1
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Kumar R, Mani AM, Singh NK, Rao GN. PKCθ-JunB axis via upregulation of VEGFR3 expression mediates hypoxia-induced pathological retinal neovascularization. Cell Death Dis 2020; 11:325. [PMID: 32382040 PMCID: PMC7206019 DOI: 10.1038/s41419-020-2522-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Pathological retinal neovascularization is the most common cause of vision loss. PKCθ has been shown to play a role in type 2 diabetes, which is linked to retinal neovascularization. Based on these clues, we have studied the role of PKCθ and its downstream target genes JunB and VEGFR3 in retinal neovascularization using global and tissue-specific knockout mouse models along with molecular biological approaches. Here, we show that vascular endothelial growth factor A (VEGFA) induces PKCθ phosphorylation in human retinal microvascular endothelial cells (HRMVECs) and downregulation of its levels attenuates VEGFA-induced HRMVECs migration, sprouting and tube formation. Furthermore, the whole body deletion of PKCθ or EC-specific deletion of its target gene JunB inhibited hypoxia-induced retinal EC proliferation, tip cell formation and neovascularization. VEGFA also induced VEGFR3 expression via JunB downstream to PKCθ in the regulation of HRMVEC migration, sprouting, and tube formation in vitro and OIR-induced retinal EC proliferation, tip cell formation and neovascularization in vivo. In addition, VEGFA-induced VEGFR3 expression requires VEGFR2 activation upstream to PKCθ-JunB axis both in vitro and in vivo. Depletion of VEGFR2 or VEGFR3 levels attenuated VEGFA-induced HRMVEC migration, sprouting and tube formation in vitro and retinal neovascularization in vivo and it appears that these events were dependent on STAT3 activation. Furthermore, the observations using soluble VEGFR3 indicate that VEGFR3 mediates its effects on retinal neovascularization in a ligand dependent and independent manner downstream to VEGFR2. Together, these observations suggest that PKCθ-dependent JunB-mediated VEGFR3 expression targeting STAT3 activation is required for VEGFA/VEGFR2-induced retinal neovascularization.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
3
|
Chung CC, Lin YK, Chen YC, Kao YH, Lee TI, Chen YJ. Vascular endothelial growth factor enhances profibrotic activities through modulation of calcium homeostasis in human atrial fibroblasts. J Transl Med 2020; 100:285-296. [PMID: 31748680 DOI: 10.1038/s41374-019-0341-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/14/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor (VEGF), a pivotal activator of angiogenesis and calcium (Ca2+) signaling in endothelial cells, was shown to increase collagen production in atrial fibroblasts. In this study, we evaluated whether VEGF may regulate Ca2+ homeostasis in atrial fibroblasts and contribute to its profibrogenesis. Migration, and proliferation analyses, patch-clamp assay, Ca2+ fluorescence imaging, and western blotting were performed using VEGF-treated (300 pg/mL or 1000 pg/mL) human atrial fibroblasts with or without coadministration of Ethylene glycol tetra-acetic acid (EGTA, 1 mmol/L), or KN93 (a Ca2+/calmodulin-dependent protein kinase II [CaMKII] inhibitor, 10 μmol/L). VEGF (1000 pg/mL) increased migration, myofibroblast differentiation, pro-collagen type I, pro-collagen type III production, and phosphorylated VEGF receptor 1 expression of fibroblasts. VEGF (1000 pg/mL) increased the nonselective cation current (INSC) of transient receptor potential (TRP) channels and potassium current of intermediate-conductance Ca2+-activated K+ (KCa3.1) channels thereby upregulating Ca2+ entry. VEGF upregulated phosphorylated ERK expression. An ERK inhibitor (PD98059, 50 μmol/L) attenuated VEGF-activated INSC of TRP channels. The presence of EGTA attenuated the profibrotic effects of VEGF on pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and migratory capabilities of fibroblasts. VEGF upregulated the expression of phosphorylated CaMKII in fibroblasts, which was attenuated by EGTA. In addition, KN93 reduced VEGF-increased pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and the migratory capabilities of fibroblasts. In conclusion, we found that VEGF increases atrial fibroblast activity through CaMKII signaling by enhancing Ca2+ entry. Our findings provide benchside evidence leading to a potential novel strategy targeting atrial myopathy and arrhythmofibrosis.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Shibata M, Nakaizumi A, Puro DG. Electrotonic transmission in the retinal vasculature: inhibitory role of the diabetes/VEGF/aPKC pathway. Physiol Rep 2019; 7:e14095. [PMID: 31087517 PMCID: PMC6513771 DOI: 10.14814/phy2.14095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
The deleterious impact of diabetes on the retina is a leading cause of vision loss. Ultimately, the hypoxic retinopathy caused by diabetes results in irreversible damage to vascular, neuronal, and glial cells. Less understood is how retinal physiology is altered early in the course of diabetes. We recently found that the electrotonic architecture of the retinovasculature becomes fundamentally altered soon after the onset of this disorder. Namely, the spread of voltage through the vascular endothelium is markedly inhibited. The goal of this study was to elucidate how diabetes inhibits electrotonic transmission. We hypothesized that vascular endothelial growth factor (VEGF) may play a role since its upregulation in hypoxic retinopathy is associated with sight-impairing complications. In this study, we quantified voltage transmission between pairs of perforated-patch pipettes sealed onto abluminal cells located on retinal microvascular complexes freshly isolated from diabetic and nondiabetic rats. We report that exposure of diabetic retinal microvessels to an anti-VEGF antibody or to a small-molecule inhibitor of atypical PKCs (aPKC) near-fully restored the efficacy of electrotonic transmission. Furthermore, exposure of nondiabetic microvessels to VEGF mimicked, via a mechanism sensitive to the aPKC inhibitor, the diabetes-induced inhibition of transmission. Thus, activation of the diabetes/VEGF/aPKC pathway switches the retinovasculature from a highly interactive operational unit to a functionally balkanized complex. By delimiting the dissemination of voltage-changing vasomotor inputs, this organizational fragmentation is likely to compromise effective regulation of retinal perfusion. Future pharmacological targeting of the diabetes/VEGF/aPKC pathway may serve to impede progression of vascular dysfunction to irreversible diabetic retinopathy.
Collapse
Affiliation(s)
- Maho Shibata
- Department of Ophthalmology and Visual SciencesUniversity of MichiganAnn ArborMichigan
| | - Atsuko Nakaizumi
- Department of Ophthalmology and Visual SciencesUniversity of MichiganAnn ArborMichigan
| | - Donald G. Puro
- Department of Ophthalmology and Visual SciencesUniversity of MichiganAnn ArborMichigan
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
5
|
Jinesh GG, Manyam GC, Mmeje CO, Baggerly KA, Kamat AM. Surface PD-L1, E-cadherin, CD24, and VEGFR2 as markers of epithelial cancer stem cells associated with rapid tumorigenesis. Sci Rep 2017; 7:9602. [PMID: 28851898 PMCID: PMC5575243 DOI: 10.1038/s41598-017-08796-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer cells require both migratory and tumorigenic property to establish metastatic tumors outside the primary microenvironment. Identifying the characteristic features of migratory cancer stem cells with tumorigenic property is important to predict patient prognosis and combat metastasis. Here we established one epithelial and two mesenchymal cell lines from ascites of a bladder cancer patient (i.e. cells already migrated outside primary tumor). Analyses of these cell lines demonstrated that the epithelial cells with surface expression of PD-L1, E-cadherin, CD24, and VEGFR2 rapidly formed tumors outside the primary tumor microenvironment in nude mice, exhibited signatures of immune evasion, increased stemness, increased calcium signaling, transformation, and novel E-cadherin-RalBP1 interaction. The mesenchymal cells on the other hand, exhibited constitutive TGF-β signaling and were less tumorigenic. Hence, targeting epithelial cancer stem cells with rapid tumorigenesis signatures in future might help to combat metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Chinedu O Mmeje
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Keith A Baggerly
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.
| |
Collapse
|
6
|
|
7
|
Park-Windhol C, D'Amore PA. Disorders of Vascular Permeability. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:251-81. [PMID: 26907525 DOI: 10.1146/annurev-pathol-012615-044506] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endothelial barrier maintains vascular and tissue homeostasis and modulates many physiological processes, such as angiogenesis. Vascular barrier integrity can be disrupted by a variety of soluble permeability factors, and changes in barrier function can exacerbate tissue damage during disease progression. Understanding endothelial barrier function is critical for vascular homeostasis. Many of the signaling pathways promoting vascular permeability can also be triggered during disease, resulting in prolonged or uncontrolled vascular leak. It is believed that recovery of the normal vasculature requires diminishing this hyperpermeable state. Although the molecular mechanisms governing vascular leak have been studied over the last few decades, recent advances have identified new therapeutic targets that have begun to show preclinical and clinical promise. These approaches have been successfully applied to an increasing number of disease conditions. New perspectives regarding how vascular leak impacts the progression of various diseases are highlighted in this review.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Patricia A D'Amore
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
8
|
Desroches-Castan A, Quélard D, Demeunynck M, Constant JF, Dong C, Keramidas M, Coll JL, Barette C, Lafanechère L, Feige JJ. A new chemical inhibitor of angiogenesis and tumorigenesis that targets the VEGF signaling pathway upstream of Ras. Oncotarget 2016; 6:5382-411. [PMID: 25742784 PMCID: PMC4467156 DOI: 10.18632/oncotarget.2979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023] Open
Abstract
The efficacy of anti-angiogenic therapies on cancer patients is limited by the emergence of drug resistance, urging the search for second-generation drugs. In this study, we screened an academic chemical library (DCM, University of Grenoble-Alpes) and identified a leader molecule, COB223, that inhibits endothelial cell migration and proliferation. It inhibits also Lewis lung carcinoma (LLC/2) cell proliferation whereas it does not affect fibroblast proliferation. The anti-angiogenic activity of COB223 was confirmed using several in vitro and in vivo assays. In a mouse LLC/2 tumor model, ip administration of doses as low as 4 mg/kg COB223 efficiently reduced the tumor growth rate. We observed that COB223 inhibits endothelial cell ERK1/2 phosphorylation induced by VEGF, FGF-2 or serum and that it acts downstream of PKC and upstream of Ras. This molecule represents a novel anti-angiogenic and anti-tumorigenic agent with an original mechanism of action that deserves further development as an anti-cancer drug.
Collapse
Affiliation(s)
- Agnès Desroches-Castan
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1036, Biology of Cancer and Infection, Grenoble, F-38054, France.,Univ. Grenoble-Alpes, Department of Chemistry, Biology and Health Sciences, Grenoble, F-38000, France.,Commissariat à l'Energie Atomique (CEA), DSV/iRTSV, Grenoble, F-38054, France
| | - Delphine Quélard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1036, Biology of Cancer and Infection, Grenoble, F-38054, France.,Univ. Grenoble-Alpes, Department of Chemistry, Biology and Health Sciences, Grenoble, F-38000, France.,Commissariat à l'Energie Atomique (CEA), DSV/iRTSV, Grenoble, F-38054, France.,Janssen, Pharmaceutical Companies of Johnson and Johnson, Issy-les-Moulineaux, F-92130, France
| | - Martine Demeunynck
- Univ. Grenoble-Alpes, Department of Chemistry, Biology and Health Sciences, Grenoble, F-38000, France.,Centre National de la Recherche Scientifique (CNRS), UMR 5063, Department of Molecular Pharmacochemistry, Grenoble, F-38041, France
| | - Jean-François Constant
- Univ. Grenoble-Alpes, Department of Chemistry, Biology and Health Sciences, Grenoble, F-38000, France.,Centre National de la Recherche Scientifique (CNRS), UMR 5250, Department of Molecular Chemistry, Grenoble, F-38041, France
| | - Chongling Dong
- Univ. Grenoble-Alpes, Department of Chemistry, Biology and Health Sciences, Grenoble, F-38000, France.,Centre National de la Recherche Scientifique (CNRS), UMR 5250, Department of Molecular Chemistry, Grenoble, F-38041, France
| | - Michelle Keramidas
- Univ. Grenoble-Alpes, Department of Chemistry, Biology and Health Sciences, Grenoble, F-38000, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 823, Albert Bonniot Research Center, La Tronche, F-38700, France
| | - Jean-Luc Coll
- Univ. Grenoble-Alpes, Department of Chemistry, Biology and Health Sciences, Grenoble, F-38000, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 823, Albert Bonniot Research Center, La Tronche, F-38700, France
| | - Caroline Barette
- Univ. Grenoble-Alpes, Department of Chemistry, Biology and Health Sciences, Grenoble, F-38000, France.,Commissariat à l'Energie Atomique (CEA), DSV/iRTSV, Grenoble, F-38054, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1038, Large Scale Biology, Grenoble, F-38054, France
| | - Laurence Lafanechère
- Univ. Grenoble-Alpes, Department of Chemistry, Biology and Health Sciences, Grenoble, F-38000, France.,Commissariat à l'Energie Atomique (CEA), DSV/iRTSV, Grenoble, F-38054, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 823, Albert Bonniot Research Center, La Tronche, F-38700, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1036, Biology of Cancer and Infection, Grenoble, F-38054, France.,Univ. Grenoble-Alpes, Department of Chemistry, Biology and Health Sciences, Grenoble, F-38000, France.,Commissariat à l'Energie Atomique (CEA), DSV/iRTSV, Grenoble, F-38054, France
| |
Collapse
|
9
|
Tang Z, Li S, Han P, Yin J, Gan Y, Liu Q, Wang J, Wang C, Li Y, Shi J. Pertussis toxin reduces calcium influx to protect ischemic stroke in a middle cerebral artery occlusion model. J Neurochem 2015; 135:998-1006. [PMID: 26365274 DOI: 10.1111/jnc.13359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/30/2015] [Accepted: 09/10/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiwei Tang
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
- Department of Neurosurgery; the First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Shiping Li
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
- Department of Neurology; No.2 Hospital of Hebei Medical University; Shijiazhuang China
| | - Pengcheng Han
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
| | - Junxiang Yin
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
| | - Yan Gan
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
| | - Qingwei Liu
- Department of Radiology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
| | - Jinkun Wang
- Department of Neurosurgery; the First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Chongqian Wang
- Department of Neurosurgery; the First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Yu Li
- Department of Neurosurgery; the First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Jiong Shi
- Department of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona USA
| |
Collapse
|
10
|
Liu ZC, Yu EH, Liu W, Liu XC, Tang SB, Zhu BH. Translocation of protein kinase C δ contributes to the moderately high glucose-, but not hypoxia-induced proliferation in primary cultured human retinal endothelial cells. Mol Med Rep 2014; 9:1780-6. [PMID: 24626810 DOI: 10.3892/mmr.2014.2049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/10/2014] [Indexed: 11/05/2022] Open
Abstract
Diabetic retinopathy is one of the most common complications in patients with diabetes and affects ~75% of them within 15 years of the onset of the disease. Activation of protein kinase C (PKC) is a key feature of diabetes mellitus and may be involved in the pathogenesis of diabetic retinopathy. The present study aimed to examine the translocation of protein kinase C (PKC) isoforms, which are triggered by high an moderately high glucose levels as well as hypoxic conditions. The underlying cell mechanisms of PKC translocation in primary cultured human retinal endothelial cells (HRECs) were also investigated. The expression levels of PKC isoforms were assessed using western blot analysis. Cell proliferation was determined using the MTT assay and DNA synthesis was assessed by bromodeoxyuridine incorporation. Translocation of PKC isoforms was examined by western blot analysis and immunofluorescence. The expression of PKC α, βI, βII, δ and ε was detected, while PKC ζ was not detected in HRECs. The results of the present study were consistent with the findings of a previous study by our group, reporting that moderately high glucose levels and hypoxia, but not high glucose levels, significantly increased cell proliferation. It was demonstrated that the PKC δ isoform was translocated from the cytosol to the membrane only under moderately high glucose conditions, while PKC α and ε isoforms were translocated from the cytosol to the membrane at high glucose conditions. In addition, PKC βI was translocated under all three conditions. Translocation of PKC βII was comparable among all groups. Furthermore, rottlerin, an inhibitor of PKC δ, blocked cell proliferation, which was induced by moderately high glucose levels, but not by hypoxia. Ro32-0432, an inhibitor of PKC α, βI and ε, did not significantly affect proliferation of HRECs in all treatment groups. In conclusion, the present study suggested that PKC α, βI, βII, δ and ε were expressed in primary cultured HRECs, whereas PKC ζ was not. Cell proliferation induced by moderately high glucose concentrations was associated with translocation of the PKC δ isoform; however, hypoxic conditions did not induce translocation.
Collapse
Affiliation(s)
- Zhao-Chun Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - En-Hong Yu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao-Chang Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shi-Bo Tang
- Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bang-Hao Zhu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
11
|
Song HB, Jun HO, Kim JH, Yu YS, Kim KW, Kim JH. Suppression of protein kinase C-ζ attenuates vascular leakage via prevention of tight junction protein decrease in diabetic retinopathy. Biochem Biophys Res Commun 2014; 444:63-8. [DOI: 10.1016/j.bbrc.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/07/2014] [Indexed: 01/17/2023]
|
12
|
Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2013; 2:a006502. [PMID: 22762016 DOI: 10.1101/cshperspect.a006502] [Citation(s) in RCA: 610] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vascular endothelial growth factors (VEGFs) are master regulators of vascular development and of blood and lymphatic vessel function during health and disease in the adult. It is therefore important to understand the mechanism of action of this family of five mammalian ligands, which act through three receptor tyrosine kinases (RTKs). In addition, coreceptors like neuropilins (NRPs) and integrins associate with the ligand/receptor signaling complex and modulate the output. Therapeutics to block several of the VEGF signaling components have been developed with the aim to halt blood vessel formation, angiogenesis, in diseases that involve tissue growth and inflammation, such as cancer. In this review, we outline the current information on VEGF signal transduction in relation to blood and lymphatic vessel biology.
Collapse
Affiliation(s)
- Sina Koch
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | | |
Collapse
|
13
|
Angiogenic response of endothelial cells to fibronectin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:131-51. [PMID: 22695843 DOI: 10.1007/978-1-4614-3381-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Abstract
VEGFs (vascular endothelial growth factors) control vascular development during embryogenesis and the function of blood vessels and lymphatic vessels in the adult. There are five related mammalian ligands, which act through three receptor tyrosine kinases. Signalling is modulated through neuropilins, which act as VEGF co-receptors. Heparan sulfate and integrins are also important modulators of VEGF signalling. Therapeutic agents that interfere with VEGF signalling have been developed with the aim of decreasing angiogenesis in diseases that involve tissue growth and inflammation, such as cancer. The present review will outline the current understanding and consequent biology of VEGF receptor signalling.
Collapse
|
15
|
Rothmeier AS, Ischenko I, Joore J, Garczarczyk D, Fürst R, Bruns CJ, Vollmar AM, Zahler S. Investigation of the marine compound spongistatin 1 links the inhibition of PKCalpha translocation to nonmitotic effects of tubulin antagonism in angiogenesis. FASEB J 2008; 23:1127-37. [PMID: 19056838 DOI: 10.1096/fj.08-117127] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aims of the study were to meet the demand of new tubulin antagonists with fewer side effects by characterizing the antiangiogenic properties of the experimental compound spongistatin 1, and to elucidate nonmitotic mechanisms by which tubulin antagonists inhibit angiogenesis. Although tubulin-inhibiting drugs and their antiangiogenic properties have been investigated for a long time, surprisingly little is known about their underlying mechanisms of action. Antiangiogenic effects of spongistatin 1 were investigated in endothelial cells in vitro, including functional cell-based assays, live-cell imaging, and a kinome array, and in the mouse cornea pocket assay in vivo. Spongistatin 1 inhibited angiogenesis at nanomolar concentrations (IC(50): cytotoxicity>50 nM, proliferation 100 pM, migration 1.0 nM, tube formation 1.0 nM, chemotaxis 1.0 nM, aortic ring sprouting 500 pM, neovascularization in vivo 10 microg/kg). Further, a kinome array and validating data showed that spongistatin 1 inhibits the phosphorylation activity of protein kinase Calpha (PKCalpha), an essential kinase in angiogenesis, and its translocation to the membrane. Thus, we conclude that PKCalpha might be an important target for the antiangiogenic effects of tubulin antagonism. In addition, the data from the kinase array suggest that different tubulin antagonists might have individual intracellular actions.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Pharmacy, Center for Drug Research, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lin KY, Fang CL, Uen YH, Chang CC, Lou HY, Hsieh CR, Tiong C, Pan S, Chen SH. Overexpression of protein kinase Calpha mRNA may be an independent prognostic marker for gastric carcinoma. J Surg Oncol 2008; 97:538-43. [PMID: 18314869 DOI: 10.1002/jso.20997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVES The variability of the prognosis of gastric carcinoma drives extensive researches for novel prognostic markers. The aims of this study were to correlate the expression of protein kinase Calpha (PKCalpha) mRNA with clinicopathological parameters and to evaluate the significant value of PKCalpha in gastric carcinoma prognosis. METHODS PKCalpha mRNA levels were analyzed in tumor/non-tumor pairs of gastric tissues from surgical specimens of 41 patients with gastric carcinoma employing quantitative real-time polymerase chain reaction. Expression of PKCalpha in gastric carcinoma was also examined using immunohistochemistry. RESULTS PKCalpha mRNA expression was significantly upregulated in gastric carcinoma (P = 0.007). Overexpression of PKCalpha mRNA was correlated with distant metastasis (P = 0.040). Patients with high PKCalpha mRNA expression had a significantly poorer overall survival compared with patients with low PKCalpha mRNA expression (P = 0.0113). The uni-variate Cox regression analysis showed that high PKCalpha mRNA expression (P = 0.0363) and depth of invasion (P = 0.0443) were two significant prognostic markers for gastric carcinoma. In backward stepwise multi-variate analysis, PKCalpha mRNA overexpression was also proved to be an independent prognostic marker for gastric carcinoma (P = 0.0275). CONCLUSIONS Our results suggest that overexpression of PKCalpha mRNA has correlation with distant metastasis and may be an independent prognostic marker for gastric carcinoma.
Collapse
Affiliation(s)
- Kai-Yuan Lin
- Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu H, Goettsch C, Xia N, Horke S, Morawietz H, Förstermann U, Li H. Differential roles of PKCalpha and PKCepsilon in controlling the gene expression of Nox4 in human endothelial cells. Free Radic Biol Med 2008; 44:1656-67. [PMID: 18291120 DOI: 10.1016/j.freeradbiomed.2008.01.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 11/30/2007] [Accepted: 01/19/2008] [Indexed: 11/22/2022]
Abstract
NADPH oxidases are major sources of superoxide in the vascular wall. This study investigates the role of protein kinase C (PKC) in regulating gene expression of NADPH oxidases. Treatment of human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 endothelial cells with phorbol 12-myristate 13-acetate (PMA) or phorbol 12,13-dibutyrate led to a PKC-dependent biphasic expression of the gp91phox homolog Nox4. A downregulation of Nox4 was observed at 6 h and an upregulation at 48 h after phorbol ester treatment. The early Nox4 downregulation was associated with a reduced superoxide production, whereas the late Nox4 upregulation was accompanied by a clear enhancement of superoxide. PMA activated the PKC isoforms alpha and epsilon in HUVEC and EA.hy 926 cells. Knockdown of PKCepsilon by siRNA prevented the early downregulation of Nox4, whereas knockdown of PKCalpha selectively abolished the late Nox4 upregulation. Vascular endothelial growth factor (VEGF), which activates PKCalpha but not PKCepsilon in HUVEC, increased Nox4 expression without the initial downregulation. VEGF-induced Nox4 upregulation was associated with an enhanced proliferation and angiogenesis of HUVEC. Both effects could be reduced by inhibition of NADPH oxidase. Thus, a selective inhibition/knockdown of PKCalpha may represent a novel therapeutic strategy for vascular disease.
Collapse
Affiliation(s)
- Hui Xu
- Department of Pharmacology, Johannes Gutenberg University, D-55131 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Rask-Madsen C, King GL. Differential regulation of VEGF signaling by PKC-alpha and PKC-epsilon in endothelial cells. Arterioscler Thromb Vasc Biol 2008; 28:919-24. [PMID: 18323518 DOI: 10.1161/atvbaha.108.162842] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF) stimulates proangiogenic signal transduction and cell function in part through activation of protein kinase C (PKC). Our aim was to examine how individual isoforms of PKC affect VEGF action. METHODS AND RESULTS Transfection of bovine aortic endothelial cells with small interfering RNA (siRNA) targeting either PKC-alpha, delta, or epsilon caused a reduction in the cognate PKC protein by 76% to 89% without changing expression of nontargeted isoforms. Downregulation of PKC-epsilon abrogated VEGF-stimulated phosphorylation of Akt at Ser473 and eNOS at Ser1179 and decreased VEGF-stimulated NO synthase activity in intact cells. In contrast, PKC-alpha knockdown increased Akt and eNOS phosphorylation, whereas PKCdelta knockdown had no significant effect. PKC-epsilon knockdown also decreased VEGF-stimulated Erk1/2 phosphorylation and abolished VEGF-stimulated DNA synthesis. Consistent with an effect on several pathways of VEGF signaling, VEGF receptor-2 (VEGFR2) tyrosine phosphorylation and expression of VEGFR2 protein and mRNA was decreased by 81, 90, and 84%, respectively, during knockdown of PKC-epsilon, but increased during PKC-alpha knockdown. CONCLUSIONS By regulating VEGFR2 expression and activation, PKC-epsilon expression is critical for activation of Akt and eNOS by VEGF and contributes to VEGF-stimulated Erk activation, whereas PKC-alpha has opposite effects.
Collapse
Affiliation(s)
- Christian Rask-Madsen
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Mass. 02215, USA
| | | |
Collapse
|
19
|
Lee JW, Park JA, Kim SH, Seo JH, Lim KJ, Jeong JW, Jeong CH, Chun KH, Lee SK, Kwon YG, Kim KW. Protein kinase C-delta regulates the stability of hypoxia-inducible factor-1 alpha under hypoxia. Cancer Sci 2007; 98:1476-81. [PMID: 17608772 PMCID: PMC11160108 DOI: 10.1111/j.1349-7006.2007.00535.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 04/26/2007] [Accepted: 05/02/2007] [Indexed: 11/27/2022] Open
Abstract
Hypoxia is a state of deficiency of available oxygen in the blood and tissues, and it occurs during several pathophysiological processes, including tumorigenesis. Under hypoxia, hypoxia-inducible factor-1 (HIF-1) plays an essential role in cellular oxygen homeostasis. In the present article protein kinase C-delta (PKC-delta) is activated by hypoxia, increases the protein stability and transcriptional activity of HIF-1alpha in human cervical adenocarcinoma cells. Moreover, the knockdown of PKC-delta inhibited vascular endothelial growth factor expression and angiogenic activity under hypoxia. These effects were completely reversed by PKC-delta overexpression following the knockdown of PKC-delta. Collectively, these findings demonstrate the role of PKC-delta as a new regulator of hypoxia-induced angiogenesis.
Collapse
Affiliation(s)
- Ji-Won Lee
- Neurovascular Coordination Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Viji RI, Kumar VBS, Kiran MS, Sudhakaran PR. Angiogenic response of endothelial cells to heparin-binding domain of fibronectin. Int J Biochem Cell Biol 2007; 40:215-26. [PMID: 17766169 DOI: 10.1016/j.biocel.2007.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/29/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Interaction of endothelial cells with cell-binding domain of fibronectin through integrin receptors is important in the process of angiogenesis. The present study was designed to examine the role of heparin-binding domain of fibronectin in angiogenesis using human umbilical vein endothelial cells. Attachment of endothelial cells in vitro to heparin-binding domain of fibronectin was inhibited by heparin. Chick chorioallantoic membrane assay revealed the proangiogenic nature of heparin-binding domain. Analysis by reverse transcription-polymerase chain reaction showed an increase in the expression of vascular endothelial growth factor and its receptor mRNA. Enzyme-linked immunosorbent assay showed a significant increase in the level of vascular endothelial growth factor secreted by cells maintained on heparin-binding domain. Treatment with calphostin C, an inhibitor of protein kinase C, decreased the expression of vascular endothelial growth factor receptor 2. Chick chorioallantoic membrane assay showed that the vascular endothelial growth factor secreted by cells maintained on heparin-binding domain was biologically more active, which appeared to be due to a decrease in its poly-adenosine diphosphate ribosylation. Binding assays showed that heparin-binding domain preferably binds unmodified vascular endothelial growth factor as compared to intact fibronectin. It is concluded that the heparin-binding domain of fibronectin by itself can promote angiogenesis in endothelial cells possibly by interaction with cell surface heparan sulphate proteoglycans involving protein kinase C dependent signaling and making available more active form of vascular endothelial growth factor to the cells.
Collapse
Affiliation(s)
- R I Viji
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581, India.
| | | | | | | |
Collapse
|
21
|
Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 2007; 19:2003-12. [PMID: 17658244 DOI: 10.1016/j.cellsig.2007.05.013] [Citation(s) in RCA: 722] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 05/08/2007] [Indexed: 12/15/2022]
Abstract
Vascular endothelial growth factors (VEGFs) regulate vascular development, angiogenesis and lymphangiogenesis by binding to a number of receptors. VEGFR-1 is required for the recruitment of haematopoietic stem cells and the migration of monocytes and macrophages, VEGFR-2 regulates vascular endothelial function and VEGFR-3 regulates lymphatic endothelial cell function. Over the last decade, considerable progress has been made in delineating the VEGFR-2 specific intracellular signalling cascades leading to proliferation, migration, survival and increased permeability, each of which contributes to the angiogenic response. Furthermore, therapeutic inhibition of VEGFR-2 action is now having an impact in the clinic for the treatment of a number of diseases.
Collapse
Affiliation(s)
- Katherine Holmes
- North West Cancer Research Fund Institute, School of Biological Sciences, College of Natural Sciences, University of Wales, Bangor, UK
| | | | | | | |
Collapse
|
22
|
Abstract
Almost three decades after the discovery of protein kinase C (PKC), we still have only a partial understanding of how this family of serine/threonine kinases is involved in tumour promotion. PKC isozymes - effectors of diacylglycerol (DAG) and the main targets of phorbol-ester tumour promoters - have important roles in cell-cycle regulation, cellular survival, malignant transformation and apoptosis. How do PKC isozymes regulate these diverse cellular processes and what are their contributions to carcinogenesis? Moreover, what is the contribution of all phorbol-ester effectors, which include PKCs and small G-protein regulators? We now face the challenge of dissecting the relative contribution of each DAG signal to cancer progression.
Collapse
Affiliation(s)
- Erin M Griner
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | |
Collapse
|
23
|
Inhibitory effects of polymyxin B on NF-κB activation and expression of procollagen I, III in pre-eclamptic umbilical artery smooth muscle cells. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200603010-00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
24
|
Pan SL, Guh JH, Peng CY, Wang SW, Chang YL, Cheng FC, Chang JH, Kuo SC, Lee FY, Teng CM. YC-1 [3-(5′-Hydroxymethyl-2′-furyl)-1-benzyl Indazole] Inhibits Endothelial Cell Functions Induced by Angiogenic Factors in Vitro and Angiogenesis in Vivo Models. J Pharmacol Exp Ther 2005; 314:35-42. [PMID: 15784655 DOI: 10.1124/jpet.105.085126] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiogenesis is a process that involves endothelial cell proliferation, migration, invasion, and tube formation, and inhibition of these processes has implications for angiogenesis-mediated disorders. The purpose of this study was to evaluate the antiangiogenic efficacy of YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole] in well characterized in vitro and in vivo systems. YC-1 inhibited the ability of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in a dose-dependent manner to induce proliferation, migration, and tube formation in human umbilical vascular endothelial cells; these outcomes were evaluated using [3H]thymidine incorporation, transwell chamber, and Matrigel-coated slide assays, respectively. YC-1 inhibited VEGF- and bFGF-induced p42/p44 mitogen-activated protein kinase and Akt phosphorylation as well as protein kinase C alpha translocation using Western blot analysis. The effect of YC-1 on angiogenesis in vivo was evaluated using the mouse Matrigel implant model. YC-1 administered orally in doses of 1 to 100 mg/kg/day inhibited VEGF- and bFGF-induced neovascularization in a dose-dependent manner over 7 days. These results indicate that YC-1 has antiangiogenic activity at very low doses. Moreover, in transplantable murine tumor models, YC-1 administered orally displayed a high degree of antitumor activity (treatment-to-control life span ratio > 175%) without cytotoxicity. YC-1 may be useful for treating angiogenesis-dependent human diseases such as cancer.
Collapse
Affiliation(s)
- Shiow-Lin Pan
- Pharmacological Institute, College of Medicine, National Taiwan University, 1 Jen-Ai Road, Section 1, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ghosh F, Gjörloff K. Protein kinase C expression in the rabbit retina after laser photocoagulation. Graefes Arch Clin Exp Ophthalmol 2005; 243:803-10. [PMID: 15778843 DOI: 10.1007/s00417-004-1112-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 12/03/2004] [Accepted: 12/04/2004] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Laser photocoagulation is a well-established treatment for diabetic retinopathy but the mechanism behind its effectiveness has not been elucidated. The protein kinase C (PKC) family is a group of enzymes which has been the subject of extensive interest in clinically related research since the advent of its role in the pathogenesis of diabetic retinopathy. With this study we wanted to explore whether PKC expression is altered in the retina after laser photocoagulation. METHODS Normal rabbit eyes were treated with laser photocoagulation of varying intensity and examined after 30 min to 7 weeks. Treated and untreated regions of the retina were investigated histologically with the MC5 monoclonal antibody against PKC. Labeling for glial fibrillary acidic protein (GFAP), as well as hematoxylin and eosin (H&E) staining was also performed to assess the laser-induced trauma. RESULTS In the normal retina, the MC5 antibody labeled rod bipolar cells and photoreceptor outer segments corresponding to PKC alpha. A translocated PKC expression with labeling concentrated in the rod bipolar terminals was seen in specimens examined 30 min after laser treatment, and after 1 week, no expression was seen in any part of the retina. After 2 weeks, PKC expression again indicated a translocated labeling pattern. After 5 weeks, labeling was found only in rod bipolar terminals in the peripheral retina. When comparing high- and low-intensity laser treatment 7 weeks postoperatively, no labeling was found in the high intensity-treated retinas, whereas low intensity-treated eyes displayed a near-normal labeling pattern. H&E staining revealed focal neuroretinal edema immediately after laser treatment, also in untreated areas. At later stages, destruction of the outer nuclear layer and migration of pigment epithelial cells in laser-lesioned areas was seen. GFAP-labeled Müller cells were seen 1 week postoperatively in the entire retina. Labeling after this time decreased, but was still present in laser spots after 5 and 7 weeks. CONCLUSIONS Laser photocoagulation alters the expression of PKC in the entire normal rabbit retina. The response follows a temporal pattern and is also related to laser intensity. These findings may help to explain the high efficacy of laser treatment in diabetic retinopathy.
Collapse
Affiliation(s)
- Fredrik Ghosh
- Department of Ophthalmology, Lund University Hospital, 22185 Lund, Sweden.
| | | |
Collapse
|
26
|
Shimizu K, Watanabe K, Yamashita H, Abe M, Yoshimatsu H, Ohta H, Sonoda H, Sato Y. Gene regulation of a novel angiogenesis inhibitor, vasohibin, in endothelial cells. Biochem Biophys Res Commun 2005; 327:700-6. [PMID: 15649403 DOI: 10.1016/j.bbrc.2004.12.073] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Indexed: 11/23/2022]
Abstract
We recently reported that vasohibin is a negative feedback regulator of angiogenesis, and it is specifically expressed in endothelial cells. Here, we characterize the regulation of vasohibin expression. Two possible splicing variants were found, and the longer isoform was preferentially expressed. VEGF induced the expression of vasohibin, and this induction was abrogated by anti-VEGFR2 mAb but not by anti-VEGFR1 mAb. Pharmacological analysis revealed that the downstream targets of VEGFR2 were PKCs, especially PKCdelta. Actinomycin D did not alter the kinetics of vasohibin mRNA induction upon VEGF treatment, whereas cycloheximide completely abolished its induction. We tested the effect of various inflammatory cytokines on vasohibin expression. TNFalpha, IL1 and IFNgamma decreased VEGF-stimulated vasohibin expression. Actinomycin D did not alter the kinetics of vasohibin mRNA induction upon TNFalpha treatment. These results indicate that the expression of vasohibin in endothelial cells is regulated either positively or negatively by certain factors at the transcriptional level.
Collapse
Affiliation(s)
- Kazue Shimizu
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kuriyama M, Taniguchi T, Shirai Y, Sasaki A, Yoshimura A, Saito N. Activation and translocation of PKCdelta is necessary for VEGF-induced ERK activation through KDR in HEK293T cells. Biochem Biophys Res Commun 2005; 325:843-51. [PMID: 15541367 DOI: 10.1016/j.bbrc.2004.10.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Indexed: 11/24/2022]
Abstract
VEGF-KDR/Flk-1 signal utilizes the phospholipase C-gamma-protein kinase C (PKC)-Raf-MEK-ERK pathway as the major signaling pathway to induce gene expression and cPLA2 phosphorylation. However, the spatio-temporal activation of a specific PKC isoform induced by VEGF-KDR signal has not been clarified. We used HEK293T (human embryonic kidney) cells expressing transiently KDR to examine the activation mechanism of PKC. PKC specific inhibitors and human PKCdelta knock-down using siRNA method showed that PKCdelta played an important role in VEGF-KDR-induced ERK activation. Myristoylated alanine-rich C-kinase substrate (MARCKS) translocates from the plasma membrane to the cytoplasm depending upon phosphorylation by PKC. Translocation of MARCKS-GFP induced by VEGF-KDR stimulus was blocked by rottlerin, a PKCdelta specific inhibitor, or human PKCdelta siRNA. VEGF-KDR stimulation did not induce ERK phosphorylation in human PKCdelta-knockdown HEK293T cells, but co-expression of rat PKCdelta-GFP recovered the ERK phosphorylation. Y311/332F mutant of rat PKCdelta-GFP which cannot be activated by tyrosine-phosphorylation but activated by DAG recovered the ERK phosphorylation, while C1B-deletion mutant of rat PKCdelta-GFP, which can be activated by tyrosine-phosphorylation but not by DAG, failed to recover the ERK phosphorylation in human PKCdelta-knockdown HEK293T cell. These results indicate that PKCdelta is involved in VEGF-KDR-induced ERK activation via C1B domain.
Collapse
Affiliation(s)
- Masamitsu Kuriyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Ian Zachary
- Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
29
|
Sulpice E, Contreres JO, Lacour J, Bryckaert M, Tobelem G. Platelet factor 4 disrupts the intracellular signalling cascade induced by vascular endothelial growth factor by both KDR dependent and independent mechanisms. ACTA ACUST UNITED AC 2004; 271:3310-8. [PMID: 15291808 DOI: 10.1111/j.1432-1033.2004.04263.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanism by which the CXC chemokine platelet factor 4 (PF-4) inhibits endothelial cell proliferation is unclear. The heparin-binding domains of PF-4 have been reported to prevent vascular endothelial growth factor 165 (VEGF(165)) and fibroblast growth factor 2 (FGF2) from interacting with their receptors. However, other studies have suggested that PF-4 acts via heparin-binding independent interactions. Here, we compared the effects of PF-4 on the signalling events involved in the proliferation induced by VEGF(165), which binds heparin, and by VEGF(121), which does not. Activation of the VEGF receptor, KDR, and phospholipase Cgamma (PLCgamma) was unaffected in conditions in which PF-4 inhibited VEGF(121)-induced DNA synthesis. In contrast, VEGF(165)-induced phosphorylation of KDR and PLCgamma was partially inhibited by PF-4. These observations are consistent with PF-4 affecting the binding of VEGF(165), but not that of VEGF(121), to KDR. PF-4 also strongly inhibited the VEGF(165)- and VEGF(121)-induced mitogen-activated protein (MAP) kinase signalling pathways comprising Raf1, MEK1/2 and ERK1/2: for VEGF(165) it interacts directly or upstream from Raf1; for VEGF(121), it acts downstream from PLCgamma. Finally, the mechanism by which PF-4 may inhibit the endothelial cell proliferation induced by both VEGF(121) and VEGF(165), involving disruption of the MAP kinase signalling pathway downstream from KDR did not seem to involve CXCR3B activation.
Collapse
Affiliation(s)
- Eric Sulpice
- Institut des Vaisseaux et du Sang, Paris, France.
| | | | | | | | | |
Collapse
|
30
|
Mason JC, Steinberg R, Lidington EA, Kinderlerer AR, Ohba M, Haskard DO. Decay-accelerating factor induction on vascular endothelium by vascular endothelial growth factor (VEGF) is mediated via a VEGF receptor-2 (VEGF-R2)- and protein kinase C-alpha/epsilon (PKCalpha/epsilon)-dependent cytoprotective signaling pathway and is inhibited by cyclosporin A. J Biol Chem 2004; 279:41611-8. [PMID: 15284224 DOI: 10.1074/jbc.m407981200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decay-accelerating factor (DAF), a membrane-bound complement regulatory protein, is up-regulated on endothelial cells (ECs) following treatment with vascular endothelial growth factor (VEGF), providing enhanced protection from complement-mediated injury. We explored the signaling pathways involved in this response. Incubation of human umbilical vein ECs with VEGF induced a 3-fold increase in DAF expression. Inhibition by flk-1 kinase inhibitor SU1498 and failure of placental growth factor (PlGF) to up-regulate DAF confirmed the role of VEGF-R2. The response was also blocked by pretreatment with phospholipase C-gamma (PLCgamma) inhibitor U71322 and protein kinase C (PKC) antagonist GF109203X. In contrast, no effect was seen with nitric oxide synthase inhibitor N(G)-monomethyl-l-arginine (l-NMMA). Use of PKC agonists and isozyme-specific pseudosubstrate peptide antagonists suggested a role for PKCalpha and -epsilon in VEGF-mediated DAF up-regulation. This was confirmed by transfection of ECs with PKCalpha and -epsilon dominant-negative constructs, which in combination completely abrogated induction of DAF by VEGF. In contrast, LY290042, a phosphoinositide 3-kinase (PI3K) inhibitor, significantly augmented DAF expression, suggesting a negative regulatory role for phosphoinositide 3-kinase. The widely used immunosuppressive drug cyclosporin A (CsA) inhibited DAF induction by VEGF in a dose-dependent manner. The VEGF-induced DAF expression was functionally effective, significantly reducing complement-mediated EC lysis, and this cytoprotective effect was reversed by CsA. These data provide evidence for a VEGF-R2-, phospholipase C-gamma-, and PKCalpha/epsilon-mediated cytoprotective pathway in ECs. This may represent an important mechanism for the maintenance of vascular integrity during chronic inflammation involving complement activation. Moreover, inhibition of this pathway by CsA may play a role in CsA-mediated vascular injury.
Collapse
Affiliation(s)
- Justin C Mason
- British Heart Foundation Cardiovascular Medicine Unit, Eric Bywaters Center, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
31
|
Baldanzi G, Mitola S, Cutrupi S, Filigheddu N, van Blitterswijk WJ, Sinigaglia F, Bussolino F, Graziani A. Activation of diacylglycerol kinase α is required for VEGF-induced angiogenic signaling in vitro. Oncogene 2004; 23:4828-38. [PMID: 15122338 DOI: 10.1038/sj.onc.1207633] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vascular endothelial growth factor-A (VEGF-A) promotes angiogenesis by stimulating migration, proliferation and organization of endothelium, through the activation of signaling pathways involving Src tyrosine kinase. As we had previously shown that Src-mediated activation of diacylglycerol kinase-alpha (Dgk-alpha) is required for hepatocytes growth factor-stimulated cell migration, we asked whether Dgk-alpha is involved in the transduction of angiogenic signaling. In PAE-KDR cells, an endothelial-derived cell line expressing VEGFR-2, VEGF-A165, stimulates the enzymatic activity of Dgk-alpha: activation is inhibited by R59949, an isoform-specific Dgk inhibitor, and is dependent on Src tyrosine kinase, with which Dgk-alpha forms a complex. Conversely in HUVEC, VEGF-A165-induced activation of Dgk is only partially sensitive to R59949, suggesting that also other isoforms may be activated, albeit still dependent on Src tyrosine kinase. Specific inhibition of Dgk-alpha, obtained in both cells by R59949 and in PAE-KDR by expression of Dgk-alpha dominant-negative mutant, impairs VEGF-A165-dependent chemotaxis, proliferation and in vitro angiogenesis. In addition, in HUVEC, specific downregulation of Dgk-alpha by siRNA impairs in vitro angiogenesis on matrigel, further suggesting the requirement for Dgk-alpha in angiogenic signaling in HUVEC. Thus, we propose that activation of Dgk-alpha generates a signal essential for both proliferative and migratory response to VEGF-A165, suggesting that it may constitute a novel pharmacological target for angiogenesis control.
Collapse
Affiliation(s)
- Gianluca Baldanzi
- Department of Medical Sciences, University Amedeo Avogadro of Piemonte Orientale, v. Solaroli 17, 28100, Novara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hussain MM, Kotz H, Minasian L, Premkumar A, Sarosy G, Reed E, Zhai S, Steinberg SM, Raggio M, Oliver VK, Figg WD, Kohn EC. Phase II trial of carboxyamidotriazole in patients with relapsed epithelial ovarian cancer. J Clin Oncol 2004; 21:4356-63. [PMID: 14645425 DOI: 10.1200/jco.2003.04.136] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Carboxyamidotriazole (CAI) is a cytostatic inhibitor of nonvoltage-operated calcium channels and calcium channel-mediated signaling pathways. It inhibits angiogenesis, tumor growth, invasion, and metastasis. We hypothesized that CAI would promote disease stabilization lasting >/= 6 months in patients with relapsed ovarian cancer. PATIENTS AND METHODS Patients with epithelial ovarian cancer, good end-organ function, measurable disease, and three or fewer prior regimens were eligible. Oral CAI was given daily using a pharmacokinetic-dosing approach to maintain plasma concentrations between 2 and 4 microg/mL. Radiographic imaging to assess response was performed every 8 weeks. Positive outcome included stabilization or improvement of disease lasting >/= 6 months. Plasma vascular endothelial growth factor (VEGF), interleukin (IL)-8, and matrix metalloproteinase (MMP)-2 were measured. RESULTS Thirty-six patients were assessable for primary end point analysis, and 38 were assessable for toxicity. Forty-four percent of patients had three prior regimens, more than 50% had four or more disease sites, and 48% had liver metastases. Thirty-three patients reached the targeted concentration range during the first cycle. Eleven patients (31%) attained the >/= 6-month outcome end point, with one partial response (8 months) and three minor responses (8, 12+, and 13 months). Median time to progression was 3.6 months (range, 1.6 to 13.3 months). CAI was well tolerated, with mostly grade 1 to 2 toxicity. Grade 3 events included fatigue (5%), vomiting (2%), neutropenic fever (2%), and neutropenia (2%). There were no grade 4 adverse events. No associations between VEGF, IL-8, and MMP-2 with CAI concentration or clinical outcome were observed. CONCLUSION CAI is a potential agent for additional study in the stabilization of relapsed ovarian cancer. Given a limited toxicity profile, it may have utility as a maintenance therapeutic agent for this disease.
Collapse
MESH Headings
- Administration, Oral
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/therapeutic use
- Biomarkers/analysis
- Calcium Channel Blockers/adverse effects
- Calcium Channel Blockers/pharmacokinetics
- Calcium Channel Blockers/therapeutic use
- Carcinoma, Endometrioid/drug therapy
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Papillary/drug therapy
- Carcinoma, Papillary/metabolism
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/metabolism
- Female
- Humans
- Middle Aged
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/metabolism
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Salvage Therapy
- Survival Rate
- Treatment Outcome
- Triazoles/adverse effects
- Triazoles/pharmacokinetics
- Triazoles/therapeutic use
Collapse
Affiliation(s)
- Mahrukh M Hussain
- Medical Oncology Clinical Research Unit, Medical Ovarian Cancer Clinic and Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1500, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kunigal S, Kusch A, Tkachuk N, Tkachuk S, Jerke U, Haller H, Dumler I. Monocyte-expressed urokinase inhibits vascular smooth muscle cell growth by activating Stat1. Blood 2003; 102:4377-83. [PMID: 12920039 DOI: 10.1182/blood-2002-12-3872] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After vascular injury, a remodeling process occurs that features leukocyte migration and infiltration. Loss of endothelial integrity allows the leukocytes to interact with vascular smooth muscle cells (VSMCs) and to elicit "marching orders"; however, the signaling processes are poorly understood. We found that human monocytes inhibit VSMC proliferation and induce a migratory potential. The monocytes signal the VSMCs through the urokinase-type plasminogen activator (uPA). The VSMC uPA receptor (uPAR) receives the signal and activates the transcription factor Stat1 that, in turn, mediates the antiproliferative effects. These results provide the first evidence that monocytes signal VSMCs by mechanisms involving the fibrinolytic system, and they imply an important link between the uPA/uPAR-related signaling machinery and human vascular disease.
Collapse
MESH Headings
- Animals
- Cell Division
- Cell Movement
- Cells, Cultured
- Coculture Techniques
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Humans
- Interferon-gamma/pharmacology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Monocytes/enzymology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Urokinase Plasminogen Activator
- STAT1 Transcription Factor
- Signal Transduction
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription, Genetic
- Urokinase-Type Plasminogen Activator/deficiency
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/physiology
Collapse
Affiliation(s)
- Sateesh Kunigal
- Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Oliver VK, Patton AM, Desai S, Lorang D, Libutti SK, Kohn EC. Regulation of the pro-angiogenic microenvironment by carboxyamido-triazole. J Cell Physiol 2003; 197:139-48. [PMID: 12942550 DOI: 10.1002/jcp.10350] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Anti-angiogenic agents regulate tumor growth by inhibiting endothelial cell proliferation and invasion. Carboxyamido-triazole (CAI), an inhibitor of non-voltage-operated calcium entry and calcium influx-mediated pathways, has angiogenesis and invasion inhibitory activity. We hypothesized that CAI may express its anti-angiogenic effects through negative regulation of pro-angiogenic cytokine production and/or function. In vivo, orally administered CAI prevented A2058 human melanoma xenograft growth and concomitantly resulted in a marked reduction in circulating vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8). In vitro, A2058 cell secretion of VEGF was inhibited by CAI treatment under limiting micronutrient conditions that approximate the tumor microenvironment, media restriction, and acidification to pH 6.8 (P=0.0003 and P=0.0006, respectively). VEGF and HIF-1alpha message and protein were also reduced by CAI treatment. Oral CAI treatment reduced vascular ingrowth in vivo into VEGF-containing Matrigel plugs. Commensurate with those findings, human umbilical vein endothelial cell (HUVEC) migration towards VEGF was reduced below background by exposure to CAI in the migration chamber (P<0.0001). An 88% reduction in circulating IL-8 concentration was measured in CAI-treated animals. However, IL-8 protein secretion and gene expression were increased by CAI treatment in culture (P< or =0.01), where CAI caused a dose-dependent acidification of the culture milieu (P< or =0.005). This paradox suggests that IL-8 production in vitro may be more sensitive to ambient pH than cytosolic calcium. These observations suggest that CAI inhibition of tumor cell VEGF production and endothelial cell response to VEGF results in disruption of signaling between the tumor and its microenvironment, causing a net anti-angiogenic effect.
Collapse
Affiliation(s)
- Vyta Kulpa Oliver
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-1500, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kim YB, Kotani K, Ciaraldi TP, Henry RR, Kahn BB. Insulin-stimulated protein kinase C lambda/zeta activity is reduced in skeletal muscle of humans with obesity and type 2 diabetes: reversal with weight reduction. Diabetes 2003; 52:1935-42. [PMID: 12882908 DOI: 10.2337/diabetes.52.8.1935] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In humans with obesity or type 2 diabetes, insulin target tissues are resistant to many actions of insulin. The atypical protein kinase C (PKC) isoforms lambda and zeta are downstream of phosphatidylinositol-3 kinase (PI3K) and are required for maximal insulin stimulation of glucose uptake. Phosphoinositide-dependent protein kinase-1 (PDK-1), also downstream of PI3K, mediates activation of atypical PKC isoforms and Akt. To determine whether impaired PKClambda/zeta or PDK-1 activation plays a role in the pathogenesis of insulin resistance, we measured the activities of PKClambda/zeta and PDK-1 in vastus lateralis muscle of lean, obese, and obese/type 2 diabetic humans. Biopsies were taken after an overnight fast and after a 3-h hyperinsulinemic-euglycemic clamp. Obese subjects were also studied after weight loss on a very-low-calorie diet. Insulin-stimulated glucose disposal rate is reduced 26% in obese subjects and 62% in diabetic subjects (both comparisons P < 0.001). Insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation and PI3K activity are impaired 40-50% in diabetic subjects compared with lean or obese subjects. Insulin stimulates PKClambda/zeta activity approximately 2.3-fold in lean subjects; the increment above basal is reduced 57% in obese and 65% in diabetic subjects. PKClambda/zeta protein amount is decreased 46% in diabetic subjects but is normal in obese nondiabetic subjects, indicating impaired insulin action on PKClambda/zeta. Importantly, weight loss in obese subjects normalizes PKClambda/zeta activation and increases IRS-1 phosphorylation and PI3K activity. Insulin also stimulates PDK-1 activity approximately twofold with no impairment in obese or diabetic subjects. In contrast to our previous data on Akt, reduced insulin-stimulated PKClambda/zeta activity could play a role in the pathogenesis of insulin resistance in muscle of obese and type 2 diabetic subjects.
Collapse
Affiliation(s)
- Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
36
|
Brückener KE, el Bayâ A, Galla HJ, Schmidt MA. Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP. J Cell Sci 2003; 116:1837-46. [PMID: 12665564 DOI: 10.1242/jcs.00378] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory tract infections caused by Bordetella pertussis are occasionally accompanied by severe neurologic disorders and encephalopathies. For these sequelae to occur the integrity of cerebral barriers needs to be compromised. The influence of pertussis toxin, a decisive virulence factor in the pathogenesis of pertussis disease, on barrier integrity was investigated in model systems for blood-liquor (epithelial) and blood-brain (endothelial) barriers. While pertussis toxin did not influence the barrier function in Plexus chorioideus model systems, the integrity of cerebral endothelial monolayers was severely compromised. Cellular intoxication by pertussis toxin proceeds via ADP-ribosylation of alpha-G(i) proteins, which not only interferes with the homeostatic inhibitory regulation of adenylate cyclase stimulation but also results in a modulation of the membrane receptor coupling. Increasing intra-endothelial cAMP levels by employing cholera toxin or forskolin even inhibited the pertussis toxin-induced permeabilization of endothelial barriers. Therefore, pertussis-toxin-induced permeabilization has to be mediated via a cAMP-independent pathway. To investigate potential signalling pathways we employed several well established cellular drugs activating or inhibiting central effectors of signal transduction pathways, such as phosphatidylinositol 3-kinase, adenylate cyclase, phospholipase C, myosin light chain kinase and protein kinase C. Only inhibitors and activators of protein kinase C and phosphatidylinositol 3-kinase affected the pertussis toxin-induced permeability. In summary, we conclude that permeabilization of cerebral endothelial monolayers by pertussis toxin does not depend on elevated cAMP levels and proceeds via the phosphokinase C pathway.
Collapse
Affiliation(s)
- Kerstin E Brückener
- Institut für Infektiologie - Zentrum für Molekularbiologie der Entzündung (ZMBE), Universitätsklinikum Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | | | | | | |
Collapse
|
37
|
Minami T, Abid MR, Zhang J, King G, Kodama T, Aird WC. Thrombin stimulation of vascular adhesion molecule-1 in endothelial cells is mediated by protein kinase C (PKC)-delta-NF-kappa B and PKC-zeta-GATA signaling pathways. J Biol Chem 2003; 278:6976-84. [PMID: 12493764 DOI: 10.1074/jbc.m208974200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We recently demonstrated that thrombin induces the expression of vascular adhesion molecule-1 (VCAM-1) in endothelial cells by an NF-kappaB- and GATA-dependent mechanism. In the present study, we describe the signaling pathways that mediate this response. Thrombin stimulation of the VCAM-1 gene and promoter in human umbilical vein endothelial cells was inhibited by preincubation with the phosphatidylinositol 3-kinase inhibitor, LY294002, the protein kinase C (PKC)-delta inhibitor, rottlerin, a PKC-zeta peptide inhibitor, or by overexpression of dominant negative (DN)-PKC-zeta. In electrophoretic mobility shift assays, thrombin-mediated induction of NF-kappaB p65 binding to two NF-kappaB motifs in the upstream promoter region of VCAM-1 was blocked by LY294002 and rottlerin, whereas the inducible binding of GATA-2 to a tandem GATA motif was inhibited by LY294002 and the PKC-zeta peptide inhibitor. In co-transfection assays, thrombin stimulation of a minimal promoter containing multimerized VCAM-1 NF-kappaB sites was inhibited by DN-PKC-delta but not DN-PKC-zeta. In contrast, thrombin-mediated transactivation of a minimal promoter containing tandem VCAM-1 GATA motifs was inhibited by DN-PKC-zeta but not DN-PKC-delta. Finally, thrombin failed to induce VCAM-1 expression in vascular smooth muscle cells. Taken together, these data suggest that the endothelial cell-specific effect of thrombin on VCAM-1 expression involves the coordinate activity of PKC-delta-NF-kappaB and PKC-zeta-GATA signaling pathways.
Collapse
Affiliation(s)
- Takashi Minami
- Department of Molecular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
38
|
Shu X, Wu W, Mosteller RD, Broek D. Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 2002; 22:7758-68. [PMID: 12391145 PMCID: PMC134718 DOI: 10.1128/mcb.22.22.7758-7768.2002] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) signaling is critical to the processes of angiogenesis and tumor growth. Here, evidence is presented for VEGF stimulation of sphingosine kinase (SPK) that affects not only endothelial cell signaling but also tumor cells expressing VEGF receptors. VEGF or phorbol 12-myristate 13-acetate treatment of the T24 bladder tumor cell line resulted in a time- and dose-dependent stimulation of SPK activity. In T24 cells, VEGF treatment reduced cellular sphingosine levels while raising that of sphingosine-1-phosphate. VEGF stimulation of T24 cells caused a slow and sustained accumulation of Ras-GTP and phosphorylated extracellular signal-regulated kinase (phospho-ERK) compared with that after EGF treatment. Small interfering RNA (siRNA) that targets SPK1, but not SPK2, blocks VEGF-induced accumulation of Ras-GTP and phospho-ERK in T24 cells. In contrast to EGF stimulation, VEGF stimulation of ERK1/2 phosphorylation was unaffected by dominant-negative Ras-N17. Raf kinase inhibition blocked both VEGF- and EGF-stimulated accumulation of phospho-ERK1/2. Inhibition of SPK by pharmacological inhibitors, a dominant-negative SPK mutant, or siRNA that targets SPK blocked VEGF, but not EGF, induction of phospho-ERK1/2. We conclude that VEGF induces DNA synthesis in a pathway which sequentially involves protein kinase C (PKC), SPK, Ras, Raf, and ERK1/2. These data highlight a novel mechanism by which SPK mediates signaling from PKC to Ras in a manner independent of Ras-guanine nucleotide exchange factor.
Collapse
Affiliation(s)
- Xiaodong Shu
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine at the University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
39
|
Slevin M, Kumar S, Gaffney J. Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses. J Biol Chem 2002; 277:41046-59. [PMID: 12194965 DOI: 10.1074/jbc.m109443200] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan (HA) is a large nonsulfated glycosaminoglycan and an important regulator of angiogenesis, in particular, the growth and migration of vascular endothelial cells. We have identified some of the key intermediates responsible for induction of mitogenesis and wound recovery. Treatment of bovine aortic endothelial cells with oligosaccharides of hyaluronan (o-HA) resulted in rapid tyrosine phosphorylation and plasma membrane translocation of phospholipase Cgamma1 (PLCgamma1). Cytoplasmic loading with inhibitory antibodies to PLCgamma1, Gbeta, and Galpha(i/o/t/z) inhibited activation of extracellular-regulated kinase 1/2 (ERK1/2). Treatment with the Galpha(i/o) inhibitor, pertussis toxin, reduced o-HA-induced PLCgamma1 tyrosine phosphorylation, protein kinase C (PKC) alpha and beta1/2 membrane translocation, ERK1/2 activation, mitogenesis, and wound recovery, suggesting a mechanism for o-HA-induced angiogenesis through G-proteins, PLCgamma1, and PKC. In particular, we demonstrated a possible role for PKCalpha in mitogenesis and PKCbeta1/2 in wound recovery. Using antisense oligonucleotides and the Ras farnesylation inhibitor FTI-277, we showed that o-HA-induced bovine aortic endothelial cell proliferation, wound recovery, and ERK1/2 activation were also partially dependent on Ras activation, and that o-HA-stimulated tyrosine phosphorylation of the adapter protein Shc, as well as its association with Sos1. Binding of Src to Shc was required for its activation and for Ras-dependent activation of ERK1/2, cell proliferation, and wound recovery. Neither Src nor Ras activation was inhibited by pertussis toxin, suggesting that their activation was independent of heterotrimeric G-proteins. However, the specific Src kinase inhibitor PP2 inhibited Gbeta subunit co-precipitation with PLCgamma1, suggesting a possible role for Src in activation of PLCgamma1 and interaction between two distinct o-HA-induced signaling pathways.
Collapse
Affiliation(s)
- Mark Slevin
- Department of Biological Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK.
| | | | | |
Collapse
|
40
|
Yamashina S, Konno A, Wheeler MD, Rusyn I, Rusyn EV, Cox AD, Thurman RG. Endothelial cells contain a glycine-gated chloride channel. Nutr Cancer 2002; 40:197-204. [PMID: 11962256 DOI: 10.1207/s15327914nc402_17] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Glycine inhibited growth of B16 melanoma tumors in vivo most likely because of the inhibition of angiogenesis. Here, the hypothesis that the anticancer effect of glycine in vivo is due to expression of a glycine-gated Cl- channel in endothelial cells was tested. First, the effects of glycine on vascular endothelial growth factor-induced increases in intracellular Ca2+ concentration in a bovine endothelial (CPA) cell line were studied. Vascular endothelial growth factor (1 ng/ml) increased intracellular Ca2+ concentration, with peak values reaching 141 +/- 11 nM. Glycine blunted this increase dose dependently. Furthermore, the inhibitory effects of glycine were prevented by 1 microM strychnine, a glycine receptor antagonist, or when cells were incubated in Cl(-)-free buffer. Moreover, glycine increased influx of 36Cl into CPA cells approximately 10-fold; this reaction was also strychnine sensitive. Furthermore, mRNA similar to the beta-subunit of the glycine-gated Cl- channel from spinal cord was identified in endothelial cells by reverse transcription-polymerase chain reaction. In addition, Western analysis using antibody for the glycine receptor demonstrated expression of the beta-subunit of the glycine receptor. Importantly, glycine diminished serum-stimulated proliferation and migration of endothelial cells. Collectively, these data indicate that the inhibitory effect of glycine on growth and migration of endothelial cells is due to activation of a glycine-gated Cl- channel. This hyperpolarizes the cell membrane and blocks influx of Ca2+, thereby minimizing growth factor-mediated signaling.
Collapse
Affiliation(s)
- S Yamashina
- Laboratory of Hepatobiology and Toxicology, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Takekoshi K, Ishii K, Shibuya S, Kawakami Y, Isobe K, Nakai T. Stimulation of catecholamine biosynthesis via the protein kinase C pathway by endothelin-1 in PC12 rat pheochromocytoma cells. Biochem Pharmacol 2002; 63:977-84. [PMID: 11911850 DOI: 10.1016/s0006-2952(01)00862-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been reported that endothelins (ETs) stimulate catecholamine release from chromaffin cells. However, it is not known whether ETs also affect catecholamine biosynthesis. Thus, using a rat pheochromocytoma cell line, PC12, we examined the effects of ETs on catecholamine biosynthesis. The mRNA level and activity of tyrosine hydroxylase (TH), a rate-limiting enzyme in catecholamine biosynthesis, were increased significantly by endothelin-1 (ET-1) (100nM). These stimulatory effects were inhibited completely by a blocker for the A-type endothelin receptor, BQ-123 [cyclo(D-alpha-aspartyl-L-prolyl-D-valyl-L-leucyl-D-tryptophyl)] (1 microM), but not by a blocker for the B-type endothelin receptor, BQ-788 (N-cis 2,6-dimethylpiperidinocarbonyl-L-gamma-methylleucyl-D-1-methoxycarbonyltryptophanyl-D-norleucine (1 microM). Also, Ro-32-0432 (3-[8-[(dimethylamino)methyl]-6,7,8,9-tetrahydropyrido-[1,2-a]indol-10-yl]-4-(1-methyl-3-indolyl)-H-pyrrole-2,5-dione hydrochloride) (100nM), a protein kinase C inhibitor, completely inhibited ET-1-induced increases in TH activity and mRNA level. Furthermore, ET-1 (100nM) significantly stimulated protein kinase C activity, as well as inositol 1,4,5-triphosphate production; these stimulatory effects were abolished by BQ-123 but not by BQ-788. Moreover, ET-1 (100nM) significantly increased both the TH-protein level and the intracellular catecholamine content. By contrast to ET-1, endothelin-3 did not affect catecholamine synthesis. These results indicate that ET-1, but not ET-3, stimulates catecholamine synthesis through the PKC pathway in PC12 cells. Also, the use of selective ET receptor antagonists suggests that the effects of ET-1 on catecholamine biosynthesis are mediated through ET(A).
Collapse
Affiliation(s)
- Kazuhiro Takekoshi
- Department of Clinical Pathology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, 305-8575, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Ali I, Sarna SK. Selective modulation of PKC isozymes by inflammation in canine colonic circular muscle cells. Gastroenterology 2002; 122:483-94. [PMID: 11832462 DOI: 10.1053/gast.2002.31215] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Protein kinase C (PKC) is a key signaling molecule in excitation-contraction coupling in several types of smooth muscle cells. We investigated whether the attenuated contraction in inflamed colon cells is caused by alterations in the expression, distribution, and activation of specific PKC isozymes. METHODS Kinase assays, immunofluorescence imaging, and Western immunoblotting were performed on single circular smooth muscle cells obtained from the normal dog colon as well as from colon with experimental colitis induced by mucosal exposure to ethanol and acetic acid, to determine the distribution, expression, and activation of PKC isozymes. RESULTS Classical (alpha, beta, and gamma), novel (delta and epsilon), and the atypical PKC (iota, lambda, and zeta) isozymes were detected in colonic circular muscle cells. The expression of PKC alpha, beta, and epsilon isozymes was down-regulated, whereas that of PKC iota and lambda isozymes was up-regulated; other isozymes were not affected by inflammation. Acetylcholine (ACh) treatment translocated only the PKC alpha, beta, and epsilon isozymes from the cytosol to the membrane in normal cells; this translocation was absent in inflamed colon cells. Immunofluorescence imaging confirmed the translocation of PKC alpha from the cytosol to the membrane in response to ACh in normal cells. PKC inhibitors, chelerythrine, and myristoylated peptides to alpha, beta, and epsilon isozymes inhibited the contractile response to ACh in normal, but not in inflamed, cells. PKC iota and lambda did not participate in the contractile response to ACh. CONCLUSIONS ACh-induced contraction is mediated by PKC alpha, beta, and epsilon isozymes in normal colonic circular muscle cells. Contractile dysfunction in inflamed colon cells is, in part, caused by decreased expression and impaired activation of specific PKC isozymes.
Collapse
Affiliation(s)
- Irshad Ali
- Department of Surgery, Medical College of Wisconsin, and Zablocki Veteran Affairs Medical Center, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
43
|
Suzuma I, Suzuma K, Ueki K, Hata Y, Feener EP, King GL, Aiello LP. Stretch-induced retinal vascular endothelial growth factor expression is mediated by phosphatidylinositol 3-kinase and protein kinase C (PKC)-zeta but not by stretch-induced ERK1/2, Akt, Ras, or classical/novel PKC pathways. J Biol Chem 2002; 277:1047-57. [PMID: 11694503 DOI: 10.1074/jbc.m105336200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stretch-induced expression of vascular endothelial growth factor (VEGF) is thought to be important in mediating the exacerbation of diabetic retinopathy by systemic hypertension. However, the mechanisms underlying stretch-induced VEGF expression are not fully understood. We present novel findings demonstrating that stretch-induced VEGF expression in retinal capillary pericytes is mediated by phosphatidylinositol (PI) 3-kinase and protein kinase C (PKC)-zeta but is not mediated by ERK1/2, classical/novel isoforms of PKC, Akt, or Ras despite their activation by stretch. Cardiac profile cyclic stretch at 60 cpm increased VEGF mRNA expression in a time- and magnitude-dependent manner without altering mRNA stability. Stretch increased ERK1/2 phosphorylation, PI 3-kinase activity, Akt phosphorylation, and PKC-zeta activity. Signaling pathways were explored using inhibitors of PKC, MEK1/2, and PI 3-kinase; adenovirus-mediated overexpression of ERK, PKC-alpha, PKC-delta, PKC-zeta, and Akt; and dominant negative (DN) mutants of ERK, PKC-zeta, Ras, PI 3-kinase and Akt. Although stretch activated ERK1/2 through a Ras- and PKC classical/novel isoform-dependent pathway, these pathways were not responsible for stretch-induced VEGF expression. Overexpression of DN ERK and Ras had no effect on VEGF expression in these cells. In contrast, DN PI 3-kinase as well as pharmacologic inhibitors of PI 3-kinase blocked stretch-induced VEGF expression. Although stretch-induced PI 3-kinase activation increased both Akt phosphorylation and activity of PKC-zeta, VEGF expression was dependent on PKC-zeta but not Akt. In addition, PKC-zeta did not mediate stretch-induced ERK1/2 activation. These results suggest that stretch-induced expression of VEGF involves a novel mechanism dependent upon PI 3-kinase-mediated activation of PKC-zeta that is independent of stretch-induced activation of ERK1/2, classical/novel PKC isoforms, Ras, or Akt. This mechanism may play a role in the well documented association of concomitant hypertension with clinical exacerbation of neovascularization and vascular permeability.
Collapse
Affiliation(s)
- Izumi Suzuma
- Research Division and Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Matsumoto T, Claesson-Welsh L. VEGF receptor signal transduction. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re21. [PMID: 11741095 DOI: 10.1126/stke.2001.112.re21] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The family of vascular endothelial growth factors (VEGFs) currently includes VEGF-A, -B, -C, -D, -E, and placenta growth factor (PlGF). Several of these factors, notably VEGF-A, exist as different isoforms, which appear to have unique biological functions. The VEGF family proteins bind in a distinct pattern to three structurally related receptor tyrosine kinases, denoted VEGF receptor-1, -2, and -3. Neuropilins, heparan-sulfated proteoglycans, cadherins, and integrin alphavbeta3 serve as coreceptors for certain but not all VEGF proteins. Moreover, the angiogenic response to VEGF varies between different organs and is dependent on the genetic background of the animal. Inactivation of the genes for VEGF-A and VEGF receptor-2 leads to embryonal death due to the lack of endothelial cells. Inactivation of the gene encoding VEGF receptor-1 leads to an increased number of endothelial cells, which obstruct the vessel lumen. Inactivation of VEGF receptor-3 leads to abnormally organized vessels and cardiac failure. Although VEGF receptor-3 normally is expressed only on lymphatic endothelial cells, it is up-regulated on vascular as well as nonvascular tumors and appears to be involved in the regulation of angiogenesis. A large body of data, such as those on gene inactivation, indicate that VEGF receptor-1 exerts a negative regulatory effect on VEGF receptor-2, at least during embryogenesis. Recent data imply a positive regulatory role for VEGF receptor-1 in pathological angiogenesis. The VEGF proteins are in general poor mitogens, but binding of VEGF-A to VEGF receptor-2 leads to survival, migration, and differentiation of endothelial cells and mediation of vascular permeability. This review outlines the current knowledge about the signal transduction properties of VEGF receptors, with focus on VEGF receptor-2.
Collapse
Affiliation(s)
- T Matsumoto
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | | |
Collapse
|
46
|
Abstract
The role of PKC isoforms in signal transduction pathways involved in regulation of the cell cycle, apoptosis, angiogenesis, differentiation, invasiveness, senescence and drug efflux are reviewed, along with the clinical results on the current crop of PKC inhibitors, including midostaurin (PKC-412, CGP 41251, N -benzoylstaurosporine), UCN-01 (7-hydroxystaurosporine), bryostatin 1, perifosine, ilmofosine, Ro 31-8220, Ro 32-0432, GO 6976, ISIS-3521 (CGP 64128A) and the macrocyclic bis (indolyl) maleimides (LY-333531, LY-379196, LY-317615). An appreciation of the complex, often contradictory roles of PKC isoforms in signal transduction pathways involved in cancer is important for interpreting the clinical results observed with PKC inhibitors of varying selectivity. An antisense oligonucleotide, ISIS-3521 and two orally available small molecule inhibitors, LY 333531 and midostaurin, have now advanced to latter stage development for cancer and/or other indications. These compounds have varying levels of selectivity for the PKC isoforms and for the kinase and initial safety and early clinical efficacy have been encouraging. At this stage, the potential of PKC inhibition for the treatment of cancer has not been fully realised. The concurrent inhibition of multiple PKC isoforms may yet provide an improved clinical outcome in treating cancers in view of the complex interrelated roles of the PKC isoforms.
Collapse
Affiliation(s)
- P G Goekjian
- Laboratoire Chimie Organique II/UMR 5622, Universite Claude Bernard Lyon 1; Bat. 308-CPE, 3 Rue Victor Grignard, 69622 Villeurbanne Cedex, France.
| | | |
Collapse
|
47
|
Takekoshi K, Ishii K, Nanmoku T, Shibuya S, Kawakami Y, Isobe K, Nakai T. Leptin stimulates catecholamine synthesis in a PKC-dependent manner in cultured porcine adrenal medullary chromaffin cells. Endocrinology 2001; 142:4861-71. [PMID: 11606454 DOI: 10.1210/endo.142.11.8484] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have previously shown that murine recombinant leptin directly stimulates catecholamine synthesis through the long form of the leptin receptor (Ob-Rb) expressed in cultured porcine chromaffin cells. Additionally, we found that leptin activates IP3 production after PLC activation. It is well established that activation of PLC elicits IP3 production as well as an increase in diacylglycerol, a compound that stimulates PKC. Therefore, we investigated the involvement of PKC in leptin-induced catecholamine synthesis. Leptin was found to induce significant increases in PKC activity in a dose-dependent manner (1, 10, and 100 nM); chelation of extracellular Ca(2+) by EDTA abolished this PKC stimulatory activity. We also confirmed by Western blot analysis that leptin (at 100 nM) induced significant increases in Ca(2+)-dependent PKC alpha, -beta(I), and -gamma expression. The activity of the rate-limiting enzyme tyrosine hydroxylase (TH) in the biosynthesis of catecholamine is regulated at the transcriptional and posttranscriptional levels. TH enzyme activity and TH mRNA levels induced by 100 nM leptin were significantly inhibited by the PKC inhibitor Ro 32-0432 as well as by EDTA. In addition, increases in TH protein and intracellular catecholamine content stimulated by leptin were completely inhibited by Ro 32-0432. Leptin markedly activated ERKs and, to a lesser extent, JNK; these stimulatory effects on ERKs and JNK were completely inhibited by Ro 32-0432 as well as EDTA. In contrast, leptin did not activate P38 MAPK. Similar to leptin, PMA activated ERK and JNK. Nicardipine and omega-conotoxin GVIA, each at 1 microM, were effective at inhibiting leptin-induced TH enzyme activity, TH mRNA accumulation, PKC activity, and ERK activity. Leptin increased activating protein-1 DNA-binding activity, and this was diminished by Ro 32-0432 as well as EDTA, similar to the reduction of TH mRNA levels. In addition, using supershift analysis, we documented the involvement of c-Fos and, to a lesser extent, c-Jun in leptin-induced activating protein-1 activity. These results indicate that leptin stimulates Ca(2+)-dependent PKC isoform-dependent catecholamine synthesis in porcine chromaffin cells. Previously, we had shown that leptin stimulated cAMP. The present study also showed that H89 (a PKA inhibitor) moderately, but significantly, inhibited leptin-induced ERK and TH mRNA. Consistent with this finding, leptin is shown here to activate novel PKC epsilon, which is assumed to stimulate Raf, upstream of ERKs, via cAMP, supporting the suggestion that Ca(2+)-independent novel PKC may also play some physiological role in regulating catecholamine synthesis.
Collapse
Affiliation(s)
- K Takekoshi
- Department of Clinical Pathology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
McLaughlin AP, De Vries GW. Role of PLCgamma and Ca(2+) in VEGF- and FGF-induced choroidal endothelial cell proliferation. Am J Physiol Cell Physiol 2001; 281:C1448-56. [PMID: 11600407 DOI: 10.1152/ajpcell.2001.281.5.c1448] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although both vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) receptors have been shown to be important in the regulation of vascular endothelial cell growth, the roles of phospholipase C (PLC)gamma and Ca(2+) in their downstream signaling cascades are still not clear. We have examined the effects of VEGF and FGF on PLCgamma phosphorylation and on changes in intracellular Ca(2+) levels in primary endothelial cells. VEGF stimulation leads to PLCgamma activation and increases in intracellular Ca(2+), which are correlated with mitogen-activated protein (MAP) kinase (MAPK) activation and cell growth. Inhibition of Ca(2+) increases by the Ca(2+) chelator 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM resulted in marked inhibition of MAPK activation, which was shown to be linked to regulation of cell growth in these cells. In contrast, FGF stimulation did not lead to PLCgamma activation or to changes in intracellular Ca(2+) levels, although MAPK phosphorylation and stimulation of cell proliferation were observed. Neither BAPTA-AM nor the PLC inhibitor U-73122 had an effect on these FGF-stimulated responses. These data demonstrate a direct role for PLCgamma and Ca(2+) in VEGF-regulated endothelial cell growth, whereas this signaling pathway is not linked to FGF-mediated effects in primary endothelial cells. Thus endothelial cell-specific factors regulate the ability of VEGF receptors and FGF receptors to couple to this signaling pathway.
Collapse
Affiliation(s)
- A P McLaughlin
- Department of Biological Sciences, Allergan, Incorporated, Irvine, California 92612, USA
| | | |
Collapse
|
49
|
Zachary I. Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am J Physiol Cell Physiol 2001; 280:C1375-86. [PMID: 11350732 DOI: 10.1152/ajpcell.2001.280.6.c1375] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vascular endothelial growth factor (VEGF) is essential for angiogenesis in health and pathophysiology, and it is currently a major focus for drug targeting in the development of treatments for diverse human diseases. Recently, we proposed that VEGF could also play a role as a vascular protective factor in the adult vasculature and in disease. In this model, vascular protection is defined as a VEGF-induced enhancement of endothelial functions that mediate the inhibition of vascular smooth muscle cell proliferation, enhanced endothelial cell survival, suppression of thrombosis, and anti-inflammatory effects. A feature of this model is that protective effects of VEGF are essentially independent of angiogenesis or endothelial cell proliferation. VEGF-dependent cell survival and VEGF-induced synthesis of nitric oxide and prostacyclin are likely to be key mediators of a vascular protective effect. Vascular protection should help to improve insight into the underlying mechanisms of cardiovascular actions of VEGF and prove valuable for developing novel therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- I Zachary
- Department of Medicine, University College London, 5 Univ. St., London WC1E 6JJ, United Kingdom
| |
Collapse
|
50
|
Huang K, Andersson C, Roomans GM, Ito N, Claesson-Welsh L. Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers. Int J Biochem Cell Biol 2001; 33:315-24. [PMID: 11312102 DOI: 10.1016/s1357-2725(01)00019-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vascular endothelial growth factor (VEGF-A) exerts its effects through receptor tyrosine kinases VEGF receptor-1 (VEGFR-1) and VEGFR-2, which are expressed on most endothelial cell types in vitro and in vivo. We have examined VEGF-A-induced signal transduction in porcine aortic endothelial (PAE) cells individually expressing VEGFR-1 or VEGFR-2, and cells co-expressing both receptor types. We show that VEGF-A-stimulated PAE cells co-expressing VEGFR-1 and -2 contain receptor heterodimers. VEGF-A-stimulation of all three cell lines (expressing VEGFR-1, -2 and -1/2) resulted in signal transduction with different efficiencies. Thus, tyrosine phosphorylation of phospholipase Cgamma, and accumulation of inositol polyphosphates were efficiently transduced in the VEGFR-1/2 cells whereas cells expressing VEGFR-1 responded poorly in these assays. In contrast, VEGF-A-induced activation of phosphoinositide 3-kinase and induction of Ca2+ fluxes were transduced well by VEGFR-1 and VEGFR-2 homo- and heterodimers. The pattern of Ca2+ fluxes was unique for each type of VEGF receptor dimer. Our data show that signal transduction induced by VEGF-A is transduced in distinct manners by homo- and heterodimers of VEGF receptors.
Collapse
Affiliation(s)
- K Huang
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, S-751 85, Uppsala, Sweden
| | | | | | | | | |
Collapse
|