1
|
Vitali C, Bajaj A, Nguyen C, Schnall J, Chen J, Stylianou K, Rader DJ, Cuchel M. A systematic review of the natural history and biomarkers of primary lecithin:cholesterol acyltransferase deficiency. J Lipid Res 2022; 63:100169. [PMID: 35065092 PMCID: PMC8953693 DOI: 10.1016/j.jlr.2022.100169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 10/31/2022] Open
Abstract
Syndromes associated with LCAT deficiency, a rare autosomal recessive condition, include fish-eye disease (FED) and familial LCAT deficiency (FLD). FLD is more severe and characterized by early and progressive chronic kidney disease (CKD). No treatment is currently available for FLD, but novel therapeutics are under development. Furthermore, although biomarkers of LCAT deficiency have been identified, their suitability to monitor disease progression and therapeutic efficacy is unclear, as little data exist on the rate of progression of renal disease. Here, we systematically review observational studies of FLD, FED, and heterozygous subjects, which summarize available evidence on the natural history and biomarkers of LCAT deficiency, in order to guide the development of novel therapeutics. We identified 146 FLD and 53 FED patients from 219 publications, showing that both syndromes are characterized by early corneal opacity and markedly reduced HDL-C levels. Proteinuria/hematuria were the first signs of renal impairment in FLD, followed by rapid decline of renal function. Furthermore, LCAT activity toward endogenous substrates and the percentage of circulating esterified cholesterol (EC%) were the best discriminators between these two syndromes. In FLD, higher levels of total, non-HDL, and unesterified cholesterol were associated with severe CKD. We reveal a nonlinear association between LCAT activity and EC% levels, in which subnormal levels of LCAT activity were associated with normal EC%. This review provides the first step toward the identification of disease biomarkers to be used in clinical trials and suggests that restoring LCAT activity to subnormal levels may be sufficient to prevent renal disease progression.
Collapse
Affiliation(s)
- Cecilia Vitali
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Archna Bajaj
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina Nguyen
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jill Schnall
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinbo Chen
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kostas Stylianou
- Department of Nephrology, Heraklion University Hospital, Crete, Greece
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Mehta R, Elías-López D, Martagón AJ, Pérez-Méndez OA, Sánchez MLO, Segura Y, Tusié MT, Aguilar-Salinas CA. LCAT deficiency: a systematic review with the clinical and genetic description of Mexican kindred. Lipids Health Dis 2021; 20:70. [PMID: 34256778 PMCID: PMC8276382 DOI: 10.1186/s12944-021-01498-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND LCAT (lecithin-cholesterol acyltransferase) deficiency is characterized by two distinct phenotypes, familial LCAT deficiency (FLD) and Fish Eye disease (FED). This is the first systematic review evaluating the ethnic distribution of LCAT deficiency, with particular emphasis on Latin America and the discussion of three Mexican-Mestizo probands. METHODS A systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic review and Meta-Analysis) Statement in Pubmed and SciELO. Articles which described subjects with LCAT deficiency syndromes and an assessment of the ethnic group to which the subject pertained, were included. RESULTS The systematic review revealed 215 cases (154 FLD, 41 FED and 20 unclassified) pertaining to 33 ethnic/racial groups. There was no association between genetic alteration and ethnicity. The mean age of diagnosis was 42 ± 16.5 years, with fish eye disease identified later than familial LCAT deficiency (55 ± 13.8 vs. 41 ± 14.7 years respectively). The prevalence of premature coronary heart disease was significantly greater in FED vs. FLD. In Latin America, 48 cases of LCAT deficiency have been published from six countries (Argentina (1 unclassified), Brazil (38 FLD), Chile (1 FLD), Columbia (1 FLD), Ecuador (1 FLD) and Mexico (4 FLD, 1 FED and 1 unclassified). Of the Mexican probands, one showed a novel LCAT mutation. CONCLUSIONS The systematic review shows that LCAT deficiency syndromes are clinically and genetically heterogeneous. No association was confirmed between ethnicity and LCAT mutation. There was a significantly greater risk of premature coronary artery disease in fish eye disease compared to familial LCAT deficiency. In FLD, the emphasis should be in preventing both cardiovascular disease and the progression of renal disease, while in FED, cardiovascular risk management should be the priority. The LCAT mutations discussed in this article are the only ones reported in the Mexican- Amerindian population.
Collapse
Affiliation(s)
- Roopa Mehta
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México
| | - Daniel Elías-López
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México
| | - Alexandro J Martagón
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L, México
| | - Oscar A Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, México City, México
| | - Maria Luisa Ordóñez Sánchez
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Yayoi Segura
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Maria Teresa Tusié
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Carlos A Aguilar-Salinas
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México. .,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L, México.
| |
Collapse
|
3
|
Yang XY, Zhong DY, Wang GL, Zhang RG, Zhang YL. Effect of Walnut Meal Peptides on Hyperlipidemia and Hepatic Lipid Metabolism in Rats Fed a High-Fat Diet. Nutrients 2021; 13:1410. [PMID: 33922242 PMCID: PMC8146006 DOI: 10.3390/nu13051410] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
As a natural active substance that can effectively improve blood lipid balance in the body, hypolipidemic active peptides have attracted the attention of scholars. In this study, the effect of walnut meal peptides (WMP) on lipid metabolism was investigated in rats fed a high-fat diet (HFD). The experimental results show that feeding walnut meal peptides counteracted the high-fat diet-induced increase in body, liver and epididymal fat weight, and reduce the serum concentrations of total cholesterol, triglycerides, and LDL-cholesterol and hepatic cholesterol and triglyceride content. Walnut meal peptides also resulted in increased HDL-cholesterol while reducing the atherosclerosis index (AI). Additionally, the stained pathological sections of the liver showed that the walnut meal peptides reduced hepatic steatosis and damage caused by HFD. Furthermore, walnut meal peptide supplementation was associated with normalization of elevated apolipoprotein (Apo)-B and reduced Apo-A1 induced by the high-fat diet and with favorable changes in the expression of genes related to lipid metabolism (LCAT, CYP7A1, HMGR, FAS). The results indicate that walnut meal peptides can effectively prevent the harmful effects of a high-fat diet on body weight, lipid metabolism and liver fat content in rats, and provide, and provide a reference for the further development of walnut meal functional foods.
Collapse
Affiliation(s)
| | | | | | | | - You-Lin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.-Y.Y.); (D.-Y.Z.); (G.-L.W.); (R.-G.Z.)
| |
Collapse
|
4
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
5
|
Lipid Profile Rather Than the LCAT Mutation Explains Renal Disease in Familial LCAT Deficiency. J Clin Med 2019; 8:jcm8111860. [PMID: 31684177 PMCID: PMC6912718 DOI: 10.3390/jcm8111860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Renal complications are the major cause of morbidity and mortality in patients with familial lecithin–cholesterol acyltransferase (LCAT) deficiency (FLD). We report three FLD patients, two of them siblings—only one of whom developed renal disease—and the third case being a young man with early renal disease. The aim of this study was to analyze the clinical characteristics and possible mechanisms associated with renal disease in these patients. Plasma lipid levels, LCAT activity, lipoprotein particle profile by NMR and FPLC, free and esterified cholesterol, presence of lipoprotein X (LpX) and DNA sequencing in the three FLD patients have been determined. The three cases presented clinical characteristics of FLD, although only one of the siblings developed renal disease, at 45 years of age, while the other patient developed the disease in his youth. Genetic analysis revealed new missense homozygous mutations, p.(Ile202Thr) in both siblings and p.(Arg171Glu) in the other patient. Lipoprotein particle analysis showed that the two patients with renal disease presented higher numbers of small very low-density lipoprotein (VLDL) and a higher concentration of triglycerides in VLDL. This study reports three new cases of LCAT deficiency, not previously described. Renal disease is not only dependent on LCAT deficiency, and could be due to the presence of VLDL particles, which are rich in triglycerides, free cholesterol and LpX.
Collapse
|
6
|
Pamir N, Pan C, Plubell DL, Hutchins PM, Tang C, Wimberger J, Irwin A, Vallim TQDA, Heinecke JW, Lusis AJ. Genetic control of the mouse HDL proteome defines HDL traits, function, and heterogeneity. J Lipid Res 2019; 60:594-608. [PMID: 30622162 PMCID: PMC6399512 DOI: 10.1194/jlr.m090555] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
HDLs are nanoparticles with more than 80 associated proteins, phospholipids, cholesterol, and cholesteryl esters. The potential inverse relation of HDL to coronary artery disease (CAD) and the effects of HDL on myriad other inflammatory conditions warrant a better understanding of the genetic basis of the HDL proteome. We conducted a comprehensive genetic analysis of the regulation of the proteome of HDL isolated from a panel of 100 diverse inbred strains of mice (the hybrid mouse diversity panel) and examined protein composition and efflux capacity to identify novel factors that affect the HDL proteome. Genetic analysis revealed widely varied HDL protein levels across the strains. Some of this variation was explained by local cis-acting regulation, termed cis-protein quantitative trait loci (QTLs). Variations in apoA-II and apoC-3 affected the abundance of multiple HDL proteins, indicating a coordinated regulation. We identified modules of covarying proteins and defined a protein-protein interaction network that describes the protein composition of the naturally occurring subspecies of HDL in mice. Sterol efflux capacity varied up to 3-fold across the strains, and HDL proteins displayed distinct correlation patterns with macrophage and ABCA1-specific cholesterol efflux capacity and cholesterol exchange, suggesting that subspecies of HDL participate in discrete functions. The baseline and stimulated sterol efflux capacity phenotypes were associated with distinct QTLs with smaller effect size, suggesting a multigenetic regulation. Our results highlight the complexity of HDL particles by revealing the high degree of heterogeneity and intercorrelation, some of which is associated with functional variation, and support the concept that HDL-cholesterol alone is not an accurate measure of HDL’s properties, such as protection against CAD.
Collapse
Affiliation(s)
- Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR
| | - Calvin Pan
- Departments of Genetics University of California at Los Angeles, Los Angeles, CA
| | - Deanna L Plubell
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR
| | | | - Chongren Tang
- Department of Medicine University of Washington, Seattle, WA
| | - Jake Wimberger
- Department of Medicine University of Washington, Seattle, WA
| | - Angela Irwin
- Department of Medicine University of Washington, Seattle, WA
| | | | - Jay W Heinecke
- Department of Medicine University of Washington, Seattle, WA
| | - Aldons J Lusis
- Departments of Genetics University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Dron JS, Wang J, Low-Kam C, Khetarpal SA, Robinson JF, McIntyre AD, Ban MR, Cao H, Rhainds D, Dubé MP, Rader DJ, Lettre G, Tardif JC, Hegele RA. Polygenic determinants in extremes of high-density lipoprotein cholesterol. J Lipid Res 2017; 58:2162-2170. [PMID: 28870971 PMCID: PMC5665671 DOI: 10.1194/jlr.m079822] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/31/2017] [Indexed: 11/24/2022] Open
Abstract
HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia.
Collapse
Affiliation(s)
- Jacqueline S Dron
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Cécile Low-Kam
- Montréal Heart Institute et Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sumeet A Khetarpal
- Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John F Robinson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Matthew R Ban
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Henian Cao
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David Rhainds
- Montréal Heart Institute et Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie-Pierre Dubé
- Montréal Heart Institute et Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Daniel J Rader
- Departments of Genetics, Medicine, and Pediatrics, the Cardiovascular Institute, and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Guillaume Lettre
- Montréal Heart Institute et Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Claude Tardif
- Montréal Heart Institute et Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Robert A Hegele
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Kapoor S. Fish-eye disease: Another under-recognized cause of familial corneal opacification. Ophthalmic Genet 2016; 37:349. [DOI: 10.3109/13816810.2015.1059461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Brahma Naidu P, Uddandrao VVS, Ravindar Naik R, Suresh P, Meriga B, Begum MS, Pandiyan R, Saravanan G. Ameliorative potential of gingerol: Promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Mol Cell Endocrinol 2016; 419:139-47. [PMID: 26493465 DOI: 10.1016/j.mce.2015.10.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/10/2015] [Accepted: 10/11/2015] [Indexed: 01/12/2023]
Abstract
Obesity, generally linked to hyperlipidemia, has been occurring of late with distressing alarm and has now become a global phenomenon casting a huge economic burden on the health care system of countries around the world. The present study investigated the effects of gingerol over 30 days on the changes in HFD-induced obese rats in marker enzymes of lipid metabolism such as fatty-acid synthase (FAS), Acetyl CoA Carboxylase (ACC), Carnitine Palmitoyl Transferase-1(CPT-1), HMG co-A Reductase (HMGR), Lecithin Choline Acyl Transferase (LCAT) and Lipoprotein Lipase (LPL) and inflammatory markers (TNF-α and IL-6). The rats were treated orally with gingerol (75 mg kg(-1)) once daily for 30 days with a lorcaserin-treated group (10 mg kg(-1)) included for comparison. Changes in body weight, glucose, insulin resistance and expressions of lipid marker enzymes and inflammatory markers in tissues were observed in experimental rats. The administration of gingerol resulted in a significant reduction in body weight gain, glucose and insulin levels, and insulin resistance, which altered the activity, expressions of lipid marker enzymes and inflammatory markers. It showed that gingerol had significantly altered these parameters when compared with HFD control rats. This study confirms that gingerol prevents HFD-induced hyperlipidemia by modulating the expression of enzymes important to cholesterol metabolism.
Collapse
Affiliation(s)
- Parim Brahma Naidu
- Department of Biochemistry, Animal Physiology & Biochemistry Lab, Sri Venkateswara University, Tirupati, 517502, India
| | - V V Sathibabu Uddandrao
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science, Thokkavadi, Tiruchengode, 637215, Tamil Nadu, India
| | - Ramavat Ravindar Naik
- National Centre for Laboratory Animal Sciences, National Institute of Nutrition (ICMR-New Delhi), Hydrabad, Andhrapradesh, India
| | - Pothani Suresh
- National Centre for Laboratory Animal Sciences, National Institute of Nutrition (ICMR-New Delhi), Hydrabad, Andhrapradesh, India
| | - Balaji Meriga
- Department of Biochemistry, Animal Physiology & Biochemistry Lab, Sri Venkateswara University, Tirupati, 517502, India
| | - Mustapha Shabana Begum
- Department of Biochemistry, Muthayammal College of Arts and Science, Rasipuram, Tamil Nadu, 637408, India
| | - Rajesh Pandiyan
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science, Thokkavadi, Tiruchengode, 637215, Tamil Nadu, India
| | - Ganapathy Saravanan
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science, Thokkavadi, Tiruchengode, 637215, Tamil Nadu, India.
| |
Collapse
|
10
|
Gunawardane RN, Fordstrom P, Piper DE, Masterman S, Siu S, Liu D, Brown M, Lu M, Tang J, Zhang R, Cheng J, Gates A, Meininger D, Chan J, Carlson T, Walker N, Schwarz M, Delaney J, Zhou M. Agonistic Human Antibodies Binding to Lecithin-Cholesterol Acyltransferase Modulate High Density Lipoprotein Metabolism. J Biol Chem 2015; 291:2799-811. [PMID: 26644477 PMCID: PMC4742745 DOI: 10.1074/jbc.m115.672790] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 11/28/2022] Open
Abstract
Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouseTM platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Stephanie Masterman
- Therapeutic Discovery, Amgen Inc., Burnaby, British Columbia V5A 1V7, Canada
| | - Sophia Siu
- From Therapeutic Discovery, Amgen Inc., Seattle, Washington 98119
| | | | - Mike Brown
- From Therapeutic Discovery, Amgen Inc., Seattle, Washington 98119
| | - Mei Lu
- Therapeutic Discovery, and
| | | | | | - Janet Cheng
- From Therapeutic Discovery, Amgen Inc., Seattle, Washington 98119
| | - Andrew Gates
- From Therapeutic Discovery, Amgen Inc., Seattle, Washington 98119
| | - David Meininger
- From Therapeutic Discovery, Amgen Inc., Seattle, Washington 98119
| | | | - Tim Carlson
- PKDM Department, Amgen Inc., South San Francisco, California 94080, and
| | | | | | - John Delaney
- Therapeutic Discovery, Amgen Inc., Burnaby, British Columbia V5A 1V7, Canada
| | | |
Collapse
|
11
|
Fotakis P, Kuivenhoven JA, Dafnis E, Kardassis D, Zannis VI. The Effect of Natural LCAT Mutations on the Biogenesis of HDL. Biochemistry 2015; 54:3348-59. [PMID: 25948084 DOI: 10.1021/acs.biochem.5b00180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated how the natural LCAT[T147I] and LCAT[P274S] mutations affect the pathway of biogenesis of HDL. Gene transfer of WT LCAT in LCAT(-/-) mice increased 11.8-fold the plasma cholesterol, whereas the LCAT[T147I] and LCAT[P274S] mutants caused a 5.2- and 2.9-fold increase, respectively. The LCAT[P274S] and the WT LCAT caused a monophasic distribution of cholesterol in the HDL region, whereas the LCAT[T147I] caused a biphasic distribution of cholesterol in the LDL and HDL region. Fractionation of plasma showed that the expression of WT LCAT increased plasma apoE and apoA-IV levels and shifted the distribution of apoA-I to lower densities. The LCAT[T147I] and LCAT[P274S] mutants restored partially apoA-I in the HDL3 fraction and LCAT[T147I] increased apoE in the VLD/IDL/LDL fractions. The in vivo functionality of LCAT was further assessed based on is its ability to correct the aberrant HDL phenotype that was caused by the apoA-I[L159R]FIN mutation. Co-infection of apoA-I(-/-) mice with this apoA-I mutant and either of the two mutant LCAT forms restored only partially the HDL biogenesis defect that was caused by the apoA-I[L159R]FIN and generated a distinct aberrant HDL phenotype.
Collapse
Affiliation(s)
- Panagiotis Fotakis
- †Molecular Genetics, Boston University School of Medicine, 700 Albany Street, W509, Boston, Massachusetts 02118-2394, United States.,‡Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, GR-74100 Heraklion, Greece
| | - Jan Albert Kuivenhoven
- §Department of Pediatrics, Section Molecular Genetics, Groningen, University of Groningen, University Medical Center Groningen, 9700 Groningen, The Netherlands
| | - Eugene Dafnis
- ∥Department of Nephrology, University of Crete Medical School, GR-74100 Heraklion, Greece
| | - Dimitris Kardassis
- ‡Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, GR-74100 Heraklion, Greece
| | - Vassilis I Zannis
- †Molecular Genetics, Boston University School of Medicine, 700 Albany Street, W509, Boston, Massachusetts 02118-2394, United States
| |
Collapse
|
12
|
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. For close to four decades, we have known that high density lipoprotein (HDL) levels are inversely correlated with the risk of CVD. HDL is a complex particle that consists of proteins, phospholipids, and cholesterol and has the ability to carry micro-RNAs. HDL is constantly undergoing remodelling throughout its life-span and carries out many functions. This review summarizes many of the different aspects of HDL from its assembly, the receptors it interacts with, along with the functions it performs and how it can be altered in disease. While HDL is a key cholesterol efflux particle, this review highlights the many other important functions of HDL in the innate immune system and details the potential therapeutic uses of HDL outside of CVD.
Collapse
|
13
|
Dimick SM, Sallee B, Asztalos BF, Pritchard PH, Frohlich J, Schaefer EJ. A kindred with fish eye disease, corneal opacities, marked high-density lipoprotein deficiency, and statin therapy. J Clin Lipidol 2013; 8:223-30. [PMID: 24636183 DOI: 10.1016/j.jacl.2013.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/25/2013] [Accepted: 11/15/2013] [Indexed: 11/26/2022]
Abstract
A kindred affected with fish eye disease (FED) from Oklahoma is reported. Two probands with corneal opacification had mean levels of high-density lipoprotein (HDL) cholesterol (C), apolipoprotein (apo) A-I, and apoA-I in very large alpha-1 HDL particles that were 9%, 17%, and 5% of normal, whereas their parents and 1 sibling had values that were 61%, 77%, and 72% of normal. The probands had no detectable lipoprotein-X, and had mean low-density lipoprotein cholesterol (LDL-C) and triglyceride levels that were elevated. Their mean lecithin cholesterol acyltransferase (LCAT) activities, cholesterol esterification rates, and free cholesterol levels were 8%, 42%, and 258% of normal, whereas their parents and 1 sibling had values that were 55%, 49%, and 114% of normal. The defect was due to 1 common variant in the LCAT gene in exon 1: c101t causing a proline34leucine substitution and a novel mutation c1177t causing a threonine37methionine substitution, with the former variant being found in the father and 1 sibling, and the latter mutation being found in the mother, and both mutations being present in the 2 probands. FED is distinguished from familial LCAT deficiency (FLD) by the lack of anemia, splenomegaly, and renal insufficiency as well as normal or increased LDL-C. Both FLD and FED cases have marked HDL deficiency and corneal opacification, and FED cases may have premature coronary heart disease in contrast to FLD cases. Therapy, using presently available agents, in FED should be to optimize LDL-C levels, and 1 proband responded well to statin therapy. The investigational use of human recombinant LCAT as an enzyme source is ongoing.
Collapse
Affiliation(s)
- Susan M Dimick
- Central Oklahoma Early Detection Center, Lipidology and Cardiometabolic Clinic, 1227 East 9th Street, Edmond, OK 73034, USA; The University of Oklahoma College of Medicine, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, USA.
| | - Brigitte Sallee
- Central Oklahoma Early Detection Center, Lipidology and Cardiometabolic Clinic, 1227 East 9th Street, Edmond, OK 73034, USA; The University of Oklahoma College of Medicine, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, USA.
| | - Bela F Asztalos
- Boston Heart Diagnostics, Framingham, MA, USA; Lipid Metabolism Laboratory, Human Nutrition Research Center on Aging at Tufts University and Tufts University School of Medicine, Boston, MA, USA
| | - P Haydn Pritchard
- Atherosclerosis Specialty Laboratory, Department of Pathology and Laboratory Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Jiri Frohlich
- Atherosclerosis Specialty Laboratory, Department of Pathology and Laboratory Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Ernst J Schaefer
- Boston Heart Diagnostics, Framingham, MA, USA; Lipid Metabolism Laboratory, Human Nutrition Research Center on Aging at Tufts University and Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
14
|
Kunnen S, Van Eck M. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res 2012; 53:1783-99. [PMID: 22566575 PMCID: PMC3413220 DOI: 10.1194/jlr.r024513] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/23/2012] [Indexed: 11/20/2022] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme that catalyzes the esterification of free cholesterol in plasma lipoproteins and plays a critical role in high-density lipoprotein (HDL) metabolism. Deficiency leads to accumulation of nascent preβ-HDL due to impaired maturation of HDL particles, whereas enhanced expression is associated with the formation of large, apoE-rich HDL(1) particles. In addition to its function in HDL metabolism, LCAT was believed to be an important driving force behind macrophage reverse cholesterol transport (RCT) and, therefore, has been a subject of great interest in cardiovascular research since its discovery in 1962. Although half a century has passed, the importance of LCAT for atheroprotection is still under intense debate. This review provides a comprehensive overview of the insights that have been gained in the past 50 years on the biochemistry of LCAT, the role of LCAT in lipoprotein metabolism and the pathogenesis of atherosclerosis in animal models, and its impact on cardiovascular disease in humans.
Collapse
Affiliation(s)
- Sandra Kunnen
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Miranda Van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| |
Collapse
|
15
|
Haase CL, Tybjærg-Hansen A, Qayyum AA, Schou J, Nordestgaard BG, Frikke-Schmidt R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab 2012; 97:E248-56. [PMID: 22090275 DOI: 10.1210/jc.2011-1846] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Epidemiologically, high-density lipoprotein (HDL) cholesterol levels associate inversely with risk of ischemic cardiovascular disease. Whether this is a causal relation is unclear. METHODS We studied 10,281 participants in the Copenhagen City Heart Study (CCHS) and 50,523 participants in the Copenhagen General Population Study (CGPS), of which 991 and 1,693 participants, respectively, had developed myocardial infarction (MI) by August 2010. Participants in the CCHS were genotyped for all six variants identified by resequencing lecithin-cholesterol acyltransferase in 380 individuals. One variant, S208T (rs4986970, allele frequency 4%), associated with HDL cholesterol levels in both the CCHS and the CGPS was used to study causality of HDL cholesterol using instrumental variable analysis. RESULTS Epidemiologically, in the CCHS, a 13% (0.21 mmol/liter) decrease in plasma HDL cholesterol levels was associated with an 18% increase in risk of MI. S208T associated with a 13% (0.21 mmol/liter) decrease in HDL cholesterol levels but not with increased risk of MI or other ischemic end points. The causal odds ratio for MI for a 50% reduction in plasma HDL cholesterol due to S208T genotype in both studies combined was 0.49 (0.11-2.16), whereas the hazard ratio for MI for a 50% reduction in plasma HDL cholesterol in the CCHS was 2.11 (1.70-2.62) (P(comparison) = 0.03). CONCLUSION Low plasma HDL cholesterol levels robustly associated with increased risk of MI but genetically decreased HDL cholesterol did not. This may suggest that low HDL cholesterol levels per se do not cause MI.
Collapse
Affiliation(s)
- Christiane L Haase
- Department of Clinical Biochemistry, Rigshospitalet, The Copenhagen City Heart Study, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
16
|
Holleboom AG, Kuivenhoven JA, Peelman F, Schimmel AW, Peter J, Defesche JC, Kastelein JJP, Hovingh GK, Stroes ES, Motazacker MM. High prevalence of mutations in LCAT in patients with low HDL cholesterol levels in The Netherlands: identification and characterization of eight novel mutations. Hum Mutat 2011; 32:1290-8. [PMID: 21901787 DOI: 10.1002/humu.21578] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 07/04/2011] [Indexed: 12/13/2022]
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is crucial to the maturation of high-density lipoprotein (HDL). Homozygosity for LCAT mutations underlies rare disorders characterized by HDL-cholesterol (HDL-c) deficiency while heterozygotes have half normal HDL-c levels. We studied the prevalence of LCAT mutations in referred patients with low HDL-c to better understand the molecular basis of low HDL-c in our patients. LCAT was sequenced in 98 patients referred for HDL-c <5th percentile and in four patients referred for low HDL-c and corneal opacities. LCAT mutations were highly prevalent: in 28 of the 98 participants (29%), heterozygosity for nonsynonymous mutations was identified while 18 patients carried the same mutation (p.T147I). The four patients with corneal opacity were compound heterozygotes. All previously identified mutations are documented to cause loss of catalytic activity. Nine novel mutations-c.402G>T (p.E134D), c.403T>A (p.Y135N), c.964C>T (p.R322C), c.296G>C (p.W99S), c.736G>T (p.V246F), c.802C>T (p.R268C), c.945G>A (p.W315X), c.1012C>T (p.L338F), and c.1039C>T (p.R347C)--were shown to be functional through in vitro characterization. The effect of several mutations on the core protein structure was studied by a three-dimensional (3D) model. Unlike previous reports, functional mutations in LCAT were found in 29% of patients with low HDL-c, thus constituting a common cause of low HDL-c in referred patients in The Netherlands.
Collapse
Affiliation(s)
- Adriaan G Holleboom
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Daniil G, Phedonos AA, Holleboom AG, Motazacker MM, Argyri L, Kuivenhoven JA, Chroni A. Characterization of antioxidant/anti-inflammatory properties and apoA-I-containing subpopulations of HDL from family subjects with monogenic low HDL disorders. Clin Chim Acta 2011; 412:1213-20. [DOI: 10.1016/j.cca.2011.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/04/2011] [Accepted: 03/10/2011] [Indexed: 12/15/2022]
|
18
|
Rousset X, Vaisman B, Amar M, Sethi AA, Remaley AT. Lecithin: cholesterol acyltransferase--from biochemistry to role in cardiovascular disease. Curr Opin Endocrinol Diabetes Obes 2009; 16:163-71. [PMID: 19306528 PMCID: PMC2910390 DOI: 10.1097/med.0b013e328329233b] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW We discuss the latest findings on the biochemistry of lecithin : cholesterol acyltransferase (LCAT), the effect of LCAT on atherosclerosis, clinical features of LCAT deficiency, and the impact of LCAT on cardiovascular disease from human studies. RECENT FINDINGS Although there has been much recent progress in the biochemistry of LCAT and its effect on high-density lipoprotein metabolism, its role in the pathogenesis of atherosclerosis is still not fully understood. Studies from various animal models have revealed a complex interaction between LCAT and atherosclerosis that may be modified by diet and by other proteins that modify lipoproteins. Furthermore, the ability of LCAT to lower apoB appears to be the best way to predict its effect on atherosclerosis in animal models. Recent studies on patients with LCAT deficiency have shown a modest but significant increase in incidence of cardiovascular disease consistent with a beneficial effect of LCAT on atherosclerosis. The role of LCAT in the general population, however, has not revealed a consistent association with cardiovascular disease. SUMMARY Recent research findings from animal and human studies have revealed a potential beneficial role of LCAT in reducing atherosclerosis but additional studies are necessary to better establish the linkage between LCAT and cardiovascular disease.
Collapse
Affiliation(s)
- Xavier Rousset
- National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, Bethesda, MD. 20814
| | - Boris Vaisman
- National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, Bethesda, MD. 20814
| | - Marcelo Amar
- National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, Bethesda, MD. 20814
| | - Amar A. Sethi
- National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, Bethesda, MD. 20814
| | - Alan T. Remaley
- National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, Bethesda, MD. 20814
- To whom correspondence should be addressed: National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, 10 Center Dr. Bldg. 10/2C-433, Bethesda, MD. 20814, , 301-402-9796
| |
Collapse
|
19
|
Kassai A, Illyés L, Mirdamadi HZ, Seres I, Kalmár T, Audikovszky M, Paragh G. The effect of atorvastatin therapy on lecithin:cholesterol acyltransferase, cholesteryl ester transfer protein and the antioxidant paraoxonase. Clin Biochem 2006; 40:1-5. [PMID: 16999950 DOI: 10.1016/j.clinbiochem.2006.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 03/31/2006] [Accepted: 05/19/2006] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of our study was to examine the influence of atorvastatin on lipid parameters, particularly on HDL, and on the activity of LCAT and CETP and how they affect the activity of the HDL-associated antioxidant enzyme paraoxonase. DESIGN AND METHODS Thirty-three patients with types II.a and II.b primary hyperlipoproteinemia were enrolled into our study. The patients received atorvastatin, 20 mg daily, for 3 months. We measured the serum paraoxonase activity and concentration, oxidized LDL, LCAT and CETP activities. RESULTS Atorvastatin significantly reduced the levels of cholesterol, triglyceride, LDL-C and apoB, while it did not influence the levels of HDL-C and apo A-I. The increases in serum PON-specific activity, PON/HDL ratio and LCAT activity were significant, while oxLDL and CETP activities were significantly decreased. CONCLUSION Atorvastatin may influence the composition and function of HDL, thereby possibly increasing the activity of paraoxonase and preventing atherosclerosis.
Collapse
Affiliation(s)
- Andrea Kassai
- 1st Department of Medicine, University of Debrecen, Medical and Health Science Centre, Nagyerdei krt. 98, H-4012 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
20
|
Hörl G, Kroisel PM, Wagner E, Tiran B, Petek E, Steyrer E. Compound heterozygosity (G71R/R140H) in the lecithin:cholesterol acyltransferase (LCAT) gene results in an intermediate phenotype between LCAT-deficiency and fish-eye disease. Atherosclerosis 2005; 187:101-9. [PMID: 16216249 DOI: 10.1016/j.atherosclerosis.2005.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 08/18/2005] [Accepted: 08/29/2005] [Indexed: 11/25/2022]
Abstract
The esterification of free cholesterol (FC) in plasma, catalyzed by the enzyme lecithin:cholesterol acyltransferase (LCAT; EC 2.3.1.43), is a key process in lipoprotein metabolism. The resulting cholesteryl esters (CE) represent the main core lipids of low (LDL) and high density lipoproteins (HDL). Primary (familial) LCAT-deficiency (FLD) is a rare autosomal recessive genetic disease caused by the complete or near absence of LCAT activity. In fish-eye disease (FED), residual LCAT activity is still detectable. Here, we describe a 32-year-old patient with corneal opacity, very low LCAT activity, reduced amounts of CE (low HDL-cholesterol level), and elevated triglyceride (TG) values. The lipoprotein pattern was abnormal with regard to lipoprotein composition and concentration, but distinct lipoprotein classes were still present. Despite of typical features of glomerular proteinuria, creatinine clearance was normal. DNA sequencing and restiction fragment analyses revealed two separate mutations in the patient's LCAT gene: a previously described G to A transition in exon 4 converting Arg140 to His, inherited from his mother, and a novel G to C transversion in exon 2 converting Gly71 to Arg, inherited from his father, indicating that M.P. was a compound heterozygote. Determination of enzyme activities of recombinant LCAT proteins obtained upon transfection of COS-7 cells with plasmids containing G71R-LCAT or wild-type LCAT cDNA revealed very low alpha- and absence of beta-LCAT activity for the G71R mutant. The identification of the novel G71R LCAT mutation supports the proposed molecular model for the enzyme implying that the "lid" domain at residues 50-74 is involved in enzyme:substrate interaction. Our data are in line with the hypothesis that a key event in the etiology of FLD is the loss of distinct lipoprotein fractions.
Collapse
Affiliation(s)
- Gerd Hörl
- Department of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, Harrachgasse 21, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
21
|
Pisciotta L, Calabresi L, Lupattelli G, Siepi D, Mannarino MR, Moleri E, Bellocchio A, Cantafora A, Tarugi P, Calandra S, Bertolini S. Combined monogenic hypercholesterolemia and hypoalphalipoproteinemia caused by mutations in LDL-R and LCAT genes. Atherosclerosis 2005; 182:153-9. [PMID: 16115486 DOI: 10.1016/j.atherosclerosis.2005.01.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 01/20/2005] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
We studied a three generation family with co-dominant monogenic hypercholesterolemia and hypoalphalipoproteinemia. The proband, a 48 year-old male, was found to be heterozygous for a previously reported mutation in LDL receptor (LDL-R) gene (IVS15-3 c>a) and a novel mutation in exon 6 of lecithin cholesterol acyltransferase (LCAT) gene (c.803 G>A) causing a non-synonymous amino acid substitution (p.R244H). These mutations segregated independently in the family. The LDL-R mutation was associated with high levels of LDL-C (6.20-9.85 mmol/L) and apo B (170-255 mg/dL), comparable to those previously reported in carriers of the same mutation. The LCAT mutation was associated with low levels of HDL-C (0.67-0.80 mmol/L) and apo A-I (96-110 mg/dL). The proband had reduced LCAT function, as measured by cholesterol esterification rate (29 nmol/(mL/h) versus 30-60 nmol/(mL/h)), LCAT activity (10 nmol/(mL/h) versus 20-55 nmol/(mL/h)) and LCAT mass (2.87 microg/mL versus 3.1-6.7 microg/mL). Carriers of LCAT mutation had lower LCAT activity and a tendency to reduced cholesterol esterification rate (CER) and LCAT mass as compared to non-carrier family members. The LCAT mutation was not found in 80 control subjects and 60 patients with primary hypoalphalipoproteinemia. Despite the unfavourable lipoprotein profile, the proband had only mild clinical signs of atherosclerosis. This unexpected finding is probably due to the intensive lipid lowering treatment the patient has been on over the last decade.
Collapse
Affiliation(s)
- Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, I-16132 Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Miida T, Zhang B, Obayashi K, Seino U, Zhu Y, Ito T, Nakamura Y, Okada M, Saku K. T13M mutation of lecithin-cholesterol acyltransferase gene causes fish-eye disease. Clin Chim Acta 2004; 343:201-8. [PMID: 15115696 DOI: 10.1016/j.cccn.2004.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 01/19/2004] [Accepted: 01/21/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND Lecithin-cholesterol acyltransferase (LCAT) esterifies free cholesterol (FC) in plasma and plays a crucial role in the maturation of prebeta1-HDL (lipid-poor HDL) into alpha-migrating HDL (spherical HDL). Natural mutations of LCAT gene cause familial LCAT deficiency (FLD) or fish-eye disease (FED). The relationship between mutations and their phenotypes gives important clues to the functions of specific regions of LCAT. We investigated the first homozygous case with a substitution of threonine to methionine at codon 13 (T13M) of LCAT gene. METHODS We evaluated LCAT activity, LCAT distribution among HDL subfractions and conversion of prebeta1-HDL to alpha-migrating HDL by native two-dimensional gel electrophoresis (N-2DGE). RESULTS The proband had corneal opacity, severe hypo-alpha-lipoproteinemia, half-normal LCAT activity and near normal cholesteryl ester/total cholesterol (TC) ratio in plasma. These features were characteristic of FED. Plasma prebeta1-HDL concentration was near normal, but not converted to alpha-migrating HDL during 37 degrees C incubation. As expected, alpha-migrating HDL (especially large particles) was markedly reduced. In the immunoblot against LCAT, the small alpha-migrating HDL from the proband had much less LCAT in this patient than in controls. CONCLUSION T13M mutation of LCAT gene causes FED.
Collapse
Affiliation(s)
- Takashi Miida
- Division of Clinical Preventive Medicine, Department of Community Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Niigata, Niigata 951-8510, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang K, Zhang S, Zheng K, Hou Y, Liao L, He Y, Zhang L, Nebert DW, Shi J, Su Z, Xiao C. Novel P143L polymorphism of the LCAT gene is associated with dyslipidemia in Chinese patients who have coronary atherosclerotic heart disease. Biochem Biophys Res Commun 2004; 318:4-10. [PMID: 15110745 DOI: 10.1016/j.bbrc.2004.03.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Indexed: 02/05/2023]
Abstract
Coronary atherosclerotic heart disease (CAD) is a multifactorial disorder resulting from numerous gene-gene and gene-environment interactions. Lecithin:cholesterol acyltransferase (LCAT), a key enzyme in reverse cholesterol transport and the metabolism of high-density lipoprotein (HDL), is thought to be a candidate gene related to dyslipidemia and CAD. Variations in the LCAT gene were investigated in 190 CAD patients and 209 age- and gender-matched controls by denaturing high-performance liquid chromatography, and confirmed by sequencing and RFLP assay. In CAD patients, a novel single-nucleotide polymorphism (P143L) in exon 4 of the LCAT gene was discovered in nine males and two females (frequency of 5.79%), which was found in none of 209 controls. The genotype and allele distribution of P143L is significantly (P<0.04 ) higher in the low HDL-C subgroup than in the normal HDL-C subgroup in both male patients and all CAD patients. P143L was also found to be significantly (P<0.01) associated with the low HDL-C phenotype in both male patients and all CAD patients, with odds-ratios of 7.003 (95% CI 2.243-21.859) and 5.754 (95% CI 1.893-13.785), respectively. Thus, the P143L polymorphism may play a role in causing decreased HDL-C levels, leading to increased risk of dyslipidemia and CAD in Chinese.
Collapse
Affiliation(s)
- Kelan Zhang
- Department of Medical Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vickaryous NK, Teh EM, Stewart B, Dolphin PJ, Too CKL, McLeod RS. Deletion of N-terminal amino acids from human lecithin:cholesterol acyltransferase differentially affects enzyme activity toward alpha- and beta-substrate lipoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1646:164-72. [PMID: 12637024 DOI: 10.1016/s1570-9639(03)00005-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for generation of the majority of the cholesteryl esters (CE) in human plasma. Although most plasma cholesterol esterification occurs on high-density lipoprotein (HDL), via alpha-LCAT activity, esterification also occurs on low-density lipoprotein (LDL) via the beta-activity of the enzyme. Computer threading techniques have provided a three-dimensional model for use in the structure-function analysis of the core and catalytic site of the LCAT protein, but the model does not extend to the N-terminal region of the enzyme, which may mediate LCAT interaction with lipoprotein substrates. In the present study, we have examined the functional consequences of deletion of the highly conserved hydrophobic N-terminal amino acids (residues 1-5) of human LCAT. Western blot analysis showed that the mutant proteins (Delta 1-Delta 5) were synthesized and secreted from transfected COS-7 cells at levels approximately equivalent to those of wild-type hLCAT. The secreted proteins had apparent molecular weights of 67 kDa, indicating that they were correctly processed and glycosylated during cellular transit. However, deletion of the first residue of the mature LCAT protein (Delta 1 mutant) resulted in a dramatic loss of alpha-LCAT activity (5% of wild type using reconstituted HDL substrate, rHDL), although this mutant retained full beta-LCAT activity (108% of wild-type using human LDL substrate). Removal of residues 1 and 2 (Delta 2 mutant) abolished alpha-LCAT activity and reduced beta-LCAT activity to 12% of wild type. Nevertheless, LCAT Delta 1 and Delta 2 mutants retained their ability to bind to rHDL and LDL lipoprotein substrates. The dramatic loss of enzyme activity suggests that the N-terminal residues of LCAT may be involved in maintaining the conformation of the lid domain and influence activation by the alpha-LCAT cofactor apoA-I (in Delta 1) and/or loss of enzyme activity (in Delta 1-Delta 5). Since the Delta 1 and Delta 2 mutants retain their ability to bind substrate, other factor(s), such as decreased access to the substrate binding pocket, may be responsible for the loss of enzyme activity.
Collapse
Affiliation(s)
- Nicola K Vickaryous
- Department of Biochemistry and Molecular Biology, Dalhousie University, Room 9F, Sir Charles Tupper Medical Building, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | | | |
Collapse
|
25
|
Altered activities of anti-atherogenic enzymes LCAT, paraoxonase, and platelet-activating factor acetylhydrolase in atherosclerosis-susceptible mice. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30154-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Doevendans PA, Jukema W, Spiering W, Defesche JC, Kastelein JJ. Molecular genetics and gene expression in atherosclerosis. Int J Cardiol 2001; 80:161-72. [PMID: 11578709 DOI: 10.1016/s0167-5273(01)00466-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although molecular cardiology is a relative young discipline, the impact of the new techniques on diagnosis and therapy in cardiovascular disease are extensive. Our insight into pathophysiological mechanisms is rapidly expanding and is changing our understanding of cardiovascular disease radically and irrevocably. Molecular cardiology has many different aspects. In this paper the importance of molecular cardiology and genetics for every day clinical practice are briefly outlined. It is expected that in the genetic predisposition for atherosclerotic disease multiple genes are involved (genetics). The role of only a minority of genes involved in the atherosclerotic process is known. Far less is known about particular gene-gene and gene-environment interactions. In some families disease can be explained mostly by a single, major gene (monogenic), of which the lipid disorder Familial Hypercholesterolemia is an example. In other cases, one or several variations in minor genes (multigenic) contribute to an atherosclerotic predisposition, for instance the lipoprotein lipase gene. Although mutations in this gene influence lipoprotein levels, disease development is predominantly depending on environmental influences. Recently several additional genetic risk factors were identified including elevated levels of lipoprotein (a) [Lp(a)], the DD genotype of angiotensin converting enzyme (ACE), and elevated levels of homocysteine. This illustrates the complexity of genetics in relation to atherosclerosis and the difficulty to assign predictive values to separate genetic risk factors. Furthermore, little attention has been given to protective genes thus far, explaining why some high risk patients are protected from vascular disease. Genetics based treatment or elimination of the genetic risk factor requires complete understanding of the pathogenic molecular basis. Once this requirement is fulfilled, disease management can be strived for, provided that adequate medical management is available. Recent studies suggest that such treatment should be genotype specific, as the genetic makeup can determine the outcome of a pharmacological intervention (pharmacogenetics). Once the trigger for atherosclerosis has initiated disease development, various genes are activated or silenced and contribute to lesion progression. Every stage of lesion development depends on a different gene expression programme (genomics). In this review paper an introduction is provided into genetics, pharmacogenetics and gene expression with respect to atherosclerotic disease.
Collapse
Affiliation(s)
- P A Doevendans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Rosset J, Wang J, Wolfe BM, Dolphin PJ, Hegele RA. Lecithin:cholesterol acyl transferase G30S: association with atherosclerosis, hypoalphalipoproteinemia and reduced in vivo enzyme activity. Clin Biochem 2001; 34:381-6. [PMID: 11522275 DOI: 10.1016/s0009-9120(01)00231-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES A 69 yr old male was referred for assessment of a very low plasma HDL cholesterol and apolipoprotein AI concentration. At age 65, he had undergone triple vessel coronary bypass graft surgery. He had a strong family history of early coronary heart disease. We analyzed the molecular basis of his clinical and biochemical abnormalities. DESIGN AND METHODS We used DNA sequencing to determine whether mutations in LCAT were present. We also evaluated plasma biochemistry and LCAT activity. RESULTS DNA sequencing revealed that the patient was a heterozygote for the G30S mutation in the gene encoding lecithin:cholesteol acyl transferase (LCAT). His plasma was found to have half-normal LCAT activity. CONCLUSIONS The findings in this patient suggest that rare dysfunctional mutations in candidate genes, such as LCAT, can contribute to the spectrum of patients ascertained because of low HDL cholesterol.
Collapse
Affiliation(s)
- J Rosset
- The John P. Robarts Research Institute and Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
28
|
Lambert G, Sakai N, Vaisman BL, Neufeld EB, Marteyn B, Chan CC, Paigen B, Lupia E, Thomas A, Striker LJ, Blanchette-Mackie J, Csako G, Brady JN, Costello R, Striker GE, Remaley AT, Brewer HB, Santamarina-Fojo S. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice. J Biol Chem 2001; 276:15090-8. [PMID: 11278414 DOI: 10.1074/jbc.m008466200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.
Collapse
Affiliation(s)
- G Lambert
- Molecular Disease Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dass CR, Jessup W. Apolipoprotein A-I, cyclodextrins and liposomes as potential drugs for the reversal of atherosclerosis. A review. J Pharm Pharmacol 2000; 52:731-61. [PMID: 10933125 DOI: 10.1211/0022357001774606] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Several studies have revealed that high-density lipoprotein (HDL) is the most reliable predictor for susceptibility to cardiovascular disease. Since apolipoprotein A-I (apoA-I) is the major protein of HDL, it is worthwhile evaluating the potential of this protein to reduce the lipid burden of lesions observed in the clinic. Indeed, apoA-I is used extensively in cell culture to induce cholesterol efflux. However, while there is a large body of data emanating from in-vitro and cell-culture studies with apoA-I, little animal data and scant clinical trials examining the potential of this apolipoprotein to induce cholesterol (and other lipid) efflux exists. Importantly, the effects of oxysterols, such as 7-ketocholesterol (7KC), on cholesterol and other lipid efflux by apoA-I needs to be investigated in any attempt to utilise apoA-I as an agent to stimulate efflux of lipids. Lessons may be learnt from studies with other lipid acceptors such as cyclodextrins and phospholipid vesicles (PLVs, liposomes), by combination with other effluxing agents, by remodelling the protein structure of the apolipoprotein, or by altering the composition of the lipoprotein intended for administration in-vivo. Akin to any other drug, the usage of this apolipoprotein in a therapeutic context has to follow the traditional sequence of events, namely an evaluation of the biodistribution, safety and dose-response of the protein in animal trials in advance of clinical trials. Mass production of the apolipoprotein is now a simple process due to the advent of recombinant DNA technology. This review also considers the potential of cyclodextrins and PLVs for use in inducing reverse cholesterol transport in-vivo. Finally, the potential of cyclodextrins as delivery agents for nucleic acid-based constructs such as oligonucleotides and plasmids is discussed.
Collapse
Affiliation(s)
- C R Dass
- Johnson and Johnson Research, Strawberry Hills, Australia.
| | | |
Collapse
|
30
|
Santamarina-Fojo S, Lambert G, Hoeg JM, Brewer HB. Lecithin-cholesterol acyltransferase: role in lipoprotein metabolism, reverse cholesterol transport and atherosclerosis. Curr Opin Lipidol 2000; 11:267-75. [PMID: 10882342 DOI: 10.1097/00041433-200006000-00007] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the past several years significant advances have been made in our understanding of lecithin-cholesterol acyltransferase (LCAT) function. LCAT beneficially alters the plasma concentrations of apolipoprotein B-containing lipoproteins, as well as HDL. In addition, its proposed role in facilitating reverse cholesterol transport and modulating atherosclerosis has been demonstrated in vivo. Analysis of LCAT transgenic animals has established the importance of evaluating HDL function, as well as HDL plasma levels, to predict atherogenic risk.
Collapse
Affiliation(s)
- S Santamarina-Fojo
- Molecular Disease Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
31
|
Teh EM, Chisholm JW, Dolphin PJ, Pouliquen Y, Savoldelli M, de Gennes JL, Benlian P. Classical LCAT deficiency resulting from a novel homozygous dinucleotide deletion in exon 4 of the human lecithin: cholesterol acyltransferase gene causing a frameshift and stop codon at residue 144. Atherosclerosis 1999; 146:141-51. [PMID: 10487497 DOI: 10.1016/s0021-9150(99)00112-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lecithin: cholesterolacyltransferase (LCAT) transacylates the fatty acid at the sn-2 position of lecithin to the 3beta-OH group of cholesterol forming lysolecithin and the majority of cholesteryl ester found in plasma. LCAT participates in the reverse cholesterol transport pathway in man where it esterifies tissue-derived cholesterol following efflux from peripheral cells into HDL. Only 38 unique mutations in the human LCAT gene have been reported worldwide. Our French female proband presented with corneal opacity and no detectable plasma LCAT activity using either endogenous or exogenous assays. Her total plasma cholesterol and HDL cholesterol were low (2.34 mmol/l and 0.184 mmol/l, respectively) with a very high cholesterol/cholesteryl ester molar ratio (10.9:1). Plasma triglycerides were 0.470 mmol/l with low apo B (40.5 mg/dl), apo A-I (14.7 mg/dl), apo A-II (6.8 mg/dl) and apo E (2.1 mg/dl) levels. Plasma lipoprotein analysis by ultracentrifugation showed very low HDL concentrations and a characteristic shift of the lipoprotein profile towards larger, less dense particles. No proteinuria, renal dysfunction or signs of atherosclerosis were noted at age 45. Sequence analysis of her LCAT gene showed a novel homozygous TG-deletion at residues 138-139 that resulted in a frameshift causing the generation of a stop codon and premature termination of the LCAT protein at amino acid residue 144. Western blotting of the patient's plasma using a polyclonal IgY primary antibody against human LCAT failed to demonstrate the presence of a truncated LCAT protein. A 53 bp mismatched PCR primer was designed to generate an Fsp 1 restriction site in the wild type sequence of exon 4 where the mutation occurred. The 155 bp PCR product from the wild type allele produced a 103 bp and 52 bp fragment with Fsp 1 and no cleavage products with the mutant allele thus permitting rapid screening for this novel mutation.
Collapse
Affiliation(s)
- E M Teh
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Targeted disruption of the murine lecithin:cholesterol acyltransferase gene is associated with reductions in plasma paraoxonase and platelet-activating factor acetylhydrolase activities but not in apolipoprotein J concentration. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33489-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Bielicki JK, Forte TM. Evidence that lipid hydroperoxides inhibit plasma lecithin:cholesterol acyltransferase activity. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32130-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Peelman F, Verschelde JL, Vanloo B, Ampe C, Labeur C, Tavernier J, Vandekerckhove J, Rosseneu M. Effects of natural mutations in lecithin:cholesterol acyltransferase on the enzyme structure and activity. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33339-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Cirera S, Julve J, Ferrer I, Mainou C, Bonet R, Martin-Campos JM, González-Sastre F, Blanco-Vaca F. Molecular diagnosis of lecithin: cholesterol acyltransferase deficiency in a presymptomatic proband. Clin Chem Lab Med 1998; 36:443-8. [PMID: 9746267 DOI: 10.1515/cclm.1998.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report the molecular diagnosis of a lecithin : cholesterol acyltransferase deficiency in a 12-year old proband with a high-density lipoprotein deficiency. The increased percentage of free cholesterol in plasma and high-density lipoprotein indicated an inherited lecithin : cholesterol acyltransferase deficiency as the underlying cause. This diagnosis was confirmed by a low plasma lecithin : cholesterol acyltransferase activity and a combination of genetic analyses which demonstrated compound heterozygosity for two mutations in the lecithin : cholesterol acyltransferase gene of the proband. One was a previously unreported 2 bp deletion leading to a stop signal in codon 77 and the other a point mutation causing Arg 135-->Gln transition. To our knowledge, this is the first diagnosis of lecithin : cholesterol acyltransferase deficiency in a pre-symptomatic patient. Whether the proband will develop signs of complete lecithin : cholesterol acyltransferase deficiency or the milder form (Fish Eye Disease) is uncertain, although the former possibility is more likely. The risk of premature atherosclerosis conferred by lecithin : cholesterol acyltransferase deficiency is not well established. The proband will need to be carefully monitored in the future.
Collapse
Affiliation(s)
- S Cirera
- Servei de Bioquímica, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
von Eckardstein A, Huang Y, Kastelein JJ, Geisel J, Real JT, Kuivenhoven JA, Miccoli R, Noseda G, Assmann G. Lipid-free apolipoprotein (apo) A-I is converted into alpha-migrating high density lipoproteins by lipoprotein-depleted plasma of normolipidemic donors and apo A-I-deficient patients but not of Tangier disease patients. Atherosclerosis 1998; 138:25-34. [PMID: 9678768 DOI: 10.1016/s0021-9150(97)00280-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plasma of patients with Tangier disease (TD) is devoid of alpha-LpA-I (apolipoprotein A-I-containing lipoprotein), which in normolipidemic plasma constitutes the majority of high density lipoprotein (HDL). The residual amounts of apolipoprotein A-I (apo A-I) in TD plasma have electrophoretic prebeta1-LpA-I mobility. We have previously demonstrated that TD plasma does not convert prebeta1-LpA-I into alpha-LpA-I. In this study we found that plasmas of normolipidemic controls, apo A-I-deficient patients and patients with fish-eye disease, but not plasmas of six TD patients, convert biotinylated lipid-free apo A-I into alpha-LpA-I. Supplementation of plasma with free oleic acid or fatty acid free albumin neither inhibited conversion activity in normal plasmas nor reconstituted it in TD plasma. In normal plasma the conversion activity was assessed in HDL and in the lipoprotein-free fraction. The latter fraction, however, generated larger particles only in the presence of exogenous phospholipid vesicles. To obtain particles with alpha-mobility, these vesicles had to contain phosphatidylinositol and/or cholesterol. Lipoprotein-depleted TD plasma did not convert lipid-free apo A-I into alpha-LpA-I even in the presence of exogenous vesicles with phospholipids or cholesterol. Taken together we conclude that disturbed transfer of glycerophospholipds onto apo A-I or prebeta1-LpA-I prevents maturation of HDL and thereby possibly causes deficiency of HDL cholesterol in patients with TD. Moreover, the lack of alpha-LpA-I in TD plasma together with its failure to convert exogenous apo A-I into an alpha-migrating particle provide specific tests for the diagnosis of TD.
Collapse
Affiliation(s)
- A von Eckardstein
- Institut für Klinische Chemie und Laboratoriumsmedizin, Zentrallaboratorium, Westfälische Wilhelms-Universität Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li M, Kuivenhoven JA, Ayyobi AF, Pritchard PH. T-->G or T-->A mutation introduced in the branchpoint consensus sequence of intron 4 of lecithin:cholesterol acyltransferase (LCAT) gene: intron retention causing LCAT deficiency. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1391:256-64. [PMID: 9555046 DOI: 10.1016/s0005-2760(97)00198-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous mutations associated with lecithin:cholesteryl acyltransferase (LCAT) deficiency syndromes have been identified in the coding regions of the LCAT gene. However, recently, an intron mutation was found in a family in which three sisters presented with fish-eye disease (FED). The probands were shown to be heterozygotes for a mutation in intron 4. The respective T-->C nucleotide substitution, 22 bases upstream of the 3'-splice site, causes a null allele as the result of complete intron retention. Since the natural mutation occurs in a putative branchpoint consensus sequence of the intron, it was hypothesized that the point mutation may disrupt the splicing of the pre-mRNA. To further study the functional significance of the above thymine residue in the branchpoint sequence, we introduced other nucleotides at this position, i.e., LCAT Int-4 MUT-1 (T-->G) and LCAT Int-4 MUT-2 (T-->A). After stable transfection of the mutated pNUT-LCAT minigenes into BHK cells, we could detect neither LCAT activity nor LCAT protein in the culture medium of the pNUT-LCAT Int-4 MUT-1 and pNUT-LCAT Int-4 MUT-2 cell lines, as was previously described for the natural mutation. To determine the effects of the introduced mutations on pre-mRNA splicing, total RNA from transfected BHK cells was used for RT-PCR analysis. All BHK cell lines were shown to transcribe the integrated LCAT minigenes. However, the sizes of these LCAT messengers indicated that intron 4 was retained in the pNUT-LCAT Int-4 MUT-1 and pNUT-LCAT Int-4 MUT-2 cell lines. Subsequent sequence analysis of the RT-PCR products demonstrated that the unspliced intronic sequences contained the introduced mutations. In conclusion, the observed retention of intron 4 of the LCAT gene is the result of the specific loss of a thymine residue two bases upstream of the branchpoint adenosine residue in the putative branchpoint consensus sequence. The results confirm that a single base change in the branchpoint consensus sequence of an intron can cause human disease although this sequence is poorly conserved in mammals.
Collapse
Affiliation(s)
- M Li
- Atherosclerosis Specialty Laboratory, Department of Pathology and Laboratory Medicine, St. Paul's Hospital and University of British Columbia, 1081 Burrard Street, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
38
|
Hill SA, McQueen MJ. Reverse cholesterol transport--a review of the process and its clinical implications. Clin Biochem 1997; 30:517-25. [PMID: 9399019 DOI: 10.1016/s0009-9120(97)00098-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This review article will summarize the current knowledge surrounding the reverse cholesterol transport system; the process, the effect of mutations in genes coding for proteins which function in the system, and the possible clinical implications of these alterations. RESULTS High-density lipoprotein-cholesterol (HDL-C) concentration is a marker for the reverse cholesterol transport (RCT) system, whereby cholesterol is returned from peripheral cells to the liver for reuse or excretion in the bile. Increased HDL-C concentrations are generally accepted to be protective against the future development of atherosclerosis and coronary artery disease (CAD), but recent evidence has indicated that the underlying cause of the increased HDL-C may affect whether it is protective or detrimental. The major steps in the RCT pathway are the efflux of free cholesterol from cells and binding by pre-beta HDL, esterification of HDL-bound cholesterol by lecithin cholesterol acyl transferase (LCAT), cholesteryl ester transfer protein (CETP) mediated exchange of cholesteryl ester and triglycerides between HDL and apo B-containing particles, and hepatic lipase (HL) mediated uptake of cholesterol and triglycerides by the liver. Mutations in proteins active in the RCT pathway can shed light on the functions and control of the various steps in the system. LCAT deficiency, leading to greatly reduced HDL and fish eye disease, is not usually associated with increased risk of CAD. Several new mutations in LCAT have recently been reported, however, which do result in CAD. Mutations leading to reduced CETP activity result in less CE being directed into apo-B containing particles and more remaining in the HDL. This has been associated with increased HDL-C concentrations. The generally accepted hypothesis that reduced CETP activity leads to reduced CAD risk has been challenged by a number of recent publications, and has become an area of active investigation. Mutations leading to reduced HL activity are rare occurrences. To date, all have been associated with increased HDL-C concentrations and CAD. CONCLUSION The development of techniques to identify and characterize the functional significance of mutations in proteins involved in RCT will aid in the understanding of the mechanisms and control of this pathway.
Collapse
Affiliation(s)
- S A Hill
- Department of Laboratory Medicine, Hamilton Health Sciences Corporation, Canada.
| | | |
Collapse
|
39
|
Guerin M, Dachet C, Goulinet S, Chevet D, Dolphin PJ, Chapman MJ, Rouis M. Familial lecithin:cholesterol acyltransferase deficiency: molecular analysis of a compound heterozygote: LCAT (Arg147 --> Trp) and LCAT (Tyr171 --> Stop). Atherosclerosis 1997; 131:85-95. [PMID: 9180249 DOI: 10.1016/s0021-9150(97)06079-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is responsible for the formation of the majority of plasma cholesteryl esters. Familial LCAT deficiency is associated with corneal opacity, anemia and proteinurea and typically results in renal failure in the 4-5th decade; this syndrome is equally characterized by the quasi-absence of plasma LCAT activity with variable enzyme mass and very low levels of plasma cholesteryl esters. In this study, we report detailed analyses of plasma lipids and lipoprotein profile in two sisters (CM and ML) presenting classical homozygous LCAT-deficiency; the younger sibling (CM) had proteinurea from an early age whereas the older sister (ML) has never exhibited renal dysfunction. We investigated the molecular defect in the 45 year-old woman (proband CM) exhibiting all clinical and biochemical features of familial LCAT deficiency: a plasma cholesterol level of 105 mg/dl, of which 95% was unesterified, an HDL-cholesterol of 6.5 mg/dl and an apo A-I level of 52 mg/dl. The proband (CM) displayed a plasma cholesterol esterification rate which corresponded to 2% of normal LCAT activity; plasma LCAT protein concentration was 0.56 microg/ml and equivalent to approximately 10% of normal LCAT mass. Analysis by single strand conformation polymorphism (SSCP) of the PCR products corresponding to exons 4 and 5 of the LCAT gene revealed a visible band shift. Sequence analyses of exons 4 + 5 revealed two separate single point mutations: a C --> T transition replacing Arg147 by Trp and a T --> G transition converting Tyr171 to a stop codon. The presence of these two point mutations was confirmed by restriction enzyme analyses: the C --> T transition abolished a MwoI site whereas the T --> G transition created an AvrII site. The Arg147 mutation was associated with a non-secreted protein. The Tyr171 mutation resulted in formation of a truncated protein lacking the catalytic site. In summary, we have identified an LCAT deficient patient corresponding to a compound heterozygote for the Arg147 --> Trp mutation and a new molecular defect involving a Tyr171 --> Stop mutation in the LCAT gene.
Collapse
Affiliation(s)
- M Guerin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 321, Pavillon Benjamin Delessert, Hôpital de la Pitié, Paris, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Elkhalil L, Majd Z, Bakir R, Perez-Mendez O, Castro G, Poulain P, Lacroix B, Duhal N, Fruchart JC, Luc G. Fish-eye disease: structural and in vivo metabolic abnormalities of high-density lipoproteins. Metabolism 1997; 46:474-83. [PMID: 9160810 DOI: 10.1016/s0026-0495(97)90180-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fish-eye disease (FED) in humans is characterized by corneal opacities and markedly decreased plasma concentrations of high-density lipoprotein (HDL) cholesterol, apolipoprotein (apo) AI, and apo All, but no tendency to precocious atherosclerosis is present. To elucidate this paradox, the structure of HDL, the potential of serum to promote cholesterol efflux from cultured cells, and the in vivo metabolism of HDL were examined in a 53-year-old woman with a FED syndrome in association with a markedly decreased lecithin:cholesterol acyltransferase (LCAT) activity in HDL due to a mutation of the LCAT gene (Arg158 --> Cys). HDLs isolated by ultracentrifugation were small and enriched in unesterified cholesterol and phospholipids at the expense of cholesteryl esters and proteins. The apolipoprotein content showed an enrichment in apo E and apo AIV, whereas apo AI and apo All were dramatically reduced. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting using specific antibodies showed that the apo E was free or covalently bound to apo All. These particles analyzed by electron microscopy were small and round lipoproteins with a size similar to the smallest fraction of normal HDL3. The potential capacity of the serum to promote efflux from the cells was approximately 40% of control serum levels, but FED HDLs were as efficient as control HDLs in promoting cholesterol efflux from cells. To assess the metabolism of HDL apolipoproteins, in vivo apolipoprotein kinetic studies were performed using endogenous labeling techniques in the patient with FED and three control subjects. All subjects were administered D3-labeled leucine by primed constant infusion for up to 10 hours. The fractional synthetic rates (FSRs) of apo AI and apo All in the patient were 0.674 and 0.594 per day, clearly higher than in controls, 0.210 +/- 0.053 and 0.148 +/- 0.014 per day for apo AI and apo All, respectively. Apo AI and apo All production rates in the patient with FED were normal, 11.32 and 2.62 mg/kg x d, respectively, as compared with those in normal subjects, 11.45 +/- 1.23 and 2.68 +/- 0.17 mg/kg x d. These data established that hypoalphalipoproteinemia in FED was caused by marked hypercatabolism of apo AI and apo All. This hypercatabolism could be the consequence of structural abnormalities due to the selective LCAT deficiency. In conclusion, two steps of reverse cholesterol transport, cholesterol efflux and apo-HDL metabolism, appeared particularly efficient. This efficiency could participate in the absence of premature atherosclerosis in FED patients as regards the low HDL level.
Collapse
Affiliation(s)
- L Elkhalil
- Departement de Recherches sur l'Atherosclerose, Institute National de la Sante et de la Recherche Medical (INSERM) U325, Institut Pasteur de Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Catalytically inactive lecithin: cholesterol acyltransferase (LCAT) caused by a Gly 30 to Ser mutation in a family with LCAT deficiency. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37266-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
42
|
Kuivenhoven JA, Pritchard H, Hill J, Frohlich J, Assmann G, Kastelein J. The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37433-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Hoeg JM, Santamarina-Fojo S, Bérard AM, Cornhill JF, Herderick EE, Feldman SH, Haudenschild CC, Vaisman BL, Hoyt RF, Demosky SJ, Kauffman RD, Hazel CM, Marcovina SM, Brewer HB. Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc Natl Acad Sci U S A 1996; 93:11448-53. [PMID: 8876155 PMCID: PMC38077 DOI: 10.1073/pnas.93.21.11448] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is a key plasma enzyme in cholesterol and high density lipoprotein (HDL) metabolism. Transgenic rabbits overexpressing human LCAT had 15-fold greater plasma LCAT activity that nontransgenic control rabbits. This degree of overexpression was associated with a 6.7-fold increase in the plasma HDL cholesterol concentration in LCAT transgenic rabbits. On a 0.3% cholesterol diet, the HDL cholesterol concentrations increased from 24 +/- 1 to 39 +/- 3 mg/dl in nontransgenic control rabbits (n = 10; P < 0.05) and increased from 161 +/- 5 to 200 +/- 21 mg/dl (P < 0.001) in the LCAT transgenic rabbits (n = 9). Although the baseline non-HDL concentrations of control (4 +/- 3 mg/dl) and transgenic rabbits (18 +/- 4 mg/dl) were similar, the cholesterol-rich diet raised the non-HDL cholesterol concentrations, reflecting the atherogenic very low density, intermediate density, and low density lipoprotein particles observed by gel filtration chromatography. The non-HDL cholesterol rose to 509 +/- 57 mg/dl in controls compared with only 196 +/- 14 mg/dl in the LCAT transgenic rabbits (P < 0.005). The differences in the plasma lipoprotein response to a cholesterol-rich diet observed in the transgenic rabbits paralleled the susceptibility to developing aortic atherosclerosis. Compared with nontransgenic controls, LCAT transgenic rabbits were protected from diet-induced atherosclerosis with significant reductions determined by both quantitative planimetry (-86%; P < 0.003) and quantitative immunohistochemistry (-93%; P < 0.009). Our results establish the importance of LCAT in the metabolism of both HDL and apolipoprotein B-containing lipoprotein particles with cholesterol feeding and the response to diet-induced atherosclerosis. In addition, these findings identify LCAT as a new target for therapy to prevent atherosclerosis.
Collapse
Affiliation(s)
- J M Hoeg
- Molecular Disease Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1666, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|