1
|
Suryono S, Rohman MS, Widjajanto E, Prayitnaningsih S, Wihastuti TA, Oktaviono YH. Effect of Colchicine in reducing MMP-9, NOX2, and TGF- β1 after myocardial infarction. BMC Cardiovasc Disord 2023; 23:449. [PMID: 37697278 PMCID: PMC10496361 DOI: 10.1186/s12872-023-03464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND According to WHO 2020, CAD is the second leading cause of death in Indonesia with death cases reaching 259,297 or 15.33% of total deaths. Unfortunately, most of the patients of CAD in Indonesia did not match the golden period or decline to be treated with Percutaneous Coronary Intervention (PCI). Based on the recent study, there were increases in MMP-9, NOX2, and TGF-β1 in STEMI patients which contribute to cardiac remodeling. Moreover, there is controversy regarding the benefit of late PCI (12-48 hours after onset of STEMI) in stable patients. Lately, colchicine is widely used in cardiovascular disease. This study was conducted to explore the effect of colchicine to reduce MMP- 9, NOX2, and TGF-β1 levels after myocardial infarction in stable patients. METHOD In this clinical trial study, we assessed 129 STEMI patients, about 102 patients who met inclusion criteria were randomized into four groups. Around 25 patients received late PCI (12-48 h after the onset of chest pain), optimal medical treatment (OMT) for STEMI, and colchicine; 24 patients received late PCI and OMT; 22 patients didn't get the revascularization (No Revas), OMT, and colchicine; and 31 patients received No Revas and OMT only. The laboratory test for MMP-9, NOX2, and TGF-β1 were tested in Day-1 and Day-5. The data were analyzed using Mann-Whitney. RESULTS A total of 102 patients with mean age of 56 ± 9.9, were assigned into four groups. The data analysis showed significant results within No Revas + OMT + Colchicine group versus No Revas + OMT + Placebo in MMP-9 (Day-1: p = 0.001; Day-5: p = 0.022), NOX2 (Day-1: p = 0.02; Day-5: p = 0.026), and TGF-β1 (Day-1: p = 0.00; Day-5: p = 0.00) with the less three markers in OMT + Colchicine group than OMT + Placebo group. There were no significant differences within the late PCI + OMT + colchicine group and PCI + OMT + Placebo group. CONCLUSIONS Colchicine could significantly reduce MMP-9, NOX2, and TGF-β1 levels in stable STEMI patients. So that, colchicine could be a potential agent in STEMI patients and prevent cardiac remodeling events.
Collapse
Affiliation(s)
- Suryono Suryono
- Doctoral Program of Medical Science, Brawijaya University, Malang, East Java, Indonesia.
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Jember University, Jember, East Java, Indonesia.
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
- Brawijaya Cardiovascular Research Centre, Brawijaya University, Malang, East Java, Indonesia
| | - Edi Widjajanto
- Department of Clinical Pathology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Seskoati Prayitnaningsih
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Titin Andri Wihastuti
- Department of Biomedical, Nursing Science, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
2
|
Guan D, Zhuan X, Luo X, Gao H. An updated Lagrangian constrained mixture model of pathological cardiac growth and remodelling. Acta Biomater 2023; 166:375-399. [PMID: 37201740 DOI: 10.1016/j.actbio.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Progressive left ventricular (LV) growth and remodelling (G&R) is often induced by volume and pressure overload, characterized by structural and functional adaptation through myocyte hypertrophy and extracellular matrix remodelling, which are dynamically regulated by biomechanical factors, inflammation, neurohormonal pathways, etc. When prolonged, it can eventually lead to irreversible heart failure. In this study, we have developed a new framework for modelling pathological cardiac G&R based on constrained mixture theory using an updated reference configuration, which is triggered by altered biomechanical factors to restore biomechanical homeostasis. Eccentric and concentric growth, and their combination have been explored in a patient-specific human LV model under volume and pressure overload. Eccentric growth is triggered by overstretching of myofibres due to volume overload, i.e. mitral regurgitation, whilst concentric growth is driven by excessive contractile stress due to pressure overload, i.e. aortic stenosis. Different biological constituent's adaptations under pathological conditions are integrated together, which are the ground matrix, myofibres and collagen network. We have shown that this constrained mixture-motivated G&R model can capture different phenotypes of maladaptive LV G&R, such as chamber dilation and wall thinning under volume overload, wall thickening under pressure overload, and more complex patterns under both pressure and volume overload. We have further demonstrated how collagen G&R would affect LV structural and functional adaption by providing mechanistic insight on anti-fibrotic interventions. This updated Lagrangian constrained mixture based myocardial G&R model has the potential to understand the turnover processes of myocytes and collagen due to altered local mechanical stimuli in heart diseases, and in providing mechanistic links between biomechanical factors and biological adaption at both the organ and cellular levels. Once calibrated with patient data, it can be used for assessing heart failure risk and designing optimal treatment therapies. STATEMENT OF SIGNIFICANCE: Computational modelling of cardiac G&R has shown high promise to provide insight into heart disease management when mechanistic understandings are quantified between biomechanical factors and underlying cellular adaptation processes. The kinematic growth theory has been dominantly used to phenomenologically describe the biological G&R process but neglecting underlying cellular mechanisms. We have developed a constrained mixture based G&R model with updated reference by taking into account different mechanobiological processes in the ground matrix, myocytes and collagen fibres. This G&R model can serve as a basis for developing more advanced myocardial G&R models further informed by patient data to assess heart failure risk, predict disease progression, select the optimal treatment by hypothesis testing, and eventually towards a truly precision cardiology using in-silico models.
Collapse
Affiliation(s)
- Debao Guan
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Xin Zhuan
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
3
|
Patrichi G, Patrichi A, Satala CB, Sin AI. Matrix Metalloproteinases and Heart Transplantation-A Pathophysiological and Clinical View. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1295. [PMID: 37512106 PMCID: PMC10383867 DOI: 10.3390/medicina59071295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Heart transplantation is undergoing a continuous development, with rates of success increasing substantially due to advances in immunosuppressive therapy and surgical techniques. The most worrying complication occurring after cardiac transplantation is graft rejection, a phenomenon that is much affected by matrix metalloproteinases (MMPs), with the role of these proteases in the cardiac remodeling process being well established in the literature. A detailed investigation of the association between MMPs and cardiac rejection is necessary for the future development of more targeted therapies in transplanted patients, and to discover prognostic serum and immunohistochemical markers that will lead to more organized therapeutic management in these patients. The aim of this review is therefore to highlight the main MMPs relevant to cardiovascular pathology, with particular emphasis on those involved in complications related to heart transplantation, including cardiac graft rejection.
Collapse
Affiliation(s)
- Gabriela Patrichi
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
| | - Andrei Patrichi
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
| | - Catalin-Bogdan Satala
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Anca Ileana Sin
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
| |
Collapse
|
4
|
Suryono S, Rohman MS, Widjajanto E, Prayitnaningsih S, Wihastuti TA. Colchicine as potential inhibitor targeting MMP-9, NOX2 and TGF-β1 in myocardial infarction: a combination of docking and molecular dynamic simulation study. J Biomol Struct Dyn 2023; 41:12214-12224. [PMID: 36636837 DOI: 10.1080/07391102.2023.2166590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023]
Abstract
The global data revealed that myocardial infarction (MI) in coronary heart disease has been the leading cause of mortality worldwide in both developing and developed countries. The remodeling process after MI is essential to be the leading cause of heart failure due to cardiac remodeling. The evidence showed the increment of MMP-9, NOX2 and TGF-β1 expressions are biomarkers that influence cardiac remodeling. Lately, colchicine is widely used in the treatment of cardiovascular diseases. The effects of colchicine on NOX2, MMP-9 and TGF-β1 in the molecular models are still not yet discussed. We proposed a molecular docking and molecular dynamics simulation study to show the interaction between colchicine, NOX2, MMP-9 and TGF-β1. Colchicine has a good binding affinity with MMP-9, NOX2 and TGF-β1 based on the value, which are -8.3 Kcal/mol, -6.7 Kcal/mol and -6.5 Kcal/mol, respectively. Colchicine also binds to some catalytic residues in MMP-9, NOX2 and TGF-β1 that are responsible for inhibitor effects. The RMSD values between colchicine and MMP-9, NOX2 and TGF-β1 are 2.4 Å, 2 Å and 2.1 Å, respectively. The RMSF values of ligand and receptors complex showed relatively similar fluctuations. The SASA analysis showed that colchicine could create a more stable interaction with MMP-9. PCA analysis revealed that colchicine is capable of creating a solid and stable interaction with MMP-9 mainly, also NOX2 and TGF-β1. In conclusion, docking and molecular dynamics analysis showed evidence of colchicine roles in the inhibition of MMP-9, NOX2 and TGF-β1 in order to inhibit the remodeling process after MI.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suryono Suryono
- Doctoral Program of Medical Science, Brawijaya University, Malang, East Java, Indonesia
- Department of Cardiology and Cardiovascular Medicine, Faculty of Medicine, Jember University, Jember, East Java, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Cardiovascular Medicine, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
- Brawijaya Cardiovascular Research Centre, Brawijaya University, Malang, East Java, Indonesia
| | - Edi Widjajanto
- Department of Clinical Pathology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Seskoati Prayitnaningsih
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Titin Andri Wihastuti
- Department of Biomedical, Nursing Science, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| |
Collapse
|
5
|
Trinh K, Julovi SM, Rogers NM. The Role of Matrix Proteins in Cardiac Pathology. Int J Mol Sci 2022; 23:ijms23031338. [PMID: 35163259 PMCID: PMC8836004 DOI: 10.3390/ijms23031338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) and ECM-regulatory proteins mediate structural and cell-cell interactions that are crucial for embryonic cardiac development and postnatal homeostasis, as well as organ remodeling and repair in response to injury. These proteins possess a broad functionality that is regulated by multiple structural domains and dependent on their ability to interact with extracellular substrates and/or cell surface receptors. Several different cell types (cardiomyocytes, fibroblasts, endothelial and inflammatory cells) within the myocardium elaborate ECM proteins, and their role in cardiovascular (patho)physiology has been increasingly recognized. This has stimulated robust research dissecting the ECM protein function in human health and disease and replicating the genetic proof-of-principle. This review summarizes recent developments regarding the contribution of ECM to cardiovascular disease. The clear importance of this heterogeneous group of proteins in attenuating maladaptive repair responses provides an impetus for further investigation into these proteins as potential pharmacological targets in cardiac diseases and beyond.
Collapse
Affiliation(s)
- Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sohel M. Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
6
|
Cohen L, Sagi I, Bigelman E, Solomonov I, Aloshin A, Ben-Shoshan J, Rozenbaum Z, Keren G, Entin-Meer M. Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody. PLoS One 2020; 15:e0231202. [PMID: 32271823 PMCID: PMC7145114 DOI: 10.1371/journal.pone.0231202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/18/2020] [Indexed: 12/18/2022] Open
Abstract
Objective Monoclonal antibody derivatives are promising drugs for the treatment of various diseases due to their high matrix metalloproteinases (MMP) active site specificity. We studied the effects of a novel antibody, SDS3, which specifically recognizes the mature active site of MMP9/2 during ventricular remodeling progression in a mouse model of chronic volume overload (VO). Methods VO was induced by creating an aortocaval fistula (ACF) in 10- to 12-week-old C57BL male mice. The VO-induced mice were treated with either vehicle control (PBS) or with SDS3 twice weekly by intraperitoneal (ip) injection. The relative changes in cardiac parameters between baseline (day 1) and end-point (day 30), were evaluated by echocardiography. The effects of SDS3 treatment on cardiac fibrosis, cardiomyocyte volume, and cardiac inflammation were tested by cardiac staining with Masson's trichrome, wheat Germ Agglutinin (WGA), and CD45, respectively. Serum levels of TNFα and IL-6 with and without SDS3 treatment were tested by ELISA. Results SDS3 significantly reduced cardiac dilatation, left ventricular (LV) mass, and cardiomyocyte hypertrophy compared to the vehicle treated animals. The antibody also reduced the heart-to-body weight ratio of the ACF animals to values comparable to those of the controls. Interestingly, the SDS3 group underwent significant reduction of cardiac inflammation and pro-inflammatory cytokine production, indicating a regulatory role for MMP9/2 in tissue remodeling, possibly by tumor necrosis factor alpha (TNFα) activation. In addition, significant changes in the expression of proteins related to mitochondrial function were observed in ACF animals, these changes were reversed following treatment with SDS3. Conclusion The data suggest that MMP9/2 blockage with SDS3 attenuates myocardial remodeling associated with chronic VO by three potential pathways: downregulating the extracellular matrix proteolytic cleavage, reducing the cardiac inflammatory responses, and preserving the cardiac mitochondrial structure and function.
Collapse
Affiliation(s)
- Lena Cohen
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Bigelman
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Aloshin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Jeremy Ben-Shoshan
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Zach Rozenbaum
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gad Keren
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Entin-Meer
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
7
|
Huang LY, Yen IC, Tsai WC, Lee SY. Rhodiola crenulata Suppresses High Glucose-Induced Matrix Metalloproteinase Expression and Inflammatory Responses by Inhibiting ROS-Related HMGB1-TLR4 Signaling in Endothelial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:91-105. [DOI: 10.1142/s0192415x20500056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rhodiola crenulata, a popular folk medicine for anti-altitude sickness in Tibet, has been shown to have protective effects against high glucose (HG)-induced endothelial cell dysfunction in human umbilical vein endothelial cells (HUVECs). However, its mechanisms of action are unclear. Here, we aimed to examine the effects and the mechanisms of action of Rhodiola crenulata extract (RCE) on matrix metalloproteinases (MMPs) and inflammatory responses under HG conditions. HUVECs were pretreated with RCE or untreated and then exposed to 33[Formula: see text]mM glucose medium for 24[Formula: see text]h. The levels of oxidative stress markers, MMPs, endogenous tissue inhibitors of MMPs (TIMPs), and adhesion molecules were determined. Zymography assays were also carried out. We found that RCE significantly decreased HG-induced increases in reactive oxygen species (ROS) and activation of MAPK and NF-[Formula: see text]B pathways. In addition, RCE not only significantly reduced the expression and activities of MMPs but also upregulated TIMP protein levels. Consistently, HG-induced activation of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response protein (MyD88) signaling pathway, intracellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and high mobility group box 1 (HMGB1) as well as endothelial cell apoptosis was inhibited by RCE treatment. RCE exerts protective effects on endothelial cells against HG insult, partially by suppressing the HMGB1/TLR4 axis. These findings indicate that Rhodiola crenulata may be a potential therapeutic agent for diabetes-associated vascular diseases.
Collapse
Affiliation(s)
- Li-Yen Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Cheng Tsai
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Vascular access animal models used in research. Ann Anat 2019; 225:65-75. [DOI: 10.1016/j.aanat.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022]
|
9
|
Katz MG, Fargnoli AS, Gubara SM, Chepurko E, Bridges CR, Hajjar RJ. Surgical and physiological challenges in the development of left and right heart failure in rat models. Heart Fail Rev 2019; 24:759-777. [PMID: 30903356 PMCID: PMC6698228 DOI: 10.1007/s10741-019-09783-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rodent surgical animal models of heart failure (HF) are critically important for understanding the proof of principle of the cellular alterations underlying the development of the disease as well as evaluating therapeutics. Robust, reproducible rodent models are a prerequisite to the development of pharmacological and molecular strategies for the treatment of HF in patients. Due to the absence of standardized guidelines regarding surgical technique and clear criteria for HF progression in rats, objectivity is compromised. Scientific publications in rats rarely fully disclose the actual surgical details, and technical and physiological challenges. This lack of reporting is one of the main reasons that the outcomes specified in similar studies are highly variable and associated with unnecessary loss of animals, compromising scientific assessment. This review details rat circulatory and coronary arteries anatomy, the surgical details of rat models that recreate the HF phenotype of myocardial infarction, ischemia/reperfusion, left and right ventricular pressure, and volume overload states, and summarizes the technical and physiological challenges of creating HF. The purpose of this article is to help investigators understand the underlying issues of current HF models in order to reduce variable results and ensure successful, reproducible models of HF.
Collapse
Affiliation(s)
- Michael G Katz
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA.
| | - Anthony S Fargnoli
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Sarah M Gubara
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Charles R Bridges
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| |
Collapse
|
10
|
Doxakis A, Polyanthi K, Androniki T, Savvas P, Eleni Z. Targeting metalloproteinases in cardiac remodeling. ACTA ACUST UNITED AC 2019. [DOI: 10.17352/2455-2976.000092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Humeres C, Frangogiannis NG. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl Sci 2019; 4:449-467. [PMID: 31312768 PMCID: PMC6610002 DOI: 10.1016/j.jacbts.2019.02.006] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Expansion and activation of fibroblasts following cardiac injury is important for repair but may also contribute to fibrosis, remodeling, and dysfunction. The authors discuss the dynamic alterations of fibroblasts in failing and remodeling myocardium. Emerging concepts suggest that fibroblasts are not unidimensional cells that act exclusively by secreting extracellular matrix proteins, thus promoting fibrosis and diastolic dysfunction. In addition to their involvement in extracellular matrix expansion, activated fibroblasts may also exert protective actions, preserving the cardiac extracellular matrix, transducing survival signals to cardiomyocytes, and regulating inflammation and angiogenesis. The functional diversity of cardiac fibroblasts may reflect their phenotypic heterogeneity.
Collapse
Key Words
- AT1, angiotensin type 1
- ECM, extracellular matrix
- FAK, focal adhesion kinase
- FGF, fibroblast growth factor
- IL, interleukin
- MAPK, mitogen-activated protein kinase
- MRTF, myocardin-related transcription factor
- PDGF, platelet-derived growth factor
- RNA, ribonucleic acid
- ROCK, Rho-associated coiled-coil containing kinase
- ROS, reactive oxygen species
- SMA, smooth muscle actin
- TGF, transforming growth factor
- TRP, transient receptor potential
- cytokines
- extracellular matrix
- fibroblast
- infarction
- lncRNA, long noncoding ribonucleic acid
- miRNA, micro–ribonucleic acid
- remodeling
Collapse
Affiliation(s)
- Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
12
|
McCutcheon K, Manga P. Left ventricular remodelling in chronic primary mitral regurgitation: implications for medical therapy. Cardiovasc J Afr 2019; 29:51-65. [PMID: 29582880 PMCID: PMC6002796 DOI: 10.5830/cvja-2017-009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/12/2017] [Indexed: 01/07/2023] Open
Abstract
Surgical repair or replacement of the mitral valve is currently the only recommended therapy for severe primary mitral regurgitation. The chronic elevation of wall stress caused by the resulting volume overload leads to structural remodelling of the muscular, vascular and extracellular matrix components of the myocardium. These changes are initially compensatory but in the long term have detrimental effects, which ultimately result in heart failure. Understanding the changes that occur in the myocardium due to volume overload at the molecular and cellular level may lead to medical interventions, which potentially could delay or prevent the adverse left ventricular remodelling associated with primary mitral regurgitation. The pathophysiological changes involved in left ventricular remodelling in response to chronic primary mitral regurgitation and the evidence for potential medical therapy, in particular beta-adrenergic blockers, are the focus of this review.
Collapse
Affiliation(s)
- Keir McCutcheon
- Division of Cardiology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and University of the Witwatersrand, Johannesburg, South Africa.
| | - Pravin Manga
- Division of Cardiology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Karamlou T, Giraud GD, McKeogh D, Jonker SS, Shen I, Ungerleider RM, Thornburg KL. Right ventricular remodeling in response to volume overload in fetal sheep. Am J Physiol Heart Circ Physiol 2019; 316:H985-H991. [PMID: 30707615 DOI: 10.1152/ajpheart.00439.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The fetal myocardium is known to be sensitive to hemodynamic load, responding to systolic overload with cellular hypertrophy, proliferation, and accelerated maturation. However, the fetal cardiac growth response to primary volume overload is unknown. We hypothesized that increased venous return would stimulate fetal cardiomyocyte proliferation and terminal differentiation, particularly in the right ventricle (RV). Vascular catheters and pulmonary artery flow probes were implanted in 16 late-gestation fetal sheep: a right carotid artery-jugular vein (AV) fistula was surgically created in nine fetuses, and sham operations were performed on seven fetuses. Instrumented fetuses were studied for 1 wk before hearts were dissected for component analysis or cardiomyocyte dispersion for cellular measurements. Within 1 day of AV fistula creation, RV output was 20% higher in experimental than sham fetuses ( P < 0.0001). Circulating atrial natriuretic peptide levels were elevated fivefold in fetuses with an AV fistula ( P < 0.002). On the terminal day, RV-to-body weight ratios were 35% higher in the AV fistula group ( P < 0.05). Both left ventricular and RV cardiomyocytes grew longer in fetuses with an AV fistula ( P < 0.02). Cell cycle activity was depressed by >50% [significant in left ventricle ( P < 0.02), but not RV ( P < 0.054)]. Rates of terminal differentiation were unchanged. Based on these studies, we speculate that atrial natriuretic peptide suppressed fetal cardiomyocyte cell cycle activity. Unlike systolic overload, fetal diastolic load appears to drive myocyte enlargement, but not cardiomyocyte proliferation or maturation. These changes could predispose to RV dysfunction later in life. NEW & NOTEWORTHY Adaptation of the fetal heart to changes in cardiac load allows the fetus to maintain adequate blood flow to its systemic and placental circulations, which is necessary for the well-being of the fetus. Addition of arterial-venous fistula flow to existing venous return increased right ventricular stroke volume and output. The fetal heart compensated by cardiomyocyte elongation without accelerated cellular maturation, while cardiomyocyte proliferation decreased. Even transient volume overload in utero alters myocardial structure and cardiomyocyte endowment.
Collapse
Affiliation(s)
- Tara Karamlou
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Division of Cardiothoracic Surgery, Department of Surgery, Oregon Health & Science University , Portland, Oregon
| | - George D Giraud
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Department of Physiology and Pharmacology, Oregon Health & Science University , Portland, Oregon.,Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Donogh McKeogh
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Sonnet S Jonker
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Irving Shen
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Division of Cardiothoracic Surgery, Department of Surgery, Oregon Health & Science University , Portland, Oregon
| | - Ross M Ungerleider
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Division of Cardiothoracic Surgery, Department of Surgery, Oregon Health & Science University , Portland, Oregon
| | - Kent L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Department of Physiology and Pharmacology, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
14
|
Long-term characterization of activated microglia/macrophages facilitating the development of experimental brain metastasis through intravital microscopic imaging. J Neuroinflammation 2019; 16:4. [PMID: 30616691 PMCID: PMC6323850 DOI: 10.1186/s12974-018-1389-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023] Open
Abstract
Background Microglia/macrophages (M/Ms) with multiple functions derived from distinct activation states are key surveillants maintaining brain homeostasis. However, their activation status and role during the brain metastasis of malignant tumors have been poorly characterized. Methods Heterozygous CX3CR1-GFP transgenic mice were used to visualize the dynamic changes of M/Ms during the development of experimental brain metastasis through long-term intravital imaging equipped with redesigned bilateral cranial windows. The occurrence of experimental brain metastasis was evaluated after M/Ms were depleted with PLX3397, a CSF-1R inhibitor. The possible mediators of M/Ms in facilitating the brain metastasis were determined using reverse transcription-PCR, immunofluorescence, correlational analysis, and MMP inhibition. Results Here, we showed that M/Ms were persistently activated and facilitated the formation of melanoma brain metastasis in vivo. We observed that M/Ms gradually and massively accumulated in the metastasis, with a 2.89-fold increase. To precisely depict the dynamic changes in the activation state of M/Ms, we defined the branching parameter to quantify their morphological alterations. The quantitative data showed that the extent of activation of M/Ms in metastatic foci was enhanced, with a 2.27-fold increase from day 1 to day 21. Along with the activation, the M/Ms increased their moving velocity (4.15-fold) and established a rapid, confined, and discontinuous motility behavior. The occurrence of melanoma brain metastasis was significantly hindered under M/M elimination, indicating the key role of M/Ms in the experimental brain metastasis. Interestingly, we found that M/Ms highly expressed matrix metalloproteinase 3 (MMP3), which were strongly correlated with M/M activation and the decrease of tight junction protein zonula occludens-1 (ZO-1). An MMP inhibitor moderately decreased the occurrence of melanoma brain metastasis, suggesting that MMP3 secreted by M/Ms may facilitate melanoma cell growth. Conclusions Our results indicated that the activated M/Ms were essential in the development of melanoma brain metastasis, suggesting that M/Ms are a potential therapeutic target for tumor brain metastasis. Electronic supplementary material The online version of this article (10.1186/s12974-018-1389-9) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest 2017; 127:1600-1612. [PMID: 28459429 DOI: 10.1172/jci87491] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration.
Collapse
|
16
|
Louzao-Martinez L, Vink A, Harakalova M, Asselbergs FW, Verhaar MC, Cheng C. Characteristic adaptations of the extracellular matrix in dilated cardiomyopathy. Int J Cardiol 2016; 220:634-46. [PMID: 27391006 DOI: 10.1016/j.ijcard.2016.06.253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/20/2022]
Abstract
Dilated cardiomyopathy (DCM) is a relatively common heart muscle disease characterized by the dilation and thinning of the left ventricle accompanied with left ventricular systolic dysfunction. Myocardial fibrosis is a major feature in DCM and therefore it is inevitable that corresponding extracellular matrix (ECM) changes are involved in DCM onset and progression. Increasing our understanding of how ECM adaptations are involved in DCM could be important for the development of future interventions. This review article discusses the molecular adaptations in ECM composition and structure that have been reported in both animal and human studies of DCM. Furthermore, we provide a transcriptome-based catalogue of ECM genes that are associated with DCM, generated by using NCBI Gene Expression Omnibus database sets for DCM. Based on this in silico analysis, many novel ECM components involved in DCM are identified and discussed in this review. With the information gathered, we propose putative pathways of ECM adaptations in onset and progression of DCM.
Collapse
Affiliation(s)
- Laura Louzao-Martinez
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands; Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Magdalena Harakalova
- Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands; Department of Pathology, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, The Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, United Kingdom
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Thoraxcenter, Division of Experimental Cardiology, Erasmus University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Volume overload induces autophagic degradation of procollagen in cardiac fibroblasts. J Mol Cell Cardiol 2015; 89:241-250. [PMID: 26596413 DOI: 10.1016/j.yjmcc.2015.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
Abstract
In a pure volume overloaded (VO) heart, interstitial collagen loss is degraded by matrix metalloproteinases (MMPs) that leads to left ventricular (LV) dilatation and heart failure. Cardiac fibroblasts are the primary source of extracellular matrix proteins that connect cardiomyocytes. The goal of this study was to determine how VO affects intracellular procollagen in cardiac fibroblasts. Using the aortocaval fistula (ACF) model in Sprague-Dawley rats, we demonstrate that cardiac fibroblasts isolated from 4 and 12 wk ACF animals have decreased intracellular procollagen I compared to the fibroblasts from age-matched shams. The reduction of procollagen I is associated with increased autophagy as demonstrated by increased autophagic vacuoles and LC3-II expression. To test the relationship between autophagy and procollagen degradation, we treated adult cardiac fibroblasts with either an autophagy inducer, rapamycin, or an inhibitor, wortmannin, and found that procollagen I protein levels were decreased in fibroblasts treated with rapamycin and elevated in wortmannin-treated cells. In addition, we demonstrated that VO induces oxidative stresses in cardiac fibroblasts from 4 and 12 wk ACF rats. Treatment of cultured cardiac fibroblasts with an oxidative stress-inducing agent (DMNQ) induces autophagy and intracellular procollagen I and fibronectin degradation, which is reversed by wortmannin but not by the global MMP inhibitor (PD166793). Mechanical stretch of cardiac fibroblasts also induces oxidative stress and autophagic degradation of procollagen I and fibronectin. Our results suggest that in addition to the well-known effects of MMPs on extracellular collagen degradation in VO, there is a concurrent degradation of intracellular procollagen and fibronectin mediated by oxidative stress-induced autophagy in cardiac fibroblasts.
Collapse
|
18
|
Brower GL, Levick SP, Janicki JS. Differential Effects of Prevention and Reversal Treatment with Lisinopril on Left Ventricular Remodelling in a Rat Model of Heart Failure. Heart Lung Circ 2015; 24:919-24. [PMID: 25837018 PMCID: PMC4564313 DOI: 10.1016/j.hlc.2015.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Angiotensin converting enzyme (ACE) inhibitors such as lisinopril, represent the front line pharmacological treatment for heart failure, which is characterised by marked left ventricular (LV) dilatation and hypertrophy. This study sought to determine whether initiating treatment with ACE inhibitors at different stages in the remodelling process would alter the efficacy of treatment. METHODS To this end, LV size and function were determined in the aortocaval (AV) fistula model of volume overload-induced heart failure. Sprague-Dawley rats were assigned to sham, untreated AV fistula (21 weeks), AV fistula treated with lisinopril (21 weeks), or AV fistula treated with lisinopril from six to 21 weeks post-fistula groups. RESULTS Administration of lisinopril for the entire 21-week period prevented LV dilatation, attenuated myocardial hypertrophy and prevented changes in myocardial compliance and contractility, whereas delaying initiation of treatment until six weeks post-fistula attenuated LV dilatation and hypertrophy, however, the delayed onset of treatment had no beneficial effect on ventricular compliance or systolic function. CONCLUSIONS The results demonstrate differential effects that can occur with ACE inhibitors depending on the stage during the remodelling process at which treatment is administered.
Collapse
Affiliation(s)
- Gregory L Brower
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Scott P Levick
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph S Janicki
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
19
|
Total Flavones of Choerospondias axillaris Attenuate Cardiac Dysfunction and Myocardial Interstitial Fibrosis by Modulating NF-κB Signaling Pathway. Cardiovasc Toxicol 2014; 15:283-9. [DOI: 10.1007/s12012-014-9298-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Liu Y, Liu K. Effects of spironolactone and losartan on the early neovascularization of acute myocardial infarction. Exp Ther Med 2014; 8:978-982. [PMID: 25120633 PMCID: PMC4113533 DOI: 10.3892/etm.2014.1791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/16/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of spironolactone and losartan on the early healing stage of acute myocardial infarction (AMI) in rats. An AMI rat model was established and the rats were randomly divided into four groups: AMI (n=12), AMI + spironolactone (AMI + S; n=12), AMI + losartan (AMI + L; n=12) and AMI + spironolactone combined with losartan (AMI + S + L; n=12). Sham-operated rats served as a control group (n=12). The expression levels of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in the non-infarcted myocardium surrounding the AMI area were determined using immunohistochemistry. In addition, the capillary density in the non-infarcted myocardium surrounding the AMI area was detected. The capillary densities around the infarcted area in the AMI and treatment groups at day 7 and 14 following AMI surgery were significantly higher compared with the sham-operated rats. Compared with the AMI group, the capillary densities around the infarcted area and the ratio of MMPs/TIMP-1 were increased in the treatment groups following AMI surgery; however, the increased ratio of MMPs/TIMP-1 was reduced at day 14 following AMI surgery. Therefore, these results indicated that spironolactone and losartan may promote the formation of collateral circulation in the non-infarcted tissue surrounding the infarcted area by regulating the production of MMPs.
Collapse
Affiliation(s)
- Yan Liu
- Department of Geriatrics, The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050011, P.R. China
| | - Kunshen Liu
- Department of Cardiology, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
21
|
Elevated hyaluronan levels in patients with rheumatic mitral stenosis and pulmonary arterial thromboembolism. Heart Lung Circ 2014; 23:649-54. [PMID: 24560402 DOI: 10.1016/j.hlc.2014.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/20/2014] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The role of hyaluronan (HA) was previously demonstrated in patients with idiopathic pulmonary arterial hypertension (PAH). Mitral stenosis (MS) and pulmonary arterial thromboembolism (PTE) are important health problems that can cause pulmonovascular pathology. Pulmonary arterial hypertension develops especially in untreated patients with severe MS and most of patients with PTE. However, there is no data about HA levels in patients with MS and PTE. In this study, we investigated HA levels in patients with rheumatic MS and PTE. METHOD Study population was divided into three groups. MS group consisted of 18 patients with moderate or severe MS. PTE group consisted of 16 patients with PTE. Control group consisted of 15 subjects without cardiac and pulmonary disease. Percutaneous mitral balloon valvuloplasty (PMV) was performed on all patients in MS group. Mitral gradients and systolic pulmonary arterial pressure (sPAP) were measured in all patients. HA levels were measured at baseline and first month after PMV. RESULTS Mean sPAP±SD (mmHg) was 23±3 in the control group, 44±9 in the MS group and 66±11 in the PTE group (p<0.001). Baseline serum HA levels were significantly correlated with sPAP(echo) (r=0.332 p=0.03) and sPAP(cath) (r=0.559, p=0.007). Serum HA levels (ng/ml) in MS were significantly higher compared to controls [39±14 vs 24±11; p=0.01]. Patients in PTE group had the highest HA levels (61±21; p<0.001). Serum HA levels were significantly decreased at the first month after PMV in patients with MS [MS group: 39±14 (ng/ml), after PMV: 31±8; p=0.03]. CONCLUSION This is the first article showing that both MS and PTE can cause increased serum HA levels. HA levels were decreased with PMV procedure in patients with MS.
Collapse
|
22
|
Kaye DM, Khammy O, Mariani J, Maeder MT. Relationship of circulating matrix biomarkers to myocardial matrix metabolism in advanced heart failure. Eur J Heart Fail 2014; 15:292-8. [DOI: 10.1093/eurjhf/hfs179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- David M. Kaye
- Heart Failure Research Group; Baker IDI Heart and Diabetes Institute; Melbourne Australia
- Monash University; Melbourne Australia
| | - Ouda Khammy
- Heart Failure Research Group; Baker IDI Heart and Diabetes Institute; Melbourne Australia
| | - Justin Mariani
- Heart Failure Research Group; Baker IDI Heart and Diabetes Institute; Melbourne Australia
| | - Micha T. Maeder
- Heart Failure Research Group; Baker IDI Heart and Diabetes Institute; Melbourne Australia
- Department of Medicine; Monash University; Melbourne Australia
- Cardiology Division; Kantonsspital; St. Gallen Switzerland
| |
Collapse
|
23
|
Wang J, Zhang Q, Mei X, Zhang X. Hydroxysafflor yellow A attenuates left ventricular remodeling after pressure overload-induced cardiac hypertrophy in rats. PHARMACEUTICAL BIOLOGY 2014; 52:31-35. [PMID: 24033225 DOI: 10.3109/13880209.2013.805791] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Hydroxysafflor yellow A (HSYA), the main chemical component of the safflower yellow pigments, is used extensively in traditional Chinese medicine for the treatment of cerebrovascular and cardiovascular diseases. OBJECTIVE The present study determined the effects of HSYA on left ventricular hypertrophy after pressure overload and investigated the underlying mechanisms. MATERIALS AND METHODS Cardiac hypertrophy was induced by the ligation of abdominal aorta in male Wistar rats. The rats were then divided into five groups and treated with captopril (100 mg/kg) or HSYA at different doses (0, 10, 20 and 40 mg/kg). Six weeks after treatment, the weight of left ventricle, LVMI (left ventricular mass index) and pathological changes were measured. MMP-2 (metalloproteinase 2) and MMP-9 (metalloproteinase 9) levels were determined by ELISA. Protein expressions of Bcl-2 and Bax were evaluated by immunohistochemistry. RESULTS HSYA (20, 40 mg/kg) significantly attenuated the increase of LVMI (ventricular weight/body weight) by 13.04 and 30.43% respectively, when compared with the model group. This was associated with the amelioration of pathological lesion, such as cardiac muscle fibers were smaller and the nuclei of cardiomyocytes were lightly stained in animals treated with HSYA (20, 40 mg/kg). In addition, the administration of HSYA at doses of 20 and 40 mg/kg increased the Bcl-2/Bax ratio (1.17 ± 0.08 and 1.39 ± 0.07 versus 0.71 ± 0.06). In addition, the serum MMP-2 and MMP-9 levels were blocked by the treatment at doses of 20 and 40 mg/kg HSYA (MMP-2, 76.1 ± 9.2 and 65.6 ± 6.8 versus 82.9 ± 6.2, ng/ml; MMP-9, 66.6 ± 4.8 and 57.5 ± 5.0 versus 83.5 ± 6.0, ng/ml). CONCLUSION These findings indicated that HSYA has beneficial effects on hypertensive ventricular remodeling, which may involve mechanisms of inhibiting cell apoptosis and suppressing metalloproteinases expression.
Collapse
Affiliation(s)
- Jianping Wang
- Yantai Yuhuangding Hospital , Yantai, Shandong 264000 , P.R. China
| | | | | | | |
Collapse
|
24
|
Hydrogen sulfide suppresses the expression of MMP-8, MMP-13, and TIMP-1 in left ventricles of rats with cardiac volume overload. Acta Pharmacol Sin 2013; 34:1301-9. [PMID: 23974514 DOI: 10.1038/aps.2013.84] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 05/22/2013] [Indexed: 12/26/2022] Open
Abstract
AIM To study the effects of hydrogen sulfide (H2S) on the left ventricular expression of MMP-8, MMP-13, and TIMP-1 in a rat model of congenital heart disease. METHODS Male SD rats underwent abdominal aorta-inferior vena cava shunt operation. H2S donor NaHS (56 μmol·kg(-1)·d(-1), ip) was injected from the next day for 8 weeks. At 8 weeks, the hemodynamic parameters, including the left ventricular systolic pressure (LVSP), the left ventricular peak rate of contraction and relaxation (LV ± dp/dtmax) and the left ventricular end diastolic pressure (LVEDP) were measured. The left ventricular tissues were dissected out, and hydroxyproline and collagen I contents were detected with ELISA. The expression of MMP-8, MMP-13, and a tissue inhibitor of metalloproteinase-1 (TIMP-1) in the tissues was measured using real-time PCR, Western blotting, and immunohistochemistry, respectively. RESULTS The shunt operation markedly reduced LVSP and LV ± dp/dtmax, increased LVEDP, hydroxyproline and collagen I contents, as well as the mRNA and protein levels of MMP-8, MMP-13, and TIMP-1 in the left ventricles. Chronic treatment of the shunt operation rats with NaHS effectively prevented the abnormalities in the hemodynamic parameters, hydroxyproline and collagen I contents, and the mRNA and protein levels of MMP-13 and TIMP-1 in the left ventricles. NaHS also prevented the increase of MMP-8 protein expression, but did not affect the increase of mRNA level of MMP-8 in the shunt operation rats. CONCLUSION H2S suppresses protein and mRNA expression of MMP-8, MMP-13, and TIMP-1 in rats with cardiac volume overload, which may be contributed to the amelioration of ventricular structural remodeling and cardiac function.
Collapse
|
25
|
Franz M, Berndt A, Neri D, Galler K, Grün K, Porrmann C, Reinbothe F, Mall G, Schlattmann P, Renner A, Figulla HR, Jung C, Küthe F. Matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, B⁺ tenascin-C and ED-A⁺ fibronectin in dilated cardiomyopathy: potential impact on disease progression and patients' prognosis. Int J Cardiol 2013; 168:5344-51. [PMID: 23998545 DOI: 10.1016/j.ijcard.2013.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/23/2013] [Accepted: 08/03/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is associated with heart failure and increased mortality and there is no reliable biomarker to estimate patients' prognosis. During cardiac remodeling, an extensive reorganization of the extracellular matrix occurs. The study was aimed to investigate matrix metalloproteinase 9 (MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1) and fetal tenascin-C (B(+) Tn-C) and fibronectin (ED-A(+) Fn) variants known to be involved in that process. METHODS AND RESULTS In 187 patients with DCM, levels of MMP-9, TIMP-1 and B(+) Tn-C in serum as well as B(+) Tn-C and ED-A(+) Fn in tissue were quantified and subjected to univariate analysis. For all serum markers, concentrations above a calculated threshold were associated with decreased survival (MMP-9: p = 0.008, TIMP-1: p = 0.001, B(+) Tn-C: p < 0.001) and a significantly higher risk to die or undergo transplantation. In tissue, a reexpression of B(+) Tn-C and ED-A(+) Fn could be shown. Protein deposition levels of ≥4.5% for B(+) Tn-C and ≥2.1% for ED-A(+) Fn were associated with a significantly decreased survival (p = 0.001 for B(+) Tn-C, p = 0.031 for ED-A(+) Fn) and an increased risk to die or undergo transplantation. In a multivariate analysis, TIMP-1 is the superior parameter to predict transplantation free survival (p = 0.027). CONCLUSIONS Serum levels of MMP-9, TIMP-1 and B(+) Tn-C and tissue levels of B(+) Tn-C and ED-A(+) Fn are promising markers for risk assessment. The reoccurrence of ED-A(+) Fn and the availability of a human antibody usable as a vehicle for targeted drug delivery might be the basis for novel therapeutic strategies.
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Erlanger Allee 101, 07740 Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther 2013; 139:32-40. [PMID: 23562601 DOI: 10.1016/j.pharmthera.2013.03.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 01/08/2023]
Abstract
Adverse cardiac remodeling following myocardial infarction (MI) remains a significant cause of congestive heart failure. Additional and novel strategies that improve our ability to predict, diagnose, or treat remodeling are needed. Numerous groups have explored single and multiple biomarker strategies to identify diagnostic prognosticators of remodeling progression, which will improve our ability to promptly and accurately identify high-risk individuals. The identification of better clinical indicators should further lead to more effective prediction and timely treatment. Matrix metalloproteinase (MMP-9) is one potential biomarker for cardiac remodeling, as demonstrated by both animal models and clinical studies. In animal MI models, MMP-9 expression significantly increases and is linked with inflammation, diabetic microvascular complications, extracellular matrix degradation and synthesis, and cardiac dysfunction. Clinical studies have also established a relationship between MMP-9 and post-MI remodeling and mortality, making MMP-9 a viable candidate to add to the multiple biomarker list. By definition, a proximal biomarker shows a close relationship with its target disease, whereas a distal biomarker exhibits non-targeted disease modifying outcomes. In this review, we explore the ability of MMP-9 to serve as a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. We summarize the current molecular basis and clinical platform that allow us to include MMP-9 as a biomarker in both categories.
Collapse
Affiliation(s)
- Ganesh V Halade
- San Antonio Cardiovascular Proteomics Center, The University of Texas Health Science Center at San Antonio, United States
| | | | | |
Collapse
|
27
|
Abstract
The extracellular matrix (ECM) is a complex entity containing a large portfolio of structural proteins, signaling molecules, and proteases. Changes in the overall integrity and activational state of these ECM constituents can contribute to tissue structure and function, which is certainly true of the myocardium. Changes in the expression patterns and activational states of a family of ECM proteolytic enzymes, the matrix metalloproteinases (MMPs), have been identified in all forms of left ventricle remodeling and can be a contributory factor in the progression to heart failure. However, new clinical and basic research has identified some surprising and unpredicted changes in MMP profiles in left ventricle remodeling processes, such as with pressure or volume overload, as well as with myocardial infarction. From these studies, it has become recognized that proteolytic processing of signaling molecules by certain MMP types, particularly the transmembrane MMPs, actually may facilitate ECM accumulation and modulate fibroblast transdifferentiation; both are critical events in adverse left ventricle remodeling. Based on the ever-increasing substrates and diversity of biological actions of MMPs, it is likely that continued research about the relationship of left ventricle remodeling in this family of proteases will yield new insights into the ECM remodeling process and new therapeutic targets.
Collapse
Affiliation(s)
- Francis G Spinale
- Cardiovascular Translational Research Center, CBA, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, USA.
| | | | | |
Collapse
|
28
|
Janicki JS, Spinale FG, Levick SP. Gender differences in non-ischemic myocardial remodeling: are they due to estrogen modulation of cardiac mast cells and/or membrane type 1 matrix metalloproteinase. Pflugers Arch 2013; 465:687-97. [PMID: 23417570 DOI: 10.1007/s00424-013-1229-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
This review is focused on gender differences in cardiac remodeling secondary to sustained increases in cardiac volume (VO) and generated pressure (PO). Estrogen has been shown to favorably alter the course of VO-induced remodeling. That is, the VO-induced increased extracellular matrix proteolytic activity and mast cell degranulation responsible for the adverse cardiac remodeling in males and ovariectomized rodents do not occur in intact premenopausal females. While less is known regarding the mechanisms responsible for female cardioprotection in PO-induced stress, gender differences in remodeling have been reported indicating the ability of premenopausal females to adequately compensate. In view of the fact that, in male mice with PO, mast cells have been shown to play a role in the adverse remodeling suggests favorable estrogen modification of mast cell phenotype may also be responsible for cardioprotection in females with PO. Thus, while evidence is accumulating regarding premenopausal females being cardioprotected, there remains the need for in-depth studies to identify critical downstream molecular targets that are under the regulation of estrogen and relevant to cardiac remodeling. Such studies would result in the development of therapy which provides cardioprotection while avoiding the adverse effects of systemic estrogen delivery.
Collapse
Affiliation(s)
- Joseph S Janicki
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
29
|
Wang L, Xu YX, Du XJ, Sun QG, Tian YJ. Dynamic expression profiles of MMPs/TIMPs and collagen deposition in mechanically unloaded rat heart: implications for left ventricular assist device support-induced cardiac alterations. J Physiol Biochem 2013; 69:477-85. [PMID: 23315238 DOI: 10.1007/s13105-013-0235-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 01/02/2013] [Indexed: 11/25/2022]
Abstract
Left ventricular assist devices (LVADs) ameliorate heart failure by reducing preload and afterload. However, extracellular matrix (ECM) deposition after application of LVADs is not clearly defined. The purpose of the present study was to investigate ECM remodeling after mechanical unloading in a rat heart transplant model. Sixty male Lewis rats were subjected to abdominal heterotopic heart transplantation, and the transplanted hearts were pressure- and volume-unloaded. The age- and weight- matched male Lewis rats who had undergone open thoracic surgeries were used as the control. Left ventricle ECM accumulation and the expression/activity of matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs) were measured on the third, seventh, and fourteenth days after transplantation/sham surgery. Compared with the control group, myocardial ECM deposition significantly increased on the seventh and fourteenth days after heart transplantation (P < 0.05) and peaked on the 14th day. The gelatinase activity as well as mRNA expression of MMP-2 and MMP-9 significantly increased after transplantation (P < 0.05). Both mRNA and protein levels of TIMP-1 and TIMP-2 significantly increased compared with those of the control group. Mechanical unloading may lead to adverse remodeling of the ECM of the left ventricle. The underlying mechanism may due to the imbalance of the MMP/TIMP system, especially the remarkable upregulation of TIMPs in the pressure and volume unloaded heart.
Collapse
Affiliation(s)
- Lu Wang
- Division of Cardiology, Shandong Corps Hospital of Chinese People's Armed Police Forces, Jinan, Shandong, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Jain P, Saravanan C, Singh SK. Sulphonamides: Deserving class as MMP inhibitors? Eur J Med Chem 2012; 60:89-100. [PMID: 23287054 DOI: 10.1016/j.ejmech.2012.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/26/2012] [Accepted: 10/02/2012] [Indexed: 12/14/2022]
Abstract
The importance of sulphonamide moiety in medicinal chemistry cannot be ignored as it constitutes an important class of extensively used drugs. Recently, sulphonamides have also been reported for their matrix metalloproteinase (MMP) inhibitory activity. MMPs are calcium- and zinc-dependent endopeptidases, involved in both inter- and intra-cellular activity. This review documents the emergence of sulphonamides as matrix metalloproteinase inhibitors (MMPIs) from the first generation to the recent third generation MMPIs, their mode of action - how sulphonamides act on MMPs? as well as the structure activity relationship along with their therapeutic uses in chronic obstructive pulmonary disease (COPD), ulcer, asthma, arthritis and cancer. From this review, readers can get answer for the question- is sulphonamides a potential class of MMPIs?
Collapse
Affiliation(s)
- Pranjali Jain
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | | |
Collapse
|
31
|
Abstract
Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis.
Collapse
|
32
|
Essa EM, Zile MR, Stroud RE, Rice A, Gumina RJ, Leier CV, Spinale FG. Changes in plasma profiles of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in stress-induced cardiomyopathy. J Card Fail 2012; 18:487-92. [PMID: 22633307 DOI: 10.1016/j.cardfail.2012.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND Transient changes in the composition of the myocardial extracellular matrix may contribute to the ventricular systolic dysfunction in stress-induced cardiomyopathy (SIC). We examined the changes in plasma matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) that occur early after the clinical presentation of SIC. METHODS AND RESULTS Ten patients with SIC were enrolled. Plasma concentrations of the 6 major MMPs (1, 2, 3, 7, 8, and 9) and all 4 TIMPs (1, 2, 3, and 4) were analyzed and compared with data from 15 control subjects. Within 24 hours of the clinical presentation, SIC patients had lower MMP-1 levels (0.41 ± 0.13 vs 0.70 ± 0.13 pg/mL; P = .048) and MMP-8 levels (1.61 ± 0.34 vs 4.84 ± 1.38 pg/mL; P = .001) and higher TIMP-4 levels (3.06 ± 0.40 vs 2.16 ± 0.18 pg/mL; P = .05) compared with control. Seven of 9 SIC patients had elevated LV end-diastolic pressures, and all had normal LV end-diastolic dimensions and volumes. CONCLUSIONS Patients afflicted with SIC had MMP and TIMP profiles similar to those described in hypertensive heart disease and diastolic heart failure and different from the profiles following myocardial infarction. Our findings uncovered a unique biomolecular profile in SIC during the first 24 hours of presentation.
Collapse
Affiliation(s)
- Essa M Essa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Wang M, Zhang J, Telljohann R, Jiang L, Wu J, Monticone RE, Kapoor K, Talan M, Lakatta EG. Chronic matrix metalloproteinase inhibition retards age-associated arterial proinflammation and increase in blood pressure. Hypertension 2012; 60:459-66. [PMID: 22689745 PMCID: PMC3537179 DOI: 10.1161/hypertensionaha.112.191270] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/09/2012] [Indexed: 12/21/2022]
Abstract
Age-associated arterial remodeling involves arterial wall collagen deposition and elastin fragmentation, as well as an increase in arterial pressure. This arterial remodeling is linked to proinflammatory signaling, including transforming growth factor-β1, monocyte chemoattractant protein 1, and proendothelin 1, activated by extracellular matrix metalloproteinases (MMPs) and orchestrated, in part, by the transcriptional factor ets-1. We tested the hypothesis that inhibition of MMP activation can decelerate the age-associated arterial proinflammation and its attendant increase in arterial pressure. Indeed, chronic administration of a broad-spectrum MMP inhibitor, PD166739, via a daily gavage, to 16-month-old rats for 8 months markedly blunted the expected age-associated increases in arterial pressure. This was accompanied by the following: (1) inhibition of the age-associated increases in aortic gelatinase and interstitial collagenase activity in situ; (2) preservation of the elastic fiber network integrity; (3) a reduction of collagen deposition; (4) a reduction of monocyte chemoattractant protein 1 and transforming growth factor-β1 activation; (5) a diminution in the activity of the profibrogenic signaling molecule SMAD-2/3 phosphorylation; (6) inhibition of proendothelin 1 activation; and (7) downregulation of expression of ets-1. Acute exposure of cultured vascular smooth muscle cells in vitro to proendothelin 1 increased both the transcription and translation of ets-1, and these effects were markedly reduced by MMP inhibition. Furthermore, infection of vascular smooth muscle cells with an adenovirus harboring a full-length ets-1 cDNA increased activities of both transforming growth factor-β1 and monocyte chemoattractant protein 1. Collectively, our results indicate that MMP inhibition retards age-associated arterial proinflammatory signaling, and this is accompanied by preservation of intact elastin fibers, a reduction in collagen, and blunting of an age-associated increase in blood pressure.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, 5600 Nathan Shock Dr, National Institute on Aging-National Institutes of Health, Baltimore, MD 21030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, Rockman HA, Kass DA, Molkentin JD, Sussman MA, Koch WJ. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 2012; 111:131-50. [PMID: 22595296 DOI: 10.1161/res.0b013e3182582523] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Marson BP, Poli de Figueiredo CE, Tanus-Santos JE. Imbalanced matrix metalloproteinases in cardiovascular complications of end-stage kidney disease: a potential pharmacological target. Basic Clin Pharmacol Toxicol 2012; 110:409-15. [PMID: 22313633 DOI: 10.1111/j.1742-7843.2012.00863.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/11/2012] [Indexed: 11/30/2022]
Abstract
End-stage kidney disease (ESKD) is a major health problem associated with very high morbidity and mortality secondary to cardiovascular complications, especially in ESKD patients on dialysis. Therefore, exploring key mechanisms underlying cardiovascular alterations associated with ESKD may offer reasonable pharmacological targets that may benefit these patients. Imbalanced matrix metalloproteinases (MMP) activities have been implicated in many cardiovascular diseases, and growing evidence now indicates that excessive MMP activities contribute to cardiovascular complications in ESKD patients. However, there is no study on the effects of MMP inhibitors (MMPIs) in such patients. MMPIs may prevent against the vascular and cardiac changes associated with ESKD. In this MiniReview, we aimed at reviewing current evidence supporting the idea that pharmacological inhibition of imbalanced MMP activities in ESKD may decrease the morbidity and mortality associated with cardiovascular complications in ESKD patients. However, MMPs have variable effects during different phases of kidney disease, and therefore optimal timing for MMP inhibition during a disease process may vary significantly and is largely undetermined. While current research shows that MMPs play a role in the pathogenesis of the cardiovascular alterations found in ESKD patients, clinical studies are required to validate the idea of using MMPIs in ESKD.
Collapse
Affiliation(s)
- Bernardo P Marson
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
36
|
Marson BP, Lacchini R, Belo V, Dickel S, da Costa BP, Poli de Figueiredo CE, Tanus-Santos JE. Matrix metalloproteinase (MMP)-2 genetic variants modify the circulating MMP-2 levels in end-stage kidney disease. Am J Nephrol 2012; 35:209-15. [PMID: 22302011 DOI: 10.1159/000336108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 11/22/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play important roles in the pathophysiology of renal diseases, and imbalanced MMP-2 and its endogenous inhibitor (the tissue inhibitor of metalloproteinases-2; TIMP-2) are implicated in the vascular alterations of end-stage kidney disease (ESKD) patients. We have examined whether MMP-2 gene polymorphisms and haplotypes modify MMP-2 and TIMP-2 levels in ESKD patients as well as the effects of hemodialysis on the concentrations of these biomarkers. METHODS We determined MMP-2 and TIMP-2 plasma levels by gelatin zymography and ELISA, respectively, in 98 ESKD patients and in 38 healthy controls. Genotypes for two relevant MMP-2 polymorphisms (C(-1306)T and C(-735)T in the promoter region) were determined by TaqMan(®) allele discrimination assay and real-time polymerase chain reaction. The software program PHASE 2.1 was used to estimate the haplotype frequencies. RESULTS We found increased plasma MMP-2 and TIMP-2 levels in ESKD patients compared to controls (p < 0.05), and hemodialysis decreased MMP-2 (but not TIMP-2) levels (p < 0.05). The T allele for the C(-735)T polymorphism and the C-T haplotype were associated with higher MMP-2 (but not TIMP-2) levels (p < 0.05), whereas the C(-1306)T had no effects. Hemodialysis decreased MMP-2 (but not TIMP-2) levels independently of MMP-2 genotypes or haplotypes (p < 0.05). CONCLUSIONS MMP-2 genotypes or haplotypes modify MMP-2 levels in ESKD patients, and may help to identify patients with increased MMP-2 activity in plasma. Hemodialysis reduces MMP-2 levels independently of MMP-2 genetic variants.
Collapse
Affiliation(s)
- Bernardo P Marson
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Chen YW, Pat B, Gladden JD, Zheng J, Powell P, Wei CC, Cui X, Husain A, Dell'italia LJ. Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload. Am J Physiol Heart Circ Physiol 2011; 300:H2251-60. [PMID: 21421827 DOI: 10.1152/ajpheart.01104.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Left ventricular (LV) volume overload (VO) causes eccentric remodeling with inflammatory cell infiltration and extracellular matrix (ECM) degradation, for which there is currently no proven therapy. To uncover new pathways that connect inflammation and ECM homeostasis with cellular dysfunction, we determined the cardiac transciptome in subacute, compensated, and decompensated stages based on in vivo hemodynamics and echocardiography in the rat with aortocaval fistula (ACF). LV dilatation at 5 wk was associated with a normal LV end-diastolic dimension-to-posterior wall thickness ratio (LVEDD/PWT; compensated), whereas the early 2-wk (subacute) and late 15-wk (decompensated) ACF groups had significant increases in LVEDD/PWT. Subacute and decompensated stages had a significant upregulation of genes related to inflammation, the ECM, the cell cycle, and apoptosis. These changes were accompanied by neutrophil and macrophage infiltration, nonmyocyte apoptosis, and interstitial collagen loss. At 15 wk, there was a 40-fold increase in the matricellular protein periostin, which inhibits connections between collagen and cells, thereby potentially mediating a side-to-side slippage of cardiomyocytes and LV dilatation. The majority of downregulated genes was composed of mitochondrial enzymes whose suppression progressed from 5 to 15 wk concomitant with LV dilatation and systolic heart failure. The profound decrease in gene expression related to fatty acid, amino acid, and glucose metabolism was associated with the downregulation of peroxisome proliferator associated receptor (PPAR)-α-related and bioenergetic-related genes at 15 wk. In VO, an early phase of inflammation subsides at 5 wk but reappears at 15 wk with marked periostin production along with the suppression of genes related to PPAR-α and energy metabolism.
Collapse
Affiliation(s)
- Yuan-Wen Chen
- Center for Heart Failure Research, Division of Cardiology, Univ. of Alabama at Birmingham, 434 BMR2, 1530 3rd Ave. S., Birmingham, AL 35294-2180, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Foster CR, Singh M, Subramanian V, Singh K. Ataxia telangiectasia mutated kinase plays a protective role in β-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Mol Cell Biochem 2011; 353:13-22. [PMID: 21404020 DOI: 10.1007/s11010-011-0769-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/24/2011] [Indexed: 12/23/2022]
Abstract
β-Adrenergic receptor (β-AR) stimulation induces cardiac myocyte apoptosis and plays an important role in myocardial remodeling. Here we investigated expression of various apoptosis-related genes affected by β-AR stimulation, and examined first time the role of ataxia telangiectasia mutated kinase (ATM) in cardiac myocyte apoptosis and myocardial remodeling following β-AR stimulation. cDNA array analysis of 96 apoptosis-related genes indicated that β-AR stimulation increases expression of ATM in the heart. In vitro, RT-PCR confirmed increased ATM expression in adult cardiac myocytes in response to β-AR stimulation. Analysis of left ventricular structural and functional remodeling of the heart in wild-type (WT) and ATM heterozygous knockout mice (hKO) 28 days after ISO-infusion showed increased heart weight to body weight ratio in both groups. M-mode echocardiography showed increased percent fractional shortening (%FS) and ejection fraction (EF%) in both groups 28 days post ISO-infusion. Interestingly, the increase in %FS and EF% was significantly lower in the hKO-ISO group. Cardiac fibrosis and myocyte apoptosis were higher in hKO mice at baseline and ISO-infusion increased fibrosis and apoptosis to a greater extent in hKO-ISO hearts. ISO-infusion increased phosphorylation of p53 (Serine-15) and expression of p53 and Bax to a similar extent in both groups. hKO-Sham and hKO-ISO hearts exhibited reduced intact β1 integrin levels. MMP-2 protein levels were significantly higher, while TIMP-2 protein levels were lower in hKO-ISO hearts. MMP-9 protein levels were increased in WT-ISO, not in hKO hearts. In conclusion, ATM plays a protective role in cardiac remodeling in response to β-AR stimulation.
Collapse
Affiliation(s)
- Cerrone R Foster
- Department of Physiology, James H Quillen College of Medicine, James H Quillen Veterans Affairs Medical Center, East Tennessee State University, PO Box 70576, Johnson City, TN 37614, USA
| | | | | | | |
Collapse
|
39
|
Song YH, Cai H, Gu N, Qian CF, Cao SP, Zhao ZM. Icariin attenuates cardiac remodelling through down-regulating myocardial apoptosis and matrix metalloproteinase activity in rats with congestive heart failure. J Pharm Pharmacol 2011; 63:541-9. [PMID: 21401606 DOI: 10.1111/j.2042-7158.2010.01241.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
In this study, the anti-heart failure effect of icariin, a natural flavonol glycoside, and the underlying mechanisms were investigated.
Methods
Heart failure was induced by isoproterenol in male Sprague–Dawley rats. Matrix metalloproteinase activity was determined by gelatin zymography assay. The mRNA expression was determined by real-time PCR. The protein expression was determined by Western bolt. Mitochondria structure was examined by transmission electron microscopy.
Key findings
Isoproterenol administration resulted in a severe heart failure, as shown by the increased levels of left ventricular weight index, heart rate, left ventricular end diastolic pressure, maximal rate of left ventricular pressure decline (dp/dtmin), decreased levels of left ventricular systolic pressure and maximal rate of left ventricular pressure rise (dp/dtmax). Against these, icariin dose-dependently reversed the changes of these cardiac morphometric and haemodynamic parameters. In addition, icariin significantly inhibited serum levels of tumour necrosis factor-α, noradrenaline, angiotensin II and brain natriuretic peptide in rats with congestive hear failure and improved the histological changes, including cardiocyte hypertrophy, cardiocyte degeneration, inflammatory infiltration and cardiac desmoplasia. Furthermore, the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9, which regulate collagen production, were also blocked by icariin. Moreover, myocardial apoptosis was remarkably attenuated by icariin through regulating Bcl-2/Bax axle.
Conclusions
Icariin ameliorates left ventricular dysfunction and cardiac remodelling through down-regulating matrix metalloproteinase-2 and 9 activity and myocardial apoptosis in rats with congestive heart failure.
Collapse
Affiliation(s)
- Yao-Hong Song
- Department of Cardiology, The Third Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, China
| | - Hui Cai
- Department of Integrated Traditional Chinese and Western Medicine, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Ning Gu
- Department of Cardiology, The Third Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, China
| | - Chun-Fa Qian
- Department of Cardiology, The Third Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, China
| | - Shou-Pei Cao
- Department of Cardiology, The Third Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, China
| | - Zhi-Ming Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| |
Collapse
|
40
|
Biomarkers of extracellular matrix metabolism (MMP-9 and TIMP-1) and risk of stroke, myocardial infarction, and cause-specific mortality: cohort study. PLoS One 2011; 6:e16185. [PMID: 21283828 PMCID: PMC3023803 DOI: 10.1371/journal.pone.0016185] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/13/2010] [Indexed: 11/25/2022] Open
Abstract
Objective Turnover of the extracellular matrix in all solid organs is governed mainly by a balance between the degrading matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). An altered extracellular matrix metabolism has been implicated in a variety of diseases. We investigated relations of serum levels of MMP-9 and TIMP-1 to mortality risk from an etiological perspective. Design The prospective Uppsala Longitudinal Study of Adult Men (ULSAM) cohort, followed from 1991–1995 for up to 18.1 years. A random population-based sample of 1,082 71-year-old men, no loss to follow-up. Endpoints were all-cause (n = 628), cardiovascular (n = 230), non-cardiovascular (n = 398) and cancer mortality (n = 178), and fatal or non-fatal myocardial infarction (n = 138) or stroke (n = 163). Results Serum MMP-9 and TIMP-1 levels were associated with risk of all-cause mortality (Cox proportional hazard ratio [HR] per standard deviation 1.10, 95% confidence interval [CI] 1.03–1.19; and 1.11, 1.02–1.20; respectively). TIMP-1 levels were mainly related to risks of cardiovascular mortality and stroke (HR per standard deviation 1.22, 95% CI 1.09–1.37; and 1.18, 1.04–1.35; respectively). All relations except those of TIMP-1 to stroke risk were attenuated by adjustment for cardiovascular disease risk factors. Relations in a subsample without cardiovascular disease or cancer were similar to those in the total sample. Conclusion In this community-based cohort of elderly men, serum MMP-9 and TIMP-1 levels were related to mortality risk. An altered extracellular matrix metabolism may be involved in several detrimental pathways, and circulating MMP-9 or TIMP-1 levels may be relevant markers thereof.
Collapse
|
41
|
Loss of interstitial collagen causes structural and functional alterations of cardiomyocyte subsarcolemmal mitochondria in acute volume overload. J Mol Cell Cardiol 2010; 50:147-56. [PMID: 21059354 DOI: 10.1016/j.yjmcc.2010.10.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 11/20/2022]
Abstract
Volume overload (VO) caused by aortocaval fistula (ACF) is associated with oxidative/inflammatory stress. The resulting inflammation, matrix metalloproteinase (MMP) activation, and collagen degradation is thought to play a pivotal role in left ventricular (LV) dilatation and failure. Since mitochondria are also targets for inflammation and oxidative stress, we hypothesized that there would be bioenergetic dysfunction with acute VO. In Sprague-Dawley rats subjected to 24 hrs of ACF, there was a two-fold increase in LV pressure-volume area in vivo, consistent with increased LV myocardial oxygen usage and increased bioenergetic demand in cardiomyocytes. Isolated cardiomyocytes from ACF LVs demonstrated increased hydrogen peroxide and superoxide formation and increased MMP activity. Subsarcolemmal mitochondria (SSM) showed a 40% decrease in state 3 respiration and proteomic analysis of SSM demonstrated decreased levels of complexes I-V in ACF. Immunohistochemical analysis revealed disruption of the subsarcolemmal location of the SSM network in ACF. To test for a potential link between SSM dysfunction and loss of interstitial collagen, rats were treated with the MMP-inhibitor PD166793 prior to ACF. MMP-inhibitor preserved interstitial collagen, integrin-α5 and the SSM structural arrangement. In addition, the decrease in state 3 mitochondrial respiration with ACF was prevented by PD166793. These studies established an important interaction between degradation of interstitial collagen in acute VO and the disruption of SSM structure and function which could contribute to progression to heart failure.
Collapse
|
42
|
Espira L, Czubryt MP. Emerging concepts in cardiac matrix biologyThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research. Can J Physiol Pharmacol 2009; 87:996-1008. [DOI: 10.1139/y09-105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac extracellular matrix, far from being merely a static support structure for the heart, is now recognized to play central roles in cardiac development, morphology, and cell signaling. Recent studies have better shaped our understanding of the tremendous complexity of this active and dynamic network. By activating intracellular signal cascades, the matrix transduces myocardial physical forces into responses by myocytes and fibroblasts, affecting their function and behavior. In turn, cardiac fibroblasts and myocytes play active roles in remodeling the matrix. Coupled with the ability of the matrix to act as a dynamic reservoir for growth factors and cytokines, this interplay between the support structure and embedded cells has the potential to exert dramatic effects on cardiac structure and function. One of the clearest examples of this occurs when cell–matrix interactions are altered inappropriately, contributing to pathological fibrosis and heart failure. This review will examine some of the recent concepts that have emerged regarding exactly how the cardiac matrix mediates these effects, how our collective vision of the matrix has changed as a result, and the current state of attempts to pharmacologically treat fibrosis.
Collapse
Affiliation(s)
- Leon Espira
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Michael P. Czubryt
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
43
|
Franz M, Berndt A, Altendorf-Hofmann A, Fiedler N, Richter P, Schumm J, Fritzenwanger M, Figulla HR, Brehm BR. Serum levels of large tenascin-C variants, matrix metalloproteinase-9, and tissue inhibitors of matrix metalloproteinases in concentric versus eccentric left ventricular hypertrophy. Eur J Heart Fail 2009; 11:1057-62. [PMID: 19815660 DOI: 10.1093/eurjhf/hfp128] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
AIMS Chronic hypertension may cause left ventricular hypertrophy (LVH). The role of matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and tenascin-C (Tn-C) splice variants in concentric vs. eccentric left ventricular remodelling has not been investigated. METHODS AND RESULTS Serum levels of B or C domain containing Tn-C, MMP-9, TIMP-1, -2, and -4 were determined in concentric (left ventricular posterior wall thickness >13 mm and intraventricular septum >13 mm, n = 61) and eccentric (end-diastolic left ventricular diameter >55 mm or end-systolic left ventricular diameter >40 mm, n = 34) LVH by enzyme-linked immunoassays. Levels of B domain containing Tn-C were higher in patients with LVH than in normal volunteers (P = 0.020) and higher in eccentric LVH (EH) compared with concentric LVH (CH) (P = 0.003). A cut-off value of 900 ng/mL might discriminate between these different forms of LVH. Matrix metalloproteinase-9 was higher in patients with LVH than in normal volunteers (P = 0.042), and levels were decreased in EH compared with CH (P = 0.028). Patients with LVH had higher levels of TIMP-1 (P = 0.059), TIMP-2 (P = 0.043), and TIMP-4 (P = 0.163) than normal volunteers, but there were no differences between the LVH groups. CONCLUSION Our data suggest that myocardial remodelling in LVH is associated with changes in serum levels of MMP-9, TIMP-1, -2, -4, and Tn-C splice variants. In addition, B domain containing Tn-C discriminated EH from CH and might be suggested as a potential diagnostic marker.
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I/Cardiology, University Hospital of Jena, Erlanger Allee 101, 07740 Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pleiotropic effects of neutrophils on myocyte apoptosis and left ventricular remodeling during early volume overload. J Mol Cell Cardiol 2009; 47:634-45. [PMID: 19716828 DOI: 10.1016/j.yjmcc.2009.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 11/20/2022]
Abstract
Most of the available evidence on the role of neutrophils on pathological cardiac remodeling has been pertained after acute myocardial infarction. However, whether neutrophils directly contribute to the pathogenesis of cardiac remodeling after events other than acute myocardial infarction remains unknown. Here we show that acute eccentric hypertrophy induced by aorto-caval fistula (ACF) in the rats induced an increase in the inflammatory response characterized by activation of the STAT pathway and increased infiltration of neutrophils in the myocardium. This early inflammation was associated with a decrease in interstitial collagen accumulation and an increase in myocyte apoptosis. Neutrophil infiltration blockade attenuated MMP activation, ECM degradation, and myocyte apoptosis induced by ACF at 24 hours and attenuated the development of eccentric hypertrophy induced by ACF at 2 and 3 weeks, suggesting a causal relationship between neutrophils and the ACF-induced cardiac remodeling. In contrast, sustained neutrophil depletion over 4 weeks resulted in adverse cardiac remodeling with further increase in cardiac dilatation and macrophage infiltration, but with no change in myocyte apoptosis level. These data support a functional role for neutrophils in MMP activation, ECM degradation, and myocyte apoptosis during eccentric cardiac hypertrophy and underscore the adverse effects of chronic anti-neutrophil therapy on cardiac remodeling induced by early volume overload.
Collapse
|
45
|
Jobe LJ, Meléndez GC, Levick SP, Du Y, Brower GL, Janicki JS. TNF-alpha inhibition attenuates adverse myocardial remodeling in a rat model of volume overload. Am J Physiol Heart Circ Physiol 2009; 297:H1462-8. [PMID: 19666842 DOI: 10.1152/ajpheart.00442.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor (TNF)-alpha is a proinflammatory cytokine that has been implicated in the pathogenesis of heart failure. In contrast, we have recently shown that myocardial levels of TNF-alpha are acutely elevated in the aortocaval (AV) fistula model of heart failure. Based on these observations, we hypothesized that progression of adverse myocardial remodeling secondary to volume overload would be prevented by inhibition of TNF-alpha with etanercept. Furthermore, a principal objective of this study was to elucidate the effect of TNF-alpha inhibition during different phases of the myocardial remodeling process. Eight-week-old male Sprague-Dawley rats were randomly divided into the following three groups: sham-operated controls, untreated AV fistulas, and etanercept-treated AV fistulas. Each group was further subdivided to study three different time points consisting of 3 days, 3 wk, and 8 wk postfistula. Etanercept was administered subcutaneously at 1 mg/kg body wt. Etanercept prevented collagen degradation at 3 days and significantly attenuated the decrease in collagen at 8 wk postfistula. Although TNF-alpha antagonism did not prevent the initial ventricular dilatation at 3 wk postfistula, etanercept was effective at significantly attenuating the subsequent ventricular hypertrophy, dilatation, and increased compliance at 8 wk postfistula. These positive adaptations achieved with etanercept administration translated into significant functional improvements. At a cellular level, etanercept also markedly attenuated increases in cardiomyocyte length, width, and area at 8 wk postfistula. These observations demonstrate that TNF-alpha has a pivotal role in adverse myocardial remodeling and that treatment with etanercept can attenuate the progression to heart failure.
Collapse
Affiliation(s)
- Lynetta J Jobe
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hutchinson KR, Stewart JA, Lucchesi PA. Extracellular matrix remodeling during the progression of volume overload-induced heart failure. J Mol Cell Cardiol 2009; 48:564-9. [PMID: 19524591 DOI: 10.1016/j.yjmcc.2009.06.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 05/28/2009] [Accepted: 06/02/2009] [Indexed: 11/17/2022]
Abstract
Volume overload-induced heart failure results in progressive left ventricular remodeling characterized by chamber dilation, eccentric cardiac myocyte hypertrophy and changes in extracellular matrix (ECM) remodeling changes. The ECM matrix scaffold is an important determinant of the structural integrity of the myocardium and actively participates in force transmission across the LV wall. In response to this hemodynamic overload, the ECM undergoes a distinct pattern of remodeling that differs from pressure overload. Once thought to be a static entity, the ECM is now regarded to be a highly adaptive structure that is dynamically regulated by mechanical stress, neurohormonal activation, inflammation and oxidative stress, that result in alterations in collagen and other matrix components and a net change in matrix metalloproteinase (MMP) expression and activation. These changes dictate overall ECM turnover during volume overload hear failure progression. This review will discuss the cellular and molecular mechanisms that dictate the temporal patterns of ECM remodeling during heart disease progression.
Collapse
Affiliation(s)
- Kirk R Hutchinson
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | |
Collapse
|
47
|
Relations of serum MMP-9 and TIMP-1 levels to left ventricular measures and cardiovascular risk factors: a population-based study. ACTA ACUST UNITED AC 2009; 16:297-303. [DOI: 10.1097/hjr.0b013e3283213108] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Murray DB, McMillan R, Brower GL, Janicki JS. ETA selective receptor antagonism prevents ventricular remodeling in volume-overloaded rats. Am J Physiol Heart Circ Physiol 2009; 297:H109-16. [PMID: 19429817 DOI: 10.1152/ajpheart.00968.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the ability of selective endothelin receptor subtype A (ET(A)) endothelin receptor antagonism (ETA) to prevent the acute myocardial remodeling process secondary to volume overload. Left ventricular tissue from sham-operated (Sham) and untreated (Fist), and TBC-3214 (Fist + ETA, 25 mg.kg(-1).day(-1))-treated fistula animals was analyzed for mast cell density, matrix metalloproteinase (MMP) activity, and extracellular collagen volume fraction (CVF) 1 and 5 days following the initiation of volume overload. Compared with Fist, ETA treatment prevented the increase in left ventricular mast cell density at 1 day and 5 days. Additionally, at 1 day postfistula, a substantial decrease in MMP-2 activity below Sham levels was observed following endothelin receptor antagonism (1.7 +/- 0.7 vs. 0.3 +/- 0.3 vs. 0.9 +/- 0.2 arbitrary activity units, Fist vs. Fist + ETA vs. Sham, P < or = 0.05). This same effect was also seen at 5 days postfistula (1.9 +/- 0.3 vs. 0.5 +/- 0.1 arbitrary activity units, Fist vs. Fist + ETA, P < or = 0.05). The marked decrease in myocardial CVF seen in Fist hearts (0.7 +/- 0.1 vs. 1.6 +/- 0.1% myocardial area, Fist vs. Sham, P < or = 0.05) was prevented by ETA (1.7 +/- 0.1% Fist + ETA, P < 0.05 vs. Fist). This preservation of the collagen matrix was also present on day 5 in the TBC-treated group vs. the Fist group (1.0 +/- 0.1 vs. 1.4 +/- 0.1%, Fist vs. Fist + ETA, P < or = 0.01). Furthermore, an 8-wk preventative treatment with ETA significantly attenuated the increase in left ventricular end systolic and diastolic volumes compared with untreated fistula hearts. In conclusion, the novel findings of this study indicate that the activation of cardiac mast cells and subsequent MMP activation/collagen degradation during the acute stages of volume overload are prevented by blockade of the ET(A) receptor subtype. Furthermore, by preventing these events, ET-1 antagonism was efficacious in attenuating ventricular dilatation and limiting the development of structural and functional deficits.
Collapse
Affiliation(s)
- David B Murray
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
| | | | | | | |
Collapse
|
49
|
Zheng J, Chen Y, Pat B, Dell’Italia LA, Tillson M, Dillon AR, Powell P, Shi K, Shah N, Denney T, Husain A, Dell’Italia LJ. Microarray identifies extensive downregulation of noncollagen extracellular matrix and profibrotic growth factor genes in chronic isolated mitral regurgitation in the dog. Circulation 2009; 119:2086-95. [PMID: 19349319 PMCID: PMC3092370 DOI: 10.1161/circulationaha.108.826230] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The volume overload of isolated mitral regurgitation (MR) in the dog results in left ventricular (LV) dilatation and interstitial collagen loss. To better understand the mechanism of collagen loss, we performed a gene array and overlaid regulated genes into ingenuity pathway analysis. METHODS AND RESULTS Gene arrays from LV tissue were compared in 4 dogs before and 4 months after MR. Cine-magnetic resonance-derived LV end-diastolic volume increased 2-fold (P=0.005), and LV ejection fraction increased from 41% to 53% (P<0.007). LV interstitial collagen decreased 40% (P<0.05) compared with controls, and replacement collagen was in short strands and in disarray. Ingenuity pathway analysis identified Marfan syndrome, aneurysm formation, LV dilatation, and myocardial infarction, all of which have extracellular matrix protein defects and/or degradation. Matrix metalloproteinase-1 and -9 mRNA increased 5- (P=0.01) and 10-fold (P=0.003), whereas collagen I did not change and collagen III mRNA increased 1.5-fold (P=0.02). However, noncollagen genes important in extracellular matrix structure were significantly downregulated, including decorin, fibulin 1, and fibrillin 1. In addition, connective tissue growth factor and plasminogen activator inhibitor were downregulated, along with multiple genes in the transforming growth factor-beta signaling pathway, resulting in decreased LV transforming growth factor-beta1 activity (P=0.03). CONCLUSIONS LV collagen loss in isolated, compensated MR is chiefly due to posttranslational processing and degradation. The downregulation of multiple noncollagen genes important in global extracellular matrix structure, coupled with decreased expression of multiple profibrotic factors, explains the failure to replace interstitial collagen in the MR heart.
Collapse
Affiliation(s)
- Junying Zheng
- Center for Heart Failure Research, Department of Medicine, University of Alabama, Birmingham, AL, Birmingham
| | - Yuanwen Chen
- Center for Heart Failure Research, Department of Medicine, University of Alabama, Birmingham, AL, Birmingham
| | - Betty Pat
- Center for Heart Failure Research, Department of Medicine, University of Alabama, Birmingham, AL, Birmingham
| | - Louis A Dell’Italia
- Center for Heart Failure Research, Department of Medicine, University of Alabama, Birmingham, AL, Birmingham
| | - Michael Tillson
- Auburn University College of Veterinary Medicine, Auburn, AL
| | - A Ray Dillon
- Auburn University College of Veterinary Medicine, Auburn, AL
| | - Pamela Powell
- Center for Heart Failure Research, Department of Medicine, University of Alabama, Birmingham, AL, Birmingham
| | - Ke Shi
- Center for Heart Failure Research, Department of Medicine, University of Alabama, Birmingham, AL, Birmingham
| | - Neil Shah
- Center for Heart Failure Research, Department of Medicine, University of Alabama, Birmingham, AL, Birmingham
| | | | - Ahsan Husain
- Center for Heart Failure Research, Department of Medicine, University of Alabama, Birmingham, AL, Birmingham
- Department of Physiology and Biophysics, University of Alabama, Birmingham, AL, Birmingham
| | - Louis J Dell’Italia
- Center for Heart Failure Research, Department of Medicine, University of Alabama, Birmingham, AL, Birmingham
- Department of Veteran Affairs, Auburn, AL
| |
Collapse
|
50
|
Levick SP, Brower GL. Regulation of matrix metalloproteinases is at the heart of myocardial remodeling. Am J Physiol Heart Circ Physiol 2008; 295:H1375-6. [PMID: 18757475 DOI: 10.1152/ajpheart.907.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|