1
|
Kennelly JP, Xiao X, Gao Y, Kim S, Hong SG, Villanueva M, Ferrari A, Vanharanta L, Nguyen A, Nagari RT, Burton NR, Tol MJ, Becker AP, Lee MJ, Ikonen E, Backus KM, Mack JJ, Tontonoz P. Cholesterol binding to VCAM-1 promotes vascular inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613543. [PMID: 39345495 PMCID: PMC11429921 DOI: 10.1101/2024.09.17.613543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hypercholesterolemia has long been implicated in endothelial cell (EC) dysfunction, but the mechanisms by which excess cholesterol causes vascular pathology are incompletely understood. Here we used a cholesterol-mimetic probe to map cholesterol-protein interactions in primary human ECs and discovered that cholesterol binds to and stabilizes the adhesion molecule VCAM-1. We show that accessible plasma membrane (PM) cholesterol in ECs is acutely responsive to inflammatory stimuli and that the nonvesicular cholesterol transporter Aster-A regulates VCAM-1 stability in activated ECs by controlling the size of this pool. Deletion of Aster-A in ECs increases VCAM-1 protein, promotes immune cell recruitment to vessels, and impairs pulmonary immune homeostasis. Conversely, depleting cholesterol from the endothelium in vivo dampens VCAM-1 induction in response to inflammatory stimuli. These findings identify cholesterol binding to VCAM-1 as a key step during EC activation and provide a biochemical explanation for the ability of excess membrane cholesterol to promote immune cell recruitment to the endothelium.
Collapse
Affiliation(s)
- John P. Kennelly
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Sumin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soon-Gook Hong
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | | | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Alexander Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Rohith T. Nagari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Nikolas R. Burton
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Marcus J. Tol
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Andrew P. Becker
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Keriann M. Backus
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| | - Julia J. Mack
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
van der Linden IA, Roodenburg R, Nijhof SL, van der Ent CK, Venekamp RP, van der Laan SEI, Schipper HS. Early-Life Risk Factors for Carotid Intima-Media Thickness and Carotid Stiffness in Adolescence. JAMA Netw Open 2024; 7:e2434699. [PMID: 39302677 DOI: 10.1001/jamanetworkopen.2024.34699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Importance Atherogenesis starts during childhood, making childhood and adolescence an important window of opportunity to prevent atherosclerotic cardiovascular disease later in life. Objective To identify early-life risk factors for preclinical atherosclerosis in adolescence. Design, Setting, and Participants This cohort study is part of the ongoing Wheezing Illness Study in Leidsche Rijn (WHISTLER) prospective birth cohort study, which includes 3005 healthy newborns born between December 2001 and December 2012 in the Leidsche Rijn area of Utrecht, the Netherlands. Eligible participants included those from the WHISTLER cohort who visited the clinic between March 2019 and October 2020 for adolescent follow-up. This study's analyses were performed in January 2024. Exposures Early-life growth was assessed at birth to 6 months, 5 years, and 12 to 16 years. Abdominal ultrasonography determined abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depth. Blood pressure (BP) percentiles and body mass index (BMI) z scores were used. Main Outcomes and Measures Carotid ultrasonography was performed at age 12 to 16 years to assess carotid intima-media thickness (cIMT) and the distensibility coefficient (DC), established measures of preclinical atherosclerosis. Multivariable linear regression models were used to identify early-life risk factors for cIMT and DC in adolescence. Results In total, 232 adolescents (median [IQR] age, 14.9 [13.7-15.8] years; 121 female [52.2%]) were included. More postnatal weight gain (B = 12.34; 95% CI, 2.39 to 22.39), higher systolic BP at 5 years (B = 0.52; 95% CI, 0.02 to 1.01), more VAT at 5 years (B = 3.48; 95% CI, 1.55 to 5.40), and a larger change in VAT between 5 and 12 to 16 years (B = 3.13; 95% CI, 1.87 to 4.39) were associated with a higher cIMT in adolescence. A higher BMI (B = -2.70, 95% CI,-4.59 to -0.80) and VAT at 5 years (B = -0.56; 95% CI, -0.87 to -0.25), as well as a larger change in BMI between 5 and 12 to 16 years (B = -3.63; 95% CI, -5.66 to -1.60) were associated with a higher carotid stiffness in adolescence. On the contrary, a larger change in SAT between 5 and 12 to 16 years (B = 0.37; 95% CI, 0.16 to 0.58) was associated with a higher carotid DC in adolescence. Conclusions and Relevance In this cohort study of 232 participants, early-life growth parameters, and particularly abdominal VAT development, were associated with a higher cIMT and carotid stiffness in adolescence. These findings suggest that assessment of adipose tissue development during childhood can aid characterization of lifetime risk trajectories and tailoring of cardiovascular prevention and risk management strategies.
Collapse
Affiliation(s)
- Isabelle A van der Linden
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rozan Roodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sanne L Nijhof
- Department of Social Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roderick P Venekamp
- Julius Center for Health Sciences and Primary Care, Department of General Practice & Nursing Science, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sabine E I van der Laan
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Henk S Schipper
- Department of Pediatric Cardiology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Social Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Abstract
The medial layer of the arterial wall is composed mainly of vascular smooth muscle cells (VSMCs). Under physiological conditions, VSMCs assume a contractile phenotype, and their primary function is to regulate vascular tone. In contrast with terminally differentiated cells, VSMCs possess phenotypic plasticity, capable of transitioning into other cellular phenotypes in response to changes in the vascular environment. Recent research has shown that VSMC phenotypic switching participates in the pathogenesis of atherosclerosis, where the various types of dedifferentiated VSMCs accumulate in the atherosclerotic lesion and participate in the associated vascular remodeling by secreting extracellular matrix proteins and proteases. This review article discusses the 9 VSMC phenotypes that have been reported in atherosclerotic lesions and classifies them into differentiated VSMCs, intermediately dedifferentiated VSMCs, and dedifferentiated VSMCs. It also provides an overview of several methodologies that have been developed for studying VSMC phenotypic switching and discusses their respective advantages and limitations.
Collapse
Affiliation(s)
- Runji Chen
- Shantou University Medical CollegeShantouChina
| | - David G. McVey
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
| | - Daifei Shen
- Research Center for Translational MedicineThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | | | - Shu Ye
- Shantou University Medical CollegeShantouChina
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
- Cardiovascular‐Metabolic Disease Translational Research ProgrammeNational University of SingaporeSingapore
| |
Collapse
|
4
|
Wu J, Fang C, Wei L, Liu Y, Xu H, Wang X, Yuan L, Wu X, Xu Y, Zhang A. Spotlight on clinical strategies of Chronic Internal Carotid Artery Occlusion: Endovascular interventions and external-intracarotid bypasses compared to conservative treatment. Front Surg 2022; 9:971066. [PMID: 36425889 PMCID: PMC9679017 DOI: 10.3389/fsurg.2022.971066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/18/2022] [Indexed: 10/11/2023] Open
Abstract
Chronic internal carotid artery occlusion (CICAO) has high prevalence and incidence rates, and patients with CICAO can be completely asymptomatic, experience a devastating stroke or die. It is important to note that CICAO causes cerebrovascular accidents. Currently, the external carotid-internal carotid (EC-IC) bypass technique is used to treat CICAO. However, many clinical studies showed that EC-IC bypass was not beneficial for many patients with CICAO. Meanwhile, endovascular intervention treatment options for CICAO are evolving, and an increasing number of patients are undergoing endovascular intervention therapy. Accordingly, a review comparing both techniques is warranted. For this review, we searched PubMed and collected relevant case study reports comparing endovascular interventional therapy and internal and external cervical bypass surgeries to provide strategies for clinical treatment.
Collapse
Affiliation(s)
- Junnan Wu
- Department of Emergency, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingying Wei
- Department of Emergency, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Shanghai, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Shanghai, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoya Wu
- Department of Emergency, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, School of Medicine, Fudan University, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Shanghai, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Schipper HS, de Ferranti S. Atherosclerotic Cardiovascular Risk as an Emerging Priority in Pediatrics. Pediatrics 2022; 150:189711. [PMID: 36217888 DOI: 10.1542/peds.2022-057956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Over the last decades, childhood and adolescence have emerged as an important window of opportunity to prevent atherosclerotic cardiovascular disease (ASCVD) later in life. Here, we discuss the underlying advances in the field. First, atherosclerosis development starts as early as childhood. Atherogenesis initiates in the iliac arteries and abdominal aorta and subsequently develops in higher regions of the arterial tree, as has been demonstrated in nonhuman primate studies and human autopsy studies. Obesity, hypertension, hyperlipidemia, and hyperglycemia at a young age can accelerate atherogenesis. Children and adolescents with obesity have a relative risk of ∼ 2.5 for ASCVD mortality later in life, compared to peers with a normal weight. Conversely, early prevention improves long-term cardiovascular outcomes. Second, we review disease-associated factors that add to the traditional risk factors. Various pediatric disorders carry similar or even higher risks of ASCVD than obesity, including chronic inflammatory disorders, organ transplant recipients, familial hypercholesterolemia, endocrine disorders, childhood cancer survivors, chronic kidney diseases, congenital heart diseases, and premature birth, especially after fetal growth restriction. The involved disease-associated factors that fuel atherogenesis are diverse and include inflammation, vascular, and endothelial factors. The diverse and growing list of pediatric groups at risk underscores that cardiovascular risk management has solidly entered the realm of general pediatrics. In a second review in this series, we will, therefore, focus on recent advances in cardiovascular risk assessment and management and their implications for pediatric practice.
Collapse
Affiliation(s)
- Henk S Schipper
- Department of Pediatric Cardiology.,Center for Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sarah de Ferranti
- Department of Cardiology, Boston Children's Hospital and Harvard University Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Ververs FA, Eikendal ALM, Kofink D, Nuboer R, Westenberg JJM, Hovenkamp GT, Kemps JJ, Coenen ICJ, Daems JJN, Claus LR, Ju Y, Wulffraat NM, van der Ent CK, Monaco C, Boes M, Leiner T, Grotenhuis HB, Schipper HS. Preclinical Aortic Atherosclerosis in Adolescents With Chronic Disease. J Am Heart Assoc 2022; 11:e024675. [PMID: 35861840 PMCID: PMC9707823 DOI: 10.1161/jaha.122.024675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Adolescents with chronic disease are often exposed to inflammatory, metabolic, and hemodynamic risk factors for early atherosclerosis. Since postmortem studies have shown that atherogenesis starts in the aorta, the CDACD (Cardiovascular Disease in Adolescents with Chronic Disease) study investigated preclinical aortic atherosclerosis in these adolescents.
Methods and Results
The cross‐sectional CDACD study enrolled 114 adolescents 12 to 18 years old with chronic disorders including juvenile idiopathic arthritis, cystic fibrosis, obesity, corrected coarctation of the aorta, and healthy controls with a corrected atrial septal defect. Cardiovascular magnetic resonance was used to assess aortic pulse wave velocity and aortic wall thickness, as established aortic measures of preclinical atherosclerosis. Cardiovascular magnetic resonance showed a higher aortic pulse wave velocity, which reflects aortic stiffness, and higher aortic wall thickness in all adolescent chronic disease groups, compared with controls (
P
<0.05). Age (β=0.253), heart rate (β=0.236), systolic blood pressure (β=−0.264), and diastolic blood pressure (β=0.365) were identified as significant predictors for aortic pulse wave velocity, using multivariable linear regression analysis. Aortic wall thickness was predicted by body mass index (β=0.248) and fasting glucose (β=0.242), next to aortic lumen area (β=0.340). Carotid intima‐media thickness was assessed using ultrasonography, and was only higher in adolescents with coarctation of the aorta, compared with controls (
P
<0.001).
Conclusions
Adolescents with chronic disease showed enhanced aortic stiffness and wall thickness compared with controls. The enhanced aortic pulse wave velocity and aortic wall thickness in adolescents with chronic disease could indicate accelerated atherogenesis. Our findings underscore the importance of the aorta for assessment of early atherosclerosis, and the need for tailored cardiovascular follow‐up of children with chronic disease.
Collapse
Affiliation(s)
- Francesca A. Ververs
- Center for Translational Immunology University Medical Center Utrecht Utrecht the Netherlands
| | - Anouk L. M. Eikendal
- Department of Radiology University Medical Center Utrecht Utrecht the Netherlands
| | - Daniel Kofink
- Department of Cardiology University Medical Center Utrecht Utrecht the Netherlands
| | - Roos Nuboer
- Department of Pediatrics Meander Medical Center Amersfoort Amersfoort the Netherlands
| | | | - Gijs T. Hovenkamp
- Department of Pediatric Cardiology Wilhelmina Children’s HospitalUniversity Medical Center Utrecht Utrecht the Netherlands
| | - Jitske J.A. Kemps
- Department of Pediatric Cardiology Wilhelmina Children’s HospitalUniversity Medical Center Utrecht Utrecht the Netherlands
| | - Iris C. J. Coenen
- Department of Pediatric Cardiology Wilhelmina Children’s HospitalUniversity Medical Center Utrecht Utrecht the Netherlands
| | - Joëlle J. N. Daems
- Department of Pediatric Cardiology Wilhelmina Children’s HospitalUniversity Medical Center Utrecht Utrecht the Netherlands
| | - Laura R. Claus
- Department of Pediatric Cardiology Wilhelmina Children’s HospitalUniversity Medical Center Utrecht Utrecht the Netherlands
| | - Yillie Ju
- Department of Pediatric Cardiology Wilhelmina Children’s HospitalUniversity Medical Center Utrecht Utrecht the Netherlands
| | - Nico M. Wulffraat
- Department of Pediatric Immunology Wilhelmina Children’s HospitalUniversity Medical Center Utrecht Utrecht the Netherlands
- Rare Immunodeficiency, Autoinflammatory and Autoimmune European Reference Network Utrecht the Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Pulmonology Wilhelmina Children’s HospitalUniversity Medical Center Utrecht Utrecht the Netherlands
| | - Claudia Monaco
- Kennedy Institute of RheumatologyUniversity of Oxford Oxford UK
| | - Marianne Boes
- Center for Translational Immunology University Medical Center Utrecht Utrecht the Netherlands
- Department of Pediatric Immunology Wilhelmina Children’s HospitalUniversity Medical Center Utrecht Utrecht the Netherlands
| | - Tim Leiner
- Department of Radiology University Medical Center Utrecht Utrecht the Netherlands
- Department of Radiology Mayo Clinic Rochester MN
| | - Heynric B. Grotenhuis
- Department of Pediatric Cardiology Wilhelmina Children’s HospitalUniversity Medical Center Utrecht Utrecht the Netherlands
| | - Henk S. Schipper
- Center for Translational Immunology University Medical Center Utrecht Utrecht the Netherlands
- Department of Pediatric Cardiology Wilhelmina Children’s HospitalUniversity Medical Center Utrecht Utrecht the Netherlands
- Kennedy Institute of RheumatologyUniversity of Oxford Oxford UK
| |
Collapse
|
7
|
Fan J, Watanabe T. Atherosclerosis: Known and unknown. Pathol Int 2022; 72:151-160. [PMID: 35076127 DOI: 10.1111/pin.13202] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerotic disease, such as myocardial infarction and stroke, is the number one killer worldwide. Atherosclerosis is considered to be caused by multiple factors, including genetic and environmental factors. In humans, it takes several decades until the clinical complications develop. There are many known risk factors for atherosclerosis, including hypercholesterolemia, hypertension, diabetes and smoking, which are involved in the pathogenesis of atherosclerosis; however, it is generally believed that atherosclerosis is vascular chronic inflammation initiated by interactions of these risk factors and arterial wall cells. In the past 30 years, the molecular mechanisms underlying the pathogenesis of atherosclerosis have been investigated extensively using genetically modified animals, and lipid-reducing drugs, such as statins, have been demonstrated as the most effective for the prevention and treatment of atherosclerosis. However, despite this progress, questions regarding the pathogenesis of atherosclerosis remain and there is a need to develop new animal models and novel therapeutics to treat patients who cannot be effectively treated by statins. In this review, we will focus on two topics of atherosclerosis, "pathology" and "pathogenesis," and discuss unanswered questions.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medical Sciences, University of Yamanashi, Chuo, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Teruo Watanabe
- Division of Laboratory Medicine and Pathology, Fukuoka Wajiro Hospital, Fukuoka, Japan
| |
Collapse
|
8
|
Sanhueza-Olivares F, Troncoso MF, Pino-de la Fuente F, Martinez-Bilbao J, Riquelme JA, Norambuena-Soto I, Villa M, Lavandero S, Castro PF, Chiong M. A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Front Endocrinol (Lausanne) 2022; 13:1057349. [PMID: 36465616 PMCID: PMC9713703 DOI: 10.3389/fendo.2022.1057349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.
Collapse
Affiliation(s)
- Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisco Pino-de la Fuente
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Monica Villa
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- *Correspondence: Mario Chiong,
| |
Collapse
|
9
|
Libby P. Inflammation in Atherosclerosis-No Longer a Theory. Clin Chem 2021; 67:131-142. [PMID: 33393629 DOI: 10.1093/clinchem/hvaa275] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Inflammation links to atherosclerosis and its complications in various experimental investigations. Animal studies have implicated numerous inflammatory mediators in the initiation and complication of atherosclerosis. Numerous studies in humans have shown associations of biomarkers of inflammation with cardiovascular events provoked by atheromata. Inflammatory status, determined by the biomarker C-reactive protein, can guide the allocation of statin therapy to individuals without elevated low-density lipoprotein (LDL) concentrations to prevent first ever adverse cardiovascular events. CONTENT Until recently, no direct evidence has shown that an intervention that selectively limits inflammation can improve outcomes in patients with atherosclerosis. A recent study, based on decades of preclinical investigation, treated patients who had sustained a myocardial infarction and whose LDL was well-controlled on statin treatment with an antibody that neutralizes interleukin-1 beta. This trial, conducted in over 10 000 individuals, showed a reduction in major adverse cardiac events, establishing for the first time the clinical efficacy of an anti-inflammatory intervention in atherosclerosis. Two large subsequent studies have shown that colchicine treatment can also prevent recurrent events in patients recovering from an acute coronary syndrome or in the stable phase of coronary artery disease. These clinical trials have transformed inflammation in atherosclerosis from theory to practice. SUMMARY Much work remains to optimize further anti-inflammatory interventions, minimize unwanted actions, and refine patient selection. This long road from discovery in the laboratory to successful clinical trials represents a victory for medical science, and opens a new avenue to reducing the risk that remains despite current treatments for atherosclerosis.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Verlangieri AJ, Bush MJ. Effects of d-α-Tocopherol Supplementation on Experimentally Induced Primate Atherosclerosis. J Am Coll Nutr 2020. [DOI: 10.1080/07315724.1992.12098234] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Anthony J. Verlangieri
- Atherosclerosis Research Laboratory, Department of Pharmacology, University of Mississippi, University
| | - Marilyn J. Bush
- Atherosclerosis Research Laboratory, Department of Pharmacology, University of Mississippi, University
| |
Collapse
|
11
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
12
|
Mohd Ariff A, Abu Bakar NA, Abd Muid S, Omar E, Ismail NH, Ali AM, Mohd Kasim NA, Mohd Nawawi H. Ficus deltoidea suppresses endothelial activation, inflammation, monocytes adhesion and oxidative stress via NF-κB and eNOS pathways in stimulated human coronary artery endothelial cells. BMC Complement Med Ther 2020; 20:56. [PMID: 32066426 PMCID: PMC7076839 DOI: 10.1186/s12906-020-2844-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/06/2020] [Indexed: 12/25/2022] Open
Abstract
Background Ficus deltoidea (FD) has been shown to have antidiabetic, anti-inflammatory, antinociceptive and antioxidant properties. However, its effects on key events in the pathogenesis of atherosclerosis are unknown. Aim To investigate the endothelial activation, inflammation, monocyte-endothelial cell binding and oxidative stress effects of four FD varieties. Methods Human coronary artery endothelial cells (HCAEC) were incubated with different concentrations of aqueous ethanolic extracts of FD var. trengganuensis (FDT), var. kunstleri (FDK), var. deltoidea (FDD) and var. intermedia (FDI), together with LPS. Protein and gene expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), endothelial-leukocyte adhesion molecule-1 (E-selectin), interleukin-6 (IL-6), Nuclear factor-κB (NF-κB) p50 and p65 and endothelial nitric oxide synthase (eNOS) were measured using ELISA and QuantiGene plex, respectively. Adhesion of monocyte to HCAEC and formation of reactive oxygen species (ROS) were detected by Rose Bengal staining and 2′-7′-dichlorofluorescein diacetate (DCFH-DA) assay. Results FDK exhibited the highest inhibition of biomarkers in relation to endothelial activation and inflammation, second in reducing monocyte binding (17.3%) compared to other varieties. FDK (25.6%) was also the most potent at decreasing ROS production. Conclusion FD has anti-atherogenic effects, possibly mediated by NF-κB and eNOS pathways; with FDK being the most potent variety. It is potentially beneficial in mitigating atherogenesis.
Collapse
Affiliation(s)
- Amirah Mohd Ariff
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nurul Ain Abu Bakar
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Suhaila Abd Muid
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Effat Omar
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin (UniSZA), 20300, Kuala Terengganu, Terengganu, Malaysia
| | - Noor Alicezah Mohd Kasim
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Hapizah Mohd Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia. .,Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
13
|
Abstract
This overview briefly summarizes the cellular pathobiology of experimental atherosclerosis and is then followed by a consideration of how 3 major risk factors interact with the hypothesized pathogenetic process. First, since hemodynamics and blood flow influence the localization of atherosclerotic plaques, possible mechanisms and directions of research are considered. Secondly, the recent hypothesis relating the oxidation of LDL to several of the early processes of atherogenesis is briefly discussed in view of the fact that hyperlipidemia is a major risk factor. The possibility that subsets of LDL and lipoproteins other than LDL might be involved is also discussed. Family history is the last of the 3 contributors to atherosclerosis reviewed and some prototypes of gene abnormalities are considered. Finally, the needs and prospects of future research are summarized.
Collapse
Affiliation(s)
- Godfrey S. Getz
- Department of Pathology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637
| |
Collapse
|
14
|
Rosenfeld ME, Palinski W, Ylä-Herttuala S, Carew TE. Macrophages, Endothelial Cells, and Lipoprotein Oxidation in the Pathogenesis of Atherosclerosis*. Toxicol Pathol 2020. [DOI: 10.1177/019262339001804a06] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the earliest phenomena in the atherogenic process in cholesterol-fed rabbits appears to be the trapping of low density lipoproteins (LDL) at lesion-prone sites in the aorta. The resulting increase in residence time may facilitate oxidation of the lipoproteins, which, in turn, may be a chemotactic signal for monocytes to enter the intima. Oxidized lipoproteins may also be the major source of the cholesterol that the cells accumulate during their transformation into macrophage-derived foam cells (MFC). Adherent monocytes appear to cluster over small groups of subendothelial foam cells, perhaps in response to the enhanced expression of specific adhesion molecules on the surface of endothelial cells and/or monocytes following activation by oxidized lipoproteins. Lipoproteins oxidized by MFC may also injure endothelial cells causing them to retract or rupture. The resulting exposure of the MFC facilitates the formation of mural thrombi. MFC contain oxidation-specific lipid-protein adducts and specifically express the mRNA for 15-lipoxygenase, an enzyme potentially involved in lipoprotein oxidation. MFC isolated from atherosclerotic lesions and containing up to 600 μg cholesterol/mg protein are still capable of binding and degrading modified lipoproteins and affecting the oxidation of LDL.
Collapse
Affiliation(s)
- Michael E. Rosenfeld
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Wulf Palinski
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Seppo Ylä-Herttuala
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Thomas E. Carew
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
15
|
Shimizu I, Minamino T. Cellular Senescence in Arterial Diseases. J Lipid Atheroscler 2020; 9:79-91. [PMID: 32821723 PMCID: PMC7379072 DOI: 10.12997/jla.2020.9.1.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-proliferation potency is limited, as cells cannot proceed through the cell cycle continually. Instead, they eventually show an irreversible arrest of proliferation, commonly referred to as cellular senescence. Following the initial discovery of this phenomenon by Hayflick et al., studies have indicated that cells are also destined to undergo aging. In addition to the irreversible termination of proliferation, senescent cells are characterized by a flattened and enlarged morphology. Senescent cells become pro-inflammatory and contribute to the initiation and maintenance of sustained chronic sterile inflammation. Aging is associated with the accumulation of senescent cells in the cardiovascular system, and in general these cells are considered to be pathogenic because they mediate vascular remodeling. Recently, genetic and pharmacological approaches have enabled researchers to eliminate senescent cells both in vitro and in vivo. The term “senolysis” is now used to refer to the depletion of senescent cells, and evidence indicates that senolysis contributes to the reversal of age-related pathogenic phenotypes without the risk of tumorigenesis. The concept of senolysis has opened new avenues in research on aging, and senolysis may be a promising therapeutic approach for combating age-related disorders, including arterial diseases.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
16
|
Libby P, Hansson GK. From Focal Lipid Storage to Systemic Inflammation: JACC Review Topic of the Week. J Am Coll Cardiol 2019; 74:1594-1607. [PMID: 31537270 PMCID: PMC6910128 DOI: 10.1016/j.jacc.2019.07.061] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/12/2019] [Accepted: 07/07/2019] [Indexed: 12/24/2022]
Abstract
Concepts of atherogenesis have evolved considerably with time. Early animal experiments showed that a cholesterol-rich diet could induce fatty lesion formation in arteries. The elucidation of lipoprotein metabolism ultimately led to demonstrating the clinical benefits of lipid lowering. The view of atheromata as bland accumulations of smooth muscle cells that elaborated an extracellular matrix that could entrap lipids then expanded to embrace inflammation as providing pathways that could link risk factors to atherogenesis. The characterization of leukocyte adhesion molecules and their control by proinflammatory cytokines, the ability of chemokines to recruit leukocytes, and the identification of inflammatory cell subtypes in lesions spurred the unraveling of innate and adaptive immune pathways that contribute to atherosclerosis and its thrombotic complications. Such pathophysiologic insights have led to the identification of biomarkers that can define categories of risk and direct therapies and to the development of new treatments.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Göran K Hansson
- Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Poocza L, Cipriani F, Alonso M, Rodríguez-Cabello JC. Hydrophobic Cholesteryl Moieties Trigger Substrate Cell-Membrane Interaction of Elastin-Mimetic Protein Coatings in Vitro. ACS OMEGA 2019; 4:10818-10827. [PMID: 31460179 PMCID: PMC6648790 DOI: 10.1021/acsomega.9b00548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
A cellular coating based on hydrophobic interactions of an elastin-like recombinamer (ELR) with the cell membrane is presented. It is well-documented that biophysical properties such as net charge, hydrophobicity, and protein-driven cell-ligand (integrin binding) interactions influence the interaction of polymers, proteins or peptides with model membranes and biological cells. Most studies to enhance membrane-substrate interactions have focused on the introduction of positively charged groups to foster electrostatic interactions with the negatively charged membrane. Herein, we present an antagonistic approach based on ELRs with varying amounts of hydrophobic cholesteryl groups (ELRCTAs). The ability of the membranes to stabilize cholesteryl groups is hypothesized to assist the coordination of hydrophobic ELRs with the membrane. The main objective was to generate a defined cellular coating of a recombinant protein that allows for total sequence control and less host, or batch-to-batch, variation as a substitute for the existing coatings like alginate, polyelectrolytes, collagens, and fibronectin. We used an in vitro cell-binding assay to quantify cell-substrate interactions, showing enhanced cellular recognition and matrix distribution with an increasing number of cholesteryl groups incorporated. These novel materials and the versatile nature of their protein sequence have great potential as cellular markers, drug carriers, or hydrophobic cell-binding domains.
Collapse
Affiliation(s)
- Leander Poocza
- Bioforge, University of Valladolid CIBER-BNN, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Filippo Cipriani
- Technical
Proteins Nanobiotechnology S.L., Paseo de Belén 9A, 47011 Valladolid, Spain
| | - Matilde Alonso
- Bioforge, University of Valladolid CIBER-BNN, Paseo de Belén 19, 47011 Valladolid, Spain
| | | |
Collapse
|
18
|
Xepapadaki E, Zvintzou E, Kalogeropoulou C, Filou S, Kypreos KE. Τhe Antioxidant Function of HDL in Atherosclerosis. Angiology 2019; 71:112-121. [PMID: 31185723 DOI: 10.1177/0003319719854609] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a multistep process that progresses over a long period of time and displays a broad range of severity. In its final form, it manifests as a lesion of the intimal layer of the arterial wall. There is strong evidence supporting that oxidative stress contributes to coronary heart disease morbidity and mortality and antioxidant high-density lipoprotein (HDL) could have a beneficial role in the prevention and prognosis of the disease. Indeed, certain subspecies of HDL may act as natural antioxidants preventing oxidation of lipids on low-density lipoprotein (LDL) and biological membranes. The antioxidant function may be attributed to inhibition of synthesis or neutralization of free radicals and reactive oxygen species by HDL lipids and associated enzymes or transfer of oxidation prone lipids from LDL and biological membranes to HDL for catabolism. A limited number of clinical trials suggest that the increased antioxidant potential of HDL correlates with decreased risk for atherosclerosis. Some nutritional interventions to increase HDL antioxidant activity have been proposed with limited success so far. The limitations in measuring and understanding HDL antioxidant function in vivo are also discussed.
Collapse
Affiliation(s)
- Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | | | - Serafoula Filou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| |
Collapse
|
19
|
FAK and Pyk2 activity promote TNF-α and IL-1β-mediated pro-inflammatory gene expression and vascular inflammation. Sci Rep 2019; 9:7617. [PMID: 31110200 PMCID: PMC6527705 DOI: 10.1038/s41598-019-44098-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/09/2019] [Indexed: 01/07/2023] Open
Abstract
Protein tyrosine kinase (PTK) activity has been implicated in pro-inflammatory gene expression following tumor necrosis factor-α (TNF-α) or interkeukin-1β (IL-1β) stimulation. However, the identity of responsible PTK(s) in cytokine signaling have not been elucidated. To evaluate which PTK is critical to promote the cytokine-induced inflammatory cell adhesion molecule (CAM) expression including VCAM-1, ICAM-1, and E-selectin in human aortic endothelial cells (HAoECs), we have tested pharmacological inhibitors of major PTKs: Src and the focal adhesion kinase (FAK) family kinases - FAK and proline-rich tyrosine kinase (Pyk2). We found that a dual inhibitor of FAK/Pyk2 (PF-271) most effectively reduced all three CAMs upon TNF-α or IL-1β stimulation compared to FAK or Src specific inhibitors (PF-228 or Dasatinib), which inhibited only VCAM-1 expression. In vitro inflammation assays showed PF-271 reduced monocyte attachment and transmigration on HAoECs. Furthermore, FAK/Pyk2 activity was not limited to CAM expression but was also required for expression of various pro-inflammatory molecules including MCP-1 and IP-10. Both TNF-α and IL-1β signaling requires FAK/Pyk2 activity to activate ERK and JNK MAPKs leading to inflammatory gene expression. Knockdown of either FAK or Pyk2 reduced TNF-α-stimulated ERK and JNK activation and CAM expression, suggesting that activation of ERK or JNK is specific through FAK and Pyk2. Finally, FAK/Pyk2 activity is required for VCAM-1 expression and macrophage recruitment to the vessel wall in a carotid ligation model in ApoE-/- mice. Our findings define critical roles of FAK/Pyk2 in mediating inflammatory cytokine signaling and implicate FAK/Pyk2 inhibitors as potential therapeutic agents to treat vascular inflammatory disease such as atherosclerosis.
Collapse
|
20
|
Rogers RL, Meyer JS, McClintic K, Mortel KF. Reducing Hypertriglyceridemia in Elderly Patients with Cerebrovascular Disease Stabilizes or Improves Cognition and Cerebral Perfusion. Angiology 2019. [DOI: 10.1177/0003319789040004043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effects of lowering serum triglyceride levels were investigated among 44 el derly hypertriglyceridemic patients with risk factors for stroke, reduced cere bral perfusion, and a history compatible with symptomatic occlusive cerebro vascular disease. Patients were randomly assigned to either treatment with gem fibrozil, a lipid-lowering agent, or control conditions. Subjects in both groups were instructed to follow a diet recommended for lowering serum lipid levels, while the treatment group was additionally administered 600 mg daily of gemfi brozil. Subjects assigned to the treatment group (n = 22) showed significant re ductions in serum triglyceride levels (p < .0005). Control subjects (n=22) did not show any significant changes in serum triglyceride levels. There were also no significant changes in total cholesterol levels in either group. Analyses of values for mean bihemispheric gray matter cerebral blood flow measured by the xenon 133 inhalation method and cognitive scores tested by the Cognitive Ca pacity Screening Examination indicated that gemfibrozil-treated patients main tained significantly higher levels of cerebral perfusion and cognitive perform ance than untreated controls did. Regression analyses for different treatment intervals indicated that both cerebral blood flow and cognition showed linear improvements that correlated directly with the duration of treatment. Lowering triglyceride levels in hyperlipidemic subjects appears to benefit cerebral perfu sion and cognitive performance after four to six months.
Collapse
Affiliation(s)
- Robert L. Rogers
- Cerebral Blood Flow Laboratories, Veterans Administration Medical Center, Houston, Department of Neurology, Baylor College of Medicine, University of Houston, Division of Neuropsychology, Department of Psychology, University of Houston, Houston, Texas
| | - John S. Meyer
- Cerebral Blood Flow Laboratories, Veterans Administration Medical Center, Houston, Department of Neurology, Baylor College of Medicine, University of Houston, Division of Neuropsychology, Department of Psychology, University of Houston, Houston, Texas
| | - Karen McClintic
- Cerebral Blood Flow Laboratories, Veterans Administration Medical Center, Houston, Department of Neurology, Baylor College of Medicine, University of Houston, Division of Neuropsychology, Department of Psychology, University of Houston, Houston, Texas
| | - Karl F. Mortel
- Cerebral Blood Flow Laboratories, Veterans Administration Medical Center, Houston, Department of Neurology, Baylor College of Medicine, University of Houston, Division of Neuropsychology, Department of Psychology, University of Houston, Houston, Texas
| |
Collapse
|
21
|
Omega-3 fatty acids and leukocyte-endothelium adhesion: Novel anti-atherosclerotic actions. Mol Aspects Med 2018; 64:169-181. [DOI: 10.1016/j.mam.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
|
22
|
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, and Departments of Pediatrics and Pathology, University of Washington.
| |
Collapse
|
23
|
Muñoz-Vega M, Massó F, Páez A, Carreón-Torres E, Cabrera-Fuentes HA, Fragoso JM, Pérez-Hernández N, Martinez LO, Najib S, Vargas-Alarcón G, Pérez-Méndez Ó. Characterization of immortalized human dermal microvascular endothelial cells (HMEC-1) for the study of HDL functionality. Lipids Health Dis 2018; 17:44. [PMID: 29523150 PMCID: PMC5845210 DOI: 10.1186/s12944-018-0695-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/02/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Primary cultures endothelial cells have been used as models of endothelial related diseases such atherosclerosis. Biological behavior of primary cultures is donor-dependent and data could not be easily reproducible; endothelial cell lines are emerging options, particularly, human dermal microvascular endothelial cells (HMEC-1), that should be validated to substitute primary cultures for the study of HDL functions. METHODS Morphology, size and granularity of cells were assessed by phase contrast microscopy and flow cytometry of HMEC-1. The adhesion molecules, ICAM-1and VCAM-1 after TNF-α stimulation, and endothelial markers CD105 endoglin, as well as HDL receptor SR-BI were determined by flow cytometry. Internalization of HDL protein was demonstrated by confocal microscopy using HDL labeled with Alexa Fluor 488. HUVECs were used as reference to compared the characteristics with HMEC-1. RESULTS HMEC-1 and HUVEC had similar morphologies, size and granularity. HMEC-1 expressed endothelial markers as HUVECs, as well as functional SR-B1 receptor since the cell line was able to internalize HDL particles. HMEC-1 effectively increased ICAM-1 and VCAM-1 expression after TNF-α stimulation. HUVECs showed more sensibility to TNF-α stimulus but the range of ICAM-1 and VCAM-1 expression was less homogeneous than in HMEC-1, probably due to biological variation of the former. Finally, the expression of adhesion molecules in HMEC-1 was attenuated by co-incubation with HDL. CONCLUSION HMEC-1 possess characteristics of endothelial cells, similar to HUVECs, being a cell line suitable to evaluate the functionality of HDL vis-à-vis the endothelium.
Collapse
Affiliation(s)
- Mónica Muñoz-Vega
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Felipe Massó
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Araceli Páez
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Elizabeth Carreón-Torres
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Hector A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - José Manuel Fragoso
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Nonanzit Pérez-Hernández
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Laurent O Martinez
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR, 1048, Toulouse, France
| | - Souad Najib
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR, 1048, Toulouse, France
| | - Gilberto Vargas-Alarcón
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Óscar Pérez-Méndez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
24
|
Katsuumi G, Shimizu I, Yoshida Y, Minamino T. Vascular Senescence in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med 2018; 5:18. [PMID: 29556500 PMCID: PMC5845435 DOI: 10.3389/fcvm.2018.00018] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
In mammals, aging is associated with accumulation of senescent cells. Stresses such as telomere shortening and reactive oxygen species induce “cellular senescence”, which is characterized by growth arrest and alteration of the gene expression profile. Chronological aging is associated with development of age-related diseases, including heart failure, diabetes, and atherosclerotic disease, and studies have shown that accumulation of senescent cells has a causative role in the pathology of these age-related disorders. Endothelial cell senescence has been reported to develop in heart failure and promotes pathologic changes in the failing heart. Senescent endothelial cells and vascular smooth muscle cells are found in atherosclerotic plaque, and studies indicate that these cells are involved in progression of plaque. Diabetes is also linked to accumulation of senescent vascular endothelial cells, while endothelial cell senescence per se induces systemic glucose intolerance by inhibiting skeletal muscle metabolism. A close connection between derangement of systemic metabolism and cellular senescence is also well recognized. Aging is a complex phenomenon, and there is no simple approach to understanding the whole process. However, there is accumulating evidence that cellular senescence has a central role in the development and progression of various undesirable aspects of aging. Suppression of cellular senescence or elimination of senescent cells reverses phenotypic changes of aging in several models, and proof-of-concept has been established that inhibiting accumulation of senescent cells could become a next generation therapy for age-related disorders. It is clear that cellular senescence drives various pathological changes associated with aging. Accordingly, further investigation into the role of this biological process in age-related disorders and discovery of senolytic compounds are important fields for future exploration.
Collapse
Affiliation(s)
- Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
25
|
Wacker BK, Dronadula N, Bi L, Stamatikos A, Dichek DA. Apo A-I (Apolipoprotein A-I) Vascular Gene Therapy Provides Durable Protection Against Atherosclerosis in Hyperlipidemic Rabbits. Arterioscler Thromb Vasc Biol 2017; 38:206-217. [PMID: 29122817 DOI: 10.1161/atvbaha.117.309565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Gene therapy that expresses apo A-I (apolipoprotein A-I) from vascular wall cells has promise for preventing and reversing atherosclerosis. Previously, we reported that transduction of carotid artery endothelial cells with a helper-dependent adenoviral (HDAd) vector expressing apo A-I reduced early (4 weeks) fatty streak development in fat-fed rabbits. Here, we tested whether the same HDAd could provide long-term protection against development of more complex lesions. APPROACH AND RESULTS Fat-fed rabbits (n=25) underwent bilateral carotid artery gene transfer, with their left and right common carotids randomized to receive either a control vector (HDAdNull) or an apo A-I-expressing vector (HDAdApoAI). Twenty-four additional weeks of high-fat diet yielded complex intimal lesions containing lipid-rich macrophages as well as smooth muscle cells, often in a lesion cap. Twenty-four weeks after gene transfer, high levels of apo A-I mRNA (median ≥250-fold above background) were present in all HDAdApoAI-treated arteries. Compared with paired control HDAdNull-treated arteries in the same rabbit, HDAdApoAI-treated arteries had 30% less median intimal lesion volume (P=0.03), with concomitant reductions (23%-32%) in intimal lipid, macrophage, and smooth muscle cell content (P≤0.05 for all). HDAdApoAI-treated arteries also had decreased intimal inflammatory markers. VCAM-1 (vascular cell adhesion molecule-1)-stained area was reduced by 36% (P=0.03), with trends toward lower expression of ICAM-1 (intercellular adhesion molecule-1), MCP-1 (monocyte chemoattractant protein 1), and TNF-α (tumor necrosis factor-α; 13%-39% less; P=0.06-0.1). CONCLUSIONS In rabbits with severe hyperlipidemia, transduction of vascular endothelial cells with an apo A-I-expressing HDAd yields at least 24 weeks of local apo A-I expression that durably reduces atherosclerotic lesion growth and intimal inflammation.
Collapse
Affiliation(s)
- Bradley K Wacker
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Nagadhara Dronadula
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Lianxiang Bi
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Alexis Stamatikos
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - David A Dichek
- From the Department of Medicine, University of Washington School of Medicine, Seattle.
| |
Collapse
|
26
|
What is the role of systemic conditions and options for manipulation of bone formation and bone resorption in rotator cuff tendon healing and repair? TECHNIQUES IN SHOULDER AND ELBOW SURGERY 2017; 18:113-120. [PMID: 28966557 DOI: 10.1097/bte.0000000000000121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rotator cuff pathology is a significant cause of shoulder pain. Operative repair of rotator cuff is an established standard of care for these patient, however, failure of the procedure is common. Systemic conditions such as diabetes mellitus, hypocholesteremia, thyroid disease, and smoking significantly affect the outcomes of rotator cuff repair and have significant implications for the management of these patients. Diabetes mellitus has been proposed to damage tendons through non-enzymatic glycosylation of collagen with advanced glycation end product formation and impaired microcirculation. Hypocholesteremia may lead to fatty infiltration and subsequent pro-inflammatory degenerative enzymatic degeneration. Thyroid disease may disrupt tendon homeostasis through the alteration of collagen production and the accumulation of glycosaminoglycans. Lastly, smoking inhibits tendon healing through the induction of hypovascularity and hypoperfusion. Understanding of the implications these systemic conditions have on the outcomes is important in the management of rotator cuff disease.
Collapse
|
27
|
Abstract
Inflammation furnishes a series of pathogenic pathways that couple the risk factors for atherosclerosis with altered behavior of the intrinsic cells of the arterial wall, endothelium, and smooth muscle and promote the disease and its complications. Myeloid cells participate critically in all phases of atherosclerosis from initiation through progression, and ultimately the thrombotic consequences of this disease. Foam cells, lipid-laden macrophages, constitute the hallmark of atheromata. Much of the recent expansion in knowledge of the roles of myeloid cells in atherosclerosis revolves around the functional contributions of subsets of monocytes, precursors of macrophages, the most abundant myeloid cells in the atheroma. Proinflammatory monocytes preferentially accumulate in nascent atherosclerotic plaques. The most dramatic manifestations of atherosclerosis result from blood clot formation. Myocardial infarction, ischemic stroke, and abrupt limb ischemia all arise primarily from thrombi that complicate atherosclerotic plaques. Myeloid cells contribute pivotally to triggering thrombosis, for example, by elaborating enzymes that degrade the plaque's protective extracellular matrix, rendering it fragile, and by producing the potent procoagulant tissue factor. While most attention has focused on mononuclear phagocytes, the participation of polymorphonuclear leukocytes may aggravate local thrombus formation. Existing therapies such as statins may exert some of their protective effects by altering the functions of myeloid cells. The pathways of innate immunity that involve myeloid cells provide a myriad of potential targets for modifying atherosclerosis and its complications, and provide a fertile field for future attempts to address the residual burden of this disease, whose global prevalence is on the rise.
Collapse
|
28
|
Affiliation(s)
- CJ Packard
- Institute of Biochemistry, Royal Infirmary, Glasgow
| | - J. Shepherd
- Institute of Biochemistry, Royal Infirmary, Glasgow
| |
Collapse
|
29
|
Farnaghi S, Crawford R, Xiao Y, Prasadam I. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int J Rheum Dis 2017; 20:131-140. [DOI: 10.1111/1756-185x.13061] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Saba Farnaghi
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| |
Collapse
|
30
|
Physical Exercise Is a Potential "Medicine" for Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:269-286. [PMID: 29022268 DOI: 10.1007/978-981-10-4307-9_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) has been recognized as the number one killer for decades. The most well-known risk factor is atherosclerosis. Unlike the acuity of CVD, atherosclerosis is a chronic, progressive pathological change. This process involves inflammatory response, oxidative reaction, macrophage activity, and different interaction of inflammatory factors. Physical exercise has long been known as good for health in general. In recent studies, physical exercise has been demonstrated to be a therapeutic tool for atherosclerosis. However, its therapeutic effect has dosage-dependent effect. Un-proper over exercise might also cause damage to the heart. Here we summarize the mechanism of Physical exercise's beneficial effects and its potential clinical use.
Collapse
|
31
|
Tanner FC, Tschudi MR, Lüscher TF. Endothelium, lipoproteins and atherosclerotic vascular disease. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1358836x9100200207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The endothelium modulates vascular tone by releasing nitric oxide, which is a potent vasodilator and inhibitor of platelet aggregation. Together with prostacyclin, the endogenous nitrate nitric oxide has an important protective role in preventing vasospasm and thrombus formation. In addition, the endothelium is a source of contracting factors such as endothelin-1, thromboxane A2 and endoperoxides. Due to its strategic anatomical position, the endothelium is a primary target for injurious stimuli and cardiovascular risk factors. Low density lipoproteins reduce endothelium-dependent relaxation and enhance endothelium- dependent contraction. The same pattern of endothelial dysfunction occurs in hypercholesterolaemia and atherosclerosis. These alterations of endothelial function may contribute to vasospasm, ischaemia and thrombus formation, which are common events in patients with atherosclerotic vascular disease.
Collapse
|
32
|
Reidy MA, Jackson C, Lindner V. Neointimal Proliferation: Control of Vascular Smooth Muscle Cell Growth. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1358863x9200300206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Affiliation(s)
- Jan Nilsson
- Karolinska Hospital and King Gustaf Vth Research Institute, Stockholm, Sweden
| |
Collapse
|
34
|
Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models. Int J Mol Sci 2016; 17:ijms17091511. [PMID: 27618031 PMCID: PMC5037788 DOI: 10.3390/ijms17091511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies.
Collapse
|
35
|
Abstract
The anoxemia theory proposes that an imbalance between the demand for and supply of oxygen in the arterial wall is a key factor in the development of atherosclerosis. There is now substantial evidence that there are regions within the atherosclerotic plaque in which profound hypoxia exists; this may fundamentally change the function, metabolism, and responses of many of the cell types found within the developing plaque and whether the plaque will evolve into a stable or unstable phenotype. Hypoxia is characterized in molecular terms by the stabilization of hypoxia-inducible factor (HIF) 1α, a subunit of the heterodimeric nuclear transcriptional factor HIF-1 and a master regulator of oxygen homeostasis. The expression of HIF-1 is localized to perivascular tissues, inflammatory macrophages, and smooth muscle cells adjacent to the necrotic core of atherosclerotic lesions and regulates several genes that are important to vascular function including vascular endothelial growth factor, nitric oxide synthase, endothelin-1, and erythropoietin. This review summarizes the effects of hypoxia on the functions of cells involved in atherogenesis and the evidence for its potential importance from experimental models and clinical studies.
Collapse
Affiliation(s)
- Gordon A A Ferns
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| | - Lamia Heikal
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
36
|
Waffenschmidt T, Cilla M, Sáez P, Pérez MM, Martínez MA, Menzel A, Peña E. Towards the modelling of ageing and atherosclerosis effects in ApoE(-/-) mice aortic tissue. J Biomech 2016; 49:2390-7. [PMID: 26924660 DOI: 10.1016/j.jbiomech.2016.01.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/28/2016] [Indexed: 02/05/2023]
Abstract
The goal of this work consists in a quantitative analysis and constitutive modelling of ageing processes associated to plaque formation in mice arteries. Reliable information on the characteristic evolution of pressure-stretch curves due to the ageing effects is extracted from previous inflation test experiments. Furthermore, characteristic age-dependent material parameters are identified on the basis of a continuum-mechanics-based parameter optimisation technique. The results indicate that the aorta-stiffness of the healthy control mice remains basically constant irrespective of the diet-time and age. In contrast, significant differences exist within the material response and in consequence within the material parameters between the ApoE(-/-) and the control mice as well as for the different locations over the aorta which is underlined by our experimental observations. With regard to the temporal evolution of the material parameters, we observe that the material parameters for the ApoE(-/-) mice aortas exhibit a saturation-type increase with respect to age.
Collapse
Affiliation(s)
- Tobias Waffenschmidt
- Institute of Mechanics, Department of Mechanical Engineering, TU Dortmund, Germany; 3M Deutschland GmbH, Carl-Schurz-Str. 1, D-41453 Neuss, Germany
| | - Myriam Cilla
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain
| | - Pablo Sáez
- Laboratori de Calcul Numeric (LaCaN), Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Marta M Pérez
- Department of Anatomy, Embryology and Genetics, Veterinary Faculty, University of Zaragoza, Spain
| | - Miguel A Martínez
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Andreas Menzel
- Institute of Mechanics, Department of Mechanical Engineering, TU Dortmund, Germany; Division of Solid Mechanics, Lund University, Sweden
| | - Estefanía Peña
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
37
|
Chung SW, Park H, Kwon J, Choe GY, Kim SH, Oh JH. Effect of Hypercholesterolemia on Fatty Infiltration and Quality of Tendon-to-Bone Healing in a Rabbit Model of a Chronic Rotator Cuff Tear: Electrophysiological, Biomechanical, and Histological Analyses. Am J Sports Med 2016; 44:1153-64. [PMID: 26912283 DOI: 10.1177/0363546515627816] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The incidence of healing failure after rotator cuff repair is high, and fatty infiltration is a crucial factor in healing failure. PURPOSE To verify the effect of hypercholesterolemia on fatty infiltration and the quality of tendon-to-bone healing and its reversibility by lowering the cholesterol level in a chronic tear model using the rabbit supraspinatus. STUDY DESIGN Controlled laboratory study. METHODS Forty-eight rabbits were randomly allocated into 4 groups (n = 12 each). After 4 weeks of a high-cholesterol diet (groups A and B) and a regular diet (groups C and D), the supraspinatus tendon was detached and left alone for 6 weeks and then was repaired in a transosseous manner (groups A, B, and C). Group D served as a control. Group A continued to receive the high-cholesterol diet until the final evaluation (6 weeks after repair); however, at the time of repair, group B was changed to a general diet with administration of a cholesterol-lowering agent (simvastatin). Histological evaluation of the fat-to-muscle proportion was performed twice, at the time of repair and the final evaluation, and an electromyographic (EMG) test, mechanical test, and histological test of tendon-to-bone healing were performed at the final evaluation. RESULTS For the EMG test, group A showed a significantly smaller area of compound muscle action potential compared with groups C and D (all P <.01), and group B showed a larger area than group A, almost up to the level of group C (P = .312). Similarly, group A showed significantly lower mechanical properties both in load-to-failure and stiffness compared with groups C and D (all P <.05). In addition, although not significantly different, the mechanical properties of group B were higher than those of group A (mean load-to-failure: group A = 42.01 N, group B = 58.23 N [P = .103]; mean stiffness: group A = 36.32 N/mm, group B = 47.22 N/mm [P = .153]). For the histological test, groups A and B showed a significantly higher fat-to-muscle proportion than did groups C and D at 6 weeks after detachment (all P <.05), but at the final evaluation, group B showed a decreased fat-to-muscle proportion (mean ± SD: from 64.02% ± 11.87% to 54.68% ± 10.47%; P = .146) compared with group A, which showed increased fat-to-muscle proportion (from 59.26% ± 17.80% to 78.23% ± 10.87%; P = .015). Groups B and C showed better tendon-to-bone interface structures than did group A, which showed coarse and poorly organized collagen fibers with fat interposition. CONCLUSION Hypercholesterolemia had a deleterious effect on fatty infiltration and the quality of tendon-to-bone repair site, and lowering hypercholesterolemia seemed to halt or reverse these harmful effects in this experimental model. CLINICAL RELEVANCE Systemic diseases such as hypercholesterolemia should be tightly controlled during the perioperative period of rotator cuff repair.
Collapse
Affiliation(s)
- Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Korea
| | | | - Jieun Kwon
- Department of Orthopaedic Surgery, National Police Hospital, Seoul, Korea
| | - Ghee Young Choe
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Sae Hoon Kim
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
38
|
Hage ZA, Behbahani M, Amin-Hanjani S, Charbel FT. Carotid bypass for carotid occlusion. Curr Atheroscler Rep 2016; 17:36. [PMID: 25983136 DOI: 10.1007/s11883-015-0517-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The 2-year risk of ipsilateral ischemic stroke following internal carotid artery occlusion (ICAO) in a patient undergoing maximal medical therapy is 5-8% per year. While medical therapy may reduce the risk of stroke, it does not completely eliminate it. Since the 1985 extracranial-intracranial (EC-IC) bypass study, additional trials have been conducted to further investigate the usefulness of EC-IC bypass surgery in more selected patients with cerebral ischemia and impaired hemodynamic reserve. These important studies will be briefly reviewed in this article, as well as a discussion regarding the utility of bypass surgery for ICAO in current clinical practice. In addition, a short discussion regarding the pathophysiology of carotid occlusion will be presented. We will also highlight our own institutional patient selection criteria based on the latest methods for hemodynamic assessment, as well as our intraoperative flow assisted surgical techniques (FAST), and post-operative patient follow-up.
Collapse
Affiliation(s)
- Ziad A Hage
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
39
|
Effect of Diet and Age on Arterial Stiffening Due to Atherosclerosis in ApoE(-/-) Mice. Ann Biomed Eng 2015; 44:2202-17. [PMID: 26502169 DOI: 10.1007/s10439-015-1486-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/13/2015] [Indexed: 01/20/2023]
Abstract
This work analyzes the progressive stiffening of the aorta due to atherosclerosis development of both ApoE(-/-) and C57BL/6J mice fed on a Western (n = 5) and a normal (n = 5) chow diet for the ApoE(-/-) group and on a normal chow diet (n = 5) for the C57BL/6J group. Sets of 5 animals from the three groups were killed after 10, 20, 30 and 40 weeks on their respective diets (corresponding to 17, 27, 37 and 47 weeks of age). Mechanical properties (inflation test and axial residual stress measurements) and histological properties were compared for both strains, ApoE(-/-) on the hyper-lipidic diet and both ApoE(-/-) and C57BL/6J on the normal diet, after the same period and after different periods of diet. The results indicated that the aorta stiffness in the ApoE(-/-) and C57BL/6J mice under normal diet remained approximately constant irrespective of their age. However, the arterial stiffness in the ApoE(-/-) on the hyper-lipidic diet increased over time. Statistical differences were found between the group after 10 weeks and the groups after 30 and 40 weeks of a hyper-lipidic diet. Comparing the hyper-lipidic and normal diet mice, statistical differences were also found between both diets in all cases after 40 weeks of diet, frequently after 30 weeks, and in some cases after 20 weeks. The early stages of lesion corresponded to the first 2 weeks of diet. Advanced lesions were found at 30 weeks and, finally, the aorta was completely damaged after 40 weeks of diet. In conclusion, we found substantial changes in the mechanical properties of the aorta walls of the ApoE(-/-) mice fed with the hyper-lipidic diet compared to the normal chow diet groups for both the ApoE(-/-) and C57BL/6J groups. These findings could serve as a reference for the study of changes in the arterial wall properties in cases of atherosclerosis.
Collapse
|
40
|
The role of endothelial cell adhesion molecules in the development of atherosclerosis. Cardiovasc Pathol 2015; 1:17-28. [PMID: 25990035 DOI: 10.1016/1054-8807(92)90005-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/1991] [Accepted: 07/17/1991] [Indexed: 01/10/2023] Open
Abstract
The vascular endothelium serves as a dynamic interface between circulating blood elements and the interstitial tissues. As such, it communicates to cells within the vessel wall as well as to the surrounding tissue, sensing its environment and responding accordingly. The vasculature must maintain a delicate balance when initiating a functional response by producing both proinflammatory and antiinflammatory mediators, vasoconstrictors and vasodilators, growth stimulators and inhibitors, and prothrombogenic and antithrombogenic factors. Any response to injurious agents could lead to pathology. Confounding this complex interplay is the fact that the very response to injury that may have developed to undo the damage may itself be even more deleterious. One response to injury by the endothelium is the new or increased expression of surface receptors for immune elements. In atherosclerosis, the adhesion of monocytes (and T cells) to the endothelium is a key event triggered by some form of insult. Subsequent events include monocytic infiltration of the vessel wall, alterations in lipid metabolism, and the activation of these cells into foam cells. The presence of large numbers of foam cells in the intima may produce a high concentration of cytokines and growth factors within a localized area, extracellular matrix perturbations, smooth muscle cell proliferation, and ultimately platelet aggregation at the site of stenosis. Endothelial cells themselves will not only elaborate factors after the initial injury to the vessel wall but also in response to the factors produced by foam cells within the plaque. These endothelial cell factors include MCP-1, a chemoattractant for monocytes (179,180), IL-1 (63,64), IL-6 (interleukin-6) (65-67), IL-8 (interleukin 8) (181), and PDGF, a potent smooth muscle mitogen (4,72) (Fig. 3). Endothelial cells will propagate an inflammatory response long after the initial insult to the arterial vessel. A chronic cycle of endothelial cell activation and leukocyte infiltration is constitutively activated. Thus, all of the cellular elements of the vessel wall, as well as the atherosclerotic plaque itself, elaborate cytokines and growth factors that amplify and propagate the pathological process.
Collapse
|
41
|
Lipofuscin and lipid oxidation in human coronary endothelium. Cardiovasc Pathol 2015; 7:75-85. [PMID: 25990066 DOI: 10.1016/s1054-8807(97)00076-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/1997] [Accepted: 08/05/1997] [Indexed: 11/22/2022] Open
Abstract
Coronary artery endothelium was studied in 13 human hearts removed in the course of heart transplants. Plasma cholesterol ranged from 60 to 240 mg/dl (median 151). In all cases, abundant endothelial lipid and lipofuscin droplets were found, with images of transition between the two types; ultrastructural evidence indicated that lipofuscin derived both by fusion of smaller lipofuscin droplets as well as by oxidation of lipid droplets. There was no evidence of lipofuscin generation by autophagocytosis as seen in other organs. It is concluded that endothelial lipofuscin is not "wear-and-tear pigment" but a byproduct of lipid oxidation, a process normally carried out by the endothelial cells. In the endothelium of human veins, lipofuscin granules were much smaller and rare; this points to a biological difference between arterial and venous endothelium.
Collapse
|
42
|
Craige SM, Kant S, Keaney JF. Reactive oxygen species in endothelial function - from disease to adaptation - . Circ J 2015; 79:1145-55. [PMID: 25986771 DOI: 10.1253/circj.cj-15-0464] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endothelial function is largely dictated by its ability to rapidly sense environmental cues and adapt to these stimuli through changes in vascular tone, inflammation/immune recruitment, and angiogenesis. When any one of these abilities is compromised, the endothelium becomes dysfunctional, which ultimately leads to disease. Reactive oxygen species (ROS) have been established at the forefront of endothelial dysfunction; however, more careful examination has demonstrated that ROS are fundamental to each of the sensing/signaling roles of the endothelium. The purpose of this review is to document endothelial ROS production in both disease and physiological adaptation. Through understanding new endothelial signaling paradigms, we will gain insight into more targeted therapeutic strategies for vascular diseases.
Collapse
|
43
|
Sasongko MB, Wong TY, Jenkins AJ, Nguyen TT, Shaw JE, Wang JJ. Circulating markers of inflammation and endothelial function, and their relationship to diabetic retinopathy. Diabet Med 2015; 32:686-91. [PMID: 25407692 DOI: 10.1111/dme.12640] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2014] [Indexed: 12/12/2022]
Abstract
AIM To examine the relationships of serum markers of inflammation and endothelial function to diabetic retinopathy. METHODS We recruited 224 patients with diabetes (85 with Type 1 and 139 with Type 2 diabetes) aged 18-70 years. Serum markers of inflammation (high-sensitivity C-reactive protein) and endothelial function (soluble intercell adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, endothelin-1 and total nitrite) were assessed using nephelometry, immunoassays and spectroscopy. Diabetic retinopathy was graded from two-field fundus photographs according to the Airlie House Classification system and was categorized into no diabetic retinopathy, mild non-proliferative diabetic retinopathy, moderate non-proliferative diabetic retinopathy and vision-threatening diabetic retinopathy, the latter comprising severe non-proliferative diabetic retinopathy, proliferative diabetic retinopathy or clinically significant macular oedema. Multinomial logistic regression was used to assess the associations between serum markers and diabetic retinopathy. RESULTS In the study, 64% of patients (144/224) had diabetic retinopathy and 25% (57/244) had vision-threatening diabetic retinopathy. After controlling for age, gender, diabetes duration, HbA1c , systolic blood pressure, total and HDL cholesterol, smoking, the use of insulin or oral hypoglycaemic agents, nephropathy and cardiovascular disease, a positive association was found between increasing high-sensitivity C-reactive protein levels and the presence of vision-threatening diabetic retinopathy (odds ratio 1.26; 95% CI 1.05-1.51, per sd increase in high-sensitivity C-reactive protein). After stratifying by BMI ( ≥ 30 and < 30 kg/m(2) ), this association was found to be more pronounced in people with a BMI ≥ 30 kg/m(2) (odds ratio 2.9; P for interaction = 0.019). No associations were found between serum markers of endothelial activation and diabetic retinopathy. CONCLUSIONS Higher C-reactive protein levels, but not markers of endothelial function, may be related to more severe diabetic retinopathy. This finding suggests that inflammatory processes are involved in severe diabetic retinopathy, particularly in patients with a BMI ≥ 30 kg/m(2) .
Collapse
Affiliation(s)
- M B Sasongko
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Australia; Department of Ophthalmology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | | | | | | | | | | |
Collapse
|
44
|
Viola J, Soehnlein O. Atherosclerosis - A matter of unresolved inflammation. Semin Immunol 2015; 27:184-93. [PMID: 25865626 DOI: 10.1016/j.smim.2015.03.013] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is commonly looked upon as a chronic inflammatory disease of the arterial wall arising from an unbalanced lipid metabolism and a maladaptive inflammatory response. However, atherosclerosis is not merely an inflammation of the vessel wall. In fact, the cardinal signs of unstable atherosclerotic lesions are primarily characteristics of failed resolution of a chronic inflammation. In contrast to acute inflammatory events which are typically self-limiting, atherosclerosis is an unresolved inflammatory condition, lacking the switch from the pro-inflammatory to the pro-resolving phase, the latter characterized by termination of inflammatory cell recruitment, removal of inflammatory cells from the site of inflammation by apoptosis and dead cell clearance, reprogramming of macrophages toward an anti-inflammatory, regenerative phenotype, and finally egress of effector cells and tissue regeneration. Here we present an overview on mechanisms of failed resolution contributing to atheroprogression and deliver a summary of novel therapeutic strategies to restore resolution in inflamed arteries.
Collapse
Affiliation(s)
- Joana Viola
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany.
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
45
|
Vengrenyuk Y, Nishi H, Long X, Ouimet M, Savji N, Martinez FO, Cassella CP, Moore KJ, Ramsey SA, Miano JM, Fisher EA. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol 2015; 35:535-46. [PMID: 25573853 PMCID: PMC4344402 DOI: 10.1161/atvbaha.114.304029] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We previously showed that cholesterol loading in vitro converts mouse aortic vascular smooth muscle cells (VSMC) from a contractile state to one resembling macrophages. In human and mouse atherosclerotic plaques, it has become appreciated that ≈40% of cells classified as macrophages by histological markers may be of VSMC origin. Therefore, we sought to gain insight into the molecular regulation of this clinically relevant process. APPROACH AND RESULTS VSMC of mouse (or human) origin were incubated with cyclodextrin-cholesterol complexes for 72 hours, at which time the expression at the protein and mRNA levels of contractile-related proteins was reduced and of macrophage markers increased. Concurrent was downregulation of miR-143/145, which positively regulate the master VSMC differentiation transcription factor myocardin. Mechanisms were further probed in mouse VSMC. Maintaining the expression of myocardin or miR-143/145 prevented and reversed phenotypic changes caused by cholesterol loading. Reversal was also seen when cholesterol efflux was stimulated after loading. Notably, despite expression of macrophage markers, bioinformatic analyses showed that cholesterol-loaded cells remained closer to the VSMC state, consistent with impairment in classical macrophage functions of phagocytosis and efferocytosis. In apoE-deficient atherosclerotic plaques, cells positive for VSMC and macrophage markers were found lining the cholesterol-rich necrotic core. CONCLUSIONS Cholesterol loading of VSMC converts them to a macrophage-appearing state by downregulating the miR-143/145-myocardin axis. Although these cells would be classified by immunohistochemistry as macrophages in human and mouse plaques, their transcriptome and functional properties imply that their contributions to atherogenesis would not be those of classical macrophages.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Binding Sites
- Cell Lineage
- Cell Transdifferentiation
- Cholesterol/metabolism
- Cholesterol, HDL/metabolism
- Coculture Techniques
- Disease Models, Animal
- Foam Cells/metabolism
- Foam Cells/pathology
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Humans
- Jurkat Cells
- Mice, Inbred C57BL
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Necrosis
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Phagocytosis
- Phenotype
- Plaque, Atherosclerotic
- Signal Transduction
- Sterol Regulatory Element Binding Protein 2/metabolism
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transfection
Collapse
Affiliation(s)
- Yuliya Vengrenyuk
- From the Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (Y.V., H.N., M.O., N.S., C.P.C., K.J.M., E.A.F.); Center for Cardiovascular Sciences, Albany Medical College, NY (X.L.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom (F.O.M.); Department of Biomedical Sciences, Oregon State University, Corvallis (S.A.R.); and Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.M.M.)
| | - Hitoo Nishi
- From the Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (Y.V., H.N., M.O., N.S., C.P.C., K.J.M., E.A.F.); Center for Cardiovascular Sciences, Albany Medical College, NY (X.L.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom (F.O.M.); Department of Biomedical Sciences, Oregon State University, Corvallis (S.A.R.); and Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.M.M.)
| | - Xiaochun Long
- From the Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (Y.V., H.N., M.O., N.S., C.P.C., K.J.M., E.A.F.); Center for Cardiovascular Sciences, Albany Medical College, NY (X.L.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom (F.O.M.); Department of Biomedical Sciences, Oregon State University, Corvallis (S.A.R.); and Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.M.M.)
| | - Mireille Ouimet
- From the Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (Y.V., H.N., M.O., N.S., C.P.C., K.J.M., E.A.F.); Center for Cardiovascular Sciences, Albany Medical College, NY (X.L.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom (F.O.M.); Department of Biomedical Sciences, Oregon State University, Corvallis (S.A.R.); and Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.M.M.)
| | - Nazir Savji
- From the Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (Y.V., H.N., M.O., N.S., C.P.C., K.J.M., E.A.F.); Center for Cardiovascular Sciences, Albany Medical College, NY (X.L.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom (F.O.M.); Department of Biomedical Sciences, Oregon State University, Corvallis (S.A.R.); and Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.M.M.)
| | - Fernando O Martinez
- From the Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (Y.V., H.N., M.O., N.S., C.P.C., K.J.M., E.A.F.); Center for Cardiovascular Sciences, Albany Medical College, NY (X.L.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom (F.O.M.); Department of Biomedical Sciences, Oregon State University, Corvallis (S.A.R.); and Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.M.M.)
| | - Courtney P Cassella
- From the Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (Y.V., H.N., M.O., N.S., C.P.C., K.J.M., E.A.F.); Center for Cardiovascular Sciences, Albany Medical College, NY (X.L.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom (F.O.M.); Department of Biomedical Sciences, Oregon State University, Corvallis (S.A.R.); and Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.M.M.)
| | - Kathryn J Moore
- From the Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (Y.V., H.N., M.O., N.S., C.P.C., K.J.M., E.A.F.); Center for Cardiovascular Sciences, Albany Medical College, NY (X.L.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom (F.O.M.); Department of Biomedical Sciences, Oregon State University, Corvallis (S.A.R.); and Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.M.M.)
| | - Stephen A Ramsey
- From the Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (Y.V., H.N., M.O., N.S., C.P.C., K.J.M., E.A.F.); Center for Cardiovascular Sciences, Albany Medical College, NY (X.L.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom (F.O.M.); Department of Biomedical Sciences, Oregon State University, Corvallis (S.A.R.); and Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.M.M.)
| | - Joseph M Miano
- From the Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (Y.V., H.N., M.O., N.S., C.P.C., K.J.M., E.A.F.); Center for Cardiovascular Sciences, Albany Medical College, NY (X.L.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom (F.O.M.); Department of Biomedical Sciences, Oregon State University, Corvallis (S.A.R.); and Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.M.M.)
| | - Edward A Fisher
- From the Marc and Ruti Bell Program in Vascular Biology, Division of Cardiology, Department of Medicine, NYU School of Medicine, New York (Y.V., H.N., M.O., N.S., C.P.C., K.J.M., E.A.F.); Center for Cardiovascular Sciences, Albany Medical College, NY (X.L.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom (F.O.M.); Department of Biomedical Sciences, Oregon State University, Corvallis (S.A.R.); and Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.M.M.).
| |
Collapse
|
46
|
Huff MW, Pickering JG. Can a vascular smooth muscle-derived foam-cell really change its spots? Arterioscler Thromb Vasc Biol 2015; 35:492-5. [PMID: 25717175 DOI: 10.1161/atvbaha.115.305225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Murray W Huff
- From the Robarts Research Institute and Departments of Medicine, Biophysics and Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - J Geoffrey Pickering
- From the Robarts Research Institute and Departments of Medicine, Biophysics and Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
47
|
Pateras I, Giaginis C, Tsigris C, Patsouris E, Theocharis S. NF-κB signaling at the crossroads of inflammation and atherogenesis: searching for new therapeutic links. Expert Opin Ther Targets 2014; 18:1089-101. [DOI: 10.1517/14728222.2014.938051] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 2014; 20:3040-77. [PMID: 24294830 PMCID: PMC4038990 DOI: 10.1089/ars.2013.5566] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023]
Abstract
Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford , John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res 2014; 114:1867-79. [PMID: 24902971 PMCID: PMC4078767 DOI: 10.1161/circresaha.114.302699] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/12/2014] [Indexed: 12/28/2022]
Abstract
Inflammation contributes to many of the characteristics of plaques implicated in the pathogenesis of acute coronary syndromes. Moreover, inflammatory pathways not only regulate the properties of plaques that precipitate acute coronary syndromes but also modulate the clinical consequences of the thrombotic complications of atherosclerosis. This synthesis will provide an update on the fundamental mechanisms of inflammatory responses that govern acute coronary syndromes and also highlight the ongoing balance between proinflammatory mechanisms and endogenous pathways that can promote the resolution of inflammation. An appreciation of the countervailing mechanisms that modulate inflammation in relation to acute coronary syndromes enriches our fundamental understanding of the pathophysiology of this important manifestation of atherosclerosis. In addition, these insights provide glimpses into potential novel therapeutic interventions to forestall this ultimate complication of the disease.
Collapse
Affiliation(s)
- Peter Libby
- From the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.); Department of Medicine, Columbia University Medical Center, New York, NY (I.T.); and Division of Cardiology, Department of Medicine, New York University School of Medicine (E.A.F.).
| | - Ira Tabas
- From the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.); Department of Medicine, Columbia University Medical Center, New York, NY (I.T.); and Division of Cardiology, Department of Medicine, New York University School of Medicine (E.A.F.)
| | - Gabrielle Fredman
- From the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.); Department of Medicine, Columbia University Medical Center, New York, NY (I.T.); and Division of Cardiology, Department of Medicine, New York University School of Medicine (E.A.F.)
| | - Edward A Fisher
- From the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.); Department of Medicine, Columbia University Medical Center, New York, NY (I.T.); and Division of Cardiology, Department of Medicine, New York University School of Medicine (E.A.F.)
| |
Collapse
|
50
|
Hsu S, Koren E, Chan Y, Koscec M, Sheehy A, Kolodgie F, Virmani R, Feder D. Effects of everolimus on macrophage-derived foam cell behavior. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2014; 15:269-77. [PMID: 24972512 DOI: 10.1016/j.carrev.2014.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/10/2014] [Accepted: 05/16/2014] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. METHODS AND MATERIALS Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10(-5)-10(-11) M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA(PLUS) assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p≤0.05). RESULTS Calcein AM/DAPI staining showed that FC exposed to everolimus (10(-5) M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10(-5)M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10(-5)M) significantly increased MAP1LC3, caused an increased trend in clusterin (p=0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein expression was significantly decreased by everolimus (10(-5) M) in FC. Percentage of RAM-11 positive area exhibited a reduction trend within sections stented with EES compared to unstented proximal sections at 60 days (p=0.09). CONCLUSION Everolimus, a potent anti-proliferative agent used in drug-eluting stents and bioresorbable vascular scaffolds, may inhibit atheroma progression and/or promote atheroma stabilization through diminished viability of FC, decreased matrix degradation, and reduced pro-inflammatory cytokine secretion. EXECUTIVE SUMMARY We explored the effects of everolimus on the behavior of human THP1 macrophage-derived foam cells in culture, including cell viability, mRNA levels, and pro-inflammatory cytokine production. We conclude that everolimus, a potent anti-proliferative agent used in drug-eluting stents/bioresorbable vascular scaffolds, may potentially inhibit atheroma progression and/or promote atheroma stabilization through diminished viability of foam cells, decreased matrix degradation, and reduced pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Steven Hsu
- Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054, USA.
| | - Eugen Koren
- Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054, USA
| | - Yen Chan
- Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054, USA
| | - Mirna Koscec
- Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054, USA
| | - Alexander Sheehy
- Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054, USA
| | - Frank Kolodgie
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Renu Virmani
- CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Debra Feder
- Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054, USA
| |
Collapse
|