1
|
Zheng Y, Liu SQ, Sun Q, Xie JF, Xu JY, Li Q, Pan C, Liu L, Huang YZ. Plasma microRNAs levels are different between pulmonary and extrapulmonary ARDS patients: a clinical observational study. Ann Intensive Care 2018; 8:23. [PMID: 29442256 PMCID: PMC5811418 DOI: 10.1186/s13613-018-0370-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) obviously alleviate the damage of the structure and function of pulmonary vascular endothelial cells (VEC). The therapeutic effects of MSC are significantly different between pulmonary ARDS (ARDSp) and extrapulmonary ARDS (ARDSexp). MicroRNAs (miRNAs), as important media of MSC regulating VEC, are not studied between ARDSp and ARDSexp. We aimed to explore the plasma levels difference of miRNAs that regulate VEC function and are associated with MSC (MSC-VEC-miRNAs) between ARDSp and ARDSexp patients. METHODS MSC-VEC-miRNAs were obtained through reviewing relevant literatures screened in PubMed database. We enrolled 57 ARDS patients within 24 h of admission to the ICU and then collected blood samples, extracted plasma supernatant. Patients' clinical data were collected. Then, plasma expression of MSC-VEC-miRNAs was measured by real-time fluorescence quantitative PCR. Simultaneously, plasma endothelial injury markers VCAM-1, vWF and inflammatory factors TNF-α, IL-10 were detected by ELISA method. RESULTS Fourteen miRNAs were picked out after screening. A total of 57 ARDS patients were included in this study, among which 43 cases pertained to ARDSp group and 14 cases pertained to ARDSexp group. Plasma miR-221 and miR-27b levels in ARDSexp group exhibited significantly lower than that in ARDSp group (miR-221, 0.22 [0.12-0.49] vs. 0.57 [0.22-1.57], P = 0.008, miR-27b, 0.34 [0.10-0.46] vs. 0.60 [0.20-1.46], P = 0.025). Plasma vWF concentration in ARDSexp group exhibited significantly lower than that in ARDSp group (0.77 [0.29-1.54] vs. 1.80 [0.95-3.51], P = 0.048). Significant positive correlation was found between miR-221 and vWF in plasma levels (r = 0.688, P = 0.022). Plasma miR-26a and miR-27a levels in non-survival group exhibited significantly lower than that in survival group (miR-26a, 0.17 [0.08-0.20] vs. 0.69 [0.24-2.33] P = 0.018, miR-27a, 0.23 [0.16-0.58] vs. 1.45 [0.38-3.63], P = 0.021) in ARDSp patients. CONCLUSION Plasma miR-221, miR-27b and vWF levels in ARDSexp group are significantly lower than that in ARDSp group. Plasma miR-26a and miR-27a levels in non-survival group are significantly lower than that in survival group in ARDSp patients.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China.,Department of Critical Care Medicine, The First Affiliated Hospital of Medical School of Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China
| | - Song-Qiao Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Qin Sun
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Jian-Feng Xie
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Jing-Yuan Xu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Qing Li
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Chun Pan
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Ying-Zi Huang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
2
|
Rahman AM, Murrow JR, Ozkor MA, Kavtaradze N, Lin J, De Staercke C, Hooper WC, Manatunga A, Hayek S, Quyyumi AA. Endothelium-derived hyperpolarizing factor mediates bradykinin-stimulated tissue plasminogen activator release in humans. J Vasc Res 2014; 51:200-8. [PMID: 24925526 DOI: 10.1159/000362666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022] Open
Abstract
AIMS Bradykinin (BK) stimulates tissue plasminogen activator (t-PA) release from human endothelium. Although BK stimulates both nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) release, the role of EDHF in t-PA release remains unexplored. This study sought to determine the mechanisms of BK-stimulated t-PA release in the forearm vasculature of healthy human subjects. METHODS In 33 healthy subjects (age 40.3 ± 1.9 years), forearm blood flow (FBF) and t-PA release were measured at rest and after intra-arterial infusions of BK (400 ng/min) and sodium nitroprusside (3.2 mg/min). Measurements were repeated after intra-arterial infusion of tetraethylammonium chloride (TEA; 1 µmol/min), fluconazole (0.4 µmol·min(-1)·l(-1)), and N(G)-monomethyl-L-arginine (L-NMMA, 8 µmol/min) to block nitric oxide, and their combination in separate studies. RESULTS BK significantly increased net t-PA release across the forearm (p < 0.0001). Fluconazole attenuated both BK-mediated vasodilation (-23.3 ± 2.7% FBF, p < 0.0001) and t-PA release (from 50.9 ± 9.0 to 21.3 ± 8.9 ng/min/100 ml, p = 0.02). TEA attenuated FBF (-14.7 ± 3.2%, p = 0.002) and abolished BK-stimulated t-PA release (from 22.9 ± 5.7 to -0.8 ± 3.6 ng/min/100 ml, p = 0.0002). L-NMMA attenuated FBF (p < 0.0001), but did not inhibit BK-induced t-PA release (nonsignificant). CONCLUSION BK-stimulated t-PA release is partly due to cytochrome P450-derived epoxides and is inhibited by K(+)Ca channel blockade. Thus, BK stimulates both EDHF-dependent vasodilation and t-PA release.
Collapse
Affiliation(s)
- Ayaz M Rahman
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Ga., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
4
|
Korff T, Ernst E, Nobiling R, Feldner A, Reiss Y, Plate KH, Fiedler U, Augustin HG, Hecker M. Angiopoietin-1 mediates inhibition of hypertension-induced release of angiopoietin-2 from endothelial cells. Cardiovasc Res 2012; 94:510-8. [PMID: 22505659 DOI: 10.1093/cvr/cvs124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS Adequate endothelial cell stimulation is a prerequisite for the adaptive remodelling of macro- and microvessels. A pivotal autocrine mechanism following endothelial cell activation is the release of angiopoietin-2 (Ang-2), which subsequently antagonizes the binding of Ang-1 to the Tie-2 receptor, thus sensitizing the endothelial cells to pro-angiogenic and/or pro-inflammatory stimuli. Based on the observation that hypertension in mice reduces the abundance of Ang-2 stored in arterial endothelial cells, this study was aimed at testing the hypothesis that an increase in wall stress (WS) or stretch-a hallmark of hypertension-is sufficient to release Ang-2 from endothelial cells. METHODS AND RESULTS In fact, stretching of isolated perfused mouse arteries or human cultured endothelial cells rapidly elicited an increased release of Ang-2. In the cultured endothelial cells, this was preceded by a transient rise in intracellular free calcium, abrogated through calcium chelation and accompanied by a decrease in Tie-2 phosphorylation. Interestingly, Ang-1 abolished the stretch-induced release of Ang-2 from both cultured and native endothelial cells through inhibiting the stretch-dependent mobilization of intracellular calcium. CONCLUSION Collectively, these results indicate that increased WS or stretch facilitates the release of Ang-2 from endothelial cell Weibel-Palade bodies, and that Ang-1 can block this by attenuating the stretch-mediated rise in intracellular calcium.
Collapse
Affiliation(s)
- Thomas Korff
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gong Y, Wang F, Li X, Gao Z, Zhang K, Fan C, Liu X. Tissue-type plasminogen activator gene targets thrombolysis in atriums. J Thromb Thrombolysis 2010; 30:507-14. [PMID: 20924774 DOI: 10.1007/s11239-010-0523-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our previous investigations showed that retroviral gene transfer of tissue-type plasminogen activator (tPA) effectively targeted thrombolysis in vitro and in the model of inferior caval veins of rabbits. This study is to identify the target thrombolysis of retroviral vector recombinant pLEGFP-N1-tPA transferred into the tissue around the Dacron patch (the same materials making of the ring of mechanical valve) in left atriums of rabbits. 70 Dacron patches were transplanted into the left atriums of 70 New Zealand white rabbits. The rabbits were randomly divided into three groups according to the different handling methods, including local pLEGFP-N1-tPA transferred group (gene therapy group, 30 animals), pLEGFP-N1 transferred group (control group, 20 animals), medium DMEM + 10% neonate calf serum (NCS) injected group (blank control group, 20 animals). Samples of blood, Dacron pieces and left atriums (auricles) wall from half of above in each group were harvested on second day and another half were harvested on 75th day after surgery. The EGFP expression of harvested left atriums (auricles) wall were observed under the confocal. The thrombi on the surface of Dacron patches were detected by stereoscope and electron microscope. The tPA expression in left atriums (auricles) wall and in blood from left atriums were detected by Western blot and their thrombolysis and activities were observed and calculated in plasma plates. ELISA were used to identify the contents of tPA. No thrombus was seen on the surface of Dacron patches that were transplanted in left atriums by tPA locally transferring around them. Activity and content of tPA were high in local tissue of left atrium and in blood of left atrium. It demonstrated effectively thrombolysis by tPA rapidly, efficiently and long expressing. This puts the foundation of mechanical valve replacement model for tPA gene valve, next.
Collapse
Affiliation(s)
- Yongsheng Gong
- Department of Thoracic-cardiovascular Surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou 215008, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Unique secretory dynamics of tissue plasminogen activator and its modulation by plasminogen activator inhibitor-1 in vascular endothelial cells. Blood 2008; 113:470-8. [PMID: 18922856 DOI: 10.1182/blood-2008-03-144279] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the secretory dynamics of tissue plasminogen activator (tPA) in EA.hy926 cells, an established vascular endothelial cell (VEC) line producing GFP-tagged tPA, using total internal reflection-fluorescence (TIR-F) microscopy. tPA-GFP was detected in small granules in EA.hy926 cells, the distribution of which was indistinguishable from intrinsically expressed tPA. Its secretory dynamics were unique, with prolonged (> 5 minutes) retention of the tPA-GFP on the cell surface, appearing as fluorescent spots in two-thirds of the exocytosis events. The rapid disappearance (mostly by 250 ms) of a domain-deletion mutant of tPA-GFP possessing only the signal peptide and catalytic domain indicates that the amino-terminal heavy chain of tPA-GFP is essential for binding to the membrane surface. The addition of PAI-1 dose-dependently facilitated the dissociation of membrane-retained tPA and increased the amounts of tPA-PAI-1 high-molecular-weight complexes in the medium. Accordingly, suppression of PAI-1 synthesis in EA.hy926 cells by siRNA prolonged the dissociation of tPA-GFP, whereas a catalytically inactive mutant of tPA-GFP not forming complexes with PAI-1 remained on the membrane even after PAI-1 treatment. Our results provide new insights into the relationship between exocytosed, membrane-retained tPA and PAI-1, which would modulate cell surface-associated fibrinolytic potential.
Collapse
|
7
|
Welsh P, Whincup PH, Papacosta O, Wannamethee SG, Lennon L, Thomson A, Rumley A, Lowe GDO. Serum matrix metalloproteinase-9 and coronary heart disease: a prospective study in middle-aged men. QJM 2008; 101:785-91. [PMID: 18676684 DOI: 10.1093/qjmed/hcn088] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Matrix metalloproteinase-9 (MMP-9) has a potential role in arterial plaque rupture, but its relation to risk of coronary heart disease (CHD) is uncertain. AIM To determine whether circulating levels of serum MMP-9 are prospectively related to the risk of CHD in the general population. METHODS We measured baseline MMP-9 levels in stored serum samples of subjects in a case-control study nested within a prospective study of 5661 men followed up for 16 years for CHD events (465 cases, 1076 controls). RESULTS MMP-9 values were associated with cigarette smoking, and with several inflammatory and haemostatic markers, but not with age, body mass index, blood pressure or lipid measurements. Men in the top third of baseline MMP-9 levels had an age-adjusted odds ratio (OR) for CHD of 1.37 (95% CI 1.04-1.82) compared with those in the bottom third. Adjustment for conventional risk factors (smoking in particular) reduced the odds ratio to borderline significance: OR 1.28 (95% CI 0.95-1.74), while additional adjustment for two markers of generalized inflammation, interleukin-6 and C-reactive protein, further attenuated the association: OR 1.13 (0.82-1.56). CONCLUSION Serum MMP-9 has a modest association with incident CHD in the general population, which is not independent of cigarette smoking exposure and circulating markers of generalized inflammation. MMP-9 is unlikely to be a clinically useful biomarker of CHD risk, but may still play a role in the pathogenesis of CHD.
Collapse
Affiliation(s)
- P Welsh
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Noubade R, del Rio R, McElvany B, Zachary JF, Millward JM, Wagner DD, Offner H, Blankenhorn EP, Teuscher C. von-Willebrand factor influences blood brain barrier permeability and brain inflammation in experimental allergic encephalomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:892-900. [PMID: 18688020 DOI: 10.2353/ajpath.2008.080001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Weibel-Palade bodies within endothelial cells are secretory granules known to release von Willebrand Factor (VWF), P-selectin, chemokines, and other stored molecules following histamine exposure. Mice with a disrupted VWF gene (VWFKO) have endothelial cells that are deficient in Weibel-Palade bodies. These mice were used to evaluate the role of VWF and/or Weibel-Palade bodies in Bordetella pertussis toxin-induced hypersensitivity to histamine, a subphenotype of experimental allergic encephalomyelitis, the principal autoimmune model of multiple sclerosis. No significant differences in susceptibility to histamine between wild-type and VWFKO mice were detected after 3 days; however, histamine sensitivity persisted significantly longer in VWFKO mice. Correspondingly, encephalomyelitis onset was earlier, disease was more severe, and blood brain barrier (BBB) permeability was significantly increased in VWFKO mice, as compared with wild-type mice. Moreover, inflammation was selectively increased in the brains, but not spinal cords, of VWFKO mice as compared with wild-type mice. Early increases in BBB permeability in VWFKO mice were not due to increased encephalitogenic T-cell activity since BBB permeability did not differ in adjuvant-treated VWFKO mice as compared with littermates immunized with encephalitogenic peptide plus adjuvant. Taken together, these data indicate that VWF and/or Weibel-Palade bodies negatively regulate BBB permeability changes and autoimmune inflammatory lesion formation within the brain elicited by peripheral inflammatory stimuli.
Collapse
Affiliation(s)
- Rajkumar Noubade
- Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fish R, Yang H, Viglino C, Schorer R, Dunoyer-Geindre S, Kruithof E. Fluvastatin inhibits regulated secretion of endothelial cell von Willebrand factor in response to diverse secretagogues. Biochem J 2007; 405:597-604. [PMID: 17472573 PMCID: PMC2267313 DOI: 10.1042/bj20070404] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulated secretion of EC (endothelial cell) vWF (von Willebrand factor) is part of the haemostatic response. It occurs in response to secretagogues that raise intracellular calcium or cAMP. Statins are cholesterol-lowering drugs used for the treatment of cardiovascular disease. We studied the effect of fluvastatin on regulated secretion of vWF from HUVEC (human umbilical-vein ECs). Secretion in response to thrombin, a protease-activated receptor-1 agonist peptide, histamine, forskolin and adrenaline (epinephrine) was inhibited. This inhibition was reversed by mevalonate or geranylgeranyl pyrophosphate, and mimicked by a geranylgeranyl transferase inhibitor, demonstrating that the inhibitory mechanism includes inhibition of protein geranylgeranylation. To investigate this mechanism further, calcium handling and NO (nitric oxide) regulation were studied in fluvastatin-treated HUVEC. Intracellular calcium mobilization did not correlate with vWF secretion. Fluvastatin increased eNOS [endothelial NOS (NO synthase)] expression, but NOS inhibitors failed to reverse the effect of fluvastatin on vWF secretion. Exogenous NO did not inhibit thrombin-induced vWF secretion. Many small GTPases are geranylgeranylated and some are activated by secretagogues. We overexpressed DN (dominant negative) Rho GTPases, RhoA, Rac1 and Cdc42 (cell division cycle 42), in HUVEC. DNCdc42 conferred inhibition of thrombin- and forskolin-induced vWF secretion. We conclude that, via inhibition of protein geranylgeranylation, fluvastatin is a broadspectrum inhibitor of regulated vWF secretion. Geranylgeranylated small GTPases with functional roles in regulated secretion, such as Cdc42, are potential targets for the inhibitory activity of fluvastatin.
Collapse
Affiliation(s)
- Richard J. Fish
- Service of Angiology and Haemostasis, Department of Internal Medicine, Geneva University Hospital, 24 Rue Micheli-du-Crest, CH-1205 Geneva, Switzerland
| | - Hong Yang
- Service of Angiology and Haemostasis, Department of Internal Medicine, Geneva University Hospital, 24 Rue Micheli-du-Crest, CH-1205 Geneva, Switzerland
| | - Christelle Viglino
- Service of Angiology and Haemostasis, Department of Internal Medicine, Geneva University Hospital, 24 Rue Micheli-du-Crest, CH-1205 Geneva, Switzerland
| | - Raoul Schorer
- Service of Angiology and Haemostasis, Department of Internal Medicine, Geneva University Hospital, 24 Rue Micheli-du-Crest, CH-1205 Geneva, Switzerland
| | - Sylvie Dunoyer-Geindre
- Service of Angiology and Haemostasis, Department of Internal Medicine, Geneva University Hospital, 24 Rue Micheli-du-Crest, CH-1205 Geneva, Switzerland
| | - Egbert K. O. Kruithof
- Service of Angiology and Haemostasis, Department of Internal Medicine, Geneva University Hospital, 24 Rue Micheli-du-Crest, CH-1205 Geneva, Switzerland
- To whom correspondence should be addressed (email )
| |
Collapse
|
10
|
Zhou C, Chen H, Lu F, Sellak H, Daigle JA, Alexeyev MF, Xi Y, Ju J, van Mourik JA, Wu S. Cav3.1 (alpha1G) controls von Willebrand factor secretion in rat pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 292:L833-44. [PMID: 17172292 PMCID: PMC3048959 DOI: 10.1152/ajplung.00377.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The T-type Ca2+ channel Cav3.1 subunit is present in pulmonary microvascular endothelial cells (PMVECs), but not in pulmonary artery endothelial cells (PAECs). The present study sought to assess the role of Cav3.1 in thrombin-induced Weibel-Palade body exocytosis and consequent von Willebrand factor (VWF) release. In PMVECs and PAECs transduced with a green fluorescent protein (GFP)-tagged VWF chimera, we examined the real-time dynamics and secretory process of VWF-GFP-containing vesicles in response to thrombin and the cAMP-elevating agent isoproterenol. Whereas thrombin stimulated a progressive decrease in the number of VWF-GFP-containing vesicles in both cell types, isoproterenol only decreased the number of VWF-GFP-containing vesicles in PAECs. In PMVECs, thrombin-induced decrease in the number of VWF-GFP-containing vesicles was nearly abolished by the T-type Ca2+ channel blocker mibefradil as well as by Cav3.1 gene silencing with small hairpin RNA. Expression of recombinant Cav3.1 subunit in PAECs resulted in pronounced increase in thrombin-stimulated Ca2+ entry, which is sensitive to mibefradil. Together, these data indicate that VWF secretion from lung endothelial cells is regulated by two distinct pathways involving Ca2+ or cAMP, and support the hypothesis that activation of Cav3.1 T-type Ca2+ channels in PMVECs provides a unique cytosolic Ca2+ source important for Gq-linked agonist-induced VWF release.
Collapse
Affiliation(s)
- Chun Zhou
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688-0002, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cleator JH, Zhu WQ, Vaughan DE, Hamm HE. Differential regulation of endothelial exocytosis of P-selectin and von Willebrand factor by protease-activated receptors and cAMP. Blood 2005; 107:2736-44. [PMID: 16332977 PMCID: PMC1895372 DOI: 10.1182/blood-2004-07-2698] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thrombin-mediated endothelial-cell release of von Willebrand factor (VWF) and P-selectin functionally links protease-activated receptors (PARs) to thrombosis and inflammation. VWF release can be stimulated by both Ca2+ and cAMP, and, although both VWF and P-selectin are found in Weibel-Palade bodies (WPBs), we found that their release could be differentially regulated. In these studies, human umbilical vein endothelial cells stimulated with cAMP or PAR2-AP led to a delayed release of VWF and significantly less P-selectin release compared with histamine, thrombin, or PAR1-AP. Dose-response studies revealed that PAR2-AP was significantly less efficacious in promoting the release of P-selectin compared with VWF. PAR2-AP-induced robust stimulation of intracellular Ca2+ coupled with a significantly greater inhibitory effect of calcium chelation on release of VWF compared with cell-surface expression of P-selectin, suggests an additional Ca2+-independent pathway involved in release of P-selectin. PAR2-AP failed to increase global cAMP levels; however, inhibition of protein kinase A led to a significant attenuation of PAR2-AP-mediated release of VWF. Confocal microscopy studies revealed that PAR2 and forskolin caused preferential release of a population of Weibel-Palade bodies (WPBs) consisting of only VWF. Thus, WPBs are pharmacologically and morphologically heterogeneous, and distinct granule populations are susceptible to differential regulation.
Collapse
Affiliation(s)
- John H Cleator
- Department of Pharmacology, Vanderbilt University Medical Center, 442 Robinson Research Bldg, 23rd Ave South @ Pierce, Nashville, TN 37232-6600, USA
| | | | | | | |
Collapse
|
12
|
Øynebråten I, Barois N, Hagelsteen K, Johansen FE, Bakke O, Haraldsen G. Characterization of a Novel Chemokine-Containing Storage Granule in Endothelial Cells: Evidence for Preferential Exocytosis Mediated by Protein Kinase A and Diacylglycerol. THE JOURNAL OF IMMUNOLOGY 2005; 175:5358-69. [PMID: 16210642 DOI: 10.4049/jimmunol.175.8.5358] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that several proinflammatory chemokines can be stored in secretory granules of endothelial cells (ECs). Subsequent regulated exocytosis of such chemokines may then enable rapid recruitment of leukocytes to inflammatory sites. Although IL-8/CXCL8 and eotaxin-3/CCL26 are sorted to the rod-shaped Weibel-Palade body (WPB), we found that GROalpha/CXCL1 and MCP-1/CCL2 reside in small granules that, similarly to the WPB, respond to secretagogue stimuli. In the present study, we report that GROalpha and MCP-1 colocalized in 50- to 100-nm granules, which occur throughout the cytoplasm and at the cell cortex. Immunofluorescence confocal microscopy revealed no colocalization with multimerin or tissue plasminogen activator, i.e., proteins that are released from small granules of ECs by regulated exocytosis. Moreover, the GROalpha/MCP-1-containing granules were Rab27-negative, contrasting the Rab27-positive, WPB. The secretagogues PMA, histamine, and forskolin triggered distinct dose and time-dependent responses of GROalpha release. Furthermore, GROalpha release was more sensitive than IL-8 release to inhibitors and activators of PKA and PKC but not to an activator of Epac, a cAMP-regulated GTPase exchange factor, indicating that GROalpha release is regulated by molecular adaptors different from those regulating exocytosis of the WPB. On the basis of these findings, we designated the GROalpha/MCP-1-containing compartment the type 2 granule of regulated secretion in ECs, considering the WPB the type 1 compartment. In conclusion, we propose that the GROalpha/MCP-1-containing type 2 granule shows preferential responsiveness to important mediators of EC activation, pointing to the existence of selective agonists that would allow differential release of selected chemokines.
Collapse
Affiliation(s)
- Inger Øynebråten
- Laboratory for Immunohistochemistry and Immunopathology, University of Oslo and Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
13
|
Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V, Schmidt JM, Kriz W, Thurston G, Augustin HG. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 2004; 103:4150-6. [PMID: 14976056 DOI: 10.1182/blood-2003-10-3685] [Citation(s) in RCA: 549] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The angiopoietins Ang-1 and Ang-2 have been identified as ligands with opposing functions of the receptor tyrosine kinase Tie-2 regulating endothelial cell survival and vascular maturation. Ang-1 acts in a paracrine agonistic manner, whereas Ang-2 appears to act primarily as an autocrine antagonistic regulator. To shed further light on the complexity of autocrine/paracrine agonistic/antagonistic functions of the angiopoietin/Tie-2 system, we have studied Ang-2 synthesis and secretion in different populations of wild-type and retrovirally Ang-2-transduced endothelial cells. Endogenous and overexpressed endothelial cell Ang-2 is expressed in a characteristic granular pattern indicative of a cytoplasmic storage granule. Light and electron microscopic double staining revealed Ang-2 colocalization with von Willebrand factor, identifying Ang-2 as a Weibel-Palade body molecule. Costaining with P-selectin showed that storage of Ang-2 and P-selectin in Weibel-Palade bodies is mutually exclusive. Stored Ang-2 has a long half-life of more than 18 hours and can be secreted within minutes of stimulation (eg, by phorbol 12-myristate 13-acetate [PMA], thrombin, and histamine). Collectively, the identification of Ang-2 as a stored, rapidly available molecule in endothelial cells strongly suggests functions of the angiopoietin/Tie-2 system beyond the established roles during angiogenesis likely to be involved in rapid vascular homeostatic reactions such as inflammation and coagulation.
Collapse
Affiliation(s)
- Ulrike Fiedler
- Department of Vascular Biology and Angiogenesis Research Tumor Biology Center, Breisacher Str 117, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prager GW, Breuss JM, Steurer S, Mihaly J, Binder BR. Vascular endothelial growth factor (VEGF) induces rapid prourokinase (pro-uPA) activation on the surface of endothelial cells. Blood 2004; 103:955-62. [PMID: 14525763 DOI: 10.1182/blood-2003-07-2214] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AbstractVascular endothelial growth factor (VEGF) is the pivotal angiogenic growth factor activating endothelial cells to migrate, proliferate, and form capillary tubes. For an ordered endothelial cell migration, tissue invasion, and degradation of the extracellular matrix, proteolytic machinery is indispensable. Such machinery, suitable for localized proteolysis, is provided by the prourokinase-urokinase-plasmin system. Prourokinase (pro-uPA), the initial component of this system, is, however, synthesized in its inactive precursor form and as such bound to its cellular receptor uPAR. Here we identify a mechanism via which VEGF165 interacting with its receptor VEGFR-2 rapidly induces prourokinase activation that is dependent on a change in integrin affinity, activation of matrix metalloproteinase 2 (MMP-2), and pro-uPA being bound to its surface receptor uPAR. This VEGF-induced pro-uPA activation on endothelial cells is responsible for VEGF-dependent local fibrinolytic activity and might be one of the initial steps in the angiogenic process. (Blood. 2004;103:955-962)
Collapse
Affiliation(s)
- Gerald W Prager
- Department of Vascular Biology and Thrombosis Research, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
15
|
Knop M, Gerke V. Ca2+ -regulated secretion of tissue-type plasminogen activator and von Willebrand factor in human endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:162-7. [PMID: 12445472 DOI: 10.1016/s1570-9639(02)00457-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
von Willebrand factor (vWF) and tissue-type plasminogen activator (tPA) are products of endothelial cells which are secreted into the bloodstream upon a stimulus-induced rise in intracellular Ca(2+). Although the release of both factors appears to be regulated similarly, they exhibit opposing physiological effects in the vasculature with vWF inducing coagulation and platelet aggregation and tPA triggering fibrinolysis and thrombolysis. To analyze possible differences in the regulated secretion of vWF and tPA in more detail, we recorded the Ca(2+)-triggered exocytosis of both factors in cultured human endothelial cells. We demonstrate that vWF and tPA which are stored in different granules within endothelial cells are released with different kinetics following endothelial stimulation with histamine or the Ca(2+) ionophore A23187. While the stimulus-induced release of vWF increases with time over a course of 30 min, maximal acute secretion of tPA is observed 5 min following stimulation and subsequently drops to background levels. In the case of vWF, secretion can also be monitored indirectly through an antibody-reinternalization assay which indicates an incomplete release of vWF during single exocytotic fusion events. Our data thus point to differences in the Ca(2+)-triggered secretion of vWF and tPA which could allow a fine-tuning of their release thereby ensuring a balanced physiological action.
Collapse
Affiliation(s)
- Markus Knop
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, von-Esmarch-Str. 56, Münster, Germany
| | | |
Collapse
|
16
|
Vanhauwe JF, Thomas TO, Minshall RD, Tiruppathi C, Li A, Gilchrist A, Yoon EJ, Malik AB, Hamm HE. Thrombin receptors activate G(o) proteins in endothelial cells to regulate intracellular calcium and cell shape changes. J Biol Chem 2002; 277:34143-9. [PMID: 12039967 DOI: 10.1074/jbc.m204477200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin receptors couple to G(i/o), G(q), and G(12/13) proteins to regulate a variety of signal transduction pathways that underlie the physiological role of endothelial cells in wound healing or inflammation. Whereas the involvement of G(i), G(q), G(12), or G(13) proteins in thrombin signaling has been investigated extensively, the role of G(o) proteins has largely been ignored. To determine whether G(o) proteins could contribute to thrombin-mediated signaling in endothelial cells, we have developed minigenes that encode an 11-amino acid C-terminal peptide of G(o1) proteins. Previously, we have shown that use of the C-terminal minigenes can specifically block receptor activation of G protein families (). In this study, we demonstrate that G(o) proteins are present in human microvascular endothelial cells (HMECs). Moreover, we show that thrombin receptors can stimulate [(35)S]guanosine-5'-O-(3-thio)triphosphate binding to G(o) proteins when co-expressed in Sf9 membranes. The potential coupling of thrombin receptors to G(o) proteins was substantiated by transfection of the G(o1) minigene into HMECs, which led to a blockade of thrombin-stimulated release of [Ca(2+)](i) from intracellular stores. Transfection of the beta-adrenergic kinase C terminus blocked the [Ca(2+)](i) response to the same extent as with G(o1) minigene peptide, suggesting that this G(o)-mediated [Ca(2+)](i) transient was caused by Gbetagamma stimulation of PLCbeta. Transfection of a G(i1/2) minigene had no effect on thrombin-stimulated [Ca(2+)](i) signaling in HMEC, suggesting that Gbetagamma derived from G(o) but not G(i) could activate PLCbeta. The involvement of G(o) proteins on events downstream from calcium signaling was further evidenced by investigating the effect of G(o1) minigenes on thrombin-stimulated stress fiber formation and endothelial barrier permeability. Both of these effects were sensitive to pertussis toxin treatment and could be blocked by transfection of G(o1) minigenes but not G(i1/2) minigenes. We conclude that the G(o) proteins play a role in thrombin signaling distinct from G(i1/2) proteins, which are mediated through their Gbetagamma subunits and involve coupling to calcium signaling and cytoskeletal rearrangements.
Collapse
Affiliation(s)
- Jurgen F Vanhauwe
- Institute for Neuroscience, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
de Wit TR, van Mourik JA. Biosynthesis, processing and secretion of von Willebrand factor: biological implications. Best Pract Res Clin Haematol 2001; 14:241-55. [PMID: 11686098 DOI: 10.1053/beha.2001.0132] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
von Willebrand factor is a multimeric plasma glycoprotein that is required for normal haemostasis. von Willebrand factor is synthesized by endothelial cells and megakaryocytes, and originates from its precursor pro-von Willebrand factor. The endoproteolytic processing of pro-von Willebrand factor results in mature von Willebrand factor and von Willebrand factor propeptide (also known as von Willebrand Ag II). In endothelial cells, the propeptide controls the polymerization and subsequent targeting of von Willebrand factor to the storage vesicles, the so-called Weibel-Palade bodies. Upon stimulation of the endothelial cells, the Weibel-Palade bodies are translocated to the plasma membrane of the cell, and mature von Willebrand factor and its propeptide are co-secreted. After release, these polypeptides have divergent fates and serve different biological functions. Mature von Willebrand factor both controls platelet adhesion and aggregation at sites of vascular injury and acts as a chaperone protein for coagulation factor VIII. The von Willebrand factor propeptide may serve a role in modulating inflammatory processes. This still growing body of information indicates that the biological function of the von Willebrand factor gene product is more diverse than was previously thought.
Collapse
Affiliation(s)
- T R de Wit
- Departments of Plasma Proteins and Blood Coagulation, CLB, Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Martina V, Bruno GA, Zumpano E, Origlia C, Quaranta L, Pescarmona GP. Administration of glutathione in patients with type 2 diabetes mellitus increases the platelet constitutive nitric oxide synthase activity and reduces PAI-1. J Endocrinol Invest 2001; 24:37-41. [PMID: 11227730 DOI: 10.1007/bf03343806] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Several studies suggest that nitric oxide (NO) production is impaired in diabetes mellitus. Reduced levels of NO could contribute to cardiovascular mortality. Furthermore, NO synthesis is impaired in glutathione (GSH)-depleted human umbilical vein endothelial cells and GSH is reduced in patients with type 2 diabetes mellitus (T2DM). We tested the hypothesis that treatment with GSH may improve platelet constitutive NO sinthase (cNOS) activity in patients with T2DM. Fifteen patients with T2DM underwent a treatment with GSH 600 mg/day i.m. for 10 days. With respect to the basal values on the 10th day of treatment, the red blood cell GSH concentration and platelets cNOS increased (1.4+/-0.1 vs 1.9+/-0.1 micromol/10(10) RBC, p<0.001 and 0.7+/-0.1 vs 2.9+/-0.2 fmol x min(-1) x 10(-9) PLTs, p<0.001, respectively) and the plasma PAI-1 levels diminished (81.4+/-3.7 vs 68.7+/-4.0 ng/ml, p<0.002). A negative correlation between the cNOS and the PAI-1 was found on the basal values. After a wash-out of 30 days the values of red blood cell GSH concentration, platelet cNOS activity and PAI-1 Ag returned to the basal levels. These data suggest that the administration of GSH, in patients with T2DM, is able to improve platelet cNOS activity together with a reduction of PAI-1.
Collapse
Affiliation(s)
- V Martina
- Department of Internal Medicine, University of Torino, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The stimulation of regulated exocytosis in vascular endothelial cells (EC) by a variety of naturally occurring agonists contributes to the interrelated processes of inflammation, thrombosis, and fibrinolysis. The Weibel-Palade body (WPB) is a well-described secretory granule in EC that contains both von Willebrand factor (vWF) and P-selectin, but the mechanisms responsible for the targeting of these proteins into this organelle remain poorly understood. Through adenoviral transduction, we have expressed human growth hormone (GH) as a model of regulated secretory protein sorting in EC. Immunofluorescence microscopy of EC infected with GH-containing recombinant adenovirus (GHrAd) demonstrated a granular distribution of GH that colocalized with vWF. In contrast, EC infected with an rAd expressing the IgG1 heavy chain (IG), a constitutively secreted protein, did not demonstrate colocalization of IG and vWF. In response to phorbol ester, GH as well as endogenously synthesized vWF were rapidly released from GHrAd-infected EC. By immunofluorescence microscopy, granular colocalization of GH with endogenous tissue-type plasminogen activator (tPA) was also demonstrated, and most of the tPA colocalized with vWF. These data indicate that EC are capable of selectively targeting heterologous proteins, such as GH, to the regulated secretory pathway, which suggests that EC and neuroendocrine cells share common protein targeting recognition signals or receptors.
Collapse
|
21
|
Mennen LI, Balkau B, Vol S. Tissue-type plasminogen activator antigen and consumption of dairy products. The DESIR study. Data from an Epidemiological Study on Insulin Resistance Syndrome. Thromb Res 1999; 94:381-8. [PMID: 10390133 DOI: 10.1016/s0049-3848(99)00027-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated whether tissue-type plasminogen activator antigen (t-PA-Ag) was associated with intake of meat, fish, or dairy products. The study population comprised 295 women and 299 men aged 30-64 years, which was a random sample from the D.E.S.I.R. (Data from an Epidemiological Study on the Insulin Resistance syndrome) study comprising 5214 men and women in total. T-PA-Ag was measured in fasting blood samples and the habitual intake of foods was assessed by several questions on a food frequency questionnaire. Cross-sectional data were analyzed. The mean t-PA-Ag concentration was 3.28 ng/mL (SD, 1.26) in men and 2.52 ng/mL (SD, 1.22) in women. The concentration of t-PA-Ag was inversely associated with the consumption of milk and milk products in women (p for trend: 0.15) and in men (p for trend: 0.04). The difference between subjects with a low and a high milk consumption was 13% in women and 19% in men. Similar results were observed for consumption of cheese. The concentration of t-PA-Ag was 21 and 8% lower for women and men with a high cheese consumption, respectively, compared to those with a low consumption. Further analyses showed that the association of t-PA-Ag with milk and milk product consumption was independent of cheese consumption and vice versa. No association between meat or fish intake and t-PA-Ag was observed. The results of this study indicate that, if confirmed by others, a high intake of dairy products may influence fibrinolysis by an effect on t-PA-Ag.
Collapse
Affiliation(s)
- L I Mennen
- INSERM Unit 21 and Faculty of Medicine Paris-Sud, Villejuif, France
| | | | | |
Collapse
|
22
|
Carter TD, Zupancic G, Smith SM, Wheeler-Jones C, Ogden D. Membrane capacitance changes induced by thrombin and calcium in single endothelial cells cultured from human umbilical vein. J Physiol 1998; 513 ( Pt 3):845-55. [PMID: 9824722 PMCID: PMC2231308 DOI: 10.1111/j.1469-7793.1998.845ba.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/1998] [Accepted: 09/09/1998] [Indexed: 11/30/2022] Open
Abstract
1. Vesicular secretion from single human umbilical vein endothelial cells (HUVECs) was monitored by changes in membrane capacitance (Cm). Secretion was evoked by dialysis with strongly buffered intracellular free Ca2+ concentrations ([Ca2+]i), flash photolysis of Ca2+-loaded DM-nitrophen or caged InsP3, or by thrombin. [Ca2+]i was monitored spectrofluorimetrically with furaptra. The results show that a large, slowly rising component of vesicular secretion requires prolonged exposure to high [Ca2+]i. 2. Cm increased during intracellular perfusion with [Ca2+] buffered in the range 1.0-20 microM. Changes in Cm comprised an initial slowly rising small component of 0.1-0.5 pF followed by a faster rising larger component of up to approximately 7 pF, seen when [Ca2+]i > 2 microM and which was maximal at 10-20 microM Ca2+. 3. Thrombin evoked rapid initial elevations of [Ca2+]i to a peak of 7.1 +/- 1.5 microM (mean +/- s.e. m., n = 5) that declined within approximately 20-30 s with thrombin present either to resting levels or to a maintained elevated level of 2.0 +/- 0.7 microM (mean +/- s.e.m., range 1.0-3.6 microM, n = 3). Transient [Ca2+]i rises were associated with small, slowly rising increases in Cm of 0.1-0.2 pF, that recovered to pre-application levels over 2-3 min. Maintained elevations of [Ca2+]i caused larger, faster-rising sustained increases in Cm to 1.14 +/- 0.12 pF (mean +/- s.e.m., n = 3). Separate specific enzyme-linked immunosorbent assay (ELISA) showed that 1.0 U ml-1 thrombin produced secretion of von Willebrand factor in HUVEC cultures. 4. Short-lived [Ca2+]i elevations with a peak of 3-25 microM and a duration of approximately 20 s generated by flash photolysis of caged InsP3 or DM-nitrophen produced either no net change in Cm, or small slow increases of approximately 0.1-0.6 pF at up to 5 fF s-1 that recovered to pre-flash levels over 2-3 min. 5. Maintained elevations of [Ca2+]i in the range 1-28 microM produced by flash photolysis of DM-nitrophen caused large increases in Cm, up to approximately 4 pF, corresponding to approximately 25-30 % of the initial cell Cm. The maximum rate of change of Cm was up to 50 fF s-1 at steady [Ca2+] up to 20 microM; Cm recovered towards pre-flash levels only when [Ca2+] had declined.
Collapse
Affiliation(s)
- T D Carter
- National Institute for Medical Research, Mill Hill, London NW7 1AA,,
| | | | | | | | | |
Collapse
|
23
|
Emeis JJ, van den Eijnden-Schrauwen Y, van den Hoogen CM, de Priester W, Westmuckett A, Lupu F. An endothelial storage granule for tissue-type plasminogen activator. J Cell Biol 1997; 139:245-56. [PMID: 9314543 PMCID: PMC2139817 DOI: 10.1083/jcb.139.1.245] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1997] [Revised: 07/11/1997] [Indexed: 02/05/2023] Open
Abstract
In previous studies we have shown that, after stimulation by a receptor ligand such as thrombin, tissue-type plasminogen activator (tPA) and von Willebrand factor (vWf) will be acutely released from human umbilical vein endothelial cells (HUVEC). However, the mechanisms involved in the secretion of these two proteins differ in some respects, suggesting that the two proteins may be stored in different secretory granules. By density gradient centrifugation of rat lung homogenates, a particle was identified that contained nearly all tPA activity and antigen. This particle had an average density of 1.11-1.12 g/ml, both in Nycodenz density gradients and in sucrose density gradients. A similar density distribution of tPA was found for a rat endothelial cell line and for HUVEC. After thrombin stimulation of HUVEC to induce tPA secretion, the amount of tPA present in high-density fractions decreased, concomitant with the release of tPA into the culture medium and a shift in the density distribution of P-selectin. vWf, known to be stored in Weibel-Palade bodies, showed an identical distribution to tPA in Nycodenz gradients. In contrast, the distribution in sucrose gradients of vWf from both rat and human lung was very different from that of tPA, suggesting that tPA and vWf were not present in the same particle. Using double-immunofluorescence staining of HUVEC, tPA- and vWf-containing particles showed a different distribution by confocal microscopy. The distribution of tPA also differed from the distribution of tissue factor pathway inhibitor, endothelin-1, and caveolin. By immunoelectronmicroscopy, immunoreactive tPA could be demonstrated in small vesicles morphologically different from the larger Weibel-Palade bodies. It is concluded that tPA in endothelial cells is stored in a not-previously-described, small and dense (d = 1.11-1.12 g/ml) vesicle, which is different from a Weibel-Palade body.
Collapse
Affiliation(s)
- J J Emeis
- Gaubius Laboratory TNO-PG, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|