1
|
Rajendra A, Bondonno NP, Rainey-Smith SR, Gardener SL, Hodgson JM, Bondonno CP. Potential role of dietary nitrate in relation to cardiovascular and cerebrovascular health, cognition, cognitive decline and dementia: a review. Food Funct 2022; 13:12572-12589. [PMID: 36377891 DOI: 10.1039/d2fo02427f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is currently no effective treatment for dementia, of which Alzheimer's disease (AD) is the most common form. It is, therefore, imperative to focus on evidence-based preventive strategies to combat this extremely debilitating chronic disease. Nitric oxide (NO) is a key signalling molecule in the cardiovascular, cerebrovascular, and central nervous systems. Vegetables rich in nitrate, such as spinach and beetroot, are an important source of NO, with beneficial effects on validated markers of cardiovascular health and an association with a lower risk of cardiovascular disease. Given the link between cardiovascular disease risk factors and dementia, together with the important role of NO in vascular health and cognition, it is important to determine whether dietary nitrate could also improve cognitive function, markers of brain health, and lower risk of dementia. This review presents an overview of NO's role in the cardiovascular, cerebrovascular, and central nervous systems; an overview of the available evidence that nitrate, through effects on NO, improves cardiovascular health; and evaluates the current evidence regarding dietary nitrate's potential role in cerebrovascular health, cognitive function, and brain health assessed via biomarkers.
Collapse
Affiliation(s)
- Anjana Rajendra
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| | - Nicola P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia.,School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
| | - Samantha L Gardener
- Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. .,Medical School, The University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Bath PM, Mhlanga I, Woodhouse LJ, Doubal F, Oatey K, Montgomery AA, Wardlaw JM. Cilostazol and isosorbide mononitrate for the prevention of progression of cerebral small vessel disease: baseline data and statistical analysis plan for the Lacunar Intervention Trial-2 (LACI-2) (ISRCTN14911850). Stroke Vasc Neurol 2022; 8:134-143. [PMID: 36219567 PMCID: PMC10176977 DOI: 10.1136/svn-2022-001816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cerebral small vessel disease (SVD) causes lacunar strokes (25% of all ischaemic strokes), physical frailty and cognitive impairment and vascular and mixed dementia. There is no specific treatment to prevent progression of SVD. METHODS The LACunar Intervention Trial-2 is an investigator-initiated prospective randomised open-label blinded-endpoint phase II feasibility study assessing cilostazol and isosorbide mononitrate for preventing SVD progression. We aimed to recruit 400 patients with clinically evident lacunar ischaemic stroke and randomised to cilostazol, isosorbide mononitrate, both or neither, in addition to guideline secondary ischaemic stroke prevention, in a partial factorial design. The primary outcome is feasibility of recruitment and adherence to medication; key secondary outcomes include: drug tolerability; recurrent vascular events, cognition and function at 1 year after randomisation; and safety (bleeding, falls, death). Data are number (%) and median (IQR). RESULTS The trial commenced on 5 February 2018 and ceased recruitment on 31 May 2021 with 363 patients randomised, with the following baseline characteristics: average age 64 (56.0, 72.0) years, female 112 (30.9%), stroke onset to randomisation 79.0 (27.0, 244.0) days, hypertension 267 (73.6%), median blood pressures 143.0 (130.0, 157.0)/83.0 (75.0, 90.0) mm Hg, current smokers 67 (18.5%), educationally achieved end of school examinations (A-level) or higher 118 (32.5%), modified Rankin scale 1.0 (0.0, 1.0), National Institutes Health stroke scale 1.0 (1.4), Montreal Cognitive Assessment 26.0 (23.0, 28.0) and total SVD score on brain imaging 1.0 (0.0, 2.0). This publication summarises the baseline data and presents the statistical analysis plan. SUMMARY The trial is currently in follow-up which will complete on 31 May 2022 with results expected in October 2022. TRIAL REGISTRATION NUMBER ISRCTN14911850.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, University of Nottingham, Nottingham, UK
| | - Iris Mhlanga
- Stroke Trials Unit, University of Nottingham, Nottingham, UK
| | | | - Fergus Doubal
- Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, UK
| | - Katherine Oatey
- Edinburgh Clinical Trials Unit, University of Edinburgh, Edinburgh, UK
| | - Alan A Montgomery
- Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
3
|
Zhang B, Qin Y, Yang L, Wan H, Yuan L, Wang Y. An organic selenium and VEGF-conjugated bioinspired coating promotes vascular healing. Biomaterials 2022; 287:121654. [PMID: 35842980 DOI: 10.1016/j.biomaterials.2022.121654] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The introduction of drug-eluting stents (DESs) have yield a significant reduction in the incidence of re-stenosis, however, challenges remain including incomplete healing of the endothelium, inflammatory response and thrombogenesis at the site of vascular wall injury. Here, we developed a novel stent with polyphenol-polyamine surface combining the biological functions of nitric oxide gas and VEGF, selectively promoting the proliferation and migration of endothelial cells while suppressing smooth muscle cells. Compared with bare PLLA stents and traditional DESs, the functionalized stents enhanced vascular healing through remarkable inhibiting intimal hyperplasia and occurrence of thrombosis, accelerating the in-situ endothelium repair. Moreover, it showed a down-regulation of injury vascular inflammation response and reduction of the vessel wall injury in New Zealand Rabbits after 1- and 3-month implantation.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Lu Yuan
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China.
| |
Collapse
|
4
|
Endothelial Dysfunction and 6-Year Risk of Mortality in Kidney Transplant Recipients. Transplant Direct 2021; 8:e1262. [PMID: 34912949 PMCID: PMC8670577 DOI: 10.1097/txd.0000000000001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background Endothelial dysfunction is an early and potentially reversible stage in the atherosclerotic process. We assessed endothelial dysfunction noninvasively in kidney transplant recipients (KTRs) and evaluated the association with mortality and graft outcomes. Methods Flow-mediated dilation (FMD) was measured in arteria brachialis by ultrasound, with baseline diameters obtained at rest and maximal diameters obtained during reactive hyperemia occurring after 5 min of forearm occlusion. FMD% is the percentage difference of flow-mediated dilation relative to baseline. Endpoints on mortality and graft outcomes were collected from The Norwegian Renal Registry. The distribution of risk according to FMD levels was assessed in Cox regression using a restricted cubic spline function. FMD was dichotomized using receiver operating characteristic analysis to identify optimal cut points at maximal sensitivity and specificity. Results From a total of 269 KTRs in 2012, 152 (56.5%) were eligible and examined 10 wk after transplantation, and 145 had successful FMD measurements. During a mean follow-up of 6.5 y, 26 patients died, 11 lost their graft, and 34 experienced either graft loss or death. Mortality increased with lower FMD levels until about 5% dilation and did not change with further reduction in FMD% (P for nonlinearity <0.01). An optimal cut point of FMD ≤5.36% defined impaired endothelial function and FMD% below this level, was associated with fatal outcome, hazard ratio (HR), 9.80 (1.29-74.62), P = 0.03, uncensored graft loss, HR, 7.80 (1.83-33.30), P = 0.01, but an association with death-censored graft loss was lost after adjusting for pulse pressure, HR, 4.58 (0.55-37.92), P = 0.16. Conclusions We found that impaired FMD is strongly associated with mortality in KTRs.
Collapse
|
5
|
Lee GH, Kim CY, Zheng C, Jin SW, Kim JY, Lee SY, Kim MY, Han EH, Hwang YP, Jeong HG. Rutaecarpine Increases Nitric Oxide Synthesis via eNOS Phosphorylation by TRPV1-Dependent CaMKII and CaMKKβ/AMPK Signaling Pathway in Human Endothelial Cells. Int J Mol Sci 2021; 22:ijms22179407. [PMID: 34502308 PMCID: PMC8431268 DOI: 10.3390/ijms22179407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
Rutaecarpine (RUT) is a bioactive alkaloid isolated from the fruit of Evodia rutaecarpa that exerts a cellular protective effect. However, its protective effects on endothelial cells and its mechanism of action are still unclear. In this study, we demonstrated the effects of RUT on nitric oxide (NO) synthesis via endothelial nitric oxide synthase (eNOS) phosphorylation in endothelial cells and the underlying molecular mechanisms. RUT treatment promoted NO generation by increasing eNOS phosphorylation. Additionally, RUT induced an increase in intracellular Ca2+ concentration and phosphorylation of Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ), AMP-activated protein kinase (AMPK), and Ca2+/calmodulin-dependent kinase II (CaMKII). Inhibition of transient receptor potential vanilloid type 1 (TRPV1) attenuated RUT-induced intracellular Ca2+ concentration and phosphorylation of CaMKII, CaMKKβ, AMPK, and eNOS. Treatment with KN-62 (a CaMKII inhibitor), Compound C (an AMPK inhibitor), and STO-609 (a CaMKKβ inhibitor) suppressed RUT-induced eNOS phosphorylation and NO generation. Interestingly, RUT attenuated the expression of ICAM-1 and VCAM-1 induced by TNF-α and inhibited the inflammation-related NF-κB signaling pathway. Taken together, these results suggest that RUT promotes NO synthesis and eNOS phosphorylation via the Ca2+/CaMKII and CaM/CaMKKβ/AMPK signaling pathways through TRPV1. These findings provide evidence that RUT prevents endothelial dysfunction and benefit cardiovascular health.
Collapse
Affiliation(s)
- Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Chae Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Chuanfeng Zheng
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Ji Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Seung Yeon Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Mi Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Korea;
| | | | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (C.Y.K.); (C.Z.); (S.W.J.); (J.Y.K.); (S.Y.L.); (M.Y.K.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
6
|
The mitochondrial thioredoxin reductase system (TrxR2) in vascular endothelium controls peroxynitrite levels and tissue integrity. Proc Natl Acad Sci U S A 2021; 118:1921828118. [PMID: 33579817 DOI: 10.1073/pnas.1921828118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial thioredoxin/peroxiredoxin system encompasses NADPH, thioredoxin reductase 2 (TrxR2), thioredoxin 2, and peroxiredoxins 3 and 5 (Prx3 and Prx5) and is crucial to regulate cell redox homeostasis via the efficient catabolism of peroxides (TrxR2 and Trxrd2 refer to the mitochondrial thioredoxin reductase protein and gene, respectively). Here, we report that endothelial TrxR2 controls both the steady-state concentration of peroxynitrite, the product of the reaction of superoxide radical and nitric oxide, and the integrity of the vascular system. Mice with endothelial deletion of the Trxrd2 gene develop increased vascular stiffness and hypertrophy of the vascular wall. Furthermore, they suffer from renal abnormalities, including thickening of the Bowman's capsule, glomerulosclerosis, and functional alterations. Mechanistically, we show that loss of Trxrd2 results in enhanced peroxynitrite steady-state levels in both vascular endothelial cells and vessels by using a highly sensitive redox probe, fluorescein-boronate. High steady-state peroxynitrite levels were further found to coincide with elevated protein tyrosine nitration in renal tissue and a substantial change of the redox state of Prx3 toward the oxidized protein, even though glutaredoxin 2 (Grx2) expression increased in parallel. Additional studies using a mitochondria-specific fluorescence probe (MitoPY1) in vessels revealed that enhanced peroxynitrite levels are indeed generated in mitochondria. Treatment with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin [Mn(III)TMPyP], a peroxynitrite-decomposition catalyst, blunted intravascular formation of peroxynitrite. Our data provide compelling evidence for a yet-unrecognized role of TrxR2 in balancing the nitric oxide/peroxynitrite ratio in endothelial cells in vivo and thus establish a link between enhanced mitochondrial peroxynitrite and disruption of vascular integrity.
Collapse
|
7
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
8
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/18/2023] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M. Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M. Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L. Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J. Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
9
|
Kashour T, Halwani R, Arabi YM, Sohail MR, O'Horo JC, Badley AD, Tleyjeh IM. Statins as an adjunctive therapy for COVID-19: the biological and clinical plausibility. Immunopharmacol Immunotoxicol 2021; 43:37-50. [PMID: 33406943 DOI: 10.1080/08923973.2020.1863984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the coronavirus disease 2019 (COVID-19) has infected millions of individuals and has claimed hundreds of thousands of human lives worldwide. Patients with underlying cardiovascular conditions are at high risk for SARS-CoV-2 infection, and COVID-19 patients have high incidence of cardiovascular complications such as acute cardiac injury, arrhythmias, heart failure, and thromboembolism. The disease has no approved proven effective therapy and hence repurposing of existing approved drugs has been considered as the fastest treatment approach. Statins have been shown to exhibit lipid lowering dependent and independent cardiovascular protective effects as well as favorable effects in various other pathophysiological states. These beneficial properties of statins are a result of their multiple pleotropic effects that include, anti-inflammatory, immunomodulatory, antithrombotic and antimicrobial properties. In this review, we provide a comprehensive description of the mechanisms of the pleotropic effects of statins, the relevant pre-clinical and clinical data pertinent to their role in infections and acute lung injury, the possible cardiovascular benefits of statins in COVID-19, and the implications of the therapeutic potential of statins in COVID-19 disease. We conclude with the rationale for conducting randomized controlled trials of statins in COVID-19 disease.
Collapse
Affiliation(s)
- Tarek Kashour
- Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Yaseen M Arabi
- Intensive Care Department, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - M Rizwan Sohail
- Section of Infectious Diseases, Baylor College of Medicine Houston, TX, USA.,Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - John C O'Horo
- Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Imad M Tleyjeh
- Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Division of Epidemiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Department of Medical Specialties, Infectious Diseases Section, King Fahad Medical City, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Pham TH, Jin SW, Lee GH, Park JS, Kim JY, Thai TN, Han EH, Jeong HG. Sesamin Induces Endothelial Nitric Oxide Synthase Activation via Transient Receptor Potential Vanilloid Type 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3474-3484. [PMID: 32077699 DOI: 10.1021/acs.jafc.9b07909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sesamin, the most abundant lignan in sesame seed oil, has many biological activities. However, the underlying molecular mechanisms behind the regulatory effects of sesamin on endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) generation in endothelial cells (ECs) remain unclear. Sesamin induced the intracellular level of NO and eNOS phosphorylation in ECs in a concentration- and time-dependent manner. Additionally, sesamin induced levels of intracellular calcium, leading to the phosphorylation of calmodulin-dependent protein kinase II (CaMKII) at Thr286, calcium/calmodulin-dependent protein kinase kinase beta (CaMKKβ) at Ser511, protein kinase A (PKA) at Thr197, Akt at Ser473, and AMP-activated protein kinase (AMPK) at Thr172. In particular, blocking of the transient receptor potential vanilloid type 1 (TRPV1) channel by capsazepine (TRPV1 antagonist), as well as TRPV1 knockdown via TRPV1 silencing RNA, abrogated sesamin-induced PKA, Akt, AMPK, CaMKII, CaMKKβ, and eNOS phosphorylation and NO level in ECs. Furthermore, sesamin inhibited TNF-α-induced NF-κB translocation, intercellular adhesion molecule-1 expression, and monocyte adhesion. Sesamin triggered eNOS activity and NO production via activation of TRPV1-calcium signaling, which involved the phosphorylation of PKA, CaMKII, CaMKKβ, Akt, and AMPK. Sesamin may be useful for treating or preventing the endothelial dysfunction correlated with cardiovascular diseases.
Collapse
Affiliation(s)
- Thi Hoa Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
- Molecular Microbiology Lab, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Song Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tuyet Ngan Thai
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
11
|
Kaushal N, Dhadwal S, Kaur P. Ameliorative effects of hempseed (Cannabis sativa) against hypercholesterolemia associated cardiovascular changes. Nutr Metab Cardiovasc Dis 2020; 30:330-338. [PMID: 31668458 DOI: 10.1016/j.numecd.2019.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/23/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Hypercholesterolemia (HC) is a major risk factor for cardiovascular (CV) diseases, that are the major cause of mortality worldwide. Free radicals mediated oxidative stress is a critical player in HC-associated pathophysiological insults including atherosclerosis. Unwanted side effects associated with statins, COX-2 inhibitors, and other synthetic drugs limit their use. Thus, modulation of oxidative stress during HC using green pharmaceuticals seems an appropriate approach against deleterious CV consequences without noticeable side-effect. In this regard, owing to an abundance of proteins, fiber and optimal ratios of omega 6 PUFA: omega-3 PUFA in Hempseed (HS), we aim to exploit its anti-inflammatory and antioxidant properties to ameliorate HC- associated CV effects. METHODS AND RESULTS Comparing the antioxidant capacity of protein and lipid fractions of HS using ABTS and DPPH assays, HS was supplemented to high-fat diets (HFD) induced hypercholesterolemic wistar rats. After treatment schedules, lipid profiles, histological and ultrastructural investigations, gene and protein expressions of inflammatory markers, markers of oxidative stress were studied and correlated with biophysical parameters such as ECG and impedance/conductance across the aorta. HS demonstrating in vitro free radical scavenging activity, ameliorated the signs of HC as seen with improved lipid profiles, aortic tissue damage and ECG patterns compared to HFD groups. HS administration also relieved the COX-2 mediated inflammation, which correlated well with the improved redox status in the tissue. CONCLUSIONS Current study evidently demonstrates that the anti-hypercholesterolemic effects of HS are mediated through redox-sensitive modulation of inflammatory pathways.
Collapse
Affiliation(s)
- Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Shallu Dhadwal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Parminder Kaur
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India
| |
Collapse
|
12
|
Nordheim E, Dahle DO, Halden T, Birkeland KI, Åsberg A, Hartmann A, Horneland R, Jenssen TG. Endothelial function after pancreas transplantation-A single-center observational study. Clin Transplant 2020; 34:e13815. [PMID: 32027399 DOI: 10.1111/ctr.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Patients with diabetes mellitus treated with successful pancreas transplantation (PTX) normalize hyperglycemia, but are exposed to immunosuppressive drugs that may impair endothelial function. This study aimed to evaluate endothelial function in single PTX recipients. METHODS Flow-mediated dilatation (FMD) in the brachial artery was measured by ultrasound 8 weeks after transplantation in single PTX (n = 27) and compared with healthy controls (n = 58), simultaneous pancreas and kidney recipients (n = 9), and kidney transplant recipients with (n = 41) and without (n = 95) diabetes mellitus. Adjustments for age, gender, blood pressure, and body mass index were included in a linear regression model. Changes in FMD from before to 1 year after transplantation were assessed in a subgroup of PTX recipients (n = 9). RESULTS Flow-mediated dilatation% in PTX recipients was not inferior to healthy controls (8.7 ± 3.6 vs 7.7 ± 3.3, P = .06) and simultaneous pancreas and kidney recipients (6.7 ± 4.5, P = .24) in an adjusted model, and superior to kidney recipients with and without diabetes (3.0 ± 3.0 and 4.8 ± 3.3, respectively, both P < .005). FMD% improved significantly from eight weeks to one year after PTX, mean 7.9 ± 4.2% vs 11.8 ± 4.8% (N = 9; P = .03). CONCLUSION Flow-mediated dilatation is well preserved in patients undergoing pancreas transplantation and is not impaired when immunosuppressive drugs are introduced.
Collapse
Affiliation(s)
- Espen Nordheim
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dag Olav Dahle
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Thea Halden
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kåre I Birkeland
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Anders Hartmann
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Section of Transplant Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Trond Geir Jenssen
- Department of Transplantation Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Metabolic and Renal Research Group, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Appleton JP, Krishnan K, Bath PM. Transdermal delivery of glyceryl trinitrate: clinical applications in acute stroke. Expert Opin Drug Deliv 2020; 17:297-303. [PMID: 31973594 DOI: 10.1080/17425247.2020.1716727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Glyceryl trinitrate (GTN), a nitric oxide donor, is a candidate treatment for the management of acute stroke with hemodynamic and potential reperfusion and neuroprotective effects.Areas covered: Here we discuss the evidence to date from clinical trials and present and future possibilities for the clinical application of transdermal GTN in acute stroke. When administered as a transdermal patch during the acute and subacute phases after stroke, GTN was safe, lowered blood pressure, maintained cerebral blood flow, and did not induce cerebral steal or alter functional outcome. However, when given within the hyperacute phase (<6 h of stroke onset), GTN reduced death and dependency, death, disability, cognitive impairment, and mood disturbance, and improved quality of life. However, in a large prehospital trial with treatment within 4 h, GTN did not influence clinical outcomes.Expert opinion: Transdermal GTN is an easy to administer BP-lowering therapy, which is safe when given after 2 h of stroke onset, may improve outcome when initiated within 2-6 h, but should be avoided (outside of a clinical trial) in the ultra-acute period within 2 h of stroke onset. Further research needs to investigate the mechanisms of benefit or harm in ultra/hyperacute stroke patients.
Collapse
Affiliation(s)
- Jason P Appleton
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK.,Neurology, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| | - Kailash Krishnan
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK.,Stroke, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK.,Stroke, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
14
|
Jin SW, Pham HT, Choi JH, Lee GH, Han EH, Cho YH, Chung YC, Kim YH, Jeong HG. Impressic Acid, a Lupane-Type Triterpenoid from Acanthopanax koreanum, Attenuates TNF-α-Induced Endothelial Dysfunction via Activation of eNOS/NO Pathway. Int J Mol Sci 2019; 20:ijms20225772. [PMID: 31744135 PMCID: PMC6888592 DOI: 10.3390/ijms20225772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is one of the most reported diseases worldwide, and extensive research and trials are focused on the discovery and utilizing for novel therapeutics. Nitric oxide (NO) is produced mainly by endothelial nitric oxide synthase (eNOS) and it plays a key role in regulating vascular function including systemic blood pressure and vascular inflammation in vascular endothelium. In this study hypothesized that Impressic acid (IPA), a component isolated from Acanthopanax koreanum, acts as an enhancer of eNOS activity and NO production. IPA treatment induced eNOS phosphorylation and NO production, which was correlated with eNOS phosphorylation via the activation of JNK1/2, p38 MAPK, AMPK, and CaMKII. In addition, the induction of eNOS phosphorylation by IPA was attenuated by pharmacological inhibitor of MAPKs, AMPK, and CaMKII. Finally, IPA treatment prevented the adhesion of TNF-α-induced monocytes to endothelial cells and suppressed the TNF-α-stimulated ICAM-1 expression via activation of NF-κB, while treatment with L-NAME, the NOS inhibitor, reversed the inhibitory effect of IPA on TNF-α-induced ICAM-1 expression via activation of NF-κB. Taken together, these findings show that IPA protects against TNF-α-induced vascular endothelium dysfunction through attenuation of the NF-κB pathway by activating eNOS/NO pathway in endothelial cells.
Collapse
Affiliation(s)
- Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Hoa Thi Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Korea;
| | - Young Ho Cho
- Department of Pharmaceutics & Biotechnology, College of Medical Engineering, Konyang University, Daejeon 35365, Korea;
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, 52833, Korea;
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
15
|
Upregulated LOX-1 Receptor: Key Player of the Pathogenesis of Atherosclerosis. Curr Atheroscler Rep 2019; 21:38. [DOI: 10.1007/s11883-019-0801-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Xingnaojing Injection Protects against Cerebral Ischemia Reperfusion Injury via PI3K/Akt-Mediated eNOS Phosphorylation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2361046. [PMID: 30158991 PMCID: PMC6106974 DOI: 10.1155/2018/2361046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022]
Abstract
Xingnaojing (XNJ) injection, derived from traditional Chinese medicine formulation, has a protective effect against stroke, but the underlying mechanism is unclear, which severely limited its clinical application. This research aims to elucidate the role and mechanism of XNJ in reducing cerebral ischemic reperfusion (I/R) injury. Rats received 2 h cerebral ischemia followed by reperfusion of 24 h and were intraperitoneally given 5, 10, or 15 ml/kg XNJ 24 h before ischemia and at the onset of reperfusion, respectively. TTC staining, HE staining, and neurological score were implied to evaluate the effectiveness of XNJ. The protein expressions of PI3K/Akt and eNOS signaling were measured. Experiments were further performed in human brain microvascular endothelial cells (HBMECs) to investigate the protective mechanisms of XNJ. HBMECs were subjected to 3 h oxygen and glucose deprivation following 24 h of reoxygenation (OGD) to mimic cerebral I/R in vitro. PI3K inhibitor LY294002 was added with or without the preconditioning of XNJ. Multiple methods including western blot, immunofluorescence, DAPI staining, JC-1, and flow cytometry were carried out to evaluate the effect of XNJ on HBMECs. XNJ could improve rat cerebral ischemic injury and OGD induced HBMECs apoptosis. In vivo and in vitro researches indicated that the mechanism might be relevant to the activation of PI3K/Akt/eNOS signaling.
Collapse
|
17
|
Balzan S, Lubrano V. LOX-1 receptor: A potential link in atherosclerosis and cancer. Life Sci 2018; 198:79-86. [PMID: 29462603 DOI: 10.1016/j.lfs.2018.02.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022]
Abstract
Altered production of reactive oxygen species (ROS), causing lipid peroxidation and DNA damage, contributes to the progression of atherosclerosis and cancer. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a lectin-like receptor for oxidized low-density lipoproteins (ox-LDL) primarily expressed in endothelial cells and vasculature-rich organs. LOX-1 receptors is a marker for atherosclerosis, and once activated by ox-LDL or other ligands, stimulates the expression of adhesion molecules, pro-inflammatory signaling pathways and proangiogenic proteins, including NF-kB and VEGF, in vascular endothelial cells and macrophages. Several different types of cancer reported LOX-1 gene upregulation, and numerous interplays exist concerning LOX-1 in atherosclerosis, metabolic diseases and cancer. One of them involves NF-kB, an oncogenic protein that regulates the transcription of several inflammatory genes response. In a model of cellular transformation, the MCF10A ER-Src, inhibition of LOX-1 gene reduces NF-kB activation and the inflammatory and hypoxia pathways, suggesting a mechanistic connection between cellular transformation and atherosclerosis. The remodeling proteins MMP-2 and MMP-9 have been found increased in angiogenesis in atherosclerotic plaque and also in human prostate cancer cells. In this review, we outlined the role of LOX-1 in atherogenesis and tumorigenesis as a potential link in these diseases, suggesting that LOX-1 inhibition could represent a promising strategy in the treatment of atherosclerosis and tumors.
Collapse
Affiliation(s)
- Silvana Balzan
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, Pisa 56124, Italy.
| | - Valter Lubrano
- Fondazione CNR/Regione Toscana G. Monasterio, Via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
18
|
Bath PMW, Krishnan K, Appleton JP. Nitric oxide donors (nitrates), L-arginine, or nitric oxide synthase inhibitors for acute stroke. Cochrane Database Syst Rev 2017; 4:CD000398. [PMID: 28429459 PMCID: PMC6478181 DOI: 10.1002/14651858.cd000398.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nitric oxide (NO) has multiple effects that may be beneficial in acute stroke, including lowering blood pressure, and promoting reperfusion and cytoprotection. Some forms of nitric oxide synthase inhibition (NOS-I) may also be beneficial. However, high concentrations of NO are likely to be toxic to brain tissue. This is an update of a Cochrane review first published in 1998, and last updated in 2002. OBJECTIVES To assess the safety and efficacy of NO donors, L-arginine, and NOS-I in people with acute stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (last searched 6 February 2017), MEDLINE (1966 to June 2016), Embase (1980 to June 2016), ISI Science Citation Indexes (1981 to June 2016), Stroke Trials Registry (searched June 2016), International Standard Randomised Controlled Trial Number (ISRCTN) (searched June 2016), Clinical Trials registry (searched June 2016), and International Clinical Trials Registry Platform (ICTRP) (searched June 2016). Previously, we had contacted drug companies and researchers in the field. SELECTION CRITERIA Randomised controlled trials comparing nitric oxide donors, L-arginine, or NOS-I versus placebo or open control in people within one week of onset of confirmed stroke. DATA COLLECTION AND ANALYSIS Two review authors independently applied the inclusion criteria, assessed trial quality and risk of bias, and extracted data. The review authors cross-checked data and resolved issues through discussion. We obtained published and unpublished data, as available. Data were reported as mean difference (MD) or odds ratio (OR) with 95% confidence intervals (CI). MAIN RESULTS We included five completed trials, involving 4197 participants; all tested transdermal glyceryl trinitrate (GTN), an NO donor. The assessed risk of bias was low across the included studies; one study was double-blind, one open-label and three were single-blind. All included studies had blinded outcome assessment. Overall, GTN did not improve the primary outcome of death or dependency at the end of trial (modified Rankin Scale (mRS) > 2, OR 0.97, 95% CI 0.86 to 1.10, 4195 participants, high-quality evidence). GTN did not improve secondary outcomes, including death (OR 0.78, 95% CI 0.40 to 1.50) and quality of life (MD -0.01, 95% CI -0.17 to 0.15) at the end of trial overall (high-quality evidence). Systolic/diastolic blood pressure (BP) was lower in people treated with GTN (MD -7.2 mmHg (95% CI -8.6 to -5.9) and MD -3.3 (95% CI -4.2 to -2.5) respectively) and heart rate was higher (MD 2.0 beats per minute (95% CI 1.1 to 2.9)). Headache was more common in those randomised to GTN (OR 2.37, 95% CI 1.55 to 3.62). We did not find any trials assessing other nitrates, L-arginine, or NOS-I. AUTHORS' CONCLUSIONS There is currently insufficient evidence to recommend the use of NO donors, L-arginine or NOS-I in acute stroke, and only one drug (GTN) has been assessed. In people with acute stroke, GTN reduces blood pressure, increases heart rate and headache, but does not alter clinical outcome (all based on high-quality evidence).
Collapse
Affiliation(s)
- Philip MW Bath
- University of NottinghamStroke, Division of Clinical NeuroscienceCity Hospital CampusNottinghamUKNG5 1PB
| | - Kailash Krishnan
- University of NottinghamStroke, Division of Clinical NeuroscienceCity Hospital CampusNottinghamUKNG5 1PB
| | - Jason P Appleton
- University of NottinghamStroke, Division of Clinical NeuroscienceCity Hospital CampusNottinghamUKNG5 1PB
| | | |
Collapse
|
19
|
Abstract
The nitric oxide donor, glyceryl trinitrate (GTN), is a candidate treatment for the management of acute stroke with haemodynamic and potential reperfusion and neuroprotective effects. When administered as a transdermal patch during the acute and subacute phases after stroke, GTN was safe, lowered blood pressure, maintained cerebral blood flow, and did not induce cerebral steal or alter functional outcome. However, when given within 6 h of stroke onset, GTN reduced death and dependency (odds ratio 0.52; 95% confidence interval 0.34-0.78), death, disability, cognitive impairment and mood disturbance, and improved quality of life (data from two trials, n = 312). In a pooled analysis of four studies (n = 186), GTN reduced between-visit systolic blood pressure variability over days 1-7 compared with no GTN (mean difference -2.09; 95% confidence interval -3.83 to -0.35; p = 0.019). The efficacy of GTN given in the ultra-acute/pre-hospital setting is currently being assessed and, if found to be beneficial, the implications for hyperacute stroke practice are significant. Here, we discuss the evidence to date, potential mechanisms of action and future possibilities, including unanswered questions, for the therapeutic potential of GTN in acute stroke.
Collapse
|
20
|
Park HS, Kim JE, You HJ, Gu J, Yoo B, Lee S, Lee HJ, Hwang HY, Hwang Y, Kim HK, Kim YT. Beneficial effect of a nitric oxide donor in an ex vivo model of pig-to-human pulmonary xenotransplantation. Xenotransplantation 2016; 22:391-8. [PMID: 26381495 DOI: 10.1111/xen.12195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Nitric oxide (NO) can reduce platelet adhesion and vascular resistance. Tempol can scavenge the reactive oxygen species (ROS) that induce tissue injury. As xenograft rejection attenuates endogenous NO production and generates ROS, we evaluated the potential effect of an NO donor (SIN-1, 3-morpholinosydnonimine) and tempol on hyperacute xenograft dysfunction using an ex vivo porcine lung perfusion model. METHODS For the evaluation of von Willebrand factor (vWF) secretion, human endothelial cells were stimulated with thrombin. Porcine lungs were perfused with either fresh human whole blood (unmodified control group [n = 4]), SIN-1 (n = 4), or SIN and tempol (n = 4). RESULTS SIN-1 and tempol significantly inhibited vWF secretion from endothelial cells in vitro. However, they did not suppress xenogeneic complement activation. In an ex vivo pulmonary perfusion model, SIN-1 improved pulmonary xenograft function by reducing pulmonary vascular resistance (PVR), inhibiting complement activation, and inhibiting thrombin generation. Combined treatment with tempol and SIN-1 potentiated PVR reduction, but slightly enhanced complement activation. CONCLUSIONS An NO donor is expected to improve pulmonary xenograft function through inhibition of vWF secretion, vasoconstriction, thrombin generation, and indirectly through inhibition of complement activation. The additional effects of tempol on an NO donor were not considered significant in an ex vivo xenograft system.
Collapse
Affiliation(s)
- Hee Sue Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Eun Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Ju You
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jayoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Byungsu Yoo
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Saebom Lee
- Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Joo Lee
- Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Ho Young Hwang
- Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Yoohwa Hwang
- Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young Tae Kim
- Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Appleton JP, Sprigg N, Bath PM. Blood pressure management in acute stroke. Stroke Vasc Neurol 2016; 1:72-82. [PMID: 28959467 PMCID: PMC5435190 DOI: 10.1136/svn-2016-000020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/05/2023] Open
Abstract
Blood pressure (BP) is elevated in 75% or more of patients with acute stroke and is associated with poor outcomes. Whether to modulate BP in acute stroke has long been debated. With the loss of normal cerebral autoregulation, theoretical concerns are twofold: high BP can lead to cerebral oedema, haematoma expansion or haemorrhagic transformation; and low BP can lead to increased cerebral infarction or perihaematomal ischaemia. Published evidence from multiple large, high-quality, randomised trials is increasing our understanding of this challenging area, such that BP lowering is recommended in acute intracerebral haemorrhage and is safe in ischaemic stroke. Here we review the evidence for BP modulation in acute stroke, discuss the issues raised and look to on-going and future research to identify patient subgroups who are most likely to benefit.
Collapse
Affiliation(s)
- Jason P Appleton
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Nikola Sprigg
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| |
Collapse
|
22
|
Abstract
Objective: Serum levels of nitric oxide (NO) are decreased in patients with atherosclerosis and also are a risk factor for the development of atherosclerosis. Endothelial dysfunction and diffuse atherosclerosis have been proposed for the etiology of coronary artery ectasia (CAE). The purpose of this clinical trial was to determine the relationship between CAE and serum NO levels. Methods: This prospective controlled study was conducted between January 2008 and March 2012. Serum levels of NO were compared in 40 patients with CAE (mean age 60.1±7.3 years) and 40 patients with normal coronary arteries (mean age 57.6±5 years) as a control group. CAE was diagnosed when a segment of coronary artery was more than 1.5 times the diameter of the adjacent healthy segment. Patients with stenotic atherosclerotic plaques, slow coronary flow, previous history of revascularization, acute coronary syndromes, left ventricular dysfunction, valvular heart disease, and systemic diseases were not included in the study. The effect of NO on the outcome was studied by constructing a receiver operating characteristic (ROC) curve with CAE as the primary variable. Effects of different variables on CAE were calculated using binary logistics regression analysis. Results: Serum NO concentrations were significantly lower in patients with CAE than in the control group (42.1±20.1 µmol/L vs. 77.3±15.7 µmol/L, p<0.001). According to the results of the multivariate regression analysis, LDL and NO levels were identified as independent factors associated with CAE (OR=1.02, 95% CI 1–1.04, p=0.02 and OR=0.88, 95% CI 0.83–0.93, p=0.001, respectively). ROC analysis revealed that using a cut-off point of 63.3, NO level predicts CAE with a sensitivity of 87.5% and specificity of 90%. Conclusion: Our study indicates that decreased levels of NO are present in patients with CAE compared to patients with normal coronary arteries, supporting the hypothesis that decreased levels of NO might be associated with CAE development. (Anatol J Cardiol 2016; 16: 947-52)
Collapse
|
23
|
Abstract
Statins are among the most widely prescribed medications in the world. In addition to lowering cholesterol, statins have been shown to have immunomodulatory effects in multiple studies. For example, statins modulate the interaction between T cells and antigen-presenting cells, resulting in decreased T-cell activation and reduced levels of inflammatory cytokines. Statins have also been demonstrated to inhibit the migration of leukocytes across vascular endothelium into tissues. Although most research on the immune effects of statins has been conducted in the context of cardiovascular, rheumatological, or metabolic disease, various studies have shown that statins may have a significant impact on intestinal immunity and mucosal inflammation. Clinical research has suggested that statins may have benefit in inflammatory bowel disease. In this article, we review the effect of statins on the immune system and gastrointestinal tract, highlighting the potential for novel therapeutic applications in inflammatory bowel disease.
Collapse
|
24
|
Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 2016; 247:225-82. [PMID: 26967715 DOI: 10.1016/j.atherosclerosis.2016.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/31/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
The growing worldwide prevalence of overnutrition and underexertion threatens the gains that we have made against atherosclerotic cardiovascular disease and other maladies. Chronic overnutrition causes the atherometabolic syndrome, which is a cluster of seemingly unrelated health problems characterized by increased abdominal girth and body-mass index, high fasting and postprandial concentrations of cholesterol- and triglyceride-rich apoB-lipoproteins (C-TRLs), low plasma HDL levels, impaired regulation of plasma glucose concentrations, hypertension, and a significant risk of developing overt type 2 diabetes mellitus (T2DM). In addition, individuals with this syndrome exhibit fatty liver, hypercoagulability, sympathetic overactivity, a gradually rising set-point for body adiposity, a substantially increased risk of atherosclerotic cardiovascular morbidity and mortality, and--crucially--hyperinsulinemia. Many lines of evidence indicate that each component of the atherometabolic syndrome arises, or is worsened by, pathway-selective insulin resistance and responsiveness (SEIRR). Individuals with SEIRR require compensatory hyperinsulinemia to control plasma glucose levels. The result is overdrive of those pathways that remain insulin-responsive, particularly ERK activation and hepatic de-novo lipogenesis (DNL), while carbohydrate regulation deteriorates. The effects are easily summarized: if hyperinsulinemia does something bad in a tissue or organ, that effect remains responsive in the atherometabolic syndrome and T2DM; and if hyperinsulinemia might do something good, that effect becomes resistant. It is a deadly imbalance in insulin action. From the standpoint of human health, it is the worst possible combination of effects. In this review, we discuss the origins of the atherometabolic syndrome in our historically unprecedented environment that only recently has become full of poorly satiating calories and incessant enticements to sit. Data are examined that indicate the magnitude of daily caloric imbalance that causes obesity. We also cover key aspects of healthy, balanced insulin action in liver, endothelium, brain, and elsewhere. Recent insights into the molecular basis and pathophysiologic harm from SEIRR in these organs are discussed. Importantly, a newly discovered oxide transport chain functions as the master regulator of the balance amongst different limbs of the insulin signaling cascade. This oxide transport chain--abbreviated 'NSAPP' after its five major proteins--fails to function properly during chronic overnutrition, resulting in this harmful pattern of SEIRR. We also review the origins of widespread, chronic overnutrition. Despite its apparent complexity, one factor stands out. A sophisticated junk food industry, aided by subsidies from willing governments, has devoted years of careful effort to promote overeating through the creation of a new class of food and drink that is low- or no-cost to the consumer, convenient, savory, calorically dense, yet weakly satiating. It is past time for the rest of us to overcome these foes of good health and solve this man-made epidemic.
Collapse
|
25
|
Montt-Guevara MM, Giretti MS, Russo E, Giannini A, Mannella P, Genazzani AR, Genazzani AD, Simoncini T. Estetrol Modulates Endothelial Nitric Oxide Synthesis in Human Endothelial Cells. Front Endocrinol (Lausanne) 2015; 6:111. [PMID: 26257704 PMCID: PMC4510430 DOI: 10.3389/fendo.2015.00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/06/2015] [Indexed: 01/27/2023] Open
Abstract
Estetrol (E4) is a natural human estrogen that is present at high concentrations during pregnancy. E4 has been reported to act as an endogenous estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system but presenting antagonistic effects on the breast. Due to these characteristics, E4 is currently being developed for a number of clinical applications, including contraception and menopausal hormone therapy. Endothelial nitric oxide (NO) is a key player for vascular function and disease during pregnancy and throughout aging in women. Endothelial NO is an established target of estrogens that enhance its formation in human endothelial cells. We here addressed the effects of E4 on the activity and expression of the endothelial nitric oxide synthase (eNOS) in cultured human umbilical vein endothelial cells (HUVEC). E4 stimulated the activation of eNOS and NO secretion in HUVEC. E4 was significantly less effective compared to E2, and a peculiar concentration-dependent effect was found, with higher amounts of E4 being less effective than lower concentrations. When E2 was combined with E4, an interesting pattern was noted. E4 antagonized NO synthesis induced by pregnancy-like E2 concentrations. However, E4 did not impede the modest induction of NO synthesis associated with postmenopausal-like E2 levels. These results support the hypothesis that E4 may be a regulator of NO synthesis in endothelial cells and raise questions on its peculiar signaling in this context. Our results may be useful to interpret the role of E4 during human pregnancy and possibly to help develop this interesting steroid for clinical use.
Collapse
Affiliation(s)
- Maria Magdalena Montt-Guevara
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Silvia Giretti
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Russo
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Giannini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Mannella
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Riccardo Genazzani
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Tommaso Simoncini, Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, University of Pisa, Via Roma 57, Pisa 56100, Italy,
| |
Collapse
|
26
|
Tetramethylpyrazine Analogue CXC195 Ameliorates Cerebral Ischemia–reperfusion Injury by Regulating Endothelial Nitric Oxide Synthase Phosphorylation Via PI3K/Akt Signaling. Neurochem Res 2014; 40:446-54. [DOI: 10.1007/s11064-014-1485-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/03/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022]
|
27
|
Jasińska-Stroschein M, Orszulak-Michalak D. The current approach into signaling pathways in pulmonary arterial hypertension and their implication in novel therapeutic strategies. Pharmacol Rep 2014; 66:552-64. [PMID: 24948054 DOI: 10.1016/j.pharep.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 02/01/2023]
Abstract
Many mediators and signaling pathways, with their downstream effectors, have been implicated in the pathogenesis of pulmonary hypertension. Currently approved drugs, representing an option of specific therapy, target NO, prostacyclin or ET-1 pathways and provide a significant improvement in the symptomatic status of patients and a slower rate of clinical deterioration. However, despite such improvements in the treatment, PAH remains a chronic disease without a cure, the mortality associated with PAH remains high and effective therapeutic regimens are still required. Knowledge about the role of the pathways involved in PAH and their interactions provides a better understanding of the pathogenesis of the disease and may highlight directions for novel therapeutic strategies for PAH. This paper reviews some novel, promising PAH-associated signaling pathways, such as RAAS, RhoA/ROCK, PDGF, PPAR, and TGF, focusing also on their possible interactions with well-established ones such as NO, ET-1 and prostacyclin pathways.
Collapse
|
28
|
Chettimada S, Ata H, Rawat DK, Gulati S, Kahn AG, Edwards JG, Gupte SA. Contractile protein expression is upregulated by reactive oxygen species in aorta of Goto-Kakizaki rat. Am J Physiol Heart Circ Physiol 2014; 306:H214-24. [PMID: 24213617 PMCID: PMC3920128 DOI: 10.1152/ajpheart.00310.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/28/2013] [Indexed: 01/28/2023]
Abstract
Although it is known that blood vessels undergo remodeling in type 2 diabetes (T2D), the signaling pathways that underlie the structural and functional changes seen in diabetic arteries remain unclear. Our objective was to determine whether the remodeling in type 2 diabetic Goto-Kakizaki (GK) rats is evoked by elevated reactive oxygen species (ROS). Our results show that aortas from GK rats produced greater force (P < 0.05) in response to stimulation with KCl and U46619 than aortas from Wistar rats. Associated with these changes, aortic expression of contractile proteins (measured as an index of remodeling) and the microRNA (miR-145), which act to upregulate transcription of contractile protein genes, was twofold higher (P < 0.05) in GK than Wistar (age-matched control) rats, and there was a corresponding increase in ROS and decrease in nitric oxide signaling. Oral administration of the antioxidant Tempol (1 mmol/l) to Wistar and GK rats reduced (P < 0.05) myocardin and calponin expression. Tempol (1 mmol/l) decreased expression of miR-145 in Wistar and GK rat aorta. To elucidate the mechanism through which ROS increases miR-145, we measured their levels in freshly isolated aorta and cultured aortic smooth muscle cells incubated for 12 h in the presence of H2O2 (300 μmol/l). H2O2 increased expression of miR-145, and there were corresponding nuclear increases in myocardin, a miR-145 target protein. Intriguingly, H2O2-induced expression of miR-145 was decreased by U0126 (10 μmol/l), a MEK1/2 inhibitor, and myocardin was decreased by anti-miR-145 (50 nmol/l) and U0126 (10 μmol/l). Our novel findings demonstrate that ROS evokes vascular wall remodeling and dysfunction by enhancing expression of contractile proteins in T2D.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Aorta/metabolism
- Aorta/pathology
- Butadienes/pharmacology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Cyclic N-Oxides/pharmacology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myosins/genetics
- Myosins/metabolism
- Nitric Oxide/metabolism
- Nitriles/pharmacology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Potassium Chloride/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Spin Labels
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Up-Regulation
- Vasoconstrictor Agents/pharmacology
- Calponins
Collapse
Affiliation(s)
- Sukrutha Chettimada
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | | | | | | | | | | | | |
Collapse
|
29
|
Endothelial Dysfunction Is Associated With Graft Loss in Renal Transplant Recipients. Transplantation 2013; 95:733-9. [DOI: 10.1097/tp.0b013e31827d6312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Kim FY, Marhefka G, Ruggiero NJ, Adams S, Whellan DJ. Saphenous vein graft disease: review of pathophysiology, prevention, and treatment. Cardiol Rev 2013; 21:101-9. [PMID: 22968180 DOI: 10.1097/crd.0b013e3182736190] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Saphenous vein graft (SVG) disease after coronary artery bypass grafting (CABG) occurs in three phases: thrombosis, intimal hyperplasia, and atherosclerosis. Within the first month, thrombosis plays a major role. From month 1 to month 12, intimal hyperplasia occurs. Beyond 12 months, atherosclerosis becomes the primary cause for late graft failure. Endothelial damage has been shown to be the major underlying pathophysiology of SVG disease. Many factors contribute to endothelial damage from the moment the vein is harvested to when the vein is grafted into an arterial environment. To address this disease process, various therapeutic modalities, from surgical methods to medical treatment, have been evaluated. Surgically, the technical method of harvesting the vein has been shown to affect SVG patency. From a pharmacologic perspective, only two guideline class I recommended medications, aspirin and statins, have been shown to improve short- and long-term SVG patency after CABG. Despite these surgical and medical advances, SVG disease remains a significant problem with 1-year patency rates of 89% dropping to 61% after 10 years. This review discusses the pathogenesis of SVG disease, predictors of SVG failure, and current surgical and pharmacologic therapies to address SVG disease, including possible future treatment.
Collapse
Affiliation(s)
- Francis Y Kim
- Jefferson Coordinating Center for Clinical Research, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
31
|
Tsukao H, Kokubo K, Takahashi H, Nagasato M, Endo T, Iizuka N, Shinbo T, Hirose M, Kobayashi H. Activation of platelets upon contact with a vitamin E-coated/non-coated surface. J Artif Organs 2013; 16:193-205. [PMID: 23381644 DOI: 10.1007/s10047-013-0686-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 01/11/2013] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to determine the effects of a vitamin E-coated surface on platelet activation, focusing on the interactions among the vitamin E-coated surface, platelets and leukocytes. Platelet-rich plasma (PRP) or PRP containing leukocytes (LPRP) was used. No difference was observed in platelet activation between PRP and LPRP for a vitamin E-coated membrane, meaning that platelet activation triggered by leukocytes was suppressed in plasma coming in contact with a vitamin E-coated membrane, while the membrane itself directly induced platelet activation. The antioxidant capacity of the vitamin E-coated membrane in contact with PRP or LPRP was partially reduced, but sufficient residual capacity remained. The in vitro experiments using an oxidized vitamin E-coated surface revealed that P-selectin expression and superoxide anion production in the platelets and platelet adhesion were induced by contact with the oxidized vitamin E-coated surface. We conclude that contact with a vitamin E-coated surface reduces platelet activation mediated by superoxide anions, probably by reducing superoxide anions, but during the process of the reduction, the vitamin E-coated surface itself becomes oxidized, which again causes platelet activation. The beneficial effects of a vitamin E-coated dialyzer in respect of platelet activation were counteracted by the formation of oxidized vitamin E.
Collapse
Affiliation(s)
- Hiroshi Tsukao
- Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ghasemzadeh M, Hosseini E. Platelet-leukocyte crosstalk: Linking proinflammatory responses to procoagulant state. Thromb Res 2012; 131:191-7. [PMID: 23260445 DOI: 10.1016/j.thromres.2012.11.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/20/2012] [Accepted: 11/23/2012] [Indexed: 01/18/2023]
Abstract
Platelet activation is known to be associated with the release of a vast array of chemokines and proinflammatory lipids which induce pleiotropic effects on a wide variety of tissues and cells, including leukocytes. During thrombosis, the recruitment of leukocytes to activated platelets is considered an important step which not only links thrombosis to inflammatory responses but may also enhance procoagulant state. This phenomenon is highly regulated and influenced by precise mutual interactions between the cells at site of vascular injury and thrombi formation. Platelet-leukocyte interaction involves a variety of mediators including adhesion molecules, chemokines and chemoattractant molecules, shed proteins, various proinflammatory lipids and other materials. The current review addresses the detailed mechanisms underlying platelet-leukocyte crosstalk. This includes their adhesive interactions, transcellular metabolisms, induced tissue factor activity and neutrophil extracellular traps formation as well as the impacts of these phenomena in modulation of the proinflammatory and procoagulant functions in a reciprocal manner that enhances the physiological responses.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | | |
Collapse
|
33
|
Abstract
Atherosclerosis is a chronic inflammatory process in the intima of conduit arteries, which disturbs the endothelium-dependent regulation of the vascular tone by the labile liposoluble radical nitric oxide (NO) formed by the constitutive endothelial nitric oxide synthase (eNOS). This defect predisposes to coronary vasospasm and cardiac ischaemia, with anginal pain as the typical clinical manifestation. It is now appreciated that endothelial dysfunction is an early event in atherogenesis and that it may also involve the microcirculation, in which atherosclerotic lesions do not develop. On the other hand, the inflammatory environment in atherosclerotic plaques may result in the expression of the inducible NO synthase (iNOS) isozyme. Whether the dysfunction in endothelial NO production is causal to, or the result of, atherosclerotic lesion formation is still highly debated. Most evidence supports the hypothesis that constitutive endothelial NO release protects against atherogenesis e.g. by preventing smooth muscle cell proliferation and leukocyte adhesion. Nitric oxide generated by the inducible isozyme may be beneficial by replacing the failing endothelial production but excessive release may damage the vascular wall cells, especially in combination with reactive oxygen intermediates.
Collapse
Affiliation(s)
- K E Matthys
- University of Antwerp (UIA) Division of Pharmacology Wilrijk Antwerp B2610 Belgium
| | | |
Collapse
|
34
|
Taite LJ, West JL. Poly(ethylene glycol)-lysine dendrimers for targeted delivery of nitric oxide. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012. [DOI: 10.1163/156856206778530696] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Stefano GB, Kream RM. Reciprocal regulation of cellular nitric oxide formation by nitric oxide synthase and nitrite reductases. Med Sci Monit 2012; 17:RA221-6. [PMID: 21959625 PMCID: PMC3539480 DOI: 10.12659/msm.881972] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our mini-review focuses on dual regulation of cellular nitric oxide (NO) signaling pathways by traditionally characterized enzymatic formation from L-arginine via the actions of NO synthases (NOS) and by enzymatic reduction of available cellular nitrite pools by a diverse class of cytosolic and mitochondrial nitrite reductases. Nitrite is a major metabolic product of NO and is found in all cell and tissue types that utilize NO signaling processes. Xanthine oxidoreductase (XOR) has been previously characterized as a housekeeping enzyme responsible for cellular uric acid formation via enzymatic conversion of hypoxanthine and xanthine. It has become apparent that XOR possesses multi-functional enzymatic activities outside the realm of xanthine metabolism and a small but significant literature also established a compelling functional association between administered sodium nitrite, XOR activation, and pharmacologically characterized NO transductive effects in positive cardiovascular function enhanced pulmonary perfusion, and protection against ischemia/reperfusion injury and hypoxic damage and oxidative stress. Similar positive vascular and cellular effects were observed to be functionally associated with mitochondrial aldehyde dehydrogenase and cytochrome c/cytochrome c oxidase. The profound implications of a reciprocal regulatory mechanism responsible for cytosolic and mitochondrial NO production are discussed below.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, NY 11568-0210, USA.
| | | |
Collapse
|
36
|
MAO XH, SU T, ZHANG XH, LI F, QIN XP, LIAO DF, LI LF, CHEN LX. Apelin-13 Promotes Monocyte Adhesion to Human Umbilical Vein Endothelial Cell Mediated by Phosphatidylinositol 3-Kinase Signaling Pathway*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Kelly AS, Gonzalez-Campoy JM, Rudser KD, Katz H, Metzig AM, Thalin M, Bank AJ. Carvedilol-lisinopril combination therapy and endothelial function in obese individuals with hypertension. J Clin Hypertens (Greenwich) 2011; 14:85-91. [PMID: 22277140 DOI: 10.1111/j.1751-7176.2011.00569.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The authors hypothesized that carvedilol controlled-release plus lisinopril combination therapy (C+L) would increase endothelial function and decrease oxidative stress to a greater extent than hydrochlorothiazide plus lisinopril combination therapy (H+L) in obese patients with hypertension. Twenty-five abdominally obese patients (aged 54.4±7.3 years; 14 women) with hypertension/prehypertension were enrolled in a 7-month (two 3-month treatment periods separated by a 1-month washout), randomized, double-blind, controlled, crossover clinical trial comparing C+L vs H+L. Endothelial function, measured by digital reactive hyperemic index (RHI), circulating oxidized low-density lipoprotein (oxLDL), 8-isoprostane, and asymmetric dimethylarginine (ADMA) were obtained at baseline, post-period 1, post-washout, and post-period 2. Analyses were adjusted for baseline measurements by analysis of covariance, with robust variance estimation for confidence intervals and P values. C+L treatment compared to H+L treatment significantly improved RHI (0.74, 95% confidence interval, 0.31-1.19, P =.001). This difference persisted after adjustment for the change in systolic blood pressure. No significant treatment differences were observed for oxLDL, 8-isoprostane, or ADMA. These data provide evidence that independent of blood pressure-lowering, C+L therapy improves endothelial function to a greater extent than H+L therapy. Levels of oxidative stress were not significantly different between treatments, suggesting that other mechanisms may be responsible for the improvement in endothelial function.
Collapse
Affiliation(s)
- Aaron S Kelly
- Department of Pediatrics, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Vascular endothelium is a key regulator of homeostasis. In physiological conditions it mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. However, endothelial dysfunction caused by physical injury of the vascular wall, for example during balloon angioplasty, acute or chronic inflammation, such as in atherothrombosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites. At the same time, the dysfunction promotes thrombin generation, fibrin deposition, and coagulation. The serine protease thrombin plays a pivotal role in the coagulation cascade. However, thrombin is not only the key effector of coagulation cascade; it also plays a significant role in inflammatory diseases. It shows an array of effects on endothelial cells, vascular smooth muscle cells, monocytes, and platelets, all of which participate in the vascular pathophysiology such as atherothrombosis. Therefore, thrombin can be considered as an important modulatory molecule of vascular homeostasis. This review summarizes the existing evidence on the role of thrombin in vascular inflammation.
Collapse
|
39
|
Kondo Y, Muto A, Kudo FA, Model L, Eghbalieh S, Chowdhary P, Dardik A. Age-related Notch-4 quiescence is associated with altered wall remodeling during vein graft adaptation. J Surg Res 2011; 171:e149-60. [PMID: 21872265 DOI: 10.1016/j.jss.2011.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/07/2011] [Accepted: 06/15/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND The link of aging to specific mechanisms of vascular biology is not well understood. We have previously shown that aging is associated with increased vein graft wall thickness and that this process involves the VEGF-Delta/Notch-ephrin/Eph cascade. Therefore, we examined whether Dll-4 or Notch-4 are differentially expressed, according to age, during vein graft adaptation. MATERIALS AND METHODS Vein grafts were performed in 6-mo and 24-mo Fischer 344 rats. Gene expression was analyzed by quantitative real-time PCR, and the distribution of Dll-4 and Notch-4 was observed by immunofluorescence. RESULTS The expression of Dll-4 and Notch-4 was reduced in vein grafts performed in aged rats compared with the expression in young adult rats. Both Dll-4 and Notch-4 were distributed in vein graft endothelium as well as the outer adventitia, with reduced amounts in the outer adventitia of aged vein grafts. Aged veins had reduced eNOS membrane targeting and colocalization with caveolin-1 as well as reduced eNOS protein expression in comparison to young adult veins. In an exchange model between young and aged animals, heterogeneous vein grafts (Yo(Ag) and Ag(Yo)) showed significantly thicker neointima compared with young (Yo(Yo)) controls, and had Notch-4-positive cells, but not Dll-4-positive cells, diminished in the adventitia. Vein grafts that were air-denuded of endothelium did not show any adaptation to the arterial environment and also lacked both Dll-4 and Notch-4 expression at 3 wk. CONCLUSIONS During vein graft adaptation to the arterial environment, both Dll-4 and Notch-4 expression are down-regulated in an aged, but not a young, background. Loss of Notch-4 is associated with loss of attenuation of neointima. The delta-Notch signaling pathway may be active during vein graft adaptation.
Collapse
Affiliation(s)
- Yuka Kondo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520-8089, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Metzig AM, Schwarzenberg SJ, Fox CK, Deering MM, Nathan BM, Kelly AS. Postprandial endothelial function, inflammation, and oxidative stress in obese children and adolescents. Obesity (Silver Spring) 2011; 19:1279-83. [PMID: 21233813 DOI: 10.1038/oby.2010.318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most studies in adults suggest that acute glucose consumption induces a transient impairment in endothelial function. We hypothesized that obese youth would demonstrate reduced endothelial function and increased inflammation and oxidative stress following acute glucose ingestion and that transient elevations in plasma glucose would correlate with endothelial dysfunction, inflammation, and oxidative stress. Thirty-four obese (BMI ≥ 95th percentile) children and adolescents (age 12.4 ± 2.6 years; BMI = 37.9 ± 6.7 kg/m2; 50% females) underwent measurement of endothelial function (reactive hyperemic index (RHI)), glucose, insulin, C-reactive protein (CRP), interleukin-6 (IL-6), circulating oxidized low-density lipoprotein (oxLDL), and myeloperoxidase (MPO) in a fasting state and at 1- and 2-h following glucose ingestion. Repeated measures ANOVA with Tukey post-tests and Pearson correlations were performed. Glucose and insulin levels significantly increased at 1- and 2-h (all P values < 0.001). Compared to baseline, there were no statistically significant differences in 1- and 2-h RHI, CRP, IL-6, and oxLDL. However, MPO significantly decreased at the 1- (P < 0.05) and 2-h (P < 0.001) time points. At the 1-h time point, glucose level was significantly inversely correlated with RHI (r = -0.40, P < 0.05) and at the 2-h time point, glucose level was positively correlated with MPO (r = 0.40, P < 0.05). An acute oral glucose load does not reduce endothelial function or increase levels of inflammation or oxidative stress in obese youth. However, associations of postprandial hyperglycemia with endothelial function and oxidative stress may have implications for individuals with impaired glucose tolerance or frank type 2 diabetes.
Collapse
Affiliation(s)
- Andrea M Metzig
- Department of Pediatrics, Division of Epidemiology and Clinical Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
41
|
Green DE, Sutliff RL, Hart CM. Is peroxisome proliferator-activated receptor gamma (PPARγ) a therapeutic target for the treatment of pulmonary hypertension? Pulm Circ 2011; 1:33-47. [PMID: 21547012 PMCID: PMC3085428 DOI: 10.4103/2045-8932.78101] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH), a progressive disorder associated with significant morbidity and mortality, is caused by complex pathways that culminate in structural and functional alterations of the pulmonary circulation and increases in pulmonary vascular resistance and pressure. Diverse genetic, pathological, or environmental triggers stimulate PH pathogenesis culminating in vasoconstriction, cell proliferation, vascular remodeling, and thrombosis. We conducted a thorough literature review by performing MEDLINE searches via PubMed to identify articles pertaining to PPARγ as a therapeutic target for the treatment of PH. This review examines basic and preclinical studies that explore PPARγ and its ability to regulate PH pathogenesis. Despite the current therapies that target specific pathways in PH pathogenesis, including prostacyclin derivatives, endothelin-receptor antagonists, and phosphodiesterase type 5 inhibitors, morbidity and mortality related to PH remain unacceptably high, indicating the need for novel therapeutic approaches. Consequently, therapeutic targets that simultaneously regulate multiple pathways involved in PH pathogenesis have gained attention. This review focuses on peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. While the PPARγ receptor is best known as a master regulator of lipid and glucose metabolism, a growing body of literature demonstrates that activation of PPARγ exerts antiproliferative, antithrombotic, and vasodilatory effects on the vasculature, suggesting its potential efficacy as a PH therapeutic target.
Collapse
Affiliation(s)
- David E Green
- Department of Medicine, Emory University, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | | | | |
Collapse
|
42
|
Labinskyy N, Hicks S, Grijalva J, Edwards J. The Contrary Impact Of Diabetes And Exercise On Endothelial Nitric Oxide Synthase Function. WEBMEDCENTRAL 2010; 1. [PMID: 27683619 DOI: 10.9754/journal.wmc.2010.00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Koai E, Rios TR, Edwards J. Vascular Endothelial Growth Factor Increases Endothelial Nitric Oxide Synthase Transcription In Huvec Cells. ACTA ACUST UNITED AC 2010; 1. [PMID: 27695625 DOI: 10.9754/journal.wmc.2010.001111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although it is known that VEGF increases eNOS protein, the mechanisms responsible remain unclear. To determine if VEGF alters eNOS transcription, human umbilical vein endothelial cells were transfected with reporters under the control of the eNOS promoter and stimulated with VEGF165. VEGF significantly increased eNOS-mRNA after 2 hours exposure. VEGF significantly increased eNOS reporter activity as early as one hour (268±32%), but this increase returned to baseline after 6 hours. Using deletion constructs, the VEGF response region was initially localized to within the -722/-494 region. GMSA indicated that VEGF increased DNA binding to both a cAMP-like and AP1-like response elements. Site-specific mutations and heterologous constructs indicated that the site centered at AP1-like site was both necessary and sufficient to meditate VEGF transcriptional activation. These results indicate that VEGF rapidly activates eNOS transcription prior to a rise eNOS-mRNA, an effect mediated by a cis-trans interaction localized to an AP1-like site within the eNOS promoter.
Collapse
|
44
|
Abstract
Differences in cardiovascular disease outcomes between men and women have long been recognized and attributed, in part, to gender and sex steroids. Gender dimorphisms also exist with respect to the roles of progenitor and stem cells in post-ischemic myocardial and endothelial repair and regeneration. Understanding how these cells are influenced by donor gender and the recipient hormonal milieu may enable researchers to further account for the gender-related disparities in clinical outcomes as well as utilize the beneficial effects of these hormones to optimize transplanted cell function and survival. This review discusses (1) the cardiovascular effects of sex steroids (specifically estradiol and testosterone); (2) the therapeutic potentials of endothelial progenitor cells, mesenchymal stem cells, and embryonic stem cells; and (3) the direct effect of sex steroids on these cell types.
Collapse
|
45
|
Sutliff RL, Kang BY, Hart CM. PPARgamma as a potential therapeutic target in pulmonary hypertension. Ther Adv Respir Dis 2010; 4:143-60. [PMID: 20530063 DOI: 10.1177/1753465809369619] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive disorder of the pulmonary circulation associated with significant morbidity and mortality. The pathobiology of PH involves a complex series of derangements causing endothelial dysfunction, vasoconstriction and abnormal proliferation of pulmonary vascular wall cells that lead to increases in pulmonary vascular resistance and pressure. Recent evidence indicates that the ligand-activated transcription factor, peroxisome proliferator-activated receptor gamma (PPARgamma) can have a favorable impact on a variety of pathways involved in the pathogenesis of PH. This review summarizes PPARgamma biology and the emerging evidence that therapies designed to activate this receptor may provide novel approaches to the treatment of PH. Mediators of PH that are regulated by PPARgamma are reviewed to provide insights into potential mechanisms underlying therapeutic effects of PPARgamma ligands in PH.
Collapse
Affiliation(s)
- Roy L Sutliff
- Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta VA Medical Center, Decatur, GA 30033, USA.
| | | | | |
Collapse
|
46
|
Muto A, Model L, Ziegler K, Eghbalieh SD, Dardik A. Mechanisms of vein graft adaptation to the arterial circulation: insights into the neointimal algorithm and management strategies. Circ J 2010; 74:1501-1512. [PMID: 20606326 PMCID: PMC3662001 DOI: 10.1253/circj.cj-10-0495] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
For patients with coronary artery disease or limb ischemia, placement of a vein graft as a conduit for a bypass is an important and generally durable strategy among the options for arterial reconstructive surgery. Vein grafts adapt to the arterial environment, and the limited formation of intimal hyperplasia in the vein graft wall is thought to be an important component of successful vein graft adaptation. However, it is also known that abnormal, or uncontrolled, adaptation may lead to abnormal vessel wall remodeling with excessive neointimal hyperplasia, and ultimately vein graft failure and clinical complications. Therefore, understanding the venous-specific pathophysiological and molecular mechanisms of vein graft adaptation are important for clinical vein graft management. Of particular importance, it is currently unknown whether there exist several specific distinct molecular differences in the venous mechanisms of adaptation that are distinct from arterial post-injury responses; in particular, the participation of the venous determinant Eph-B4 and the vascular protective molecule Nogo-B may be involved in mechanisms of vessel remodeling specific to the vein. This review describes (1) venous biology from embryonic development to the mature quiescent state, (2) sequential pathologies of vein graft neointima formation, and (3) novel candidates for strategies of vein graft management. Scientific inquiry into venous-specific adaptation mechanisms will ultimately provide improvements in vein graft clinical outcomes.
Collapse
Affiliation(s)
- Akihito Muto
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Lynn Model
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Kenneth Ziegler
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Sammy D.D. Eghbalieh
- Interdepartmental Program in Vascular Biology and Therapeutics
- St. Mary's Hospital, Waterbury, CT
| | - Alan Dardik
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
- the VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
47
|
Role of NAD(P)H oxidase in superoxide generation and endothelial dysfunction in Goto-Kakizaki (GK) rats as a model of nonobese NIDDM. PLoS One 2010; 5:e11800. [PMID: 20668682 PMCID: PMC2909910 DOI: 10.1371/journal.pone.0011800] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/04/2010] [Indexed: 02/07/2023] Open
Abstract
Background Cardiovascular disease is the leading cause of mortality in diabetics, and it has a complex etiology that operates on several levels. Endothelial dysfunction and increased generation of reactive oxygen species are believed to be an underlying cause of vascular dysfunction and coronary artery disease in diabetes. This impairment is likely the result of decreased bioavailability of nitric oxide (NO) within the vasculature. However, it is unclear whether hyperglycemia per se stimulates NADPH oxidase-derived superoxide generation in vascular tissue. Methods and Results This study focused on whether NADPH oxidase-derived superoxide is elevated in vasculature tissue evoking endothelial/smooth muscle dysfunction in the hyperglycemic (169±4 mg%) Goto-Kakizaki (GK) rat. By dihydroethidine fluorescence staining, we determined that aorta superoxide levels were significantly elevated in 9 month-old GK compared with age matched Wistar (GK; 195±6%, Wistar; 100±3.5%). Consistent with these findings, 10−6 mol/L acetylcholine-induced relaxation of the carotid artery was significantly reduced in GK rats compared with age matched Wistar (GK; 41±7%, Wistar; 100±5%) and measurements in the aorta showed a similar trend (p = .08). In contrast, relaxation to the NO donor SNAP was unaltered in GK compared to Wistar. Endothelial dysfunction was reversed by lowering of superoxide with apocynin, a specific Nox inhibitor. Conclusions The major findings from this study are that chronic hyperglycemia induces significant vascular dysfunction in both the aorta and small arteries. Hyperglycemic induced increases in NAD(P)H oxidase activity that did not come from an increase in the expression of the NAD(P)H oxidase subunits, but more likely as a result of chronic activation via intracellular signaling pathways.
Collapse
|
48
|
Abstract
Sepsis is exceedingly burdensome for hospital intensive care unit caregivers, and its incidence, as well as sepsis-related deaths, is increasing steadily. Sepsis is characterized by a robust increase in NO production throughout the organism that is driven by iNOS. Moreover, NO is an important factor in the development of septic shock and is synthesized by NOS, an enzyme expressed by a variety of cells, including vascular endothelium, macrophages, and neutrophils. However, the effects of NO on leukocyte functions, and the underlying mechanisms, are relatively unknown. Thus, the present review focuses on the effects of NO and its derivatives on cells of the immune system. Experimental evidences discussed herein show that NO induces posttranslational modifications of key proteins in targeted processes with the potential of deterring cellular physiology. Consequently, the manipulation of NO distribution in septic patients, used in conjunction with conventional treatments aimed at restoring normal immune functions, may represent a valuable therapeutic strategy.
Collapse
|
49
|
Abdel Baky NA, Zaidi ZF, Fatani AJ, Sayed-Ahmed MM, Yaqub H. Nitric oxide pros and cons: The role of L-arginine, a nitric oxide precursor, and idebenone, a coenzyme-Q analogue in ameliorating cerebral hypoxia in rat. Brain Res Bull 2010; 83:49-56. [PMID: 20637840 DOI: 10.1016/j.brainresbull.2010.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
Evidence exists that nitric oxide (NO) may mediate both protective and pathological responses during brain hypoxia (HP). Reactive oxygen species have also been implicated in the pathophysiological response of the brain tissues to HP. Therefore, this study investigated whether a NO precursor, l-arginine (l-arg), a free radical scavenger, idebenone (ID), and their combination would reduce neurological injury resulting from hemic hypoxia (HP) in rats. Adult male Wistar albino rats were injected with sodium nitrite (60 mg/kg, s.c.) to establish hemic hypoxia. ID (100 mg kg(-1), i.p.) and/or l-arg (100 mg kg(-1), i.p.) were administrated 24 and 1h prior to sodium nitrite intoxication, respectively. Hypoxia significantly decreased hemoglobin concentration, while significantly increased serum lactate dehydrogenase (LDH), creatine phosphokinase (CPK), total nitrate/nitrite, sialic, and uric acids concentrations. Moreover, brain lipid peroxides were significantly enhanced, while reduced glutathione, l-ascorbic acids, adenosine triphosphate (ATP) contents, and the activities of catalase and superoxide dismutase, were significantly reduced in the brain tissue. Pretreatment with either ID or l-arg altered the majority of the above-mentioned biochemical changes in hypoxic rats. Additionally, the combination of these two agents significantly reduced injury marker enzyme activities as well as serum sialic, and uric acids level (P>0.05 vs. control). Moreover, this combination exerted a synergistic antioxidant effect by blocking the induction of lipid peroxidation, preserving brain energy (ATP) content, and greatly reducing the hypoxic alterations in brain enzymatic and non-enzymatic antioxidants. Histopathological examination of the brain tissue supported these biochemical findings. This study showed that ID and l-arg were capable of reducing neurological injury following HP in rat, and support the idea of the usefulness of l-arg and ID as prophylaxis from hypoxic brain injury.
Collapse
Affiliation(s)
- Nayira A Abdel Baky
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
50
|
Pang J, Xu Q, Xu X, Yin H, Xu R, Guo S, Hao W, Wang L, Chen C, Cao JM. Hexarelin suppresses high lipid diet and vitamin D3-induced atherosclerosis in the rat. Peptides 2010; 31:630-8. [PMID: 19931584 DOI: 10.1016/j.peptides.2009.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 11/10/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Growth hormone-releasing peptides (GHRP) and ghrelin are synthetic and natural ligands of growth hormone secretagogue receptor (GHSR) respectively and are shown to exert protective actions on cardiac dysfunction. Because ghrelin has been reported to inhibit proinflammatory responses in human endothelium and GHSR has been identified in blood vessels, we hypothesized that GHRP could alleviate the development of atherosclerosis (As). Atherosclearosis was induced by a short period (4 days) of vitamin D(3) and chronic (three months) intragastric feeding of high fat emulsion (containing 0.5% propylthiouracil) in adult SD rats. Some As rats received chronic hexarelin (a variant of GHRP) injection (SC BID, 30 days) and normal rats received placebo as control. Significant atherosclerosis developed in animals fed with the emulsion. Serum total cholesterol and LDL-c increased, and HDL-c and aortic nitric oxide (NO) decreased significantly in As group. Hexarelin suppressed the formation of atherosclerotic plaques and neointima, partially reversed serum HDL-c/LDL-c ratio and increased the levels of serum NO and aortic mRNAs of eNOS, GHSR and CD36 in As rats. Hexarelin also decreased [(3)H]-TdR incorporation in cultured vascular smooth muscle cell (VSMC) and calcium sedimentation in aortic wall. Furthermore, foam cell formation induced by ox-LDL was decreased by hexarelin. In conclusion, hexarelin suppresses high lipid diet and vitamin D3-induced atherosclerosis in rats, possibly through upregulating HDL-c/LDL-c ratio, vascular NO production and downregulating the VSMC proliferation, aortic calcium sedimentation and foam cell formation. These novel anti-atherosclerotic actions of hexarelin suggest that the peptide might have a clinical potential in treating atherosclerosis.
Collapse
Affiliation(s)
- Jinjiang Pang
- Department of Physiology, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|