1
|
Molecular Changes on Maternal-Fetal Interface in Placental Abruption-A Systematic Review. Int J Mol Sci 2021; 22:ijms22126612. [PMID: 34205566 PMCID: PMC8235312 DOI: 10.3390/ijms22126612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
Placental abruption is the separation of the placenta from the lining of the uterus before childbirth. It is an infrequent perinatal complication with serious after-effects and a marked risk of maternal and fetal mortality. Despite the fact that numerous placental abruption risk factors are known, the pathophysiology of this issue is multifactorial and not entirely clear. The aim of this review was to examine the current state of knowledge concerning the molecular changes on the maternal–fetal interface occurring in placental abruption. Only original research articles describing studies published in English until the 15 March 2021 were considered eligible. Reviews, book chapters, case studies, conference papers and opinions were excluded. The systematic literature search of PubMed/MEDLINE and Scopus databases identified 708 articles, 22 of which were analyzed. The available evidence indicates that the disruption of the immunological processes on the maternal–fetal interface plays a crucial role in the pathophysiology of placental abruption. The features of chronic non-infectious inflammation and augmented immunological cytotoxic response were found to be present in placental abruption samples in the reviewed studies. Various molecules participate in this process, with only a few being examined. More advanced research is needed to fully explain this complicated process.
Collapse
|
2
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Stokum JA, Cannarsa GJ, Wessell AP, Shea P, Wenger N, Simard JM. When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood. Int J Mol Sci 2021; 22:5132. [PMID: 34066240 PMCID: PMC8151992 DOI: 10.3390/ijms22105132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Hemorrhage in the central nervous system (CNS), including intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH), and aneurysmal subarachnoid hemorrhage (aSAH), remains highly morbid. Trials of medical management for these conditions over recent decades have been largely unsuccessful in improving outcome and reducing mortality. Beyond its role in creating mass effect, the presence of extravasated blood in patients with CNS hemorrhage is generally overlooked. Since trials of surgical intervention to remove CNS hemorrhage have been generally unsuccessful, the potent neurotoxicity of blood is generally viewed as a basic scientific curiosity rather than a clinically meaningful factor. In this review, we evaluate the direct role of blood as a neurotoxin and its subsequent clinical relevance. We first describe the molecular mechanisms of blood neurotoxicity. We then evaluate the clinical literature that directly relates to the evacuation of CNS hemorrhage. We posit that the efficacy of clot removal is a critical factor in outcome following surgical intervention. Future interventions for CNS hemorrhage should be guided by the principle that blood is exquisitely toxic to the brain.
Collapse
Affiliation(s)
- Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Gregory J. Cannarsa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Aaron P. Wessell
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Phelan Shea
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Nicole Wenger
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
- Departments of Pathology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Goenka L, Jha D, Sharma M, Dhandapani VE, George M. Factors which Influence the Levels of ST-2, Galectin-3 and MMP-9 in Acute Coronary Syndrome. Cardiovasc Hematol Disord Drug Targets 2019; 20:64-73. [PMID: 31438834 DOI: 10.2174/1871529x19666190719104005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 05/11/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Several cardiac biomarkers are being studied to explore their potential in the prognostication of Acute Coronary Syndrome (ACS). However, there are limited studies exploring the relationship between these biomarkers and clinical, laboratory and demographic characteristics. OBJECTIVE We sought to determine the factors which influence the concentration of novel cardiac biomarkers such as Galectin-3, suppression of tumorigenicity-2 (ST-2) and Matrix Metallopeptidase-9 (MMP-9) in patients with ACS. METHODS A total of 122 patients with ACS were enrolled in the study. The study patients were categorized into two groups namely: STEMI (n=58) and NSTEMI/UA (n=64). Plasma samples were used to determine the level of biomarkers, Galectin-3 and ST-2, and serum samples were used to determine the levels of MMP-9 using the Enzyme-linked immunosorbent assay (ELISA). The association between the plasma and serum levels of biomarkers and, demographic, clinical and laboratory variables were determined. Statistical analyses for the study were performed using SPSS 16.0 software (SPSS Inc., Chicago, IL, USA). RESULTS Elderly aged [0.107 (0.012-0.969); p=0.047] patients had higher ST-2. Galectin-3 was higher among female patients [3.693(1.253-10.887); p=0.018] and patients with low left ventricular ejection fraction [2.882 (1.041-7.978); p=0.042]. Patients with lower body mass index [3.385 (1.241-9.231); p=0.017], diabetes [3.650 (1.302-10.237); p=0.014] and high total leukocyte count [2.900 (1.114-7.551; p=0.029] had higher MMP-9 levels. CONCLUSION The concentration of galectin-3, ST-2 and MMP-9 are independently influenced by demographic, clinical and laboratory characteristics. It is estimated that these factors should be accounted for when interpreting the results of the biomarker assays.
Collapse
Affiliation(s)
- Luxitaa Goenka
- Department of Clinical Pharmacology, SRM MCH & RC, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Durga Jha
- Department of Clinical Pharmacology, SRM MCH & RC, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Masum Sharma
- Department of Clinical Pharmacology, SRM MCH & RC, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - V E Dhandapani
- Department of Cardiology, SRM MCH & RC, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM MCH & RC, Kattankulathur, Chennai, Tamil Nadu 603203, India
| |
Collapse
|
5
|
Wu V, Yeerna H, Nohata N, Chiou J, Harismendy O, Raimondi F, Inoue A, Russell RB, Tamayo P, Gutkind JS. Illuminating the Onco-GPCRome: Novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J Biol Chem 2019; 294:11062-11086. [PMID: 31171722 DOI: 10.1074/jbc.rev119.005601] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest gene family of cell membrane-associated molecules mediating signal transmission, and their involvement in key physiological functions is well-established. The ability of GPCRs to regulate a vast array of fundamental biological processes, such as cardiovascular functions, immune responses, hormone and enzyme release from endocrine and exocrine glands, neurotransmission, and sensory perception (e.g. vision, odor, and taste), is largely due to the diversity of these receptors and the layers of their downstream signaling circuits. Dysregulated expression and aberrant functions of GPCRs have been linked to some of the most prevalent human diseases, which renders GPCRs one of the top targets for pharmaceutical drug development. However, the study of the role of GPCRs in tumor biology has only just begun to make headway. Recent studies have shown that GPCRs can contribute to the many facets of tumorigenesis, including proliferation, survival, angiogenesis, invasion, metastasis, therapy resistance, and immune evasion. Indeed, GPCRs are widely dysregulated in cancer and yet are underexploited in oncology. We present here a comprehensive analysis of GPCR gene expression, copy number variation, and mutational signatures in 33 cancer types. We also highlight the emerging role of GPCRs as part of oncocrine networks promoting tumor growth, dissemination, and immune evasion, and we stress the potential benefits of targeting GPCRs and their signaling circuits in the new era of precision medicine and cancer immunotherapies.
Collapse
Affiliation(s)
- Victoria Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Huwate Yeerna
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Nijiro Nohata
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Joshua Chiou
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California 92093
| | - Olivier Harismendy
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093.,Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Francesco Raimondi
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Robert B Russell
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Pablo Tamayo
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| |
Collapse
|
6
|
Na W, Shin JY, Lee JY, Jeong S, Kim WS, Yune TY, Ju BG. Dexamethasone suppresses JMJD3 gene activation via a putative negative glucocorticoid response element and maintains integrity of tight junctions in brain microvascular endothelial cells. J Cereb Blood Flow Metab 2017; 37:3695-3708. [PMID: 28338398 PMCID: PMC5718327 DOI: 10.1177/0271678x17701156] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) exhibits a highly selective permeability to support the homeostasis of the central nervous system (CNS). The tight junctions in the BBB microvascular endothelial cells seal the paracellular space to prevent diffusion. Thus, disruption of tight junctions results in harmful effects in CNS diseases and injuries. It has recently been demonstrated that glucocorticoids have beneficial effects on maintaining tight junctions in both in vitro cell and in vivo animal models. In the present study, we found that dexamethasone suppresses the expression of JMJD3, a histone H3K27 demethylase, via the recruitment of glucocorticoid receptor α (GRα) and nuclear receptor co-repressor (N-CoR) to the negative glucocorticoid response element (nGRE) in the upstream region of JMJD3 gene in brain microvascular endothelial cells subjected to TNFα treatment. The decreased JMJD3 gene expression resulted in the suppression of MMP-2, MMP-3, and MMP-9 gene activation. Dexamethasone also activated the expression of the claudin 5 and occludin genes. Collectively, dexamethasone attenuated the disruption of the tight junctions in the brain microvascular endothelial cells subjected to TNFα treatment. Therefore, glucocorticoids may help to preserve the integrity of the tight junctions in the BBB via transcriptional and post-translational regulation following CNS diseases and injuries.
Collapse
Affiliation(s)
- Wonho Na
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Y Shin
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Y Lee
- 2 Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea
| | - Sangyun Jeong
- 3 Department of Molecular Biology, Chonbuk National University, Jeonju, Korea
| | - Won-Sun Kim
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Tae Y Yune
- 2 Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea.,4 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bong-Gun Ju
- 1 Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
7
|
Lee JY, Na WH, Choi HY, Lee KH, Ju BG, Yune TY. Jmjd3 mediates blood-spinal cord barrier disruption after spinal cord injury by regulating MMP-3 and MMP-9 expressions. Neurobiol Dis 2016; 95:66-81. [PMID: 27425890 DOI: 10.1016/j.nbd.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022] Open
Abstract
The disruption of the blood-spinal cord barrier (BSCB) by matrix metalloprotease (MMP) activation is a detrimental event that leads to blood cell infiltration, inflammation, and apoptosis, thereby contributing to permanent neurological disability after spinal cord injury (SCI). However, the molecular mechanisms underlying Mmp gene regulation have not been fully elucidated. Here, we demonstrated the critical role of histone H3K27 demethylase Jmjd3 in the regulation of Mmp gene expression and BSCB disruption using in vitro cellular and in vivo animal models. We found that Jmjd3 up-regulation, in cooperation with NF-κB, after SCI is required for Mmp-3 and Mmp-9 gene expressions in injured vascular endothelial cells. In addition, Jmjd3 mRNA depletion inhibited Mmp-3 and Mmp-9 gene expressions and significantly attenuated BSCB permeability and the loss of tight junction proteins. These events further led to improved functional recovery, along with decreased hemorrhage, blood cell infiltration, inflammation, and cell death of neurons and oligodendrocytes after SCI. Thus, our findings suggest that Jmjd3 regulation may serve as a potential therapeutic intervention for preserving BSCB integrity following SCI.
Collapse
Affiliation(s)
- Jee Y Lee
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won H Na
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Hae Y Choi
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwang H Lee
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Bong G Ju
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea.
| | - Tae Y Yune
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
8
|
Protein pathways working in human follicular fluid: the future for tailored IVF? Expert Rev Mol Med 2016; 18:e9. [DOI: 10.1017/erm.2016.4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human follicular fluid (HFF) contains molecules and proteins that may affect follicle growth, oocyte maturation and competence acquiring. Despite the numerous studies, an integrated broad overview on biomolecular and patho/physiological processes that are proved or supposed to take place in HFF during folliculogenesis and oocyte development is still missing. In this review we report, for the first time, all the proteins unambiguously detected in HFF and, applying DAVID (Database for Annotation, Visualization and Integrated Discovery) and MetaCore bioinformatic resources, we shed new lights on their functional correlation, delineating protein patterns and pathways with reasonable potentialities for oocyte quality estimation in in vitro fertilisation (IVF) programs. Performing a rigorous PubMed search, we redacted a list of 617 unique proteins unambiguously-annotated as HFF components. Their functional processing suggested the occurrence in HFF of a tight and highly dynamic functional-network, which is balanced by specific effectors, primarily involved in extracellular matrix degradation and remodelling, inflammation and coagulation. Metalloproteinases, thrombin and vitamin-D-receptor/retinoid-X-receptor-alpha resulted as the main key factors in the nets and their differential activity may be indicative of ovarian health and oocyte quality. Despite future accurate clinical investigations are absolutely needed, the present analysis may provide a starting point for more accurate oocyte quality estimation and for defining personalised therapies in reproductive medicine.
Collapse
|
9
|
Chen J, Ma Y, Wang Z, Wang H, Wang L, Xiao F, Wang H, Tan J, Guo Z. Thrombin promotes fibronectin secretion by bone marrow mesenchymal stem cells via the protease-activated receptor mediated signalling pathways. Stem Cell Res Ther 2014; 5:36. [PMID: 24636778 PMCID: PMC4055141 DOI: 10.1186/scrt424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/12/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction Fibronectin (FN) is commonly used in the development of serum-free media for the expansion of mesenchymal stem cells (MSCs). This study was aimed to observe if thrombin could stimulate FN secretion by human bone marrow MSCs and investigate the potential underlying mechanisms. Methods PCR was performed to detect the expression of the protease-activated receptors (PARs) in MSCs. After thrombin treatment, the expression level and secretion of FN were observed by RT-PCR, immunofluorescence staining and ELISA, respectively, and the activation of ERK1/2 and NF kappa B pathways was revealed by Western blotting, with or without pre-treatment of small-molecule blockers specific for PAR-1 and –2. The phenotypic and functional activities of thrombin-treated MSCs were also observed. Results PCR analysis showed that human bone marrow MSCs expressed two subtypes of PARs, PAR-1 and PAR-2. Thrombin treatment enhanced MSCs to express FN at mRNA and protein levels and promoted FN secretion by MSCs, accompanied by potent adherence to the culture plastic. Thrombin induced prompt phosphorylation of ERK 1/2 and NF kappa B p65 and the stimulatory effects of thrombin on FN secretion were blunted by specific inhibitors of these signaling molecules. Blockage to PAR-1 and PAR-2 partially abrogated thrombin-elicited FN secretion by MSCs and ERK 1/2 phosphorylation, whereas that of NF kappa B p65 was unaffected. Moreover, thrombin-treated MSCs maintained the phenotypic features, in vitro osteogenesis and adipogenesis capacities, and inhibitory activity on Phytohemagglutinin-induced allogeneic lymphocyte proliferation. Conclusions Thrombin could promote FN secretion by MSCs via PAR-mediated ERK 1/2 activation, while NF kappa B might be also involved in an undefined manner.
Collapse
|
10
|
Pathologies at the nexus of blood coagulation and inflammation: thrombin in hemostasis, cancer, and beyond. J Mol Med (Berl) 2013; 91:1257-71. [PMID: 23955016 PMCID: PMC3825489 DOI: 10.1007/s00109-013-1074-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 02/06/2023]
Abstract
Thrombin is the protease involved in blood coagulation. Its deregulation can lead to hemostatic abnormalities, which range from subtle subclinical to serious life-threatening coagulopathies, i.e., during septicemia. Additionally, thrombin plays important roles in many (patho)physiological conditions that reach far beyond its well-established role in stemming blood loss and thrombosis, including embryonic development and angiogenesis but also extending to inflammatory processes, complement activation, and even tumor biology. In this review, we will address thrombin's broad roles in diverse (patho)physiological processes in an integrative way. We will also discuss thrombin as an emerging major target for novel therapies.
Collapse
|
11
|
Garcia-Pagán JC, Shah VH. Microparticles and paracrine signaling in portal hypertension: crucial conversations or idle chat? Gastroenterology 2012; 143:22-5. [PMID: 22626502 DOI: 10.1053/j.gastro.2012.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul Pharmacol 2012; 56:232-44. [PMID: 22326338 DOI: 10.1016/j.vph.2012.01.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 10/25/2022]
Abstract
The matrix metalloproteinases (MMPs) are 23 secreted or cell surface proteases that act together and with other protease classes to turn over the extracellular matrix, cleave cell surface proteins and alter the function of many secreted bioactive molecules. In the vasculature MMPs influence the migration proliferation and apoptosis of vascular smooth muscle, endothelial cells and inflammatory cells, thereby affecting intima formation, atherosclerosis and aneurysms, as substantiated in clinical and mouse knockout and transgenic studies. Prominent counterbalancing roles for MMPs in tissue destruction and repair emerge from these experiments. Naturally occurring tissue inhibitors of MMPs (TIMPs), pleiotropic mediators such as tetracyclines, chemically-synthesised small molecular weight MMP inhibitors (MMPis) and inhibitory antibodies have all shown effects in animal models of vascular disease but only doxycycline has been evaluated extensively in patients. A limitation of broad specificity MMPis is that they prevent both matrix degradation and tissue repair functions of different MMPs. Hence MMPis with more restricted specificity have been developed and recent studies in models of atherosclerosis accurately replicate the phenotypes of the corresponding gene knockouts. This review documents the established actions of MMPs and their inhibitors in vascular pathologies and considers the prospects for translating these findings into new treatments.
Collapse
|
13
|
Abstract
Remodeling of extracellular matrix is crucial for many physiological (cell migration, proliferation, growth, and development) and pathological (remodeling of heart, carcinogenesis, metastasis, etc.) events. Thus, the interaction between cells and extracellular matrix plays a key role in normal development and differentiation of organism and many pathological states as well. Changes in extracellular matrix are regulated by a system of proteolytic enzymes that are responsible for proteolysis of huge quantity of extracellular matrix components. Matrix metalloproteinases (MMPs) represent the main group of regulating proteases in ECM. Ability of matrix metalloproteinases to modify the structural integrity of tissues is essential for certain aspects of normal physiology and pathology. The ability to process molecules such as growth factors, receptors, adhesion molecules, other proteinases, and proteinase inhibitors makes MMPs potent controllers of physiological and pathological events in the cell microenvironment. Overactivation of MMPs has been implicated in numerous disease states.
Collapse
|
14
|
Saito Y, Hashimoto Y, Kuroda JI, Yasunaga M, Koga Y, Takahashi A, Matsumura Y. The inhibition of pancreatic cancer invasion-metastasis cascade in both cellular signal and blood coagulation cascade of tissue factor by its neutralisation antibody. Eur J Cancer 2011; 47:2230-9. [DOI: 10.1016/j.ejca.2011.04.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/05/2011] [Accepted: 04/19/2011] [Indexed: 11/27/2022]
|
15
|
Chen SS, Jiang H, Yang J, Chen J, He B, Xu SK. cAMP-Response-element-binding-protein-binding protein silencing inhibits thrombin-induced endothelial progenitor cell migration via downregulation of CXCR4 expression. Biol Pharm Bull 2010; 33:792-5. [PMID: 20460756 DOI: 10.1248/bpb.33.792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated that activation of thrombin receptor could promote endothelial progenitor cell (EPC) migration. As cAMP-response-element-binding-protein-binding protein (CBP) is involved in many cellular biological processes, we hypothesized that CBP mediates thrombin-induced EPC migration. In this study, we examined whether CBP silencing would affect EPC migration induced by thrombin using small interference RNA approach. EPC isolated from the bone marrow of femurs and tibias of Sprague-Dawley rats were cultured and identified, and then were treated by thrombin alone or combined with CBP-shRNA lentivirus. Transwell chamber assay was performed to measure EPC migration. Quantitative real-time polymerase chain reaction and Western blot were carried out to detect the expression of CBP and CXCR4. Thrombin induced CBP expression in a time- and dose-dependent manner. Small interference RNA for CBP downregulated thrombin-induced CBP expression. Thrombin-induced EPC migration was also attenuated by CBP downregulation. Western blot indicated that CXCR4 expression on EPC is upregulated by thrombin and this effect was blocked by CBP silencing. In conclusion, thrombin-induced EPC migration was inhibited by CBP silencing via downregulation of CXCR4 expression, indicating that CBP plays an important role in thrombin-induced EPC migration.
Collapse
Affiliation(s)
- Si-Si Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | | | | | | | | | | |
Collapse
|
16
|
Gäddnäs F, Koskela M, Koivukangas V, Risteli J, Oikarinen A, Laurila J, Saarnio J, Ala-Kokko T. Markers of collagen synthesis and degradation are increased in serum in severe sepsis: a longitudinal study of 44 patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R53. [PMID: 19358720 PMCID: PMC2689500 DOI: 10.1186/cc7780] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 03/18/2009] [Accepted: 04/09/2009] [Indexed: 12/22/2022]
Abstract
Introduction Sepsis-related multiple organ dysfunction is a common cause of death in the intensive care unit. The effect of sepsis on markers of tissue repair is only partly understood. The aim of this study was to measure markers of collagen synthesis and degradation during sepsis and investigate the association with disease severity and outcome. Methods Forty-four patients with severe sepsis participated in the study and 15 volunteers acted as controls. Blood samples were collected for 10 days after the first sepsis-induced organ dysfunction and after three and six months. Procollagen type I and III aminoterminal propeptides (PINP and PIIINP) and cross-linked telopeptides of type I collagen (ICTP) were measured. Results The PIIINP concentration was elevated in the septic patients (8.8 ug/L, 25th to 75th percentile = 6.8 to 26.0) when compared with controls (3.0 ug/L, 25th to 75th percentile = 2.7 to 3.3; P < 0.001) on day one. Maximum serum PIIINP concentrations during sepsis were higher in non-survivors compared with survivors (26.1 ug/L, 25th to 75th percentile = 18.7 to 84.3; vs. 15.1 ug/L, 25th to 75th percentile = 9.6 to 25.5; P = 0.033) and in multiple organ failure (MOF) compared with multiple organ dysfunction syndrome (MODS) (24.2 ug/L, 25th to 75th percentile = 13.4 to 48.2; vs. 8.9 ug/L, 25th to 75th percentile = 7.4 to 19.4; P = 0.002). Although the PINP values of the septic patients remained within the laboratory reference values, patients with MOF had higher values than patients with MODS (79.8, 25th to 75th percentile = 44.1 to 150.0; vs.40.4, 25th to 75th percentile = 23.6 to 99.3; P = 0.007). Day one ICTP levels were elevated in septic patients compared with the controls (19.4 ug/L, 25th to 75th percentile = 12.0 to 29.8; vs. 4.1 ug/L, 25th to 75th percentile = 3.4 to 5.0; P < 0.001). Conclusions Markers of collagen metabolism are increased in patients with severe sepsis and can be investigated further as markers of disease severity and outcome.
Collapse
Affiliation(s)
- Fiia Gäddnäs
- Department of Anesthesiology, Division of Intensive Care, Oulu University Hospital, FI-90029, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Z, Kong L, Kang J, Morgan JH, Shillcutt SD, Robinson JS, Nakayama DK. Thrombin stimulates mitogenesis in pig cerebrovascular smooth muscle cells involving activation of pro-matrix metalloproteinase-2. Neurosci Lett 2009; 451:199-203. [DOI: 10.1016/j.neulet.2009.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/23/2008] [Accepted: 01/02/2009] [Indexed: 11/28/2022]
|
18
|
Xue M, Fan Y, Liu S, Zygun DA, Demchuk A, Yong VW. Contributions of multiple proteases to neurotoxicity in a mouse model of intracerebral haemorrhage. ACTA ACUST UNITED AC 2008; 132:26-36. [PMID: 18772219 DOI: 10.1093/brain/awn215] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteases such as matrix metalloproteinases (MMPs) and thrombin are implicated in intracerebral haemorrhage (ICH) but their interactions amongst one another and interdependency remain to be defined. The latter is important since proteases acting through different mechanisms to inflict neurotoxicity would require separate targeting compared with proteases acting through the same cascade. We reported recently that MMP-9 and thrombin combined to promote neurotoxicity in ICH; however, as there was still substantial injury when both MMP-9 and thrombin were inhibited, we sought other factors that also contribute to ICH pathology. MMP-3, another member of the MMP family, has been correlated with poor prognosis in ICH in humans and it has been shown to increase rapidly after ICH in animals. Moreover, MMP-3 can convert the MMP-9 zymogen to its active form. Thus, we have examined whether MMP-3 is neurotoxic and addressed whether its potential effect in ICH is dependent on, or additional to, damage inflicted by MMP-9 and thrombin. We report that cultured neurons are killed by MMP-3 and that neuronal death is most marked when all three proteases, MMP-3, MMP-9 and thrombin, are combined. In vivo, the injection of autologous blood into the right striatum to produce ICH injury resulted in MMP-3 expression within 3 h. The blood-induced lesion and neuronal death was significantly reduced in MMP-3 or MMP-9 null mice compared with wild-type counterparts, and MMP-3 and -9 double null mice had even less brain damage. Significantly, pathological destruction after ICH was least in MMP-3 and -9 double null mice treated with a thrombin antagonist, hirudin. These results provide insights into molecules that inflict neurotoxicity in ICH and demonstrate that multiple proteases would need to be targeted simultaneously to successfully reduce ICH neurotoxicity.
Collapse
Affiliation(s)
- Mengzhou Xue
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Hu L, Roth JM, Brooks P, Luty J, Karpatkin S. Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis. Cancer Res 2008; 68:4666-73. [PMID: 18559512 DOI: 10.1158/0008-5472.can-07-6276] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cathepsin D (CD) up-regulation has been associated with human malignancy and poor prognosis. Thrombin up-regulated CD mRNA and protein in eight tumor cell lines as well as in human umbilical vascular endothelial cells (HUVEC). Thrombin increased the secretion of CD by 3- to 8-fold and enhanced chemotaxis ( approximately 2-fold) in 4T1 murine mammary CA cells, which was completely inhibited with the knockdown of CD. Secreted 4T1 CD induced neoangiogenesis by 2.4-fold on a chick chorioallantoic membrane, which was blocked in CD-KD cells. The addition of pure CD (2 ng) to the chick chorioallantoic membrane increased angiogenesis by 2.1-fold, which was completely inhibited by Pepstatin A (Pep A). CD enhanced human HUVEC chemotaxis and Matrigel tube formation by 2-fold, which was then blocked by Pep A. CD enhanced HUVEC matrix metalloproteinase 9 (MMP-9) activity by approximately 2-fold, which was completely inhibited by Pep A as well as a generic MMP inhibitor, GM6001. The injection of CD-KD 4T1 cells into syngeneic mice inhibited tumor growth by 3- to 4-fold compared with empty vector (EV) cells. Hirudin, a specific thrombin inhibitor, inhibited the growth of wild-type and EV cells by 2- to 3-fold, compatible with thrombin up-regulation of CD. CD and thrombin also contributed to spontaneous pulmonary metastasis; 4-fold nodule inhibition with CD versus EV and 4.6-fold inhibition with hirudin versus EV (P < 0.02). Thus, thrombin-induced CD contributes to the malignant phenotype by inducing tumor cell migration, nodule growth, metastasis, and angiogenesis. CD-induced angiogenesis requires the proteolytic activation of MMP-9.
Collapse
Affiliation(s)
- Liang Hu
- Departments of Medicine and Radiation Oncology and Cell Biology, New York University School of Medicine, New York, New York
| | | | | | | | | |
Collapse
|
20
|
Hu L, Roth JM, Brooks P, Ibrahim S, Karpatkin S. Twist is required for thrombin-induced tumor angiogenesis and growth. Cancer Res 2008; 68:4296-302. [PMID: 18519689 DOI: 10.1158/0008-5472.can-08-0067] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Twist, a master regulator of embryonic morphogenesis, induces functions that are also required for tumor invasion and metastasis. Because thrombin contributes to the malignant phenotype by up-regulating tumor metastasis, we examined its effect on Twist in five different tumor cell lines and two different endothelial cell lines. Thrombin up-regulated Twist mRNA and protein in all seven cell lines. Down-regulation of Twist in B16F10 tumor cell lines led to a approximately 3-fold decrease in tumor growth on a chorioallantoic membrane assay and approximately 2-fold decrease in syngeneic mice. Angiogenesis was decreased approximately 45% and 36%, respectively. The effect of Twist on angiogenesis was further examined and compared with the effect of thrombin. In studies using a Twist-inducible plasmid, several identical vascular growth factors and receptors were up-regulated approximately 2- to 3-fold in tumor cells as well as human umbilical vascular endothelial cells by both Twist as well as thrombin (vascular endothelial growth factor, KDR, Ang-2, matrix metalloproteinase 1, GRO-alpha, and CD31). Thrombin-induced endothelial cell chemotaxis and Matrigel endothelial cell tubule formation were similarly regulated by Twist. Thus, thrombin up-regulates Twist, which is required for thrombin-induced angiogenesis as measured by endothelial cell migration, Matrigel tubule formation, and tumor angiogenesis.
Collapse
Affiliation(s)
- Liang Hu
- Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
21
|
Derosa G, D'Angelo A, Scalise F, Avanzini MA, Tinelli C, Peros E, Fogari E, Cicero AF. Comparison between metalloproteinases-2 and -9 in healthy subjects, diabetics, and subjects with acute coronary syndrome. Heart Vessels 2007; 22:361-70. [DOI: 10.1007/s00380-007-0989-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 04/13/2007] [Indexed: 11/29/2022]
|
22
|
Arciniegas E, Frid MG, Douglas IS, Stenmark KR. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1-8. [PMID: 17384082 DOI: 10.1152/ajplung.00378.2006] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
All forms of pulmonary hypertension are characterized by structural changes in pulmonary arteries. Increased numbers of cells expressing α-smooth muscle (α-SM) actin is a nearly universal finding in the remodeled artery. Traditionally, it was assumed that resident smooth muscle cells were the exclusive source of these newly appearing α-SM actin-expressing cells. However, rapidly emerging experimental evidence suggests other, alternative cellular sources of these cells. One possibility is that endothelial cells can transition into mesenchymal cells expressing α-SM actin and that this process contributes to the accumulation of SM-like cells in vascular pathologies. We review the evidence that endothelial-mesenchymal transition is an important contributor to cardiac and vascular development as well as to pathophysiological vascular remodeling. Recent work has provided evidence for the role of transforming growth factor-β, Wnt, and Notch signaling in this process. The potential roles of matrix metalloproteinases and serine proteases are also discussed. Importantly, endothelial-mesenchymal transition may be reversible. Thus insights into the mechanisms controlling endothelial-mesenchymal transition are relevant to vascular remodeling and are important as we consider new therapies aimed at reversing pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Enrique Arciniegas
- Laboratorio de Microscopia Electrónica, Servicio Autónomo Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | |
Collapse
|
23
|
Derosa G, Cicero AFG, Scalise F, Avanzini MA, Tinelli C, Piccinni MN, Peros E, Geroldi D, Fogari E, D'Angelo A. Metalloproteinase-2 and -9 in diabetic and nondiabetic subjects during acute coronary syndromes. ACTA ACUST UNITED AC 2007; 14:45-51. [PMID: 17364896 DOI: 10.1080/10623320601177064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The authors hypothesized that matrix metalloproteinase (MMP)-2, -9, and tissue inhibitor metalloproteinase (TIMP)-1, -2 would be abnormal in acute coronary syndromes (ACSs). MMP-2, -9, and TIMP-1, -2 plasma levels were measured in diabetic patients with ACSs compared to nondiabetic patients with ACSs. A total of 46 diabetic and 78 nondiabetic patients with ACSs were enrolled. The following parameters were measured: body mass index (BMI), glycosylated hemoglobin (HbA1c), fasting plasma glucose (FPG), fasting plasma insulin (FPI), homeostasis model assessment index (HOMA index), systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (Tg), lipoprotein(a) [Lp(a)], plasminogen activator inhibitor-1 (PAI-1), homocysteine (Hct), fibrinogen (Fg), high-sensitivity C-reactive protein (hs-CRP), and plasma levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Significant HbA1c, FPG, FPI, HOMA index, DBP, Tg, Hct, and Fg increases were present in the diabetic group with ACSs, whereas hs-CRP was lower in these patients compared to nondiabetic patients with ACSs. MMP-9, TIMP-1, and TIMP-2 plasma levels were higher in diabetic patients with ACSs compared to nondiabetic patients with ACSs. MMP-9, TIMP-1, and TIMP-2 plasma levels were increased in diabetic patients with ACSs, which may reflect abnormal extracellular matrix metabolism in diabetes during acute event.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The aim of this article is to highlight the importance of thrombotic processes in the development and complications of atherosclerotic vascular disease. RECENT FINDINGS Thrombin generated at sites of vascular inflammation activates major atheroma-associated cells including endothelial cells, platelets, smooth muscle cells, monocytes, and macrophages. Thrombin-activated cells produce a plethora of inflammatory mediators, such as regulated upon activation normal T cell expressed presumed secreted, macrophage migration inhibitory factor, and CD40 ligand, that promote atherosclerotic lesion formation and atherothrombotic complications of vascular disease. Additionally, thrombin-induced inflammatory mediators stimulate tissue factor procoagulant activity within atheroma to initiate a positive feedback loop where thrombin activation launches inflammatory signals that lead to further thrombin activation. Platelets, the main cellular effectors of the thrombotic system, also play a central role in the biology of atherosclerosis by producing inflammatory mediators and directing leukocyte incorporation into plaques through platelet-mediated leukocyte adhesion. SUMMARY New research has identified signaling pathways that intertwine thrombotic and inflammatory pathways with the development and progression of atherosclerosis. These signaling pathways contain positive feedback loops that propagate atherogenesis. Targeting molecular regulators at the interface of thrombosis and inflammation simultaneously may reduce thrombosis and inflammation, thus breaking pathological cycles that promote atherosclerosis and associated thrombotic complications.
Collapse
Affiliation(s)
- Kevin Croce
- Donald W. Reynolds Cardiovascular Clinical Research Center, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
25
|
The development of cardiac fibrosis in low tissue factor mice is gender-dependent and is associated with differential regulation of urokinase plasminogen activator. J Mol Cell Cardiol 2007; 42:559-71. [PMID: 17234207 DOI: 10.1016/j.yjmcc.2006.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 11/27/2006] [Indexed: 11/22/2022]
Abstract
Tissue factor (TF) initiates the protease coagulation cascade in response to tissue injury. Homozygous deficiency of murine TF results in embryonic lethality, which is rescued by low-level expression of human TF. These low-TF mice have been shown to develop cardiac fibrosis. We tested the hypothesis that the development of cardiac fibrosis in low-TF mice results from dysregulated protease expression and is affected by gender. Mice were divided into the age groups 2-5, 6-12, 13-18 and 19+ weeks. Fibrosis was assessed by trichrome staining. Protease expression was measured in male and female mice by RT-PCR for mRNA and zymography, ELISA or immunoblot for protein. Urokinase plasminogen activator (uPA) activity was determined by zymography and chromogenic substrate assay. A marked gender effect was noted for the development of fibrosis, with interstitial collagen deposition occurring from 9 weeks in male low-TF mice, but not until 19 weeks in low-TF females. This delayed onset in females was accompanied by delayed up-regulation of molecular markers of injury. Matrix metalloproteinase (MMP)-3 and tissue inhibitor of metalloproteinase (TIMP)-1 expression were up-regulated in the hearts of male low-TF mice from 6 to 12 weeks and in females from 19 weeks. MMP/TIMP dysregulation was not seen prior to cardiac fibrosis and did not appear to explain the gender differences. However, uPA expression and activity were down-regulated prior to cardiac fibrosis in low-TF females, but were up-regulated in age-matched males. This suggests that the down-regulation of uPA in female low-TF mice protects them from more severe cardiac fibrosis.
Collapse
|
26
|
Caunt M, Hu L, Tang T, Brooks PC, Ibrahim S, Karpatkin S. Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Res 2006; 66:4125-32. [PMID: 16618733 DOI: 10.1158/0008-5472.can-05-2570] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanism of thrombin-induced angiogenesis is poorly understood. Using a gene chip array to investigate the pro-malignant phenotype of thrombin-stimulated cells, we observed that thrombin markedly up-regulates growth-regulated oncogene-alpha (GRO-alpha) in several tumor cell lines as well as endothelial cells by mRNA and protein analysis. Thrombin enhanced the secretion of GRO-alpha from tumor cells 25- to 64-fold. GRO-alpha is a CXC chemokine with tumor-associated angiogenic as well as oncogenic activation following ligation of its CXCR2 receptor. GRO-alpha enhanced angiogenesis in the chick chorioallantoic membrane assay 2.2-fold, providing direct evidence for GRO-alpha as an angiogenic growth factor. Anti-GRO-alpha antibody completely inhibited the 2.7-fold thrombin-induced up-regulation of angiogenesis, as well as the 1.5-fold thrombin-induced up-regulation of both endothelial cell cord formation in Matrigel and growth in vitro. Thrombin as well as its PAR-1 receptor activation peptide [thrombin receptor activation peptide (TRAP)] as well as GRO-alpha all markedly increased vascular regulatory proteins and growth factors: matrix metalloproteinase (MMP)-1, MMP-2, vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), CD31, and receptors KDR and CXCR2 in human umbilical vein endothelial cells. All of the thrombin/TRAP gene up-regulations were completely inhibited by anti-GRO-alpha antibody and unaffected by irrelevant antibody. Similar inhibition of gene up-regulation as well as thrombin-induced chemotaxis was noted with small interfering RNA (shRNA) GRO-alpha KD 4T1 breast tumor and B16F10 melanoma cells. In vivo tumor growth studies in wild-type mice with shRNA GRO-alpha KD cells revealed 2- to 4-fold impaired tumor growth, metastasis, and angiogenesis, which was not affected by endogenous thrombin. Thus, thrombin-induced angiogenesis requires the up-regulation of GRO-alpha. Thrombin up-regulation of GRO-alpha in tumor cells as well as endothelial cells contributes to tumor angiogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiopoietin-2/biosynthesis
- Animals
- Cell Growth Processes/drug effects
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Chemokine CXCL1
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Chemokines, CXC/pharmacology
- Chick Embryo
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Humans
- Intercellular Signaling Peptides and Proteins/biosynthesis
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Intercellular Signaling Peptides and Proteins/pharmacology
- Matrix Metalloproteinase 1/biosynthesis
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Neoplasms/blood supply
- Neoplasms/metabolism
- Neoplasms/pathology
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Thrombin/antagonists & inhibitors
- Thrombin/pharmacology
- Up-Regulation/drug effects
- Vascular Endothelial Growth Factor A/biosynthesis
Collapse
Affiliation(s)
- Maresa Caunt
- Departments of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
27
|
Niimi S, Harashima M, Takayama K, Hara M, Hyuga M, Seki T, Ariga T, Kawanishi T, Hayakawa T. Thrombomodulin enhances the invasive activity of mouse mammary tumor cells. J Biochem 2005; 137:579-86. [PMID: 15944410 DOI: 10.1093/jb/mvi070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Thrombomodulin (TM) is a thrombin receptor on the surface of endothelial cells that converts thrombin from a procoagulant to an anticoagulant. Thrombin promotes invasion by various tumor cells, and positive or negative correlations are found between the expression of TM and tumorigenesis in some patients. In this study, we used an invasion assay to investigate the effect of TM on the invasive activity of a mouse mammary tumor cell line, MMT cells, and the effects of TM were compared with those of thrombin as a positive control. In the presence of 1% fetal calf serum (FCS), TM significantly stimulated MMT cell invasion in a dose-dependent manner, resulting in an approximately 3-fold increase at 1-10 pg/ml over the untreated control. Thrombin also caused a similar degree of stimulation at 50 ng/ml. Since thrombin activity was detected in the components of the assay system, an invasion assay was also performed in a thrombin-activity-depleted assay system constructed to eliminate the effect of thrombin activity; TM (10 pg/ml) plus thrombin (1 pg/ml) stimulated invasion by approximately 3.5-fold in this assay system. Hirudin, a specific thrombin inhibitor, inhibited stimulation by TM as well as by thrombin in both the presence and absence of 1% FCS. Investigations of the effects of TM on proliferation, adhesion and chemotaxis to clarify the mechanism of stimulation by TM revealed that TM does not affect proliferation or adhesion in the presence of 1% FCS, but stimulates chemotaxis by approximately 2.3-fold. Similar results were obtained in experiments using thrombin. TM (10 pg/ml) plus thrombin (1 pg/ml), on the other hand, stimulated chemotaxis by approximately 2.3-fold in the thrombin-activity-depleted assay system. Binding studies using [125I]-thrombin revealed that the cells have specific saturable binding sites for thrombin. These results show that TM stimulates the invasive activity of MMT cells, probably by acting as a cofactor for the thrombin-stimulated invasion of the cells via its receptor and lowering the effective concentration of thrombin. The findings also indicate that the stimulation of invasive activity in the presence of 1% FCS and in the thrombin-activity-depleted assay system may mainly be mediated by the stimulation of chemotaxis.
Collapse
Affiliation(s)
- Shingo Niimi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lidington EA, Steinberg R, Kinderlerer AR, Landis RC, Ohba M, Samarel A, Haskard DO, Mason JC. A role for proteinase-activated receptor 2 and PKC-epsilon in thrombin-mediated induction of decay-accelerating factor on human endothelial cells. Am J Physiol Cell Physiol 2005; 289:C1437-47. [PMID: 16079188 DOI: 10.1152/ajpcell.00502.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombin, an important mediator of thrombosis and inflammation, may also enhance vascular cytoprotection. Thus thrombin induces expression of the complement-inhibitory protein decay-accelerating factor (DAF) in human umbilical vein endothelial cells (HUVECs), thus increasing protection against complement-mediated injury. Using PKC isozyme-specific peptide antagonists and adenoviral constructs, we have shown in the present study that PKC-epsilon is the primary isozyme involved in DAF induction by thrombin. Experiments with proteinase-activated receptor-1 (PAR1) and PAR2 activating peptides (APs) showed that DAF expression induced by PAR1-AP was PKC-alpha-dependent; in contrast, PAR2-AP induction of DAF required activation of PKC-epsilon. PAR1-AP and PAR2-AP in combination exerted an additive effect on DAF protein expression, which was equivalent to that observed with thrombin alone. These data implied a specific role for PAR2 in DAF induction, which was supported by the observation that upregulation of endothelial cell (EC) PAR2-enhanced DAF induction by thrombin. ERK1/2, p38, and JNK MAPK were also involved in thrombin-induced DAF upregulation, with evidence of interdependence between ERK1/2 and JNK. A role for transactivation of PAR2 by PAR1 was suggested by partial inhibition of thrombin-induced DAF expression by the PAR1 signaling antagonists BMS-200261 and SCH79797, whereas inhibition of thrombin-induced cleavage of PAR1 by specific MAbs or hirudin completely abrogated the response. Together, these data imply that the predominant pathway for thrombin-induced DAF expression involves transactivation of PAR2 by PAR1 and signaling via PKC-epsilon/MAPK. This may represent an important, novel pathway for endothelial cytoprotection during inflammation and angiogenesis and suggests that PAR2 may play a central role in some thrombin-induced responses.
Collapse
Affiliation(s)
- Elaine A Lidington
- Cardiovascular Medicine Unit, Imperial College, Hammersmith Hospital, DuCane Road, London W12 ONN, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mackenzie AP, Schatz F, Krikun G, Funai EF, Kadner S, Lockwood CJ. Mechanisms of abruption-induced premature rupture of the fetal membranes: Thrombin enhanced decidual matrix metalloproteinase-3 (stromelysin-1) expression. Am J Obstet Gynecol 2004; 191:1996-2001. [PMID: 15592282 DOI: 10.1016/j.ajog.2004.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of the study was to evaluate thrombin and progestin effects on matrix metalloproteinase-3 expression in term decidual cells as a mechanism of abruption-related preterm delivery. STUDY DESIGN Decidual cells were isolated by standard techniques, purified to homogeneity, grown to confluence, and passaged. Cultures were primed with 10 (-8) M estradiol or estradiol plus 10 (-7) progestin and then incubated in a defined medium with corresponding steroid(s) plus or minus thrombin or the protease-activated thrombin receptor-1 agonist for 24 hours. Secreted matrix metalloproteinase-3 levels were assessed by enzyme-linked immunosorbent assay, and immunoblotting and messenger RNA levels were measured by Northern blotting and quantitative reverse transcription-polymerase chain reaction. RESULTS Immunoreactive matrix metalloproteinase-3 levels were inhibited 66% by estradiol plus progestin versus estradiol ( P < .05). Thrombin elicited a dose-dependent reversal in this progestin inhibition, producing a 2.5-fold increase at 2.5 U/mL ( P < .05) that attained 33% of matrix metalloproteinase-3 levels in parallel incubations with estradiol plus thrombin. Protease-activated thrombin receptor-1 agonist mimicked 60% of thrombin-enhanced matrix metalloproteinase-3 output. Immunoblotting validated the enzyme-linked immunosorbent assay results. Northern blotting and quantitative reverse transcription-polymerase chain reaction demonstrated corresponding effects on steady-state messenger RNA levels. CONCLUSION Abruption-generated thrombin promotes preterm delivery by mediating fetal membrane extracellular matrix degradation via enhanced decidual cell matrix metalloproteinase-3 expression, whereas progesterone blunts this thrombin-induced effect.
Collapse
Affiliation(s)
- Andrew P Mackenzie
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wilson SR, Gallagher S, Warpeha K, Hawthorne SJ. Amplification of MMP-2 and MMP-9 production by prostate cancer cell lines via activation of protease-activated receptors. Prostate 2004; 60:168-74. [PMID: 15162383 DOI: 10.1002/pros.20047] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The matrix metalloproteinases (MMP) are a family of proteolytic enzymes involved in facilitating cancer metastasis. Protease-activated receptors (PARs) have previously been shown to be involved in pathways of MMP upregulation by tumor cells. METHODS Two androgen independent prostate cancer cell lines, PC3 and DU-145, and one androgen dependent prostate cancer line LNCaP, were investigated. PAR expression was detected using RT-PCR and immunofluorochemistry (IFC) techniques. MMP activity assays were used to quantify the levels of MMP-2 and -9 on all three prostate cell lines after PAR activation. RESULTS RT-PCR and IFC showed the presence of PAR-1 and PAR-2 in all cell lines investigated, only LNCaP showed PAR-3 and PAR-4 expression. Increased levels of MMP-2 and MMP-9 activity, up to sevenfold depending on prostate cancer cell line, following PAR activation by specific PAR peptides was shown. CONCLUSION Preliminary studies show the activation of PAR-1 or PAR-2 produced increased levels of MMP-2 and MMP-9 activity in prostate cancer cell lines, indicating their potential role in the metastasis of prostate cancer cells.
Collapse
Affiliation(s)
- Susan R Wilson
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, Belfast, United Kingdom
| | | | | | | |
Collapse
|
31
|
Abdollahi A, Hahnfeldt P, Maercker C, Gröne HJ, Debus J, Ansorge W, Folkman J, Hlatky L, Huber PE. Endostatin's antiangiogenic signaling network. Mol Cell 2004; 13:649-63. [PMID: 15023336 DOI: 10.1016/s1097-2765(04)00102-9] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 01/05/2004] [Accepted: 01/23/2004] [Indexed: 11/19/2022]
Abstract
It is here demonstrated that the set of gene expressions underlying the angiogenic balance in tissues can be molecularly reset en masse by a single protein. Using genome-wide expression profiling, coupled with RT-PCR and phosphorylation analysis, we show that the endogenous angiogenesis inhibitor endostatin downregulates many signaling pathways in human microvascular endothelium associated with proangiogenic activity. Simultaneously, endostatin is found to upregulate many antiangiogenic genes. The result is a unique alignment between the direction of gene regulation and angiogenic status. Profiling further reveals the regulation of genes not heretofore associated with angiogenesis. Our analysis of coregulated genes shows complex interpathway communications in an intricate signaling network that both recapitulates and extends on current understanding of the angiogenic process. More generally, insights into the nature of genetic networking from the cell biologic and therapeutic perspectives are revealed.
Collapse
Affiliation(s)
- Amir Abdollahi
- Department of Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Terada M, Kelly EAB, Jarjour NN. Increased Thrombin Activity after Allergen Challenge. Am J Respir Crit Care Med 2004; 169:373-7. [PMID: 14630620 DOI: 10.1164/rccm.200308-1156oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In addition to its central role in hemostasis, thrombin may play a role in inflammation and remodeling. To investigate the contribution of thrombin to allergic airway inflammation in asthma, we used an enzymatic assay to determine thrombin activity in bronchoalveolar lavage fluid obtained from 19 subjects with atopic asthma before (Day 0) and 48 hours after (Day 2) segmental bronchoprovocation with antigen. Thrombin activity increased from 0 (0, 2.9) on Day 1 to 41.1 (0.3, 75.6) U x 10(-3)/ml on Day 2 (p = 0.002) and correlated with total protein levels in lavage fluid on Day 2 (r = 0.885, p < 0.001). After antigen challenge, thrombin activity also showed significant correlations with interleukin-5 (r = 0.66, p = 0.002), transforming growth factor beta1 (r = 0.70, p < 0.001), fibronectin (r = 0.85, p < 0.001) and tissue factor (r = 0.55, p = 0.03) levels in lavage fluid. Furthermore, Day 2, but not Day 0 lavage fluid, induced proliferation of human airway fibroblasts. This mitogenic effect was significantly reduced with hirudin, a specific thrombin inhibitor. Taken together, our findings suggest that allergen-driven airway inflammation in asthma is associated with enhanced potential for fibroblast proliferation that is related, at least in part, to increased thrombin activity. We propose that enhanced thrombin activity provides a potential link between allergic inflammation and initiation of airway remodeling.
Collapse
Affiliation(s)
- Masaki Terada
- Pulmonary and Critical Care Medicine Section, Department of Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | |
Collapse
|
33
|
|
34
|
Neaud V, Duplantier JG, Mazzocco C, Kisiel W, Rosenbaum J. Thrombin up-regulates tissue factor pathway inhibitor-2 synthesis through a cyclooxygenase-2-dependent, epidermal growth factor receptor-independent mechanism. J Biol Chem 2003; 279:5200-6. [PMID: 14623891 DOI: 10.1074/jbc.m306679200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine proteinase inhibitor tissue factor pathway inhibitor-2 (TFPI-2) inhibits the tissue factor-factor VIIa complex and thereby impairs factor Xa and subsequently thrombin generation. Here we show that thrombin itself up-regulates TFPI-2 mRNA and protein expression in human liver myofibroblasts, a cell type shown to express high levels of TFPI-2 (Neaud, V., Hisaka, T., Monvoisin, A., Bedin, C., Balabaud, C., Foster, D. C., Desmoulière, A., Kisiel, W., and Rosenbaum, J. (2000) J. Biol. Chem. 275, 35565-35569). This effect required thrombin catalytic activity, as shown by its abolition with hirudin. Although the thrombin effect could be mimicked by agonists of both protease-activated receptor (PAR)-1 and PAR-4, it was largely blocked by a PAR-1 blocking antibody. Transactivation of the epidermal growth factor (EGF) receptor has been reported as a common event in thrombin signaling. However, thrombin did not detectably transactivate the EGF receptor in liver myofibroblasts, and blocking the EGF receptor did not affect TFPI-2 induction. On the other hand, thrombin increased the expression of cyclooxygenase-2 (COX-2) mRNA via a MAPK-dependent pathway, and a specific COX-2 inhibitor abolished the effect of thrombin on TFPI-2 expression. Thus, thrombin, through PAR-1 signaling, up-regulates the synthesis of TFPI-2 via a MAPK/COX-2-dependent pathway. The up-regulation of TFPI-2 expression by thrombin could in turn down-regulate thrombin generation and contribute to limit blood coagulation.
Collapse
Affiliation(s)
- Véronique Neaud
- Groupe de Recherches pour l'Etude du Foie, INSERM E362 and IFR66, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France
| | | | | | | | | |
Collapse
|
35
|
Anan T, Sonoda T, Asada Y, Kurata S, Takayasu S. Protease-Activated Receptor-1 (Thrombin Receptor) Is Expressed in Mesenchymal Portions of Human Hair Follicle. J Invest Dermatol 2003; 121:669-73. [PMID: 14632180 DOI: 10.1046/j.1523-1747.2003.12490.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protease nexin-1, a serine protease inhibitor, is expressed specifically in the dermal papilla (DP) of anagen hair follicles and is suggested to be one of the modulators of the cyclic growth of hair follicles. Accumulating evidence has shown that protease nexin-1 plays its biologic role by inhibiting thrombin action in various systems other than the hair follicle. Thrombin has various physiologic functions including blood coagulation cascade, mostly via activation of protease-activated receptors (PAR). In this study, we investigated the expression of PAR mRNA using RT-PCR in dissected human hair follicles. We showed that PAR-1 mRNA was expressed specifically in the mesenchymal portions, including DP and connective tissue sheath, of anagen hair follicles. Furthermore, immunoreactivity for PAR-1 was detected in the DP and lower portion of connective tissue sheath in the anagen and catagen phases and in the DP of telogen hair follicles. Because only a pharmacologic level (100 nM) of thrombin significantly stimulated cell proliferation and DNA synthesis of the cultured dermal papilla cells, thrombin does not seem to have a mitogenic effect on dermal papilla cells physiologically. These results raise the possibility that thrombin is involved in the cyclic hair growth through its receptor of PAR-1.
Collapse
Affiliation(s)
- T Anan
- Department of Dermatology, Oita Medical University, Oita-gun, Oita, Japan.
| | | | | | | | | |
Collapse
|
36
|
Guenzi E, Töpolt K, Lubeseder-Martellato C, Jörg A, Naschberger E, Benelli R, Albini A, Stürzl M. The guanylate binding protein-1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP-1 expression. EMBO J 2003; 22:3772-82. [PMID: 12881412 PMCID: PMC169055 DOI: 10.1093/emboj/cdg382] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expression of the large GTPase guanylate binding protein-1 (GBP-1) is induced by inflammatory cytokines (ICs) in endothelial cells (ECs), and the helical domain of the molecule mediates the repression of EC proliferation by ICs. Here we show that the expression of GBP-1 and of the matrix metalloproteinase-1 (MMP-1) are inversely related in vitro and in vivo, and that GBP-1 selectively inhibits the expression of MMP-1 in ECs, but not the expression of other proteases. The GTPase activity of GBP-1 was necessary for this effect, which inhibited invasiveness and tube-forming capability of ECs in three-dimensional collagen-I matrices. A GTPase-deficient mutant (D184N-GBP-1) operated as a transdominant inhibitor of wild-type GBP-1 and rescued MMP-1 expression in the presence of ICs. Expression of D184N-GBP-1, as well as paracrine supplementation of MMP-1, restored the tube-forming capability of ECs in the presence of wild-type GBP-1. The latter finding indicated that the inhibition of capillary formation is specifically due to the repression of MMP-1 expression by GBP-1, and is not affected by the anti-proliferative activity of the helical domain of GBP-1. These findings substantiate the role of GBP-1 as a major regulator of the anti-angiogenic response of ECs to ICs.
Collapse
Affiliation(s)
- Eric Guenzi
- Department of Virus-induced Vasculopathy, Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Papadimitriou E, Waters CR, Manolopoulos VG, Unsworth BR, Maragoudakis ME, Lelkes PI. Regulation of extracellular matrix remodeling and MMP-2 activation in cultured rat adrenal medullary endothelial cells. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2003; 8:243-53. [PMID: 11824476 DOI: 10.3109/10623320109090801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously reported that short-term exposure of cultured rat adrenal medullary endothelial cells (RAMEC) to thrombin enhances the subendothelial deposition of extracellular matrix (ECM) proteins fibronectin, laminin, and collagen types I (C-I) and IV (C-IV) (Papadimitriou et al. 1997). In this work, we extended our previous studies on factors that effect ECM protein deposition to include agents that activate or inhibit some of the most common intracellular signals such as cAMP, protein kinase C (PKC), and calcium. Furthermore, we investigated the possible link between the observed alterations in ECM protein deposition and the secretion of matrix metalloproteinase-2 (MMP-2). Forskolin (adenylyl cyclase activator) caused a dose-dependent increase in the deposition of all four ECM proteins studied. Isoproterenol beta-adrenergic receptor agonist) and the membrane permeant cAMP analogue dibutyryl-cAMP significantly increased the deposited amounts of ECM proteins at low concentrations, and this increase was reversed at higher concentrations of both agents. All these agents had the opposite effect on MMP-2 secretion, increasing it at doses where they decreased ECM protein deposition and vice versa. However, elevation of cAMP by the phosphodiesterase inhibitor IBMX had no effect either on the deposited amounts of any of the ECM proteins studied or on MMP-2 secretion. Activation of PKC by phorbol ester (PMA) resulted in a decrease in ECM protein deposition and an increase in MMP-2 secretion. Finally, chelation of intercellular calcium with BAPTA-AM resulted in an increased ECM deposition and a decrease in MMP-2 secretion. Our results show a complex pattern of regulation of ECM protein deposition by cAMP-mobilizing agents and also indicate an inverse correlation between ECM protein deposition and secretion of MMP-2. The concerted regulation of both of these processes is essential in the formation of new blood vessels, and for the integrity of the vascular wall.
Collapse
Affiliation(s)
- E Papadimitriou
- Dept. of Pharmacy, Univ. of Wisconsin Medical School, Milwaukee, USA
| | | | | | | | | | | |
Collapse
|
38
|
Papadimitriou E, Waters CR, Manolopoulos VG, Unsworth BR, Maragoudakis ME, Lelkes PL. Regulation of extracellular matrix remodeling and MMP-2 activation in cultured rat adrenal medullary endothelial cells. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2003; 8:181-94. [PMID: 11824471 DOI: 10.1080/10623320109051564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We previously reported that short term exposure of cultured rat adrenal medullary endothelial cells (RAMEC) to thrombin enhances the subendothelial deposition of extracellular matrix (ECM) proteins fibronectin, laminin, and collagen types I (C-I) and IV (C-IV) (Papadimitriou et at., 1997). In this work, we extended our previous studies on factors that affect ECM protein deposition to include agents that activate or inhibit some of the most common intracellular signals such as cAMP, protein kinase C (PKC) and calcium. Furthemore, we investigated the possible link between the observed alterations in ECM protein deposition and the secretion of matrix metalloproteinase-2 (MMP-2). Forskolin (adenylyl cyclase activator) caused a dose-dependent increase in the deposition of all four ECM proteins studied. Isoproterenol (beta-adrenergic receptor agonist) and the membrane-permeant cAMP analogue dibutyryl-cAMP, significantly increased the deposited amounts of ECM proteins at low concentrations, and this increase was reversed at higher concentrations of both agents. All these agents had the opposite effect on MMP-2 secretion, increasing it at doses where they decreased ECM protein deposition and vice-versa. However, elevation of cAMP by the phosphodiesterase inhibitor IBMX had no effect neither on the deposited amounts of any of the ECM proteins studied nor on MMP-2 secretion. Activation of PKC by phorbol ester (PMA) resulted in a decrease in ECM protein deposition and an increase in MMP-2 secretion. Finally, chelation of intercellular calcium with BAPTA-AM resulted in an increased ECM deposition and a decrease in MMP-2 secretion, Our results show a complex pattern of regulation of ECM protein deposition by cAMP-mobilizing agents, and also indicate an inverse correlation between ECM protein deposition and secretion of MMP-2. The concerted regulation of both these processes is essential in the formation of new blood vessels and for the integrity of the vascular wall.
Collapse
|
39
|
Maragoudakis ME, Kraniti N, Giannopoulou E, Alexopoulos K, Matsoukas J. Modulation of angiogenesis and progelatinase a by thrombin receptor mimetics and antagonists. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2003; 8:195-205. [PMID: 11824472 DOI: 10.1080/10623320109051565] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The angiogenic action of thrombin has been shown to be mediated by activation of the thrombin receptor. In this report we studied the effects of SFLLR, an agonist of the activated thrombin receptor and thrombin receptor peptide and non peptide antagonists on angiogenesis in the chick chorioallantoic membrane (CAM) system. As antagonists were used the tripeptide FPR and non-peptide 1,4-disubstituted piperazine derivatives. The pentapeptide SFLLR, like thrombin, caused a marked stimulation of angiogenesis in the CAM. FPR and the piperazine derivatives caused suppression of angiogenesis and in combination with thrombin antagonized its angiogenic effect. Thrombin and SFLLR activated progelatinase A (MMP-2) in the culture medium of human umbilical cord endothelial cells (HUVECs). MMP-2 is involved in the early steps of angiogenesis leading to local dissolution of basement membrane collagen and migration of the activated endothelial cells. FPR and the piperazine derivatives inhibited the activation of this enzyme. They also antagonised the effects of both thrombin and SFLLR on MMP-2 activation. These results suggest that non-thrombogenic agonists or antagonists of the activated thrombin receptor can be used as modulators of angiogenesis.
Collapse
Affiliation(s)
- M E Maragoudakis
- Department of Pharmacology, Medical School, University of Patras, Greece
| | | | | | | | | |
Collapse
|
40
|
Abstract
Using protein chromatography, we purified and identified human prothrombin from human plasma as antiangiogenic. Prothrombin significantly inhibited endothelial cell tube formation in vitro at 10 microg/ml. Importantly, it also inhibited bFGF-induced angiogenesis in Matrigel-plug assays performed in mice. The proteolytic activity of thrombin appeared to be critical for the antiangiogenic activity of prothrombin. For example, thrombin exhibited inhibitory effects on endothelial cell tube formation in vitro at 10 U/ml. Addition of lepirudin, a specific inhibitor of thrombin, completely blocked prothrombin's and thrombin's antiangiogenic effects in vitro. We also assessed the importance of thrombin receptors in angiogenesis. Using small peptides that activate different protease-activated receptors (PARs), we showed that activation of PAR-1 led to inhibition of endothelial cell tube formation in vitro and bFGF-induced angiogenesis in vivo. Collectively, our data suggest that thrombin's proteolytic activity can be antiangiogenic.
Collapse
Affiliation(s)
- Barden Chan
- Division of Nephrology, Center for Study of the Tumor Microenvironment, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Severe sepsis, defined as sepsis with acute organ dysfunction, is associated with high morbidity and mortality rates. The development of novel therapies for sepsis is critically dependent on an understanding of the basic mechanisms of the disease. The pathophysiology of severe sepsis involves a highly complex, integrated response that includes the activation of a number of cell types, inflammatory mediators, and the hemostatic system. Central to this process is an alteration of endothelial cell function. The goals of this article are to (1) provide an overview of sepsis and its complications, (2) discuss the role of the endothelium in orchestrating the host response in sepsis, and (3) emphasize the potential value of the endothelium as a target for sepsis therapy.
Collapse
Affiliation(s)
- William C Aird
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Copin JC, Gasche Y. [Morphology and physiology of the blood-brain barrier]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2003; 22:202-14. [PMID: 12747988 DOI: 10.1016/s0750-7658(03)00040-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier (BBB) is a complex biological system that consists of endothelial cells, pericytes and astrocytes, which are involved in the induction and maintenance of its physiological and ultrastructural characteristics. The BBB plays a primordial role in isolating the cerebral parenchyma as well as in controlling brain homeostasis by its selective permeability to nutriments and other molecules flowing through the cerebral microcapillaries. A better knowledge of this system is crucial in order to improve the efficiency of brain penetration by drugs, and in order to prevent BBB opening, leading to brain edema, in physiopathological situations such as brain ischemia, trauma or inflammatory processes.
Collapse
Affiliation(s)
- J C Copin
- Divisions des soins intensifs de chirurgie et de médecine, division d'investigations anesthésiologiques, hôpitaux universitaires de Genève, 1211 Genève, Suisse.
| | | |
Collapse
|
43
|
Juan-Babot JO, Martínez-González J, Berrozpe M, Badimon L. Neovascularización en arterias coronarias humanas con distintos grados de lesión. Rev Esp Cardiol 2003; 56:978-86. [PMID: 14563292 DOI: 10.1016/s0300-8932(03)76995-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION AND OBJECTIVES Endothelial function can be modulated by growth factors produced by activated smooth muscle cells, inflammatory cells and plasma products that infiltrate the lesion. The aim of this study was to quantify neovessels in human coronary arteries with atherosclerotic lesions of different severity and analyze their relationship with inflammatory cell and plasma product infiltrates. PATIENTS AND METHOD We studied 60 coronary arteries from patients who underwent heart transplant. Cellular markers (smooth muscle cell, monocyte/macrophage), the presence thrombin/prothrombin and expression of vascular endothelial growth factor (VEGF) were analyzed and quantified by conventional histology, immunohistochemistry and image analysis techniques. RESULTS Neovessels were detected in advanced lesions, and a positive correlation was observed with the degree of vessel remodeling, monocyte/macrophage infiltration and lipid deposition. Smooth muscle cells were the main producers of VEGF in both the intima and media layers of advanced lesions. In these lesions thrombin/prothrombin-positive areas colocalized with activated smooth muscle cells. CONCLUSIONS The presence of neovessels in coronary arteries correlated with inflammatory cell infiltration, lipid deposition and thrombin/prothrombin content. VEGF expression was mainly associated with smooth muscle cells, indicating a key role of these cells in the modulation of endothelial cell function.
Collapse
Affiliation(s)
- Josep O Juan-Babot
- Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | | | | | | |
Collapse
|
44
|
Madamanchi NR, Hu ZY, Li F, Horaist C, Moon SK, Patterson C, Runge MS, Ruef J, Fritz PH, Aaron J. A noncoding RNA regulates human protease-activated receptor-1 gene during embryogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:237-45. [PMID: 12084570 DOI: 10.1016/s0167-4781(02)00308-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of the human protease-activated receptor-1 (PAR-1) by thrombin leads to myriad functions essential for maintaining vascular integrity. Upregulation of PAR-1 expression is considered important in atherosclerosis, angiogenesis and tumor metastasis. In vitro analysis of the human PAR-1 promoter function revealed a positive regulatory element between -4.2 and -3.2 kb of the transcription start site. This element was examined in transgenic mice containing either 4.1 or 2.9 kb of the 5' flanking sequence driving a LacZ reporter gene. Only the 4.1 kb PAR-1 transgene was expressed in vivo and only during embryonic development. The transgene expression was observed only in developing arteries and not in veins. Further examination of this putative regulatory sequence identified a novel noncoding RNA (ncR-uPAR:noncoding RNA upstream of the PAR-1) gene at -3.4 kb. The ncR-uPAR upregulated PAR-1-core promoter-driven luciferase activity and mRNA expression in vitro in a Pol II-dependent manner. This noncoding RNA appears to act in trans, albeit locally at the adjacent PAR-1 promoter. These data suggest that an untranslated RNA plays a role in PAR-1 gene expression during embryonic growth.
Collapse
MESH Headings
- Animals
- Arteries/cytology
- Arteries/embryology
- Base Sequence
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Female
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Humans
- Male
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Receptor, PAR-1
- Receptors, Thrombin/genetics
- Receptors, Thrombin/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- Carolina Cardiovascular Biology Center, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7126, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vouret-Craviari V, Bourcier C, Boulter E, van Obberghen-Schilling E. Distinct signals via Rho GTPases and Src drive shape changes by thrombin and sphingosine-1-phosphate in endothelial cells. J Cell Sci 2002; 115:2475-84. [PMID: 12045218 DOI: 10.1242/jcs.115.12.2475] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble mediators such as thrombin and sphingosine-1-phosphate regulate morphological changes in endothelial cells that affect vascular permeability and new blood vessel formation. Although these ligands activate a similar set of heterotrimeric G proteins, thrombin causes cell contraction and rounding whereas sphingosine-1-phosphate induces cell spreading and migration. A functional requirement for Rho family GTPases in the cytoskeletal responses to both ligands has been established, yet the dynamics of their regulation and additional signaling mechanisms that lead to such opposite effects remain poorly understood. Using a pull-down assay to monitor the activity of Rho GTPases in human umbilical vein endothelial cells, we find significant temporal and quantitative differences in RhoA and Rac1 activation. High levels of active RhoA rapidly accumulate in cells in response to thrombin whereas Rac1 is inhibited. In contrast, sphingosine-1-phosphate addition leads to comparatively weak and delayed activation of RhoA and it activates Rac1. In addition, we show here that sphingosine-1-phosphate treatment activates a Src family kinase and triggers recruitment of the F-actin-binding protein cortactin to sites of actin polymerization at the rim of membrane ruffles. Both Src and Rac pathways are essential for lamellipodia targeting of cortactin. Further, Src plays a determinant role in sphingosine-1-phosphate-induced cell spreading and migration. Taken together these data demonstrate that the thrombin-induced contractile and immobile phenotype in endothelial cells reflects both robust RhoA activation and Rac inhibition, whereas Src- and Rac-dependent events couple sphingosine-1-phosphate receptors to the actin polymerizing machinery that drives the extension of lamellipodia and cell migration.
Collapse
Affiliation(s)
- Valérie Vouret-Craviari
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS-UMR6543, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France.
| | | | | | | |
Collapse
|
46
|
Minami T, Aird WC. Thrombin stimulation of the vascular cell adhesion molecule-1 promoter in endothelial cells is mediated by tandem nuclear factor-kappa B and GATA motifs. J Biol Chem 2001; 276:47632-41. [PMID: 11590177 DOI: 10.1074/jbc.m108363200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The goal of this study was to delineate the transcriptional mechanisms underlying thrombin-mediated induction of vascular adhesion molecule-1 (VCAM-1). Treatment of human umbilical vein endothelial cells with thrombin resulted in a 3.3-fold increase in VCAM-1 promoter activity. The upstream promoter region of VCAM-1 contains a thrombin response element, two nuclear factor kappaB (NF-kappaB) motifs, and a tandem GATA motif. In transient transfection assays, mutation of the thrombin response element had no effect on thrombin induction. In contrast, mutation of either NF-kappaB site resulted in a complete loss of induction, whereas a mutation of the two GATA motifs resulted in a significant reduction in thrombin stimulation. In electrophoretic mobility shift assays, nuclear extracts from thrombin-treated endothelial cells displayed markedly increased binding to the tandem NF-kappaB and GATA motifs. The NF-kappaB complex was supershifted with anti-p65 antibodies, but not with antibodies to RelB, c-Rel, p50, or p52. The GATA complex was supershifted with antibodies to GATA-2, but not GATA-3 or GATA-6. A construct containing tandem copies of the VCAM-1 GATA motifs linked to a minimal thymidine kinase promoter was induced 2.4-fold by thrombin. Taken together, these results suggest that thrombin stimulation of VCAM-1 in endothelial cells is mediated by the coordinate action of NF-kappaB and GATA transcription factors.
Collapse
Affiliation(s)
- T Minami
- Department of Molecular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | |
Collapse
|
47
|
Schönherr E, Schaefer L, O'Connell BC, Kresse H. Matrix metalloproteinase expression by endothelial cells in collagen lattices changes during co-culture with fibroblasts and upon induction of decorin expression. J Cell Physiol 2001; 187:37-47. [PMID: 11241347 DOI: 10.1002/1097-4652(2001)9999:9999<::aid-jcp1048>3.0.co;2-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
EA.hy 926 cells, a derivative of human umbilical vein endothelial cells, in the presence of fibroblasts show the phenomena of angiogenesis, express the proteoglycan decorin and escape apoptosis, when they are maintained in collagen lattices, while fibroblast-free cultures do not show these changes. Virus-mediated decorin expression can substitute for the presence of fibroblasts. Since the expression of matrix metalloproteinases (MMPs) is an essential step in the formation of capillaries, several MMPs and tissue inhibitors of metalloproteinases (TIMPs) were investigated. MMP-1, MMP-2, MMP-9, and the cell-associated MMP-14 were augmented on the protein level in the presence of fibroblasts. No effect was seen with respect to MMP-3, TIMP-1, and TIMP-2. Semiquantitative RT-PCRs of endothelial cells in co-culture revealed a 7-, 19-, and 11-fold increase for mRNAs of MMP-1, MMP-2, and MMP-14 after six days, respectively. Virus-mediated decorin expression also was accompanied by an up-regulation of these MMPs. The expression of MMP-1 mRNAs increased 5-fold after 2 days and gradually declined thereafter. In contrast, MMP-2 and MMP-14 showed a 7-fold and a 14-fold increase on day two which returned to basal levels within 24 h, indicating that the expression of MMP-1 is differentially regulated from MMP-2 and MMP-14. In spite of the upregulation of the proteases, an enhanced degradation of decorin was not observed. These results indicate that the expression of decorin is a sufficient signal in EA.hy 926 cells for a finely tuned induction of selected MMPs which are involved in angiogenesis whereas the up-regulation of MMPs does not lead to the degradation of the responsible proteoglycan.
Collapse
Affiliation(s)
- E Schönherr
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany.
| | | | | | | |
Collapse
|
48
|
Sood AK, Seftor EA, Fletcher MS, Gardner LM, Heidger PM, Buller RE, Seftor RE, Hendrix MJ. Molecular determinants of ovarian cancer plasticity. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1279-88. [PMID: 11290546 PMCID: PMC1891929 DOI: 10.1016/s0002-9440(10)64079-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During development, the formation and remodeling of primary vascular networks occurs by vasculogenesis and angiogenesis. Recently, the term "vasculogenic mimicry" has been used by our laboratory and collaborators to reflect the embryonic-like ability of aggressive, but not nonaggressive, melanoma tumor cells to form a pattern of matrix-rich networks (containing channels) surrounding spheroids of tumor cells in three-dimensional culture, concomitant with their expression of vascular cell markers. Ovarian cancer is usually diagnosed as advanced stage disease in most patients when widespread metastases have already been established within the peritoneal cavity. In this study, we explored whether invasive ovarian carcinoma cells could engage in molecular vasculogenic mimicry reflected by their plasticity, compared with their normal cell counterparts. The data revealed that the invasive ovarian cancer cells, but not normal ovarian surface epithelial cells, formed patterned networks containing solid and hollow matrix channels when grown in three-dimensional cultures containing Matrigel or type I collagen, in the absence of endothelial cells or fibroblasts. Immunohistochemical analysis showed that matrix metalloproteinases (MMP)-1, -2, and -9, and MT1-MMP were discretely localized to these networks, and the formation of the networks was inhibited by treatment with MMP inhibitors. Furthermore, the RNase protection assay revealed the expression of multiple vascular cell-associated markers by the invasive ovarian cancer cells. In patient tumor sections from high-stage, high-grade ovarian cancers, 7 to 10% of channels containing red blood cells were lined by tumor cells. By comparison, all vascular areas in benign tumors and low-stage cancers were endothelial lined. These results may offer new insights and molecular markers for consideration in ovarian cancer diagnosis and treatment strategies based on molecular vascular mimicry by aggressive tumor cells.
Collapse
Affiliation(s)
- A K Sood
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, 4630 JCP, 200 Hawkins Dr., Iowa City, IA 52242-1109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Richard DE, Vouret-Craviari V, Pouysségur J. Angiogenesis and G-protein-coupled receptors: signals that bridge the gap. Oncogene 2001; 20:1556-62. [PMID: 11313902 DOI: 10.1038/sj.onc.1204193] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Angiogenesis is a mechanism that has repercussions in a number of physiological and pathological situations. Vascular endothelial growth factor and basic fibroblast growth factor have understandably received enormous research coverage for being the major mediators of new blood vessel growth, often overshadowing other agonist that also have strong angiogenic potential. We wish to put the spotlight on GPCR agonists that undoubtedly have their word to say on the subject of angiogenesis. In this short review, we will discuss our findings along with the work from other groups on the mechanisms by which GPCR agonists, like thrombin and angiotensin II, control a number of angiogenic signals. A complete understanding of these mechanisms could, by the design of new therapeutic strategies, have a strong impact in clinical oncology.
Collapse
Affiliation(s)
- D E Richard
- Institute of Signaling, Developmental Biology and Cancer Research, UMR-CNRS 6543, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France
| | | | | |
Collapse
|
50
|
Sato Y, Abe M, Tanaka K, Iwasaka C, Oda N, Kanno S, Oikawa M, Nakano T, Igarashi T. Signal transduction and transcriptional regulation of angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 476:109-15. [PMID: 10949659 DOI: 10.1007/978-1-4615-4221-6_9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
When quiescent endothelial cells (ECs) are exposed to angiogenic factor such as VEGF; ECs express proteases to degrade extracellular matrices, migrate, proliferate and form new vessels. However, the molecular mechanism of these events is not fully characterized yet. We are studying the signal transduction and transcriptional regulation of angiogenesis. We investigated the properties of two VEGF receptors, Flt-1 and KDR, by using two newly developed blocking monoclonal antibodies (mAbs), i.e., anti-human Flt-1 mAb and anti-human KDR mAb. VEGF elicited induction of transcription factor Ets-1 in human umbilical vein endothelial cells (HUVECs). This induction was mediated by the KDR/Flt-1 heterodimer and the KDR homodimer. The role of transcription factor Ets-1 in angiogenesis was further clarified. We established both high and low Ets-1 expressing EC lines, and compared angiogenic properties of these cell lines with a parental murine EC line, MSS31. The growth rate was almost identical among three cell lines. It appeared that gene expressions of matrix metalloproteinases (MMP-1, MMP-3, and MMP-9) as well as integrin beta 3 were correlated with the level of Ets-1 expression. As a result, the invasiveness was enhanced in high Ets-1 expressing cells and reduced in low Ets-1 expressing cells compared with parental cells, and high Ets-1 expressing cells made more tube-like structures in type 1 collagen gel. These results indicate that Ets-1 is a principle transcription factor converting ECs to the angiogeneic phenotype.
Collapse
Affiliation(s)
- Y Sato
- Department of Vascular Biology, Tohoku University
| | | | | | | | | | | | | | | | | |
Collapse
|