1
|
Eldem I, Antunes-Heck L, Subramanian R, Lasky NM, Ashworth K, Di Paola J, Girard TJ. Deletion of tissue factor pathway inhibitor isoform beta or gamma, but not alpha, improves clotting in hemophilic mice. J Thromb Haemost 2024; 22:2681-2691. [PMID: 38925489 DOI: 10.1016/j.jtha.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) regulates tissue factor-triggered coagulation. Humans and mice express transcripts encoding for multidistributed (endothelial, platelet, and plasma) 3-Kunitz domain TFPIα and endothelial membrane-anchored 2-Kunitz TFPIβ. Mice express a third transcript, γ, that encodes plasma lipoprotein-associated 2-Kunitz TFPI. In humans, proteolysis of α and/or β produces plasma lipoprotein-associated 2-Kunitz TFPI at lower levels. In clinical trials, monoclonal antibodies that target all TFPI isoforms extend coagulation and correct bleeding in hemophilic patients but with some thrombosis risks. OBJECTIVES To determine the impact of TFPI isoform-specific deletions on promoting clotting in hemophilic mice. METHODS Engineered TFPI isoform-specific, hemophilic (factor VIII-null) mice were evaluated for clotting. RESULTS Mice expressing any single TFPI isoform were healthy. Thrombin generation assays identified TFPIγ as the dominant anticoagulation isoform in mouse plasma. Hemostasis was assessed by serial bleeding times from a tail vein laceration. Repeatedly, after a clot forms, it was manually disrupted; the number of clots/disruptions occurring over a 15-minute period were reported. C57BL/6 and hemophilic mice clot on average 25.6 vs 5.4 times, respectively. On a hemophilia background, TFPIβ or TFPIγ-specific deletion improved clotting to 14.6 and 15.2 times, respectively (P < .0001). TFPIα-specific deletion was without impact, clotting 5.1 times. Heterozygous deletion of TFPIβ was effective, clotting 11.8 times (P < .0001). Heterozygous deletion of TFPIα or TFPIγ alone was ineffective, clotting 3.0 and 6.1 times, respectively, but heterozygous TFPIαγ deletion improved clotting to 11.2 times (P < .001). CONCLUSION In hemophilic mice, endothelial TFPIβ and plasma γ-derived 2-Kunitz TFPI individually contribute more to bleeding than total TFPIα.
Collapse
Affiliation(s)
- Irem Eldem
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lilian Antunes-Heck
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Renumathi Subramanian
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nina M Lasky
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katrina Ashworth
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jorge Di Paola
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Thomas J Girard
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
2
|
Raman R, Fallatah W, Al Qaryoute A, Ryon M, Jagadeeswaran P. Knockdown and Knockout of Tissue Factor Pathway Inhibitor in Zebrafish. Thromb Haemost 2021; 122:1104-1114. [PMID: 34918310 DOI: 10.1055/a-1723-4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tissue Factor Pathway Inhibitor (TFPI) is an anticoagulant that inhibits factor VIIa and Xa in the blood coagulation pathways. TFPI contains three Kunitz domains, K1, K2, and K3. K1 and K2 inhibit factor VIIa and Xa, respectively. However, the regulation of TFPI is poorly studied. Since zebrafish has become an alternate model to discover novel actors in hemostasis, we hypothesized that TFPI regulation could be studied using this model. As a first step, we confirmed the presence of tfpia in zebrafish using RT-PCR. We then performed piggyback knockdowns of tfpia and found increased coagulation activity in tfpia knockdown. We then created a deletion mutation in tfpia locus using CRISPR/Cas9 method. The tfpia homozygous deletion mutants showed increased coagulation activities similar to that found in tfpia knockdown. Taken together, our data suggest that tfpia is a negative regulator for zebrafish coagulation, and silencing it leads to thrombotic phenotype. Also, the zebrafish tfpia knockout model could be used for reversing this thrombotic phenotype to identify antithrombotic novel factors by the genome-wide piggyback knockdown method.
Collapse
Affiliation(s)
- Revathi Raman
- Biological Sciences, University of North Texas, Denton, United States
| | | | - Ayah Al Qaryoute
- Biological Sciences, University of North Texas, Denton, United States
| | - Mia Ryon
- Biological Sciences, University of North Texas, Denton, United States
| | | |
Collapse
|
3
|
Xiao J, Jin K, Wang J, Ma J, Zhang J, Jiang N, Wang H, Luo X, Fei J, Wang Z, Yang X, Ma D. Conditional knockout of TFPI-1 in VSMCs of mice accelerates atherosclerosis by enhancing AMOT/YAP pathway. Int J Cardiol 2016; 228:605-614. [PMID: 27875740 DOI: 10.1016/j.ijcard.2016.11.195] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tissue factor pathway inhibitor-1 (TFPI-1) has multiple functions and its precise role and molecular mechanism during the development of atherosclerosis are not clear. OBJECTIVES To determine the effect and molecular mechanism of TFPI-1 deficiency in vascular smooth muscle cells (VSMCs) in atherosclerosis in the apolipoprotein E knockout (ApoE-/-) mouse. METHODS AND RESULTS A mouse model with a conditional knockout of TFPI-1 in VSMCs in an atherosclerosis-prone background (ApoE-/-) was generated. Mice were fed a high fat diet for 18weeks and were then euthanized. Arterial trees and aortas were stained with Sudan IV and were labeled via immunohistochemistry. Cell proliferation and migration of VSMCs in atherosclerotic plaques were assessed. More atherosclerotic lesions and higher levels of proliferation and migration of VSMCs were observed in TFPI-1fl/fl/Sma-Cre+ApoE-/-mice. An interaction between TFPI-1 and angiomotin (AMOT) was identified in human VSMCs by mass spectrometry, immunoprecipitation and co-localization analyses. Signal pathway changes were detected by Western blot analysis, and the expression levels of target genes were determined by real-time PCR. Decreased phosphorylation of AMOT and Yes-associated protein 1 (YAP) in TFPI-1fl/fl/Sma-Cre+ApoE-/- mice resulted in increased expression levels of snail family zinc finger 2 (SLUG) and connective tissue growth factor (CTGF), which are target genes of the Hippo signaling pathway that have been verified as atherosclerosis candidate genes. CONCLUSION Deficiency in TFPI-1 in the VSMCs of ApoE-/- mice accelerated the development of atherosclerosis by promoting the proliferation and migration of VSMCs which may be caused by the decreased phosphorylation of AMOT and YAP. SIGNIFICANCE TFPI-1 has been found to has an anticoagulant activity, induce cell apoptosis and prevent cell proliferation. For the first time, we constructed a line of conditional knockout mice in which the TPFI-1 gene is deleted in VSMCs. We found that TFPI-1 deficiency clearly promoted the development of atherosclerosis when these mice were crossed into an ApoE-/-background. One notable feature of atherosclerosis is the proliferation and migration of smooth muscle cells. Previous reports involved TFPI-1 do not completely explain the proliferation and migration of VSMCs because heterozygous TF deficient (TF±) mice bred in an ApoE-/- background did not show diminished atherosclerosis compared to TF+/+ mice bred in the same background. Our results first confirmed that TFPI-1 interacts with AMOT, which led to a decrease in the phosphorylation of YAP and further increased the genes expression of the proliferation and migration involved. Our results further confirmed that atherosclerosis was a localized disease.
Collapse
Affiliation(s)
- Jiajun Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Kaiyue Jin
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Jiping Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Huijun Wang
- Cardiovascular Center, Children's Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Xinping Luo
- Department of Cardiovascular Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Jian Fei
- Shanghai Research Centre for Model Organisms, Shanghai 201203,China
| | - Zhugang Wang
- Shanghai Research Centre for Model Organisms, Shanghai 201203,China
| | - Xiao Yang
- Institute of Geriatrics, PLA Postgraduate School of Medicine, PLA General Hospital, Beijing 100853, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China; Cardiovascular Center, Children's Hospital Affiliated to Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Winckers K, ten Cate H, Hackeng TM. The role of tissue factor pathway inhibitor in atherosclerosis and arterial thrombosis. Blood Rev 2013; 27:119-32. [PMID: 23631910 DOI: 10.1016/j.blre.2013.03.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tissue factor pathway inhibitor (TFPI) is the main inhibitor of tissue factor (TF)-mediated coagulation. In atherosclerotic plaques TFPI co-localizes with TF, where it is believed to play an important role in attenuating TF activity. Findings in animal models such as TFPI knockout models and gene transfer models are consistent on the role of TFPI in arterial thrombosis as they reveal an active role for TFPI in attenuating arterial thrombus formation. In addition, ample experimental evidence exists indicating that TFPI has inhibitory effects on both smooth muscle cell migration and proliferation, both which are recognized as important pathological features in atherosclerosis development. Nonetheless, the clinical relevance of these antithrombotic and atheroprotective effects remains unclear. Paradoxically, the majority of clinical studies find increased instead of decreased TFPI antigen and activity levels in atherothrombotic disease, particularly in atherosclerosis and coronary artery disease (CAD). Increased TFPI levels in cardiovascular disease might result from complex interactions with established cardiovascular risk factors, such as hypercholesterolemia, diabetes and smoking. Moreover, it is postulated that increased TFPI levels reflect either the amount of endothelial perturbation and platelet activation, or a compensatory mechanism for the increased procoagulant state observed in cardiovascular disease. In all, the prognostic value of plasma TFPI in cardiovascular disease remains to be established. The current review focuses on TFPI in clinical studies of asymptomatic and symptomatic atherosclerosis, coronary artery disease and ischemic stroke, and discusses potential atheroprotective actions of TFPI.
Collapse
Affiliation(s)
- Kristien Winckers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, MUMC, Maastricht, The Netherlands
| | | | | |
Collapse
|
5
|
Kanse SM, Declerck PJ, Ruf W, Broze G, Etscheid M. Factor VII-activating protease promotes the proteolysis and inhibition of tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol 2011; 32:427-33. [PMID: 22116096 DOI: 10.1161/atvbaha.111.238394] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Factor VII-activating protease (FSAP) activates both factor VII and pro-urokinase and inhibits platelet-derived growth factor-BB, thus regulating hemostasis- and remodeling-associated processes in the vasculature. A genetic variant of FSAP (Marburg I polymorphism) results in low enzymatic activity and is associated with an enhanced risk of carotid stenosis and stroke. We postulate that there are additional substrates for FSAP that will help to explain its role in vascular biology and have searched for such a substrate. METHODS AND RESULTS Using screening procedures to determine the influence of FSAP on various hemostasis-related processes on endothelial cells, we discovered that FSAP inhibited tissue factor pathway inhibitor (TFPI), a major anticoagulant secreted by these cells. Proteolytic degradation of TFPI by FSAP could also be demonstrated by Western blotting, and the exact cleavage sites were determined by N-terminal sequencing. The Marburg I variant of FSAP had a diminished ability to inhibit TFPI. A monoclonal antibody to FSAP that specifically inhibited FSAP binding to TFPI reversed the inhibitory effect of FSAP on TFPI. CONCLUSIONS The identification of TFPI as a sensitive substrate for FSAP increases our understanding of its role in regulating hemostasis and proliferative remodeling events in the vasculature.
Collapse
Affiliation(s)
- Sandip M Kanse
- Institute for Biochemistry, Justus-Liebig-University, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
6
|
A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system. Toxicon 2010; 56:1145-54. [DOI: 10.1016/j.toxicon.2010.04.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 03/31/2010] [Accepted: 04/25/2010] [Indexed: 11/20/2022]
|
7
|
Zhou J, Wang Y, Xiong Y, Wang H, Feng Y, Chen J. Delivery of TFPI-2 using ultrasound with a microbubble agent (SonoVue) inhibits intimal hyperplasia after balloon injury in a rabbit carotid artery model. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1876-1883. [PMID: 20888684 DOI: 10.1016/j.ultrasmedbio.2010.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/13/2010] [Accepted: 08/21/2010] [Indexed: 05/29/2023]
Abstract
Here we report a new, simple and efficient method by using ultrasound and a microbubble agent (SonoVue) for delivering a gene to balloon-injured carotid arteries for restenosis prophylaxis. The tissue factor pathway inhibitor-2 (TFPI-2) has been shown to inhibit the postinjury intimae hyperplasia in atherosclerotic vessels. New Zealand white rabbits were divided into 4 groups with 14 in each, a treatment control for balloon injury, a gene vehicle control, a gene delivery of TFPI-2 without using ultrasound and a gene delivery of TFPI-2 using ultrasound. After four weeks, the injured artery neointimal proliferation was significantly lower in the TFPI-2 group with ultrasound than the control groups (p < 0.01) according to the measurement of the mean luminal diameters by B-mode ultrasonography. The ratio of intimal/media area and the stenosis rate in the gene delivery facilitated by ultrasound were significantly lower than those of the nonultrasound gene delivering method (p < 0.01).
Collapse
Affiliation(s)
- Jie Zhou
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
8
|
Batista IFC, Ramos OHP, Ventura JS, Junqueira-de-Azevedo ILM, Ho PL, Chudzinski-Tavassi AM. A new Factor Xa inhibitor from Amblyomma cajennense with a unique domain composition. Arch Biochem Biophys 2009; 493:151-6. [PMID: 19853573 DOI: 10.1016/j.abb.2009.10.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/14/2009] [Accepted: 10/17/2009] [Indexed: 11/19/2022]
Abstract
Bioactive compounds of great interest are found in the saliva of hematophagous organisms. While exploring a cDNA library derived from the salivary glands of the tick Amblyomma cajennense, a transcript that codes for a protein with unique structure (containing an N-terminal Kunitz-type domain and a C-terminus with no homology to any annotated sequences) was found. The recombinant mature form of this protein ( approximately 13.5kDa) was produced in Escherichia coli BL21 (DE3), and it was able to inhibit Factor Xa (FXa) and extend global blood clotting times in vitro and ex vivo. Static and dynamic predictions of its tertiary structure indicate regions that may be related to its FXa inhibitor function.
Collapse
Affiliation(s)
- I F C Batista
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Av. Vital Brasil, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Arnold CS, Parker C, Upshaw R, Prydz H, Chand P, Kotian P, Bantia S, Babu YS. The antithrombotic and anti-inflammatory effects of BCX-3607, a small molecule tissue factor/factor VIIa inhibitor. Thromb Res 2006; 117:343-9. [PMID: 16378835 DOI: 10.1016/j.thromres.2005.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 02/28/2005] [Accepted: 03/11/2005] [Indexed: 11/21/2022]
Abstract
Tissue factor (TF) is a transmembrane glycoprotein that binds its zymogen cofactor, Factor VIIa (FVIIa) on the cell surface. Together (TF/FVIIa) they activate Factor X (FX) and Factor IX (FIX) and start the extrinsic pathway of blood coagulation. As such, the TF/FVIIa complex plays an important role in normal physiology as well as in thrombotic diseases such as unstable angina (UA), disseminated intravascular coagulation (DIC), and deep vein thrombosis (DVT). In addition to its function as an initiator of coagulation, TF/FVIIa plays an important role in inflammation. Expression of TF on the cell surface and its appearance as a soluble molecule are characteristic features of acute and chronic inflammation in conditions such as sepsis and atherosclerosis. Here we demonstrate that BCX-3607, a small molecule potent inhibitor of TF/FVIIa, reduces thrombus weight in an animal model of DVT. BCX-3607 also decreases the level of interleukin-6 (IL-6) in a LPS-stimulated mouse model of endotoxemia. Additionally, in vitro studies indicate that BCX-3607 blocks the generation of TF/FVIIa-induced IL-8 mRNA in human keratinocytes and reduces the TF/FVIIa-mediated generation of IL-6 and IL-8 in human umbilical vein endothelial cells (HUVEC). Therefore, BCX-3607 might block the TF/FVIIa-mediated coagulation and inflammation associated with pathological conditions.
Collapse
Affiliation(s)
- C Shane Arnold
- BioCryst Pharmaceuticals, Inc., 2190 Parkway Lake Drive, Birmingham, AL 35244, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lwaleed BA, Bass PS. Tissue factor pathway inhibitor: structure, biology and involvement in disease. J Pathol 2006; 208:327-39. [PMID: 16261634 DOI: 10.1002/path.1871] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue factor (TF)-initiated coagulation plays a significant role in the pathophysiology of many diseases, including cancer and inflammation. Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor, which modulates initiations of coagulation induced by TF. In a factor (F) Xa-dependent feedback system, TFPI binds directly and inhibits the TF-FVII/FVIIa complex. Normally, TFPI exists in plasma both as a full-length molecule and as variably carboxy-terminal truncated forms. TFPI also circulates in complex with plasma lipoproteins. The levels and the dual inhibitor effect of TFPI on FXa and TF-FVII/FVIIa complex offers insight into the mechanisms of various pathological conditions triggered by TF. The use of selective pharmacological inhibitors has become an indispensable tool in experimental haemostasis and thrombosis research. In vivo administration of recombinant TFPI (rTFPI) in an experimental animal model prevents thrombosis (and re-thrombosis after thrombolysis), reduces mortality from E. coli-induced-septic shock, prevents fibrin deposition on subendothelial human matrix and protects against disseminated intravascular coagulation (DIC). Thus, TFPI may play an important role in modulating TF-induced thrombogenesis and it may also provide a unique therapeutic approach for prophylaxis and/or treatment of various diseases. In this review, we consider structural and biochemical aspects of the TFPI molecule and detail its inhibitory mechanisms and therapeutic implications in various disease conditions.
Collapse
Affiliation(s)
- Bashir A Lwaleed
- Department of Urology, Southampton University Hospitals NHS Trust, Tremona Road, Southampton SO16 6YD, UK.
| | | |
Collapse
|
11
|
Bogdanov VY, Kirk RI, Miller C, Hathcock JJ, Vele S, Gazdoiu M, Nemerson Y, Taubman MB. Identification and characterization of murine alternatively spliced tissue factor. J Thromb Haemost 2006; 4:158-67. [PMID: 16409465 DOI: 10.1111/j.1538-7836.2005.01680.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tissue factor (TF) is a transmembrane glycoprotein that initiates coagulation and plays a critical role in regulating hemostasis and thrombosis. We have recently reported a naturally occurring, soluble form of human tissue factor (asTF) generated by alternative splicing. This splice variant has a novel C-terminus with no homology to that of the full-length TF (flTF), lacks a transmembrane domain, and is active in the presence of phospholipids. Mouse models offer unique opportunities to examine the relative importance of flTF and asTF in mediating thrombosis, the response to arterial injury, and ischemic damage. To that end, we have identified and characterized murine asTF (masTF). Like the human splice variant, masTF lacks a transmembrane domain and has a unique C-terminus. We have generated antibodies specific to masTF and murine flTF (mflTF) to examine the expression of both forms of TF. masTF antigen is widely and abundantly expressed, with a pattern similar to that of mflTF, in adult tissues, in experimentally induced thrombi, and during development. These studies demonstrate that masTF contributes to the pool of total TF and may thus play an important role in mediating TF-dependent processes.
Collapse
Affiliation(s)
- V Y Bogdanov
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Robina Matyal
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | |
Collapse
|
13
|
Kopp CW, Hölzenbein T, Steiner S, Marculescu R, Bergmeister H, Seidinger D, Mosberger I, Kaun C, Cejna M, Horvat R, Wojta J, Maurer G, Binder BR, Breuss JM, Ecker RC, de Martin R, Minar E. Inhibition of restenosis by tissue factor pathway inhibitor: in vivo and in vitro evidence for suppressed monocyte chemoattraction and reduced gelatinolytic activity. Blood 2004; 103:1653-61. [PMID: 14592830 DOI: 10.1182/blood-2003-04-1148] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractActivation of inflammatory and procoagulant mechanisms is thought to contribute significantly to the initiation of restenosis, a common complication after balloon angioplasty of obstructed arteries. During this process, expression of tissue factor (TF) represents one of the major physiologic triggers of coagulation that results in thrombus formation and the generation of additional signals leading to vascular smooth muscle cell (VSMC) proliferation and migration. In this study, we have investigated the mechanisms by which inhibition of coagulation at an early stage through overexpression of tissue factor pathway inhibitor (TFPI), an endogenous inhibitor of TF, might reduce restenosis. In a rabbit femoral artery model, percutaneous delivery of TFPI using a recombinant adenoviral vector resulted in a significant reduction of the intimamedia ratio 21 days after injury. Investigating several markers of inflammation and coagulation, we found reduced neointimal expression of monocyte chemoattractant protein-1 (MCP-1), lesional monocyte infiltration, and expression of vascular TF, matrix metalloproteinase-2 (MMP-2), and MMP-9. Moreover, overexpression of TFPI suppressed the autocrine release of platelet-derived growth factor BB (PDGF-BB), MCP-1, and MMP-2 in response to factors VIIa and Xa from VSMCs in vitro and inhibited monocyte TF activity. These results suggest that TFPI exerts its action in vivo through not only thrombotic, but also nonthrombotic mechanisms.
Collapse
Affiliation(s)
- Christoph W Kopp
- 2nd Department of Medicine, Division of Angiology, University of Vienna Medical School, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim WJH, Chereshnev I, Gazdoiu M, Fallon JT, Rollins BJ, Taubman MB. MCP-1 deficiency is associated with reduced intimal hyperplasia after arterial injury. Biochem Biophys Res Commun 2003; 310:936-42. [PMID: 14550294 DOI: 10.1016/j.bbrc.2003.09.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monocyte chemoattractant protein (MCP)-1 is abundant in smooth muscle cells (SMC) and macrophages of atherosclerotic plaques and in the injured arterial wall. MCP-1 and its receptor, CCR2, are important mediators of macrophage accumulation and atherosclerotic plaque progression. We have recently reported that CCR2(-/-) mice have a approximately 60% decrease in intimal hyperplasia and medial DNA synthesis in response to femoral arterial injury. We have now examined the response to femoral arterial injury in MCP-1(-/-) mice. MCP-1 deficiency was associated with a approximately 30% reduction in intimal hyperplasia at 4 weeks and was not associated with diminished medial DNA synthesis. Despite inducing tissue factor in SMC culture, MCP-1 deficiency was not associated with a decrease in neointimal tissue factor after injury. These data suggest that MCP-1 and CCR2 deficiencies have distinct effects on arterial injury. The effects of MCP-1 on intimal hyperplasia may be mediated largely through SMC migration.
Collapse
Affiliation(s)
- William J H Kim
- The Zena and Michael A Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
15
|
Szalony JA, Taite BB, Girard TJ, Nicholson NS, LaChance RM. Pharmacological intervention at disparate sites in the coagulation cascade: comparison of anti-thrombotic efficacy vs bleeding propensity in a rat model of acute arterial thrombosis. J Thromb Thrombolysis 2002; 14:113-21. [PMID: 12714830 DOI: 10.1023/a:1023228827733] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Tissue Factor/Factor VIIa (TF/FVIIa) complex is an attractive target for pharmacological interruption of thrombin generation and hence blood coagulation, as this complex is the initiation point of the extrinsic pathway of coagulation. TF is a cell membrane-associated protein that interacts with soluble FVIIa to activate factors IX and X resulting in a cascade of events that leads to thrombin generation and eventual fibrin deposition. The goal of this non-randomized study was to evaluate XK1, a specific protein inhibitor of TF/FVIIa, and compare antithrombotic efficacy and bleeding propensity to a previously described Factor Xa (FXa) inhibitor (SC-83157/SN429) and a direct-acting thrombin inhibitor (SC-79407/L-374087) in an acute rat model of arterial thrombosis. All saline-treated animals experienced occlusion of the carotid artery due to acute thrombus formation within 20 minutes. Rats treated with XK1 exhibited a dose-dependent inhibition of thrombus formation with full antithrombotic efficacy and no change in bleeding time or total blood loss at a dose of 4.5 mg/kg, i.v. administered over a 60 minute period. FXa inhibition with SC-83157 resulted in complete inhibition of thrombus formation at a dose of 1.2 mg/kg, i.v.; however, this effect was associated with substantial blood loss. Thrombin inhibition with SC-79407 also afforded complete protection from thrombus formation and occlusion at a dose of 2.58 mg/kg, i.v., and like SC-83157, was associated with substantial blood loss. These data imply that TF/FVIIa inhibition confers protection from acute thrombosis without concomitant changes in bleeding, indicating that this target (TF/FVIIa) may provide improved separation of efficacy vs. bleeding side-effects than interruption of coagulation by directly inhibiting either FXa or thrombin.
Collapse
Affiliation(s)
- James A Szalony
- Department of Cardiovascular Pharmacology, Pharmacia, 4901 Searle Parkway, Skokie, IL 60077-5300, USA.
| | | | | | | | | |
Collapse
|
16
|
Francischetti IMB, Valenzuela JG, Andersen JF, Mather TN, Ribeiro JMC. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood 2002; 99:3602-12. [PMID: 11986214 DOI: 10.1182/blood-2001-12-0237] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Saliva of the hard tick and Lyme disease vector, Ixodes scapularis, has a repertoire of compounds that counteract host defenses. Following sequencing of an I scapularis salivary gland complementary DNA (cDNA) library, a clone with sequence homology to tissue factor pathway inhibitor (TFPI) was identified. This cDNA codes for a mature protein, herein called Ixolaris, with 140 amino acids containing 10 cysteines and 2 Kunitz-like domains. Recombinant Ixolaris was expressed in insect cells and shown to inhibit factor VIIa (FVIIa)/tissue factor (TF)-induced factor X (FX) activation with an inhibitory concentration of 50% (IC(50)) in the picomolar range. In nondenaturing gel, Ixolaris interacted stoichiometrically with FX and FXa but not FVIIa. Ixolaris behaves as a fast-and-tight ligand of the exosites of FXa and gamma-carboxyglutamic acid domainless FXa (des-Gla-FXa), increasing its amidolytic activity. At high concentration, Ixolaris attenuates the amidolytic activity of FVIIa/TF; however, in the presence of DEGR-FX or DEGR-FXa (but not des-Gla-DEGR-FXa), Ixolaris becomes a tight inhibitor of FVIIa/TF as assessed by recombinant factor IX (BeneFIX) activation assays. This indicates that FX and FXa are scaffolds for Ixolaris in the inhibition of FVIIa/TF and implies that the Gla domain is necessary for FVIIa/TF/Ixolaris/FX(a) complex formation. Additionally, we show that Ixolaris blocks FXa generation by endothelial cells expressing TF. Ixolaris may be a useful tool to study the structural features of FVIIa, FX, and FXa, and an alternative anticoagulant in cardiovascular diseases.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Section of Medical Entomology, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | | | | | |
Collapse
|
17
|
Caplice NM, Panetta C, Peterson TE, Kleppe LS, Mueske CS, Kostner GM, Broze GJ, Simari RD. Lipoprotein (a) binds and inactivates tissue factor pathway inhibitor: a novel link between lipoproteins and thrombosis. Blood 2001; 98:2980-7. [PMID: 11698280 DOI: 10.1182/blood.v98.10.2980] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein (a) [Lp(a)] has been associated with both anti-fibrinolytic and atherogenic effects. However, no direct link currently exists between this atherogenic lipoprotein and intravascular coagulation. The current study examined the binding and functional effects of Lp(a), its lipoprotein constituents, apoliprotein (a) [apo(a)] and low-density lipoprotein (LDL), and lysine-plasminogen (L-PLG), which shares significant homology with apo(a), on tissue factor pathway inhibitor (TFPI), a major regulator of tissue factor-mediated coagulation. Results indicate that Lp(a), apo(a), and PLG but not LDL bound recombinant TFPI (rTFPI) in vitro and that apo(a) bound to a region spanning the last 37 amino acid residues of the c-terminus of TFPI. The apparent binding affinity for TFPI was much higher for Lp(a) (KD approximately 150 nM) compared to PLG (KD approximately 800 nM) and nanomolar concentrations of apo(a) (500 nM) inhibited PLG binding to TFPI. Lp(a) also inhibited in a concentration-dependent manner rTFPI activity and endothelial cell surface TFPI activity in vitro, whereas PLG had no such effect. Moreover physiologic concentrations of PLG (2 microM) had no effect on the concentration-dependent inhibition of TFPI activity induced by Lp(a). In human atherosclerotic plaque, apo(a) and TFPI immunostaining were shown to coexist in smooth muscle cell-rich areas of the intima. These data suggest a novel mechanism whereby Lp(a) through its apo(a) moiety may promote thrombosis by binding and inactivating TFPI.
Collapse
Affiliation(s)
- N M Caplice
- Department of Internal Medicine and Cardiovascular Diseases, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Schecter AD, Berman AB, Yi L, Mosoian A, McManus CM, Berman JW, Klotman ME, Taubman MB. HIV envelope gp120 activates human arterial smooth muscle cells. Proc Natl Acad Sci U S A 2001; 98:10142-7. [PMID: 11504923 PMCID: PMC56929 DOI: 10.1073/pnas.181328798] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There have been increasing reports of acute coronary thrombotic events in patients with HIV. Although these clinical events have been attributed primarily to dyslipidemia associated with protease inhibitor therapy, autopsy studies in children with HIV suggest the presence of an underlying arteriopathy. This study demonstrates that the HIV envelope protein, gp120, activates human arterial smooth muscle cells to express tissue factor, the initiator of the coagulation cascade. The induction of tissue factor by gp120 is mediated by two biologically relevant coreceptors for HIV infection, CXCR4 and CCR5, and is also dependent on the presence of functional CD4. Induction of tissue factor by gp120 requires activation of mitogen-activating protein kinases, activation of protein kinase C, and generation of reactive oxygen species, signaling pathways that have protean effects on smooth muscle cell physiology. The activation of smooth muscle cells by gp120 may play an important role in the vascular, thrombotic, and inflammatory responses to HIV infection.
Collapse
MESH Headings
- CD4 Antigens/metabolism
- Cells, Cultured
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemokines, CXC/pharmacology
- Coronary Thrombosis/etiology
- HIV Envelope Protein gp120/toxicity
- HIV Infections/complications
- Humans
- Ligands
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/virology
- Protein Kinase C/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, CCR5/metabolism
- Receptors, CXCR4/metabolism
- Recombinant Proteins/toxicity
- Thromboplastin/biosynthesis
Collapse
Affiliation(s)
- A D Schecter
- Zena and Michael A. Wiener Cardiovascular Institute and Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA. alison.schecter@.mssm.edu
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sun LB, Utoh J, Moriyama S, Tagami H, Okamoto K, Kitamura N. Topically applied tissue factor pathway inhibitor reduced intimal thickness of small arterial autografts in rabbits. J Vasc Surg 2001; 34:151-5. [PMID: 11436089 DOI: 10.1067/mva.2001.113307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE The purpose of this study was to investigate whether topically applied tissue factor pathway inhibitor (TFPI) reduces intimal thickness and increases long-term patency of small arterial autografts in rabbits. METHODS An entire 10-mm long section of the left femoral artery was harvested and immersed in saline solution (control group, n = 10), 100 IU/mL of heparin (heparin group, n = 15), or 40 microg/mL of TFPI (TFPI group, n = 15) for 15 minutes. Then the graft was interposed to the right femoral artery. Patency rates were determined by flow measurements throughout the time course of the study, and the grafts were analyzed for measurement of intimal thickness at 3 months after operation. Immunohistochemical analysis was performed to examine whether topically applied TFPI binds to endothelial cells of the grafts. RESULTS Three-month postoperative patency rates were 10% in the control group, 47% in the heparin group, and 73% in the TFPI group. The TFPI group had a significantly higher patency rate than that of the control group (P <.005). Compared with the heparin group, the TFPI group had a significant reduction in intimal area (0.19 +/- 0.05 mm(2) vs 0.30 +/- 0.09 mm(2), P =.0051), in percentage of stenosis (35.7% +/- 7.7% vs 61.4% +/- 15.8%, P <.0001), and in intimal/media areas ratio (0.64 +/- 0.24 vs. 1.04 +/- 0.33, P =.0051). Immunohistologic analyses confirmed that topically applied TFPI bound to endothelial cells. CONCLUSION These results indicate that topically applied TFPI reduces intimal thickness and increases long-term patency of small arterial autografts in rabbits.
Collapse
Affiliation(s)
- L B Sun
- First Department of Surgery, Kumamoto University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Zoldhelyi P, Chen ZQ, Shelat HS, McNatt JM, Willerson JT. Local gene transfer of tissue factor pathway inhibitor regulates intimal hyperplasia in atherosclerotic arteries. Proc Natl Acad Sci U S A 2001; 98:4078-83. [PMID: 11274432 PMCID: PMC31182 DOI: 10.1073/pnas.061004098] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue factor (TF), the initiator of blood coagulation and thrombosis, is up-regulated after vascular injury and in atherosclerotic states. Systemic administration of recombinant TF pathway inhibitor (TFPI) has been reported to decrease intimal hyperplasia after vascular injury and also to suppress systemic mechanisms of blood coagulation and thrombosis. Here we report that, in heritable hyperlipidemic Watanabe rabbits, adenoviral gene transfer of TFPI to balloon-injured atherosclerotic arteries reduced the extent of intimal hyperplasia by 43% (P < 0.05) compared with a control vector used at identical titer (1 x 10(10) plaque-forming units/ml). Platelet aggregation and coagulation studies performed 7 days after local gene transfer of TFPI failed to show any impairment in systemic hemostasis. At time of sacrifice, 4 weeks after vascular injury, the 10 Ad-TFPI treated carotid arteries were free of thrombi, whereas two control-treated arteries were occluded (P, not significant). These findings suggest that TFPI overexpressed in atherosclerotic arteries can regulate hyperplastic response to injury in the absence of changes in the hemostatic system, establishing a role for local TF regulation as target for gene transfer-based antirestenosis therapies.
Collapse
Affiliation(s)
- P Zoldhelyi
- Wafic Said Molecular Cardiology and Gene Therapy Research Laboratory, Texas Heart Institute, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|