1
|
Pedreañez A, Carrero Y, Vargas R, Hernandez-Fonseca JP, Hernandez-Fonseca H, Mosquera JA. Role of Gut Microbiota in Dengue. Rev Med Virol 2024; 34:e2577. [PMID: 39215460 DOI: 10.1002/rmv.2577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Dengue is a disease caused by a flavivirus (DENV) and transmitted by the bite of a mosquito, primarily the Aedes aegypti and Aedes albopictus species. Previous studies have demonstrated a relationship between the host gut microbiota and the evolution of dengue. It seems to be a bidirectional relationship, in which the DENV can affect the microbiota by inducing alterations related to intestinal permeability, leading to the release of molecules from microbiota dysbiosis that can influence the evolution of dengue. The role of angiotensin II (Ang II) in the microbiota/dengue relationship is not well understood, but it is known that the renin-angiotensin system (RAS) is present in the intestinal tract and interacts with the gut microbiota. The possible effect of Ang II on the microbiota/Ang II/dengue relationship can be summarised as follows: the presence of Ang II induced hypertension, the increase in angiotensinogen, chymase, and microRNAs during the disease, the induction of vascular dysfunction, the production of trimethylamine N-oxide and the brain/microbiota relationship, all of which are elements present in dengue that could be part of the microbiota/Ang II/dengue interactions. These findings suggest the potential use of Ang II synthesis blockers and the use of AT1 receptor antagonists as therapeutic drugs in dengue.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan P Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
- Servicio de Microscopia Electrónica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, España
| | - Hugo Hernandez-Fonseca
- Facultad de Ciencias Veterinarias, Universidad del Zulia, Maracaibo, Venezuela
- Anatomy, Physiology and Pharmacology Department, School of Veterinary Medicine, Saint George's University, Saint George, Grenada
| | - Jesús A Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
2
|
Soh JEC, Shimizu A, Sato A, Ogita H. Novel cardiovascular protective effects of RhoA signaling and its therapeutic implications. Biochem Pharmacol 2023; 218:115899. [PMID: 37907138 DOI: 10.1016/j.bcp.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Ras homolog gene family member A (RhoA) belongs to the Rho GTPase superfamily, which was first studied in cancers as one of the essential regulators controlling cellular function. RhoA has long attracted attention as a key molecule involved in cell signaling and gene transcription, through which it affects cellular processes. A series of studies have demonstrated that RhoA plays crucial roles under both physiological states and pathological conditions in cardiovascular diseases. RhoA has been identified as an important regulator in cardiac remodeling by regulating actin stress fiber dynamics and cytoskeleton formation. However, its underlying mechanisms remain poorly understood, preventing definitive conclusions being drawn about its protective role in the cardiovascular system. In this review, we outline the characteristics of RhoA and its related signaling molecules, and present an overview of RhoA classical function and the corresponding cellular responses of RhoA under physiological and pathological conditions. Overall, we provide an update on the novel signaling under RhoA in the cardiovascular system and its potential clinical and therapeutic targets in cardiovascular medicine.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
3
|
Mosquera-Sulbaran JA, Pedreañez A, Hernandez-Fonseca JP, Hernandez-Fonseca H. Angiotensin II and dengue. Arch Virol 2023; 168:191. [PMID: 37368044 DOI: 10.1007/s00705-023-05814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Dengue is a disease caused by a flavivirus that is transmitted principally by the bite of an Aedes aegypti mosquito and represents a major public-health problem. Many studies have been carried out to identify soluble factors that are involved in the pathogenesis of this infection. Cytokines, soluble factors, and oxidative stress have been reported to be involved in the development of severe disease. Angiotensin II (Ang II) is a hormone with the ability to induce the production of cytokines and soluble factors related to the inflammatory processes and coagulation disorders observed in dengue. However, a direct involvement of Ang II in this disease has not been demonstrated. This review primarily summarizes the pathophysiology of dengue, the role of Ang II in various diseases, and reports that are highly suggestive of the involvement of this hormone in dengue.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela
- Servicio de Microscopia Electronica del Centro Nacional de Biotecnologia (CNB- CSIC) Madrid, Madrid, España
| | - Hugo Hernandez-Fonseca
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, Saint George's University, True Blue, West Indies, Grenada
| |
Collapse
|
4
|
Li Z, Cipolla MJ. Mechanisms of Flow-Mediated Dilation of Pial Collaterals and the Effect of Hypertension. Hypertension 2022; 79:457-467. [PMID: 34856815 PMCID: PMC8755599 DOI: 10.1161/hypertensionaha.121.18602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/21/2021] [Indexed: 02/03/2023]
Abstract
Leptomeningeal anastomoses are small distal anastomotic vessels also known as pial collaterals in the brain. These vessels redirect blood flow during an occlusion and are important for stroke treatment and outcome. Pial collaterals have unique hemodynamic forces and experience significantly increased luminal flow and shear stress after the onset of ischemic stroke. However, there is limited knowledge of how pial collaterals respond to flow and shear stress, and whether this response is altered in chronic hypertension. Using an in vitro system, pial collaterals from normotensive and hypertensive rats (n=6-8/group) were isolated and luminal flow was induced with intravascular pressure maintained at 40 mm Hg. Collateral lumen diameter was measured following each flow rate in the absence or presence of pharmacological inhibitors and activators. Collaterals from male and female Wistar rats dilated similarly to increased flow (2 µL/minute: 58.4±18.7% versus 67.9±7.4%; P=0.275), and this response was prevented by inhibition of the transient receptor potential vanilloid type 4 channel, as well as inhibitors of nitric oxide and intermediate-conductance calcium-activated potassium channels, suggesting shear stress-induced activation of this pathway was involved. However, the vasodilation was significantly impaired in hypertensive rats (2 µL/minute: 17.7±7.7%), which was restored by inhibitors of reactive oxygen species and mimicked by angiotensin II. Thus, flow- and shear stress-induced vasodilation of pial collaterals appears to be an important stimulus for increasing collateral flow during large vessel occlusion. Impairment of this response during chronic hypertension may be related to poorly engaged pial collaterals during ischemic stroke in hypertensive subjects.
Collapse
Affiliation(s)
- Zhaojin Li
- Department of Neurological Sciences, University of Vermont Robert Larner College of Medicine, Burlington, VT
| | - Marilyn J. Cipolla
- Department of Neurological Sciences, University of Vermont Robert Larner College of Medicine, Burlington, VT
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Robert Larner College of Medicine, Burlington, VT
- Department of Pharmacology, University of Vermont Robert Larner College of Medicine, Burlington, VT
| |
Collapse
|
5
|
Shimokawa H. Reactive oxygen species in cardiovascular health and disease: special references to nitric oxide, hydrogen peroxide, and Rho-kinase. J Clin Biochem Nutr 2020; 66:83-91. [PMID: 32231403 DOI: 10.3164/jcbn.19-119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
The interaction between endothelial cells and vascular smooth muscle cells (VSMC) plays an important role in regulating cardiovascular homeostasis. Endothelial cells synthesize and release endothelium-derived relaxing factors (EDRFs), including vasodilator prostaglandins, nitric oxide (NO), and endothelium-dependent hyperpolarization (EDH) factors. Importantly, the contribution of EDRFs to endothelium-dependent vasodilatation markedly varies in a vessel size-dependent manner; NO mainly mediates vasodilatation of relatively large vessels, while EDH factors in small resistance vessels. We have previously identified that endothelium-derived hydrogen peroxide (H2O2) is an EDH factor especially in microcirculation. Several lines of evidence indicate the importance of the physiological balance between NO and H2O2/EDH factor. Rho-kinase was identified as the effectors of the small GTP-binding protein, RhoA. Both endothelial NO production and NO-mediated signaling in VSMC are targets and effectors of the RhoA/Rho-kinase pathway. In endothelial cells, the RhoA/Rho-kinase pathway negatively regulates NO production. On the contrary, the pathway enhances VSMC contraction with resultant occurrence of coronary artery spasm and promotes the development of oxidative stress and vascular remodeling. In this review, I will briefly summarize the current knowledge on the regulatory roles of endothelium-derived relaxing factors, with special references to NO and H2O2/EDH factor, in relation to Rho-kinase, in cardiovascular health and disease.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
6
|
Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V. RhoGTPase in Vascular Disease. Cells 2019; 8:E551. [PMID: 31174369 PMCID: PMC6627336 DOI: 10.3390/cells8060551] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
Ras-homologous (Rho)A/Rho-kinase pathway plays an essential role in many cellular functions, including contraction, motility, proliferation, and apoptosis, inflammation, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Given its role in many physiological and pathological functions, targeting can result in adverse effects and limit its use for therapy. In this review, we have summarized the role of RhoGTPases with an emphasis on RhoA in vascular disease and its impact on endothelial, smooth muscle, and heart and lung fibroblasts. It is clear from the various studies that understanding the regulation of RhoGTPases and their regulators in physiology and pathological conditions is required for effective targeting of Rho.
Collapse
Affiliation(s)
- Derek Strassheim
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - David Irwin
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Edward C Dempsey
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA.
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Vijaya Karoor
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Amin F, Ahmed A, Feroz A, Khaki PSS, Khan MS, Tabrez S, Zaidi SK, Abdulaal WH, Shamsi A, Khan W, Bano B. An Update on the Association of Protein Kinases with Cardiovascular Diseases. Curr Pharm Des 2019; 25:174-183. [DOI: 10.2174/1381612825666190312115140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Background:
Protein kinases are the enzymes involved in phosphorylation of different proteins which
leads to functional changes in those proteins. They belong to serine-threonine kinases family and are classified
into the AGC (Protein kinase A/ Protein kinase G/ Protein kinase C) families of protein and Rho-associated
kinase protein (ROCK). The AGC family of kinases are involved in G-protein stimuli, muscle contraction, platelet
biology and lipid signaling. On the other hand, ROCK regulates actin cytoskeleton which is involved in the
development of stress fibres. Inflammation is the main signal in all ROCK-mediated disease. It triggers the cascade
of a reaction involving various proinflammatory cytokine molecules.
Methods:
Two ROCK isoforms are found in mammals and invertebrates. The first isoforms are present mainly in
the kidney, lung, spleen, liver, and testis. The second one is mainly distributed in the brain and heart.
Results:
ROCK proteins are ubiquitously present in all tissues and are involved in many ailments that include
hypertension, stroke, atherosclerosis, pulmonary hypertension, vasospasm, ischemia-reperfusion injury and heart
failure. Several ROCK inhibitors have shown positive results in the treatment of various disease including cardiovascular
diseases.
Conclusion:
ROCK inhibitors, fasudil and Y27632, have been reported for significant efficiency in dropping
vascular smooth muscle cell hyper-contraction, vascular inflammatory cell recruitment, cardiac remodelling and
endothelial dysfunction which highlight ROCK role in cardiovascular diseases.
Collapse
Affiliation(s)
- Fakhra Amin
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Anna Feroz
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | | | - Mohd Shahnwaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Wajihullah Khan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| |
Collapse
|
8
|
Shin S, Kim MK, Jung W, Chong Y. (-)-Epigallocatechin gallate derivatives reduce the expression of both urokinase plasminogen activator and plasminogen activator inhibitor-1 to inhibit migration, adhesion, and invasion of MDA-MB-231 cells. Phytother Res 2018; 32:2086-2096. [PMID: 30009577 DOI: 10.1002/ptr.6154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 01/02/2023]
Abstract
Urokinase plasminogen activator (uPA) and its inhibitor plasminogen activator inhibitor-1 (PAI-1) are established independent biomarkers for high metastasis risk in breast cancer. In this study, we investigated the regulatory activity of (-)-epigallocatechin-3-gallate (EGCG) and its derivatives on uPA and PAI-1 expression and thereby their anti-metastatic potential. EGCG showed only marginal effects on the uPA system and on the metastatic behavior of breast cancer cells (MDA-MB-231). However, the EGCG derivative 3e with a methyl-substituted carbonate substituent at the 4″-position showed potent inhibition of PAI-1 (62%) and uPA (50%) expression. The Ras-extracellular-signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol-3-kinase (PI3K)/Akt/NF-κB pathways, which regulate uPA and PAI-1 expression, were also affected by 3e (25%, 45%, and 25% reduction, respectively). In line with these findings, substantial reduction in metastatic behavior of MDA-MB-231 cells, such as adhesion (40%), invasion (56%), and migration (40%), was observed in the presence of 3e. It is also noteworthy that, in MDA-MB-231 cells, 3e did not exert any beneficial effect on the expression of matric metalloprotein (MMP) 2 and 9, which indicates that the anti-metastatic activity of 3e in MDA-MB-231 cells is not related to its regulation of the expression of MMPs. Taken together, we have shown that the EGCG derivative 3e could suppress the metastatic behavior of MDA-MB-231 cells through regulation of uPA and PAI-1.
Collapse
Affiliation(s)
- Sunhye Shin
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Mi Kyoung Kim
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Woong Jung
- Department of Emergency Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Youhoon Chong
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| |
Collapse
|
9
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Takahara Y, Tokunou T, Ichiki T. Suppression of Abdominal Aortic Aneurysm Formation in Mice by Teneligliptin, a Dipeptidyl Peptidase-4 Inhibitor. J Atheroscler Thromb 2018; 25:698-708. [PMID: 29321388 PMCID: PMC6099070 DOI: 10.5551/jat.42481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Dipeptidyl peptidase-4 (DPP-4) inhibitors lower blood glucose levels through inhibition of incretin degradation, which stimulates insulin secretion. Recent studies reported that DPP-4 inhibitors suppressed atherogenesis in apolipoprotein E-knockout (ApoEKO) mice. In this study, we investigated whether teneligliptin, a DPP-4 inhibitor, affects the development of abdominal aortic aneurysms (AAA) in ApoEKO mice. Methods: ApoEKO mice were fed a high-fat diet (HFD) and infused with angiotensin (Ang) II by osmotic mini pumps for 4 weeks to induce AAA with (DPP-4i group) or without (control group) teneligliptin administered orally from 1 week before HFD and Ang II infusion to the end of the experiment. Confluent rat vascular smooth muscle cells (VSMCs) were serum-starved for 48 hours, then incubated with or without teneligliptin for another 24 hours and stimulated with Ang II. Results: Treatment with teneligliptin significantly reduced the AAA formation rate (30.7% vs. 71.4% vs. control, P < 0.05), aortic dilatation (1.32 ± 0.09 mm vs. 1.76 ± 0.18 mm in the control, P < 0.05) and severity score (0.75 ± 0.28 vs. 1.91 ± 0.4 in the control, P < 0.05). Elastin degradation grade was also attenuated in DPP-4i group (2.83 ± 0.17 vs. 3.45 ± 0.16 in the control, P < 0.05). The number of macrophages infiltrating into the abdominal aorta was decreased in the DPP-4i group (51.8 ± 29.8/section vs. 219.5 ± 78.5/section in the control, P < 0.05). Teneligliptin attenuated Ang II-induced phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, and mRNA expression of monocyte chemoattractant protein-1 in VSMCs. Conclusion: Treatment with teneligliptin suppressed AAA formation in ApoEKO mice with HFD and Ang II infusion. Suppression of macrophage infiltration by teneligliptin may be involved in the inhibition of AAA formation.
Collapse
Affiliation(s)
- Yusuke Takahara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University
| | - Tomotake Tokunou
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University.,Center for Disruptive Cardiovascular Medicine, Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University
| | - Toshihiro Ichiki
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University.,Department of Cardiology, Harasanshin Hospital
| |
Collapse
|
11
|
AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 2017; 125:4-13. [PMID: 28527699 DOI: 10.1016/j.phrs.2017.05.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Collapse
|
12
|
Jalil JE, Ocaranza MP. Regression of cardiovascular remodeling in hypertension: Novel relevant mechanisms. World J Hypertens 2016; 6:1-17. [DOI: 10.5494/wjh.v6.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/30/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023] Open
Abstract
Asymptomatic organ damage due to progressive kidney damage, cardiac hypertrophy and remodeling put hypertensive patients at high risk for developing heart and renal failure, myocardial infarction and stroke. Current antihypertensive treatment normalizes high blood pressure, partially reverses organ damage, and reduces the incidence of heart and renal failure. Activation of the renin-angiotensin system (RAS) is a primary mechanism of progressive organ damage and, specifically, a major cause of both renal and cardiovascular fibrosis. Currently, inhibition of the RAS system [mainly with angiotensin I converting enzyme inhibitors or angiotensin II (Ang II) receptor antagonists] is the most effective antihypertensive strategy for normalizing blood pressure and preventing target organ damage. However, residual organ damage and consequently high risk for cardiovascular events and renal failure still persist. Accordingly, in hypertension, it is relevant to develop new therapeutic perspectives, beyond reducing blood pressure to further prevent/reduce target organ damage by acting on pathways that trigger and maintain cardiovascular and renal remodeling. We review here relevant novel mechanisms of target organ damage in hypertension, their role and evidence in prevention/regression of cardiovascular remodeling and their possible clinical impact as well. Specifically, we focus on the signaling pathway RhoA/Rho kinase, on the impact of the vasodilatory peptides from the RAS and some insights on the role of estrogens and myocardial chymase in cardiovascular hypertensive remodeling.
Collapse
|
13
|
Light and Dark of Reactive Oxygen Species for Vascular Function: 2014 ASVB (Asian Society of Vascular Biology). J Cardiovasc Pharmacol 2016; 65:412-8. [PMID: 25162437 DOI: 10.1097/fjc.0000000000000159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.
Collapse
|
14
|
Jiang YH, Sun W, Li W, Hu HZ, Zhou L, Jiang HH, Xu JX. Calycosin-7-O-β-D-glucoside promotes oxidative stress-induced cytoskeleton reorganization through integrin-linked kinase signaling pathway in vascular endothelial cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:315. [PMID: 26346982 PMCID: PMC4562353 DOI: 10.1186/s12906-015-0839-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/28/2015] [Indexed: 02/06/2023]
Abstract
Background Dysfunction of vascular endothelium is implicated in many pathological situations. Cytoskeleton plays an importance role in vascular endothelial permeability barrier and inflammatory response. Many Chinese herbs have the endothelial protective effect, of which, “Astragalus membranaceus” is a highly valued herb for treatment of cardiovascular and renal diseases in traditional Chinese medicine, In this study, we tested whether calycosin-7-O-β-D-glucoside (Calycosin), a main effective monomer component of “Astragalus membranaceus”, could protect endothelial cells from bacterial endotoxin (LPS)-induced cell injury. Methods Endothelial cell injury was induced by exposing human umbilical vein endothelial cells (HUVECs) to LPS. The effects of calycosin on LPS-induced changes in cell viability, apoptosis rate, cell migration, nitric oxide synthase (NOS), generationof intracellular reactive oxygen species (ROS) and cytoskeleton organization were determined. Microarray assay was employed to screen the possible gene expression change. Based on the results of microarray assay, the expression profile of genes involved in Rho/ROCK pathway and AKT pathway were further evaluated with quantitative real-time RT-PCR or western blot methods. Results Calycosin improved cell viability, suppressed apoptosis and protected the cells from LPS-induced reduction in cell migration and generation of ROS, protein level of NOS at a comparable magnitude to that of Y27632 and valsartan. Similar to Y27632 and valsartan, Calycosin, also neutralized LPS-induced actomyosin contraction and vinculin protein aggregation. Microarray assay, real-time PCR and western blot results revealed that LPS induced expression of FN, ITG A5, RhoA, PI3K (or PIP2 in western blotting), FAK, VEGF and VEGF R2, and inhibited expression of MLCP. We believed multiple pathways involved in the regulation of calycosin on HUVECs. Calycosin are considered to be able to activate MLCP through promoting the generation of NO, decreasing PMLC, suppressing the cytoskeleton remodeling caused by activation of Rho/ROCK pathway and inhibiting AKT pathway by decreasing VEGF, VEGF R2 and PI3K level. Conclusion Calycosin protected HUVEC from LPS-induced endothelial injury, possibly through suppression of Rho/ROCK pathway and regulation of AKT pathway.
Collapse
|
15
|
Shimokawa H, Satoh K. 2015 ATVB Plenary Lecture: translational research on rho-kinase in cardiovascular medicine. Arterioscler Thromb Vasc Biol 2015; 35:1756-69. [PMID: 26069233 DOI: 10.1161/atvbaha.115.305353] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/27/2015] [Indexed: 02/07/2023]
Abstract
Rho-kinase (ROCKs) is an important downstream effector of the small GTP-binding protein Ras homolog gene family member A. There are 2 isoforms of ROCK, ROCK1 and ROCK2, and they have different functions in several vascular components. The Ras homolog gene family member A/ROCK pathway plays an important role in various fundamental cellular functions, including contraction, motility, proliferation, and apoptosis, whereas its excessive activity is involved in the pathogenesis of cardiovascular diseases. For the past 20 years, a series of translational research studies have demonstrated the important roles of ROCK in the pathogenesis of cardiovascular diseases. At the molecular and cellular levels, ROCK upregulates several molecules related to inflammation, thrombosis, and fibrosis. In animal experiments, ROCK plays an important role in the pathogenesis of vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, and heart failure. Finally, at the human level, ROCK is substantially involved in the pathogenesis of coronary vasospasm, angina pectoris, hypertension, pulmonary hypertension, and heart failure. Furthermore, ROCK activity in circulating leukocytes is a useful biomarker for the assessment of disease severity and therapeutic responses in vasospastic angina, heart failure, and pulmonary hypertension. In addition to fasudil, many other ROCK inhibitors are currently under development for various indications. Thus, the ROCK pathway is an important novel therapeutic target in cardiovascular medicine.
Collapse
MESH Headings
- Animals
- Cardiovascular Agents/therapeutic use
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/enzymology
- Cardiovascular Diseases/pathology
- Cardiovascular Diseases/physiopathology
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Humans
- Molecular Targeted Therapy
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction
- Translational Research, Biomedical
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Angiotensin II and Cardiovascular-Renal Remodelling in Hypertension: Insights from a Human Model Opposite to Hypertension. High Blood Press Cardiovasc Prev 2015; 22:215-23. [PMID: 25759028 DOI: 10.1007/s40292-015-0082-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/04/2015] [Indexed: 01/20/2023] Open
Abstract
Insights into the Angiotensin II (Ang II) signalling pathways have been provided by extensive studies using Bartter's/Gitelman's syndromes patients. These syndromes are characterized by activation of the renin-angiotensin-aldosterone system but do not develop hypertension and cardiovascular remodelling, therefore represent a mirror image of hypertension and clinically manifest themselves as the opposite of hypertension. The short and the long-term signalling of Ang II remain an important matter of investigation to shed light on mechanisms responsible for the pathophysiology of hypertension and its long-term complications, such as cardiovascular remodelling and atherogenesis. In particular the long-term signalling of Ang II is involved in the pathophysiology of cardiovascular-renal remodelling, inflammatory and hypertrophic responses in which the relationship between RhoA/Rho kinase pathway and NO system plays a crucial role. This review reports the results of our studies in Bartter's and Gitelman's syndromes to get better insight these processes and the role of Ang II signaling. The information obtained from the studies in Bartter's/Gitelman's patients can, in fact, clarify, confirm or be used to gather more general data on the biochemical mechanisms responsible for the pathophysiology of hypertension and its long-term complications and could contribute to identify additional potential significant targets of therapy.
Collapse
|
17
|
Blunted activation of Rho-kinase in yak pulmonary circulation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:720250. [PMID: 25654121 PMCID: PMC4310305 DOI: 10.1155/2015/720250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/17/2014] [Accepted: 10/24/2014] [Indexed: 01/07/2023]
Abstract
Yaks have adapted to high altitude and they do not develop hypoxic pulmonary hypertension. Although we previously identified the important role of augmented nitric oxide synthase activity in the yak pulmonary circulatory system, evidence of the direct involvement of Rho-kinase as a basal vascular tone regulator is lacking. Four domesticated male pure-bred yaks and four bulls that were born and raised at an altitude of 3000 m in the Tien-Shan mountains were studied at an altitude of 3,100 m. Mean pulmonary artery pressure (mPAP) was measured before and after fasudil (60 mg in 20 mL of saline) was intravenously administered using a Swan-Ganz catheter at a rate of 3.3 mL/min for 30 min. Fasudil decreased mPAP in bulls from 67.8±14.9 to 32.3±5.3 mmHg (P < 0.05) after 15 min and the level was maintained for 30 min, but it merely blunted mPAP in yaks from 28.2±4.5 to 25.1±11.1 and 23.2±2.7 mmHg after 5 and 30 min, respectively. These findings comprise the first evidence of a modest role of Rho-kinase in the maintenance of pulmonary artery pressure in the yak.
Collapse
|
18
|
Hung CN, Huang HP, Wang CJ, Liu KL, Lii CK. Sulforaphane inhibits TNF-α-induced adhesion molecule expression through the Rho A/ROCK/NF-κB signaling pathway. J Med Food 2014; 17:1095-102. [PMID: 25238321 DOI: 10.1089/jmf.2013.2901] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Endothelial dysfunction is an early indicator of cardiovascular diseases. Increased stimulation of tumor necrosis factor-α (TNF-α) triggers the inflammatory mediator secretion of endothelial cells, leading to atherosclerotic risk. In this study, we investigated whether sulforaphane (SFN) affected the expression of intracellular adhesion molecule-1 (ICAM-1) in TNF-α-induced ECV 304 endothelial cells. Our data showed that SFN attenuated TNF-α-induced expression of ICAM-1 in ECV 304 cells. Pretreatment of ECV 304 cells with SFN inhibited dose-dependently the secretion of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and IL-8. SFN inhibited TNF-α-induced nuclear factor-κB (NF-κB) DNA binding activity. Furthermore, SFN decreased TNF-α-mediated phosphorylation of IκB kinase (IKK) and IκBα, Rho A, ROCK, ERK1/2, and plasminogen activator inhibitor-1 (PAI-1) levels. Collectively, SFN inhibited the NF-κB DNA binding activity and downregulated the TNF-α-mediated induction of ICAM-1 in endothelial cells by inhibiting the Rho A/ROCK/NF-κB signaling pathway, suggesting the beneficial effects of SFN on suppression of inflammation within the atherosclerotic lesion.
Collapse
Affiliation(s)
- Chi-Nan Hung
- 1 Department of Holistic Wellness, Ming Dao University , ChangHua, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Abstract
Rho kinase (ROCK) is a major downstream effector of the small GTPase RhoA. ROCK family, consisting of ROCK1 and ROCK2, plays central roles in the organization of actin cytoskeleton and is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, proliferation, and apoptosis. Due to the discovery of effective inhibitors, such as fasudil and Y27632, the biological roles of ROCK have been extensively explored with particular attention on the cardiovascular system. In many preclinical models of cardiovascular diseases, including vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, stroke, ischemia-reperfusion injury, and heart failure, ROCK inhibitors have shown a remarkable efficacy in reducing vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment, vascular remodeling, and cardiac remodeling. Moreover, fasudil has been used in the clinical trials of several cardiovascular diseases. The continuing utilization of available pharmacological inhibitors and the development of more potent or isoform-selective inhibitors in ROCK signaling research and in treating human diseases are escalating. In this review, we discuss the recent molecular, cellular, animal, and clinical studies with a focus on the current understanding of ROCK signaling in cardiovascular physiology and diseases. We particularly note that emerging evidence suggests that selective targeting ROCK isoform based on the disease pathophysiology may represent a novel therapeutic approach for the disease treatment including cardiovascular diseases.
Collapse
|
20
|
Jasińska-Stroschein M, Orszulak-Michalak D. The current approach into signaling pathways in pulmonary arterial hypertension and their implication in novel therapeutic strategies. Pharmacol Rep 2014; 66:552-64. [PMID: 24948054 DOI: 10.1016/j.pharep.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 02/01/2023]
Abstract
Many mediators and signaling pathways, with their downstream effectors, have been implicated in the pathogenesis of pulmonary hypertension. Currently approved drugs, representing an option of specific therapy, target NO, prostacyclin or ET-1 pathways and provide a significant improvement in the symptomatic status of patients and a slower rate of clinical deterioration. However, despite such improvements in the treatment, PAH remains a chronic disease without a cure, the mortality associated with PAH remains high and effective therapeutic regimens are still required. Knowledge about the role of the pathways involved in PAH and their interactions provides a better understanding of the pathogenesis of the disease and may highlight directions for novel therapeutic strategies for PAH. This paper reviews some novel, promising PAH-associated signaling pathways, such as RAAS, RhoA/ROCK, PDGF, PPAR, and TGF, focusing also on their possible interactions with well-established ones such as NO, ET-1 and prostacyclin pathways.
Collapse
|
21
|
Sawada N, Liao JK. Rho/Rho-associated coiled-coil forming kinase pathway as therapeutic targets for statins in atherosclerosis. Antioxid Redox Signal 2014; 20:1251-67. [PMID: 23919640 PMCID: PMC3934442 DOI: 10.1089/ars.2013.5524] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The 3-hydroxy-methylglutaryl coenzyme A reductase inhibitors or statins are important therapeutic agents for lowering serum cholesterol levels. However, recent studies suggest that statins may exert atheroprotective effects beyond cholesterol lowering. These so-called "pleiotropic effects" include effects of statins on vascular and inflammatory cells. Thus, it is important to understand whether other signaling pathways that are involved in atherosclerosis could be targets of statins, and if so, whether individuals with "overactivity" of these pathways could benefit from statin therapy, regardless of serum cholesterol level. RECENT ADVANCES Statins inhibit the synthesis of isoprenoids, which are important for the function of the Rho/Rho-associated coiled-coil containing kinase (ROCK) pathway. Indeed, recent studies suggest that inhibition of the Rho/ROCK pathway by statins could lead to improved endothelial function and decreased vascular inflammation and atherosclerosis. Thus, the Rho/ROCK pathway has emerged as an important target of statin therapy for reducing atherosclerosis and possibly cardiovascular disease. CRITICAL ISSUES Because atherosclerosis is both a lipid and an inflammatory disease, it is important to understand how inhibition of Rho/ROCK pathway could contribute to statins' antiatherosclerotic effects. FUTURE DIRECTIONS The role of ROCKs (ROCK1 and ROCK2) in endothelial, smooth muscle, and inflammatory cells needs to be determined in the context of atherogenesis. This could lead to the development of specific ROCK1 or ROCK2 inhibitors, which could have greater therapeutic benefits with less toxicity. Also, clinical trials will need to be performed to determine whether inhibition of ROCKs, with and without statins, could lead to further reduction in atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Naoki Sawada
- 1 GCOE Program and Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University , Tokyo, Japan
| | | |
Collapse
|
22
|
Abstract
BACKGROUND AND OBJECTIVE Behçet's disease (BD) is a chronic inflammatory vasculitis presenting with flares and silent periods usually between 15 and 40 years of age. The aim of this study was to evaluate the possible association between Rho-kinase 1 (ROCK1) gene polymorphisms and patients with BD in a Turkish population. METHODS A total of 192 BD patients and 255 healthy controls of similar age and sex were enrolled in this study. Polymorphisms were analyzed in genomic DNA using a BioMark HD dynamic array system. RESULTS In the presence of CC genotype for rs73963110, CT genotype for rs111874856 (Val355Ile), and TC genotype for rs112130712 (Lys1054Arg) polymorphisms, the risk of BD increased 12.13-, 15.05-, and 16.28-fold, respectively (p < 0.0001). There was a lower frequency of the GA genotype of the rs112108028 (Pro1164Leu) polymorphisms in BD (10.3 %) compared with controls (39.7 %; p < 0.0001). Marked associations between these polymorphisms and the manifestations of BD were recorded. CONCLUSION This is the first study to show that ROCK1 gene polymorphisms may have a significant impact on susceptibility to BD.
Collapse
|
23
|
Couzens AL, Gill RM, Scheid MP. Characterization of a modified ROCK2 protein that allows use of N6-ATP analogs for the identification of novel substrates. BMC Biotechnol 2014; 14:2. [PMID: 24405853 PMCID: PMC3913329 DOI: 10.1186/1472-6750-14-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/07/2014] [Indexed: 12/18/2022] Open
Abstract
Background The Rho-associated coiled-coil kinase-2 (ROCK2) is an important signaling transducer in the transmission of extracellular signals effecting organization of the actin cytoskeleton. ROCK2 has been implicated in numerous pathologies and the current focus is on understanding the molecular events that couple ROCK2 activity to biological function. To aid in the search for new ROCK2 substrates, we have developed an analog-sensitive (AS) ROCK2 protein that allows the use of selective ATP analogs that are not efficiently utilized by other protein kinases. Results The analog sensitive protein, M160A ROCK2, was highly active and could phosphorylate proteins from a cellular homogenate with γ32P-N6 (benzyl)ATP. We show the utility of this approach by identifying a putative ROCK2 substrate, elongation initiation factor-1-α1. We further show that the major site of ROCK2 phosphorylation of EIF1α1 is Thr432. Conclusions Our work demonstrates that AS-ROCK2 could be useful in a systematic proteomic approach for identifying novel ROCK2 substrates.
Collapse
Affiliation(s)
| | | | - Michael P Scheid
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada.
| |
Collapse
|
24
|
Oguz E, Alasehirli B, Pehlivan Y, Onat AM, Oztuzcu S, Ozkara E, Kisacik B, Camci C, Demiryürek AT. Association between Rho-kinase (ROCK2) gene polymorphisms and Behçet's disease. Transl Res 2012; 160:428-34. [PMID: 22939913 DOI: 10.1016/j.trsl.2012.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 12/14/2022]
Abstract
Behçet's disease (BD) is a multi-systemic vasculitis. The aim of this study was to investigate the association between Rho-kinase (ROCK2) gene polymorphisms and patients with BD in a Turkish population. A total of 194 BD patients and 276 healthy controls with similar age and sex were included to this study. Polymorphisms were analyzed in genomic DNA using a BioMark 96.96 dynamic array system. mRNA from blood samples was extracted, and real-time polymerase chain reaction was performed for ROCK2 gene expression. There were marked changes in both genotype (TT, 41.8%; TA, 30.3%) and allele (T, 57%; A, 43%) frequencies for the rs35768389 (Asp601Val) polymorphism in patients compared with controls (TT, 64.6%; TA, 9.4%, P < 0.0001; T, 69.3%; A, 30.7%, P = 0.0004). Although CC genotype (52.0%) of rs1515219 polymorphism were more frequent, CT genotype (27.7%) were less frequent among the patients than controls (CC, 31.7%, CT, 44.6%, P = 0.0001). There was an increase in C allele (65.8% vs 54.0%) and decrease in T allele frequencies (34.2% vs 46.0%, P = 0.001) in patients. However, no associations were found with rs726843, rs2290156, rs965665, rs10178332, rs2230774, rs6755196, rs10929732, and rs34945852 polymorphisms. There was an increase in peripheral blood mRNA ROCK2 expressions in patients. This is the first study to examine the involvement of ROCK2 gene variation in the risk of incident BD. The results strongly suggest that ROCK2 gene polymorphisms may modify individual susceptibility to BD in the Turkish population.
Collapse
Affiliation(s)
- Elif Oguz
- Department of Medical Pharmacology, University of Gaziantep, Gaziantep, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sriraman R, Tooke JE. Endothelial dysfunction and insulin resistance. Metab Syndr Relat Disord 2012; 2:129-36. [PMID: 18370644 DOI: 10.1089/met.2004.2.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this article, we review several mechanisms by which insulin resistance is related to endothelial dysfunction. The mechanisms we discuss may explain the high prevalence of cardiovascular disease found in people with the metabolic syndrome and diabetes mellitus.
Collapse
Affiliation(s)
- Rajagopalan Sriraman
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | | |
Collapse
|
26
|
Li H, Peng W, Jian W, Li Y, Li Q, Li W, Xu Y. ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion. Cardiovasc Diabetol 2012; 11:65. [PMID: 22694757 PMCID: PMC3461463 DOI: 10.1186/1475-2840-11-65] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/06/2012] [Indexed: 11/22/2022] Open
Abstract
Background Previous studies suggested that the RhoA/ROCK pathway may contribute to vascular complications in diabetes. The present study was designed to investigate whether ROCK inhibitor fasudil could prevent high glucose-induced monocyte-endothelial cells adhesion, and whether this was related to fasudil effects on vascular endothelial cell expression of chemotactic factors, vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1). Methods HUVECs were stimulated with high glucose (HG) or HG + fasudil in different concentration or different time. Monocyte-endothelial cell adhesion was determined using fluorescence-labeled monocytes. The mRNA and protein expression of VCAM-1 and MCP-1 were measured using real-time PCR and western blot. The protein levels of RhoA, ROCKI and p-MYPT were determined using western blot analysis. ELISA was employed to measure the expression of soluble VCAM-1 and MCP-1 in cell supernatants and human serum samples. Results Fasudil significantly suppressed HG-induced adhesion of THP-1 to HUVECs. Fasudil reduced Rho/ROCK activity (as indicated by lower p-MYPT/MYPT ratio), and prevented HG induced increases in VCAM-1 and MCP-1 mRNA and protein levels. Fasudil also decreased MCP-1 concentration in HUVEC supernatants, but increased sVCAM-1 shedding into the media. In human diabetic subjects, 2 weeks of fasudil treatment significantly decreased serum MCP-1 level from 27.9 ± 10.6 pg/ml to 13.8 ± 7.0 pg/ml (P < 0.05), while sVCAM-1 increased from 23.2 ± 7.5 ng/ml to 39.7 ± 5.6 ng/ml after fasudil treatment (P < 0.05). Conclusions Treatment with the Rho/ROCK pathway inhibitor fasudil attenuated HG-induced monocyte-endothelial cell adhesion, possibly by reducing endothelial expression of VCAM-1 and MCP-1. These results suggest inhibition of Rho/ROCK signaling may have therapeutic potential in preventing diabetes associated vascular inflammation and atherogenesis.
Collapse
Affiliation(s)
- Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Surma M, Wei L, Shi J. Rho kinase as a therapeutic target in cardiovascular disease. Future Cardiol 2012; 7:657-71. [PMID: 21929346 DOI: 10.2217/fca.11.51] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rho kinase (ROCK) belongs to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and is a major downstream effector of the small GTPase RhoA. ROCK plays central roles in the organization of the actin cytoskeleton and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation and gene expression. Two ROCK isoforms, ROCK1 and ROCK2, are assumed to be functionally redundant, based largely on the major common activators, the high degree of homology within the kinase domain and studies from overexpression with kinase constructs and chemical inhibitors (e.g., Y27632 and fasudil), which inhibit both ROCK1 and ROCK2. Extensive experimental and clinical studies support a critical role for the RhoA/ROCK pathway in the vascular bed in the pathogenesis of cardiovascular diseases, in which increased ROCK activity mediates vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment and vascular remodeling. Recent experimental studies, using ROCK inhibitors or genetic mouse models, indicate that the RhoA/ROCK pathway in myocardium contributes to cardiac remodeling induced by ischemic injury or persistent hypertrophic stress, thereby leading to cardiac decompensation and heart failure. This article, based on recent molecular, cellular and animal studies, focuses on the current understanding of ROCK signaling in cardiovascular diseases and in the pathogenesis of heart failure.
Collapse
Affiliation(s)
- Michelle Surma
- Riley Heart Research Centre, Wells Centre for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
28
|
Zhao Y, Lv M, Lin H, Hong Y, Yang F, Sun Y, Guo Y, Cui Y, Li S, Gao Y. ROCK1 induces ERK nuclear translocation in PDGF-BB-stimulated migration of rat vascular smooth muscle cells. IUBMB Life 2012; 64:194-202. [PMID: 22215561 DOI: 10.1002/iub.598] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/20/2011] [Indexed: 11/10/2022]
Abstract
It has been known that Rho-associated protein kinase (ROCK) signaling regulates the migration of vascular smooth muscle cells (VSMCs). However, the isoform-specific roles of ROCK and its underlying mechanism in VSMC migration are not well understood. The current study thus aimed to investigate the roles of ROCK1/2 and their relationship to the MAPK signaling pathway in platelet-derived growth factor (PDGF)-induced rat aorta VSMC migration by manipulating ROCK gene expression. The results revealed that ROCK1 small interfering ribonucleic acid (siRNA) rather than ROCK2 siRNA decreased PDGF-BB-generated VSMC migration, and upregulation of ROCK1 expression via transfection of constructed pEGFP-C1/ROCK1 plasmid further increased the migration of PDGF-BB-treated VSMCs. In PDGF-treated VSMCs, ROCK1 siRNA did not affect the phosphorylation levels of ERK and p38 in the cytoplasm, but decreased the level of ERK phosphorylation in the nucleus. These findings demonstrate that activated ROCK1 can promote VSMC migration through facilitating phosphorylation and nuclear translocation of ERK protein.
Collapse
Affiliation(s)
- Ying Zhao
- Provincial Key Laboratory of Cell and Molecular Biology, Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nørsett KG, Steele I, Duval C, Sammut SJ, Murugesan SVM, Kenny S, Rainbow L, Dimaline R, Dockray GJ, Pritchard DM, Varro A. Gastrin stimulates expression of plasminogen activator inhibitor-1 in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G446-53. [PMID: 21193525 PMCID: PMC3174540 DOI: 10.1152/ajpgi.00527.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plasminogen activator inhibitor (PAI)-1 is associated with cancer progression, fibrosis and thrombosis. It is expressed in the stomach but the mechanisms controlling its expression there, and its biological role, are uncertain. We sought to define the role of gastrin in regulating PAI-1 expression and to determine the relevance for gastrin-stimulated cell migration and invasion. In gastric biopsies from subjects with elevated plasma gastrin, the abundances of PAI-1, urokinase plasminogen activator (uPA), and uPA receptor (uPAR) mRNAs measured by quantitative PCR were increased compared with subjects with plasma concentrations in the reference range. In patients with hypergastrinemia due to autoimmune chronic atrophic gastritis, there was increased abundance of PAI-1, uPA, and uPAR mRNAs that was reduced by octreotide or antrectomy. Immunohistochemistry revealed localization of PAI-1 to parietal cells and enterochromaffin-like cells in micronodular neuroendocrine tumors in hypergastrinemic subjects. Transcriptional mechanisms were studied by using a PAI-1-luciferase promoter-reporter construct transfected into AGS-G(R) cells. There was time- and concentration-dependent increase of PAI-1-luciferase expression in response to gastrin that was reversed by inhibitors of the PKC and MAPK pathways. In Boyden chamber assays, recombinant PAI-1 inhibited gastrin-stimulated AGS-G(R) cell migration and invasion, and small interfering RNA treatment increased responses to gastrin. We conclude that elevated plasma gastrin concentrations are associated with increased expression of gastric PAI-1, which may act to restrain gastrin-stimulated cell migration and invasion.
Collapse
Affiliation(s)
| | | | | | | | - Senthil V. M. Murugesan
- 1Physiological Laboratory and ,2Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | - D. Mark Pritchard
- 2Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
30
|
Satoh K, Fukumoto Y, Shimokawa H. Rho-kinase: important new therapeutic target in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2011; 301:H287-96. [PMID: 21622831 DOI: 10.1152/ajpheart.00327.2011] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rho-kinase (ROCKs) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. There are two isoforms of Rho-kinase, ROCK1 and ROCK2, and they have different functions with ROCK1 for circulating inflammatory cells and ROCK2 for vascular smooth muscle cells. It has been demonstrated that the RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including contraction, motility, proliferation, and apoptosis, leading to the development of cardiovascular disease. The important role of Rho-kinase in vivo has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia-reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Furthermore, the beneficial effects of fasudil, a selective Rho-kinase inhibitor, have been demonstrated for the treatment of several cardiovascular diseases in humans. Thus the Rho-kinase pathway is an important new therapeutic target in cardiovascular medicine.
Collapse
Affiliation(s)
- Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
31
|
Abstract
This review addresses the roles of Rho/Rho-kinase (ROCK) pathway in the pathogenesis of diabetes complications. Diabetes can cause many serious complications and can result in physical disability or even increased mortality. However, there are not many effective ways to treat these complications. The small guanosine-5'-triphosphate-binding protein Rho and its downstream target Rho-kinase mediate important cellular functions, such as cell morphology, motility, secretion, proliferation, and gene expression. Recently, the Rho/Rho-kinase pathway has attracted a great deal of attention in diabetes-related research. These studies have provided evidence that the activity and gene expression of Rho-kinase are upregulated in some tissues in animal models of type 1 or type 2 diabetes and in cell lines cultured with high concentrations of glucose. Inhibitors of Rho-kinase could prevent or ameliorate the pathological changes in diabetic complications. The inhibitory effects of statins on the Rho/Rho-kinase signalling pathway may also play a role in the prevention of diabetic complications. However, the precise molecular mechanism by which the Rho/Roh-kinase pathway participates in the development or progression of diabetic complications has not been extensively investigated. This article evaluates the relationship between Rho/Roh-kinase activation and diabetic complications, as well as the roles of Roh-kinase inhibitors and statins in the complications of diabetes, with the objective of providing a novel target for the treatment of long-term diabetic complications.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Endocrinology, The Second Hospital of He Bei Medical University, Shijiazhuang, China
| | | |
Collapse
|
32
|
Calò LA, Naso A, D'Angelo A, Pagnin E, Zanardo M, Puato M, Rebeschini M, Landini S, Feriani M, Perego A, Malagoli A, Zagatti R, Calzavara P, Cascone C, Davis PA. Molecular biology-based assessment of vitamin E-coated dialyzer effects on oxidative stress, inflammation, and vascular remodeling. Artif Organs 2011; 35:E33-9. [PMID: 21323683 DOI: 10.1111/j.1525-1594.2010.01125.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cardiovascular disease represents the most common cause for the excess of morbidity and mortality found in end-stage renal disease (ESRD) and has prompted the exploration of multiple approaches to improve outcomes in these patients. Cardiovascular risk factors such as increased oxidative stress (OxSt) and inflammation are found in ESRD patients. A vitamin E-coated dialyzer using polysulfone membranes has been suggested to have positive effects on these factors. This 1-year study evaluated in 25 ESRD patients under chronic dialysis, the effects of a vitamin E-coated membrane (VitabranE ViE) "ex vivo" on mononuclear cells, OxSt, and inflammation-related biochemical and molecular biology markers using a molecular biology approach. p22(phox), heme oxygenase (HO)-1, plasminogen activator inhibitor (PAI)-1 protein level, and phosphorylated extracellular signal-regulated kinase (pERK)1/2 status were evaluated at the beginning of the study, after 6 months and after 12 months by Western blot analysis and oxidized low-density lipoprotein (OxLDL) plasma level by enzyme-linked immunosorbent assay, alongside vascular remodeling assessment as measured by carotid intima-media thickness (IMT) in a subgroup of nine randomly selected patients. p22(phox), PAI-1, OxLDL, and pERK all decreased with VitabranE use, while HO-1 increased. Carotid IMT did not increase. Treatment with VitabranE significantly decreases the expression of proteins and markers relevant to OxSt and inflammation tightly associated with cardiovascular disease, and it appears highly likely that VitabranE use will provide a benefit in terms of cardiovascular protection.
Collapse
Affiliation(s)
- Lorenzo A Calò
- Department of Clinical and Experimental Medicine, University of Padova-Azienda Ospedaliera di Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rho-kinase inhibition: a novel therapeutic target for the treatment of cardiovascular diseases. Drug Discov Today 2010; 15:622-9. [PMID: 20601092 DOI: 10.1016/j.drudis.2010.06.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 06/07/2010] [Accepted: 06/21/2010] [Indexed: 01/01/2023]
Abstract
The Rho/rho-kinase (ROCK) pathway has an important role in the pathogenesis of several cardiovascular diseases. The activation of ROCK is involved in the regulation of vascular tone, endothelial dysfunction, inflammation and remodeling. The inhibition of ROCK has a beneficial effect in a variety of cardiovascular disorders. Evidence from animal models and from clinical use of ROCK inhibitors, such as Y-27632, fasudil and statins (i.e. pleiotropic effects), supports the hypothesis that ROCK is a potential therapeutic target. This review provides a current understanding of the role of ROCK pathway in the regulation of vascular function and the use of ROCK inhibitors in the treatment of cardiovascular disorders.
Collapse
|
34
|
Lee MH, Hammad SM, Semler AJ, Luttrell LM, Lopes-Virella MF, Klein RL. HDL3, but not HDL2, stimulates plasminogen activator inhibitor-1 release from adipocytes: the role of sphingosine-1-phosphate. J Lipid Res 2010; 51:2619-28. [PMID: 20522601 DOI: 10.1194/jlr.m003988] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lysophospholipid that regulates numerous key cardiovascular functions. High-density lipoproteins (HDLs) are the major plasma lipoprotein carriers of S1P. Fibrinolysis is a physiological process that allows fibrin clot dissolution, and decreased fibrinolytic capacity may result from increased circulating levels of plasminogen activator inhibitor-1 (PAI-1). We examined the effect of S1P associated with HDL subfractions on PAI-1 secretion from 3T3 adipocytes. S1P concentration in HDL3 averaged twice that in HDL2. Incubation of adipocytes with increasing concentrations of S1P in HDL3, but not HDL2, or with S1P complexed to albumin stimulated PAI-I secretion in a concentration-dependent manner. Quantitative RT-PCR revealed that S1P(1-3) are expressed in 3T3 adipocytes, with S1P(2) expressed in the greatest amount. Treatment of adipocytes with the S1P(1) and S1P(3) antagonist VPC23019 did not block PAI-1 secretion. Inhibiting S1P(2) with JTE-013 or reducing the expression of the gene coding for S1P(2) using silencing RNA (siRNA) technology blocked PAI-1 secretion, suggesting that the S1P(2) receptor mediates PAI-1 secretion from adipocytes exposed to HDL3 or S1P. Treatment with the phospholipase C (PLC) inhibitor U73122, the protein kinase C (PKC) inhibitor RO-318425, or the Rho-associated protein kinase (ROCK) inhibitor Y27632 all significantly inhibited HDL3- and S1P-mediated PAI-1 release, suggesting that HDL3- and/or S1P-stimulated PAI-1 secretion from 3T3 cells is mediated by activation of multiple, downstream signaling pathways of S1P(2).
Collapse
Affiliation(s)
- Mi-Hye Lee
- Division of Endocrinology, Metabolism, and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Calò LA, Pagnin E, Davis PA, Armanini D, Mormino P, Rossi GP, Pessina AC. Oxidative stress-related proteins in a Conn's adenoma tissue. Relevance for aldosterone's prooxidative and proinflammatory activity. J Endocrinol Invest 2010; 33:48-53. [PMID: 19625761 DOI: 10.1007/bf03346549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIM Angiotensin II (Ang II) induces oxidative stress (OxSt), which is essential for cardiovascular remodeling. Aldosterone also induces fibrosis and remodeling through direct effect on non-classical mineralocorticoid (MR) target tissues. However, studies on the role of aldosterone on OxSt and related factors in humans are lacking. MATERIALS AND METHODS We assessed gene and protein expression of p22phox (RT-PCR and Western blot), NAD(P)H oxidase subunit essential for superoxide production and gene expression of transforming growth fator (TGF) beta, plasminogen activator inhibitor (PAI)-1, and heme oxygenase (HO)-1, effectors of OxSt (RT-PCR), in a Conn's adenoma, removed from a patient with primary hyperaldosteronism. Ang II type 1 (AT1R) and MR receptors expression were also evaluated (RT-PCR). The normal adrenal tissue adjacent to the adenoma was used as control. RESULTS p22phox gene and protein expression were higher (31% and 53%, respectively) in the adrenal adenoma. TGFbeta, PAI-1, and HO-1 gene expression were also higher (25%, 129%, and 25%, respectively) in the adrenal adenoma while AT1R gene expression was similar (8%). The expression of MR in the adenoma was documented. CONCLUSIONS This report demonstrates in a human model that the increased aldosterone production has effects on enzyme systems related to OxSt, enhancing the systemic fibrogenic effects of aldosterone excess through TGFbeta and PAI-1 expression which was previously demonstrated only indirectly in vitro and in animal models. The presence of MR expression in the adenoma may link the hormone with the adenoma growth. Therefore, the results of this study derived from a single case might represent an important working hypothesis for further research in a larger number of cases to clarify the role of aldosterone overproduction on OxSt and its clinical relevance.
Collapse
Affiliation(s)
- L A Calò
- Department of Clinical and Experimental Medicine, Clinica Medica 4, University of Padua, Via Giustiniani 2,Padua, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Naito T, Ma LJ, Yang H, Zuo Y, Tang Y, Han JY, Kon V, Fogo AB. Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis. Am J Physiol Renal Physiol 2009; 298:F683-91. [PMID: 20042458 DOI: 10.1152/ajprenal.00503.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angiotensin type 1 (AT1) receptor blocker (ARB) ameliorates progression of chronic kidney disease. Whether this protection is due solely to blockade of AT1, or whether diversion of angiotensin II from the AT1 to the available AT2 receptor, thus potentially enhancing AT2 receptor effects, is not known. We therefore investigated the role of AT2 receptor in ARB-induced treatment effects in chronic kidney disease. Adult rats underwent 5/6 nephrectomy. Glomerulosclerosis was assessed by renal biopsy 8 wk later, and rats were divided into four groups with equivalent glomerulosclerosis: no further treatment, ARB, AT2 receptor antagonist, or combination. By week 12 after nephrectomy, systolic blood pressure was decreased in all treatment groups, but proteinuria was decreased only with ARB. Glomerulosclerosis increased significantly in AT2 receptor antagonist vs. ARB. Kidney cortical collagen content was decreased in ARB, but increased in untreated 5/6 nephrectomy, AT2 receptor antagonist, and combined groups. Glomerular cell proliferation increased in both untreated 5/6 nephrectomy and AT2 receptor antagonist vs. ARB, and phospho-Erk2 was increased by AT2 receptor antagonist. Plasminogen activator inhibitor-1 mRNA and protein were increased at 12 wk by AT2 receptor antagonist in contrast to decrease with ARB. Podocyte injury is a key component of glomerulosclerosis. We therefore assessed effects of AT1 vs. AT2 blockade on podocytes and interaction with plasminogen activator inhibitor-1. Cultured wild-type podocytes, but not plasminogen activator inhibitor-1 knockout, responded to angiotensin II with increased collagen, an effect that was completely blocked by ARB with lesser effect of AT2 receptor antagonist. We conclude that the benefical effects on glomerular injury achieved with ARB are contributed to not only by blockade of the AT1 receptor, but also by increasing angiotensin effects transduced through the AT2 receptor.
Collapse
Affiliation(s)
- Takashi Naito
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhou Q, Liao JK. Rho kinase: an important mediator of atherosclerosis and vascular disease. Curr Pharm Des 2009; 15:3108-15. [PMID: 19754385 DOI: 10.2174/138161209789057986] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is a complex inflammatory process characterized by the cross-talk between excessive inflammation and lipid accumulation. In the past few years, compelling evidence suggests that statins can decrease vascular inflammation and attenuate the development of atherosclerosis through their so-called "pleiotropic effects". These cholesterol-independent effects are predominantly due to their ability to inhibit isoprenoid synthesis. In particular, inhibition of geranylgeranylpyrophosphate synthesis leads to inhibition of Rho and its downstream target, Rho-kinase (ROCK). Thus, one of the beneficial effects of statin therapy could be due to inhibitory effects on ROCK. ROCK is involved in mediating diverse cellular functions such as smooth muscle contraction, cell migration and proliferation. While increased ROCK activity is associated with endothelial dysfunction, cerebral ischemia, coronary vasospasms and metabolic syndrome, the inhibition of ROCK by statins or selective ROCK inhibitors leads to up-regulation of endothelial nitric oxide synthase (eNOS), decreased vascular inflammation, and reduced atherosclerotic plaque formation. This review will focus on the impact of ROCK in cardiovascular disease and its contributory role to vascular inflammation and the atherosclerosis.
Collapse
Affiliation(s)
- Qian Zhou
- Vascular Medicine Research Unit, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
39
|
Olivares-Reyes JA, Arellano-Plancarte A, Castillo-Hernandez JR. Angiotensin II and the development of insulin resistance: implications for diabetes. Mol Cell Endocrinol 2009; 302:128-39. [PMID: 19150387 DOI: 10.1016/j.mce.2008.12.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/12/2008] [Accepted: 12/13/2008] [Indexed: 12/31/2022]
Abstract
Angiotensin II (Ang II), the major effector hormone of the renin-angiotensin system (RAS), has an important role in the regulation of vascular and renal homeostasis. Clinical and pharmacological studies have recently shown that Ang II is a critical promoter of insulin resistance and diabetes mellitus type 2. Ang II exerts its actions on insulin-sensitive tissues such as liver, muscle and adipose tissue where it has effects on the insulin receptor (IR), insulin receptor substrate (IRS) proteins and the downstream effectors PI3K, Akt and GLUT4. The molecular mechanisms involved have not been completely identified, but the role of serine/threonine phosphorylation of the IR and IRS-1 proteins in desensitization of insulin action has been well established. The purpose of this review is to highlight recent advances in the understanding of Ang II actions which lead to the development of insulin resistance and its implications for diabetes.
Collapse
Affiliation(s)
- J Alberto Olivares-Reyes
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico, DF, Mexico.
| | | | | |
Collapse
|
40
|
Increased leukocyte ROCK activity in patients after acute ischemic stroke. Brain Res 2008; 1257:89-93. [PMID: 19133241 DOI: 10.1016/j.brainres.2008.12.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Rho-kinase (ROCK) is a downstream effector of Rho GTPase that is known to regulate various pathological processes important to the development of ischemic stroke, such as thrombus formation, inflammation, and vasospasm. Inhibition of ROCK leads to decreased infarct size in animal models of ischemic stroke. This study tests the hypothesis that ROCK activity increases during the acute phase of ischemic stroke. METHODS Serial blood samples were drawn from 10 patients with acute ischemic stroke presenting within 24 h of symptom onset and with NIHSS scores >or=4. Samples were taken at 24, 48, and 72 h. Leukocyte ROCK activity was determined by immunoblotting leukocyte lysates with antibodies to the phosphorylated form of myosin-binding subunit (P-MBS) of myosin light chain phosphatase (MLCP). MBS and P-MBS contents were normalized to alpha-tubulin, and ROCK activity was expressed as the ratio of P-MBS to MBS. ROCK activities in these 10 patients were compared to baseline ROCK activities in 10 control subjects without acute illness and matched for sex, age, and number of vascular risk factors using a two-tailed Student's t-test. RESULTS The mean NIHSS score in patients with stroke was 15.4. ROCK activity was significantly increased at 24 and 48 h in patients after acute ischemic stroke when compared to control values, with peak elevations at 48 h after stroke onset. There was no apparent correlation between ROCK activity and stroke severity based on NIHSS. CONCLUSIONS Leukocyte ROCK activity is increased in patients after acute ischemic stroke with maximal activity occurring about 48 h after stroke onset. These findings suggest that activation of ROCK may play a role in the pathogenesis of ischemic stroke in humans.
Collapse
|
41
|
Abstract
Insulin resistance characterizes type 2 diabetes and the metabolic syndrome, disorders associated with an increased risk of death due to macrovascular disease. In the past few decades, research from both the basic science and clinical arenas has enabled evidence-based use of therapeutic modalities such as statins and angiotensin-converting enzyme inhibitors to reduce cardiovascular (CV) mortality in insulin-resistant patients. Recently, promising drugs such as the thiazolidinediones have come under scrutiny for possible deleterious CV effects. Ongoing research has broadened our understanding of the pathophysiology of atherosclerosis, implicating detrimental effects of inflammation and the cellular stress response on the vasculature. In this review, we address current thinking that is shaping our molecular understanding of insulin resistance and atherosclerosis.
Collapse
Affiliation(s)
- Babak Razani
- Fellow in Cardiovascular Medicine, Cardiovascular Division, Department of Medicine, Washington University School of Medicine
| | - Manu V. Chakravarthy
- Instructor in Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine
| | - Clay F. Semenkovich
- Herbert S. Gasser Professor and Chief, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine
| |
Collapse
|
42
|
Abstract
Lipid-lowering agents, such as 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase inhibitors, also known as statins, have been shown to reduce cardiovascular events. However, evidence from recent clinical trials suggests that some of the beneficial effects of statins may be unrelated to changes in low-density lipoprotein cholesterol. In animal studies, many of the cholesterol-independent or "pleiotropic" effects of statins are mediated by inhibition of Rho kinase (ROCK). Indeed, ROCK has been implicated in the regulation of vascular tone, proliferation, inflammation, and oxidative stress. To what extent ROCK activity is inhibited in patients on lipid-lowering therapy, and in particular on statins, is not known, but it may have important clinical and therapeutic implications. This review attempts to make the case that, in addition to lipid lowering, inhibition of ROCK contributes to some of the benefits of statin therapy in patients with cardiovascular disease.
Collapse
Affiliation(s)
- James K Liao
- Vascular Medicine Research, Brigham & Women's Hospital, 65 Landsdowne Street, Room 275, Cambridge, MA 02139, USA.
| |
Collapse
|
43
|
Giani JF, Gironacci MM, Muñoz MC, Turyn D, Dominici FP. Angiotensin-(1-7) has a dual role on growth-promoting signalling pathways in rat heartin vivoby stimulating STAT3 and STAT5a/b phosphorylation and inhibiting angiotensin II-stimulated ERK1/2 and Rho kinase activity. Exp Physiol 2008. [DOI: 10.1113/expphysiol.2007.041269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Samarakoon R, Higgins SP, Higgins CE, Higgins PJ. TGF-beta1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60(c-src)/EGFR(Y845) and Rho/ROCK signaling. J Mol Cell Cardiol 2008; 44:527-38. [PMID: 18255094 DOI: 10.1016/j.yjmcc.2007.12.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/04/2007] [Accepted: 12/11/2007] [Indexed: 10/24/2022]
Abstract
TGF-beta1 and its target gene encoding plasminogen activator inhibitor-1 (PAI-1) are major causative factors in the pathology of tissue fibrosis and vascular disease. The increasing complexity of TGF-beta1 action in the cardiovascular system requires analysis of specific TGF-beta1-initiated signaling events that impact PAI-1 transcriptional regulation in a physiologically-relevant cell system. TGF-beta1-induced PAI-1 expression in both primary cultures and in an established line (R22) of vascular smooth muscle cells (VSMC) was completely blocked by inhibition of epidermal growth factor receptor (EGFR) activity or adenoviral delivery of a kinase-dead EGFR(K721A) construct. TGF-beta1-stimulated PAI-1 expression, moreover, was preceded by EGFR phosphorylation on Y845 (a src kinase target residue) and required pp60(c-src) activity. Infection of VSMC with an adenovirus encoding the EGFR(Y845F) mutant or transfection with a dominant-negative pp60(c-src) (DN-Src) expression vector effectively decreased TGF-beta1-stimulated, but not PDGF-induced, PAI-1 expression implicating the pp60(c-src) phosphorylation site EGFR(Y845) in the inductive response. Consistent with these findings, TGF-beta1 failed to induce PAI-1 synthesis in src kinase-deficient (SYF(-/-/-)) fibroblasts and reexpression of a wild-type pp60(c-src) construct in SYF(-/-/-) cells rescued the PAI-1 response to TGF-beta1. TGF-beta1-induced EGFR activation, but not SMAD2 activation, moreover, was virtually undetectable in SYK(-/-/-) fibroblasts in comparison to wild type (SYK(+/+/+)) counterparts, confirming an upstream signaling role of src family kinases in EGFR(Y845) phosphorylation. Genetic EGFR deficiency or infection of VSMCs with EGFR(K721A) virtually ablated TGF-beta1-stimulated ERK1/2 activation as well as PAI-1 expression but not SMAD2 phosphorylation. Transient transfection of a dominant-negative RhoA (DN-RhoA) expression construct or pretreatment of VSMC with C3 transferase (a Rho inhibitor) or Y-27632 (an inhibitor of p160ROCK, a downstream effector of Rho) also dramatically attenuated the TGF-beta1-initiated PAI-1 inductive response. In contrast to EGFR pathway blockade, interference with Rho/ROCK signaling effectively inhibited TGF-betaR-mediated SMAD2 phosphorylation and nuclear accumulation. TGF-beta1-stimulated SMAD2 activation, moreover, was not sufficient to induce PAI-1 expression in the absence of EGFR signaling both in VSMC and mouse embryonic fibroblasts. Thus, two distinct pathways involving the EGFR/pp60(c-src)/MEK-ERK pathway and Rho/ROCK-dependent SMAD2 activation are required for TGF-beta1-induced PAI-1 expression in VSMC. The identification of such novel interactions between two TGF-beta1-activated signaling networks that specifically impact PAI-1 transcription in VSMC may provide therapeutically-relevant targets to manage the pathophysiology of PAI-1-associated cardiovascular/fibrotic diseases.
Collapse
Affiliation(s)
- Rohan Samarakoon
- Albany Medical College, Center for Cell Biology and Cancer Research, MC-165, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
45
|
Takeshita Y, Takamura T, Ando H, Hamaguchi E, Takazakura A, Matsuzawa-Nagata N, Kaneko S. Cross talk of tumor necrosis factor-α and the renin–angiotensin system in tumor necrosis factor-α-induced plasminogen activator inhibitor-1 production from hepatocytes. Eur J Pharmacol 2008; 579:426-32. [DOI: 10.1016/j.ejphar.2007.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 11/02/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
|
46
|
Abstract
The Rho kinase (ROCK) isoforms, ROCK1 and ROCK2, were initially discovered as downstream targets of the small GTP-binding protein Rho. Because ROCKs mediate various important cellular functions such as cell shape, motility, secretion, proliferation, and gene expression, it is likely that this pathway will intersect with other signaling pathways known to contribute to cardiovascular disease. Indeed, ROCKs have already been implicated in the regulation of vascular tone, proliferation, inflammation, and oxidative stress. However, it is not entirely clear how ROCKs are regulated, what some of their downstream targets are, and whether ROCK1 and ROCK2 mediate different cellular functions. Clinically, inhibition of ROCK pathway is believed to contribute to some of the cardiovascular benefits of statin therapy that are independent of lipid lowering (ie, pleiotropic effects). To what extent ROCK activity is inhibited in patients on statin therapy is not known, but it may have important clinical implications. Indeed, several pharmaceutical companies are already actively engaged in the development of ROCK inhibitors as the next generation of therapeutic agents for cardiovascular disease because evidence from animal studies suggests the potential involvement of ROCK in hypertension and atherosclerosis.
Collapse
Affiliation(s)
- James K Liao
- The Vascular Medicine Research Unit, Brigham and Women's Hospital, Cambridge 02139 and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
47
|
Kitamura K, Tada S, Nakamoto N, Toda K, Horikawa H, Kurita S, Tsunematsu S, Kumagai N, Ishii H, Saito H, Hibi T. Rho/Rho kinase is a key enzyme system involved in the angiotensin II signaling pathway of liver fibrosis and steatosis. J Gastroenterol Hepatol 2007; 22:2022-33. [PMID: 17914985 DOI: 10.1111/j.1440-1746.2006.04735.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM The molecular mechanisms underlying the involvement of the renin-angiotensin system in hepatic fibrosis are unclear. Recently, it was reported that a Rho kinase inhibitor prevented fibrosis of various tissues and that the Rho/Rho kinase pathway was involved in the renin-angiotensin system of vascular smooth muscle cells. In this study, the involvement of the Rho/Rho kinase pathway on angiotensin II signaling in liver fibrogenesis and generation of steatosis was investigated. METHODS Rats were fed a choline-deficient/L-amino acid-defined (CDAA) diet continuously and treated with a Rho kinase inhibitor, Y-27632, and an angiotensin II receptor blocker, TCV-116. Liver histology and hepatic stellate cell activation were analyzed. Free radical production was detected by 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine immunostaining and the expression of tumor necrosis factor-alpha was examined. Isolated hepatic stellate cells were pretreated with a Rho kinase inhibitor, Y-27632, or an angiotensin II receptor blocker, CV-11974, and stimulated with angiotensin II, and mRNA expression of transforming growth factor-beta and alpha-smooth muscle actin was analyzed. RESULTS Both the angiotensin II receptor blocker and the Rho kinase inhibitor improved fibrosis and steatosis of the liver in CDAA-fed rats. The increase in the number of hepatocytes positive for 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine in CDAA-fed rats was significantly prevented by the angiotensin II receptor blocker and the Rho kinase inhibitor. The levels of tumor necrosis factor-alpha mRNA in the liver of CDAA-fed rats were significantly increased and this increase was significantly inhibited by treatment with the angiotensin II receptor blocker and the Rho kinase inhibitor. mRNA expression of transforming growth factor-beta and alpha-smooth muscle actin stimulated by angiotensin II was also significantly suppressed by these two drugs. CONCLUSION These results suggest that the Rho/Rho kinase pathway is at least partly involved in the renin-angiotensin system and plays an important role in hepatic fibrosis and steatosis.
Collapse
Affiliation(s)
- Kumi Kitamura
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Rho kinases (ROCKs) are the first and the best-characterized effectors of the small G-protein RhoA. In addition to their effect on actin organization, or through this effect, ROCKs have been found to regulate a wide range of fundamental cell functions such as contraction, motility, proliferation, and apoptosis. Abnormal activation of the RhoA/ROCK pathway has been observed in major cardiovascular disorders such as atherosclerosis, restenosis, hypertension, pulmonary hypertension, and cardiac hypertrophy. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of ROCK signaling and its roles in cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM U-533-Institut du Thorax, Faculté des Sciences, Nantes, France
| | | | | |
Collapse
|
49
|
Rivera P, Ocaranza MP, Lavandero S, Jalil JE. Rho kinase activation and gene expression related to vascular remodeling in normotensive rats with high angiotensin I converting enzyme levels. Hypertension 2007; 50:792-8. [PMID: 17785632 DOI: 10.1161/hypertensionaha.107.095117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RhoA/Rho kinase (ROCK) pathway is a new mechanism of remodeling and vasoconstriction. Few data are available regarding ROCK activation when angiotensin I-converting enzyme is high and blood pressure is normal. We hypothesized that ROCK is activated in the vascular wall in normotensive rats with genetically high angiotensin I-converting enzyme levels, and it causes increased vascular expression of genes promoting vascular remodeling and also oxidative stress. Aortic ROCK activation, mRNA and protein levels (of monocyte chemoattractant protein-1, transforming growth factor [TGF]-beta(1), and plasminogen activator inhibitor-1 [PAI-1]), NADPH oxidase activity, and O(2)(*-) production were measured in normotensive rats with genetically high (Brown Norway [BN]) and low (Lewis) angiotensin-I-converting enzyme levels and in BN rats treated with the ROCK antagonist fasudil (100 mg/kg per day) for 7 days. ROCK activation was 12-fold higher in BN versus Lewis rats (P<0.05) and was reduced with fasudil by 100% (P<0.05). Aortic TGF-beta1, PAI-1, and monocyte chemoattractant protein-1 mRNA levels were higher in BN versus Lewis rats by 300%, 180%, and 1000%, respectively (P<0.05). Aortic TGF-beta1, PAI-1, and monocyte chemoattractant protein-1 protein levels were higher in BN versus Lewis rats (P<0,05). Fasudil reduced TGF-beta1 and PAI-1 mRNA and TGF-beta1, PAI-1, and monocyte chemoattractant protein-1 protein aortic levels to those observed in Lewis rats. Aortic reduced nicotinamide-adenine dinucleotide phosphate oxidase activity and (*)O(2)(-) production were increased by 88% and 300%, respectively, in BN rats (P<0.05) and normalized by fasudil. In conclusion, ROCK is significantly activated in the aortic wall in normotensive rats with genetically high angiotensin-I-converting enzyme and angiotensin II, and it causes activation of genes that promote vascular remodeling and also increases vascular oxidative stress.
Collapse
Affiliation(s)
- Paulina Rivera
- Department of Cardiovascular Diseases, Medical School, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
50
|
Laumen H, Skurk T, Hauner H. The HMG-CoA reductase inhibitor rosuvastatin inhibits plasminogen activator inhibitor-1 expression and secretion in human adipocytes. Atherosclerosis 2007; 196:565-73. [PMID: 17692320 DOI: 10.1016/j.atherosclerosis.2007.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 06/10/2007] [Accepted: 06/19/2007] [Indexed: 11/19/2022]
Abstract
Human preadipocytes and adipocytes are known to produce the proatherogenic factor PAI-1 and proinflammatory cytokines, and obesity was found to be state of increased adipose production of these factors. In the present study, we investigated the effect of rosuvastatin on the regulation of PAI-1 gene expression in human adipocytes. Human preadipocytes, adipocytes in primary culture and the SGBS cell line were used as cell models. Cells were transfected using various constructs and promoter activity was measured as luciferase activity. PAI-1 expression was measured by quantitative RT-PCR and ELISA. Rosuvastatin inhibited PAI-1 mRNA expression and secretion of the protein in a concentration-dependent manner. This effect was reversed by isoprenoids. Addition of MEK-inhibitors and NFkappaB inhibitors also reduced PAI-1 expression and PAI-1 promoter luciferase activity. Further experiments revealed that rosuvastatin down-regulated the MEKK-1 mediated activation of the PAI-1 promoter. In conclusion our data suggest that rosuvastatin inhibits PAI-1 expression and release from human adipocytes via a MEKK-1-dependent but not a NFkappaB-dependent mechanism.
Collapse
Affiliation(s)
- Helmut Laumen
- Else Kröner-Fresenius-Centre for Nutritional Medicine, Am Forum 5, D-85350 Freising-Weihenstephan, Technische Universität München, Germany.
| | | | | |
Collapse
|