IR states by reducing inflammation and macrophage proliferation which are partly attributed to reduced LIGHT/LTβ-R pathway. These studies identify the LIGHT/LTβ-R axis as a main pathway in atherosclerosis and suggest that its inactivation might ameliorate inflammation and macrophage proliferation associated with atherosclerosis burden in MetS/IR.Supplementary Material to this article is available at www.thrombosis-online.com.
Collapse
|
46
|
Saunders BM, Rudnicka C, Filipovska A, Davies S, Ward N, Hricova J, Schlaich MP, Matthews VB. Shining LIGHT on the metabolic role of the cytokine TNFSF14 and the implications on hepatic IL-6 production. Immunol Cell Biol 2017; 96:41-53. [DOI: 10.1111/imcb.1002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Bernadette M Saunders
- School of Life Sciences; Faculty of Science; University of Technology Sydney; New South Wales Australia
- Tuberculosis Research Program; Centenary Institute; Newtown New South Wales Australia
| | - Caroline Rudnicka
- Research Centre; Royal Perth Hospital; Perth Western Australia Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research; Nedlands Western Australia Australia
- School of Molecular Sciences; University of Western Australia; Nedlands Western Australia Australia
| | - Stefan Davies
- Harry Perkins Institute of Medical Research; Nedlands Western Australia Australia
| | - Natalie Ward
- School of Medicine; University of Western Australia; Perth Western Australia Australia
- Curtin Health and Innovation Research Institute; Curtin University; Perth Western Australia Australia
| | - Jana Hricova
- Royal Perth Hospital Unit; Dobney Hypertension Centre; School of Biomedical Sciences; University of Western Australia; Perth Western Australia Australia
| | - Markus P Schlaich
- Royal Perth Hospital Unit; Dobney Hypertension Centre; School of Biomedical Sciences; University of Western Australia; Perth Western Australia Australia
- Department of Cardiology and Department of Nephrology; Royal Perth Hospital; Perth Western Australia Australia
| | - Vance B Matthews
- Royal Perth Hospital Unit; Dobney Hypertension Centre; School of Biomedical Sciences; University of Western Australia; Perth Western Australia Australia
| |
Collapse
|
47
|
Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms. Proc Natl Acad Sci U S A 2017; 114:E9172-E9180. [PMID: 29073114 DOI: 10.1073/pnas.1707797114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypothyroidism, a metabolic disease characterized by low thyroid hormone (TH) and high thyroid-stimulating hormone (TSH) levels in the serum, is strongly associated with nonalcoholic fatty liver disease (NAFLD). Hypothyroidism-induced NAFLD has generally been attributed to reduced TH signaling in the liver with a consequent decrease in lipid utilization. Here, we found that mildly hypothyroid mice develop NAFLD without down-regulation of hepatic TH signaling or decreased hepatic lipid utilization. NAFLD was induced by impaired suppression of adipose tissue lipolysis due to decreased insulin secretion and to a reduced response of adipose tissue itself to insulin. This condition leads to increased shuttling of fatty acids (FAs) to the liver, where they are esterified and accumulated as triglycerides. Lipid accumulation in the liver induces hepatic insulin resistance, which leads to impaired suppression of endogenous glucose production after feeding. Hepatic insulin resistance, synergistically with lowered insulin secretion, increases serum glucose levels, which stimulates de novo lipogenesis (DNL) in the liver. Up-regulation of DNL also contributes to NAFLD. In contrast, severely hypothyroid mice show down-regulation of TH signaling in their livers and profound suppression of adipose tissue lipolysis, which decreases delivery of FAs to the liver. The resulting lack of substrates for triglyceride esterification protects severely hypothyroid mice against NAFLD. Our findings demonstrate that NAFLD occurs when TH levels are mildly reduced, but, paradoxically, not when they are severely reduced. Our results show that the pathogenesis of hypothyroidism-induced NAFLD is both intra- and extrahepatic; they also reveal key metabolic differences between mild and severe hypothyroidism.
Collapse
|
48
|
Smith CE, Van Rompay MI, Mattei J, Garcia JF, Garcia-Bailo B, Lichtenstein AH, Tucker KL, Ordovás JM. Dietary fat modulation of hepatic lipase variant -514 C/T for lipids: a crossover randomized dietary intervention trial in Caribbean Hispanics. Physiol Genomics 2017; 49:592-600. [PMID: 28939642 DOI: 10.1152/physiolgenomics.00036.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 11/22/2022] Open
Abstract
The hepatic lipase (LIPC) locus is a well-established determinant of high-density lipoprotein cholesterol (HDL-C) concentrations, an association that is modified by dietary fat in observational studies. Dietary interventions are lacking. We investigated dietary modulation of LIPC rs1800588 (-514 C/T) for lipids and glucose using a randomized crossover design comparing a high-fat Western diet and a low-fat traditional Hispanic diet in individuals of Caribbean Hispanic descent (n = 42, 4 wk/phase). No significant gene-diet interactions were observed for HDL-C. However, differences in dietary response according to LIPC genotype were observed. In major allele carriers (CC/CT), HDL-C (mmol/l) was higher following the Western diet compared with the Hispanic diet: phase 1 (Western: 1.3 ± 0.03; Hispanic: 1.1 ± 0.04; P = 0.0004); phase 2 (Western: 1.4 ± 0.03; Hispanic: 1.2 ± 0.03; P = 0.0003). In contrast, HDL-C in TT individuals did not differ by diet. Only major allele carriers benefited from the higher-fat diet for HDL-C. Secondarily, we explored dietary fat quality and rs1800588 for HDL-C and triglycerides (TG) in a Boston Puerto Rican Health Study (BPRHS) subset matched for diabetes and obesity status (subset n = 384). In the BPRHS, saturated fat was unfavorably associated with HDL-C and TG in rs1800588 TT carriers. LIPC rs1800588 appears to modify plasma lipids in the context of dietary fat. This new evidence of genetic modulation of dietary responses may inform optimal and personalized dietary fat advice and reinforces the importance of studying genetic markers in diet and cardiometabolic health.
Collapse
Affiliation(s)
- C E Smith
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts; .,Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - M I Van Rompay
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts.,Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - J Mattei
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts.,Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - J F Garcia
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - B Garcia-Bailo
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - A H Lichtenstein
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts.,Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - K L Tucker
- Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - J M Ordovás
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts.,Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts.,Department of Epidemiology, Centro Nacional Investigaciones Cardiovasculares, Madrid, Spain; and.,Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA-FOOD), Madrid, Spain
| |
Collapse
|
49
|
Buonuomo PS, Rabacchi C, Macchiaiolo M, Trenti C, Fasano T, Tarugi P, Bartuli A, Bertolini S, Calandra S. Incidental finding of severe hypertriglyceridemia in children. Role of multiple rare variants in genes affecting plasma triglyceride. J Clin Lipidol 2017; 11:1329-1337.e3. [PMID: 28951076 DOI: 10.1016/j.jacl.2017.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The incidental finding of severe hypertriglyceridemia (HyperTG) in a child may suggest the diagnosis of familial chylomicronemia syndrome (FCS), a recessive disorder of the intravascular hydrolysis of triglyceride (TG)-rich lipoproteins. FCS may be due to pathogenic variants in lipoprotein lipase (LPL), as well as in other proteins, such as apolipoprotein C-II and apolipoprotein A-V (activators of LPL), GPIHBP1 (the molecular platform required for LPL activity on endothelial surface) and LMF1 (a factor required for intracellular formation of active LPL). OBJECTIVE Molecular characterization of 5 subjects in whom HyperTG was an incidental finding during infancy/childhood. METHODS We performed the parallel sequencing of 20 plasma TG-related genes. RESULTS Three children with severe HyperTG were found to be compound heterozygous for rare pathogenic LPL variants (2 nonsense, 3 missense, and 1 splicing variant). Another child was found to be homozygous for a nonsense variant of APOA5, which was also found in homozygous state in his father with longstanding HyperTG. The fifth patient with a less severe HyperTG was found to be heterozygous for a frameshift variant in LIPC resulting in a truncated Hepatic Lipase. In addition, 1 of the patients with LPL deficiency and the patient with APOA-V deficiency were also heterozygous carriers of a pathogenic variant in LIPC and LPL gene, respectively, whereas the patient with LIPC variant was also a carrier of a rare APOB missense variant. CONCLUSIONS Targeted parallel sequencing of TG-related genes is recommended to define the molecular defect in children presenting with an incidental finding of HyperTG.
Collapse
Affiliation(s)
| | - Claudio Rabacchi
- Department of Life Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics, Bambino Gesù Children Hospital, Rome, Italy
| | - Chiara Trenti
- Department of Internal Medicine, Lipid Clinic, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Tommaso Fasano
- Clinical Chemistry and Endocrinology Laboratory, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Patrizia Tarugi
- Department of Life Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics, Bambino Gesù Children Hospital, Rome, Italy
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genova, Genova, Italy.
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, Modena, Italy.
| |
Collapse
|
50
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 - Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017; 4:408-414. [PMID: 28959666 PMCID: PMC5615163 DOI: 10.1016/j.toxrep.2017.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
In this study, alterations in lipid metabolism associated with acute aflatoxin B1 (AFB1) induced hepatotoxicity and gene expression changes underlying these effects were investigated. Rats were orally administered three doses (0.25 mg/kg, 0.5 mg/kg and 1.0 mg/kg) of AFB1 for seven days; after which blood was collected and liver excised. Lipid profiles of plasma and liver were determined spectrophotometrically while the expression of genes associated with lipid and lipoprotein metabolism was assayed by reverse transcriptase polymerase chain reaction. Acute exposure to AFB1 increased the levels of plasma and liver cholesterol, triglycerides and phospholipids. AFB1 at 0.5 mg/kg and 1.0 mg/kg resulted in a dose-dependent (1.2 and 1.5 fold, respectively) downregulation of hepatic Cpt1a with a concomitant 1.2 and 1.5 fold increase in the level of plasma FFA, respectively. A similar observation of 1.2 and 1.3 fold increase was also observed in plasma triglyceride concentration, at both respective doses. AFB1 also decreased the relative expression of Ahr, Lipc and Lcat whereas, it upregulated Scarb1 in a dose dependent manner. AFB1-induced dysregulation of the expression of lipid and lipoprotein metabolizing genes may be one mechanism linking AFB1 to altered lipid metabolism and ultimately risk for coronary heart disease.
Collapse
Affiliation(s)
- Oluwakemi Anuoluwapo Rotimi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Solomon Oladapo Rotimi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Chibueze Uchechukwu Duru
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Ogheneworo Joel Ebebeinwe
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Anthonia Obhio Abiodun
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Boluwaji Oluwamayowa Oyeniyi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Francis Adedayo Faduyile
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| |
Collapse
|