1
|
Numata G, Takimoto E. Cyclic GMP and PKG Signaling in Heart Failure. Front Pharmacol 2022; 13:792798. [PMID: 35479330 PMCID: PMC9036358 DOI: 10.3389/fphar.2022.792798] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic guanosine monophosphate (cGMP), produced by guanylate cyclase (GC), activates protein kinase G (PKG) and regulates cardiac remodeling. cGMP/PKG signal is activated by two intrinsic pathways: nitric oxide (NO)-soluble GC and natriuretic peptide (NP)-particulate GC (pGC) pathways. Activation of these pathways has emerged as a potent therapeutic strategy to treat patients with heart failure, given cGMP-PKG signaling is impaired in heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). Large scale clinical trials in patients with HFrEF have shown positive results with agents that activate cGMP-PKG pathways. In patients with HFpEF, however, benefits were observed only in a subgroup of patients. Further investigation for cGMP-PKG pathway is needed to develop better targeting strategies for HFpEF. This review outlines cGMP-PKG pathway and its modulation in heart failure.
Collapse
Affiliation(s)
- Genri Numata
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, The University of Tokyo Hospital, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
2
|
Durgin BG, Wood KC, Hahn SA, McMahon B, Baust JJ, Straub AC. Smooth muscle cell CYB5R3 preserves cardiac and vascular function under chronic hypoxic stress. J Mol Cell Cardiol 2022; 162:72-80. [PMID: 34536439 PMCID: PMC8766905 DOI: 10.1016/j.yjmcc.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023]
Abstract
Chronic hypoxia is a major driver of cardiovascular complications, including heart failure. The nitric oxide (NO) - soluble guanylyl cyclase (sGC) - cyclic guanosine monophosphate (cGMP) pathway is integral to vascular tone maintenance. Specifically, NO binds its receptor sGC within vascular smooth muscle cells (SMC) in its reduced heme (Fe2+) form to increase intracellular cGMP production, activate protein kinase G (PKG) signaling, and induce vessel relaxation. Under chronic hypoxia, oxidative stress drives oxidation of sGC heme (Fe2+→Fe3+), rendering it NO-insensitive. We previously showed that cytochrome b5 reductase 3 (CYB5R3) in SMC is a sGC reductase important for maintaining NO-dependent vasodilation and conferring resilience to systemic hypertension and sickle cell disease-associated pulmonary hypertension. To test whether CYB5R3 may be protective in the context of chronic hypoxia, we subjected SMC-specific CYB5R3 knockout mice (SMC CYB5R3 KO) to 3 weeks hypoxia and assessed vascular and cardiac function using echocardiography, pressure volume loops and wire myography. Hypoxic stress caused 1) biventricular hypertrophy in both WT and SMC CYB5R3 KO, but to a larger degree in KO mice, 2) blunted vasodilation to NO-dependent activation of sGC in coronary and pulmonary arteries of KO mice, and 3) decreased, albeit still normal, cardiac function in KO mice. Overall, these data indicate that SMC CYB5R3 deficiency potentiates bilateral ventricular hypertrophy and blunts NO-dependent vasodilation under chronic hypoxia conditions. This implicates that SMC CYB5R3 KO mice post 3-week hypoxia have early stages of cardiac remodeling and functional changes that could foretell significantly impaired cardiac function with longer exposure to hypoxia.
Collapse
Affiliation(s)
- Brittany G Durgin
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Scott A Hahn
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Brenda McMahon
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jeffrey J Baust
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
3
|
Tettey A, Jiang Y, Li X, Li Y. Therapy for Pulmonary Arterial Hypertension: Glance on Nitric Oxide Pathway. Front Pharmacol 2021; 12:767002. [PMID: 34867394 PMCID: PMC8633825 DOI: 10.3389/fphar.2021.767002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease with a resultant increase of the mean pulmonary arterial pressure, right ventricular hypertrophy and eventual death. Research in recent years has produced various therapeutic options for its clinical management but the high mortality even under treatment remains a big challenge attributed to the complex pathophysiology. Studies from clinical and non-clinical experiments have revealed that the nitric oxide (NO) pathway is one of the key pathways underlying the pathophysiology of PAH. Many of the essential drugs used in the management of PAH act on this pathway highlighting its significant role in PAH. Meanwhile, several novel compounds targeting on NO pathway exhibits great potential to become future therapy medications. Furthermore, the NO pathway is found to interact with other crucial pathways. Understanding such interactions could be helpful in the discovery of new drug that provide better clinical outcomes.
Collapse
Affiliation(s)
- Abraham Tettey
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Yujie Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
4
|
Klinger JR, Chakinala MM, Langleben D, Rosenkranz S, Sitbon O. Riociguat: Clinical research and evolving role in therapy. Br J Clin Pharmacol 2021; 87:2645-2662. [PMID: 33242341 PMCID: PMC8359233 DOI: 10.1111/bcp.14676] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Riociguat is a first-in-class soluble guanylate cyclase stimulator, approved for the treatment of adults with pulmonary arterial hypertension (PAH), inoperable chronic thromboembolic pulmonary hypertension (CTEPH), or persistent or recurrent CTEPH after pulmonary endarterectomy. Approval was based on the results of the phase III PATENT-1 (PAH) and CHEST-1 (CTEPH) studies, with significant improvements in the primary endpoint of 6-minute walk distance vs placebo of +36 m and +46 m, respectively, as well as improvements in secondary endpoints such as pulmonary vascular resistance and World Health Organization functional class. Riociguat acts as a stimulator of cyclic guanosine monophosphate synthesis rather than as an inhibitor of cGMP metabolism. As with other approved therapies for PAH, riociguat has antifibrotic, antiproliferative and anti-inflammatory effects, in addition to vasodilatory properties. This has led to further clinical studies in patients who do not achieve a satisfactory clinical response with phosphodiesterase type-5 inhibitors. Riociguat has also been evaluated in patients with World Health Organization group 2 and 3 pulmonary hypertension, and other conditions including diffuse cutaneous systemic sclerosis, Raynaud's phenomenon and cystic fibrosis. This review evaluates the results of the original clinical trials of riociguat for the treatment of PAH and CTEPH, and summarises the body of work that has examined the safety and efficacy of riociguat for the treatment of other types of pulmonary hypertension.
Collapse
Affiliation(s)
- James R. Klinger
- Division of Pulmonary, Sleep, and Critical Care Medicine, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Murali M. Chakinala
- Division of Pulmonary and Critical Care MedicineWashington University School of MedicineSt LouisMissouriUSA
| | - David Langleben
- Center for Pulmonary Vascular Disease and Lady Davis Institute, Jewish General HospitalMcGill UniversityMontrealCanada
| | - Stephan Rosenkranz
- Clinic III for Internal Medicine (Cardiology), and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Cologne Cardiovascular Research Center (CCRC)University of CologneCologneGermany
| | - Olivier Sitbon
- Universite Paris‐Sud, Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
- AP‐HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, Hôpital BicêtreLe Kremlin‐BicêtreFrance
- INSERM UMR_S 999, Hôpital Marie‐LannelongueLe Plessis‐RobinsonFrance
| |
Collapse
|
5
|
Duarte-Silva E, Meiry da Rocha Araújo S, Oliveira WH, Lós DB, Bonfanti AP, Peron G, de Lima Thomaz L, Verinaud L, Peixoto CA. Sildenafil Alleviates Murine Experimental Autoimmune Encephalomyelitis by Triggering Autophagy in the Spinal Cord. Front Immunol 2021; 12:671511. [PMID: 34054847 PMCID: PMC8156813 DOI: 10.3389/fimmu.2021.671511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neuroinflammatory and chronic Central Nervous System (CNS) disease that affects millions of people worldwide. The search for more promising drugs for the treatment of MS has led to studies on Sildenafil, a phosphodiesterase type 5 Inhibitor (PDE5I) that has been shown to possess neuroprotective effects in the Experimental Autoimmune Encephalomyelitis (EAE), an animal model of MS. We have previously shown that Sildenafil improves the clinical score of EAE mice via modulation of apoptotic pathways, but other signaling pathways were not previously covered. Therefore, the aim of the present study was to further investigate the effects of Sildenafil treatment on autophagy and nitrosative stress signaling pathways in EAE. 24 female C57BL/6 mice were divided into the following groups: (A) Control - received only water; (B) EAE - EAE untreated mice; (C) SILD - EAE mice treated with 25mg/kg of Sildenafil s.c. The results showed that EAE mice presented a pro-nitrosative profile characterized by high tissue nitrite levels, lowered levels of p-eNOS and high levels of iNOS. Furthermore, decreased levels of LC3, beclin-1 and ATG5, suggests impaired autophagy, and decreased levels of AMPK in the spinal cord were also detected in EAE mice. Surprisingly, treatment with Sildenafil inhibited nitrosative stress and augmented the levels of LC3, beclin-1, ATG5, p-CREB and BDNF and decreased mTOR levels, as well as augmented p-AMPK. In conclusion, we propose that Sildenafil alleviates EAE by activating autophagy via the eNOS-NO-AMPK-mTOR-LC3-beclin1-ATG5 and eNOS-NO-AMPK-mTOR-CREB-BDNF pathways in the spinal cord.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, Brazil
| | - Shyrlene Meiry da Rocha Araújo
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Wilma Helena Oliveira
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Deniele Bezerra Lós
- Postgraduate Program in Biotechnology/Northeast Network in Biotechnology (RENORBIO), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Peron
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Livia de Lima Thomaz
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Jones C, Bisserier M, Bueno-Beti C, Bonnet G, Neves-Zaph S, Lee SY, Milara J, Dorfmüller P, Humbert M, Leopold JA, Hadri L, Hajjar RJ, Sassi Y. A novel secreted-cAMP pathway inhibits pulmonary hypertension via a feed-forward mechanism. Cardiovasc Res 2021; 116:1500-1513. [PMID: 31529026 DOI: 10.1093/cvr/cvz244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/31/2019] [Accepted: 09/10/2019] [Indexed: 11/14/2022] Open
Abstract
AIMS Cyclic adenosine monophosphate (cAMP) is the predominant intracellular second messenger that transduces signals from Gs-coupled receptors. Intriguingly, there is evidence from various cell types that an extracellular cAMP pathway is active in the extracellular space. Herein, we investigated the role of extracellular cAMP in the lung and examined whether it may act on pulmonary vascular cell proliferation and pulmonary vasculature remodelling in the pathogenesis of pulmonary hypertension (PH). METHODS AND RESULTS The expression of cyclic AMP-metabolizing enzymes was increased in lungs from patients with PH as well as in rats treated with monocrotaline and mice exposed to Sugen/hypoxia. We report that inhibition of the endogenous extracellular cAMP pathway exacerbated Sugen/hypoxia-induced lung remodelling. We found that application of extracellular cAMP induced an increase in intracellular cAMP levels and inhibited proliferation and migration of pulmonary vascular cells in vitro. Extracellular cAMP infusion in two in vivo PH models prevented and reversed pulmonary and cardiac remodelling associated with PH. Using protein expression analysis along with luciferase assays, we found that extracellular cAMP acts via the A2R/PKA/CREB/p53/Cyclin D1 pathway. CONCLUSIONS Taken together, our data reveal the presence of an extracellular cAMP pathway in pulmonary arteries that attempts to protect the lung during PH, and suggest targeting of the extracellular cAMP signalling pathway to limit pulmonary vascular remodelling and PH.
Collapse
Affiliation(s)
- Carly Jones
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Carlos Bueno-Beti
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Guillaume Bonnet
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Susana Neves-Zaph
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029 NY; USA.,Systems Biology Center, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029 NY; USA
| | - Sang-Yong Lee
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, Universität Bonn, Bonn, Germany
| | - Javier Milara
- Health Research Institute INCLIVA, Valencia, Spain.,Pharmacy Unit, University Clinic Hospital, Valencia, Spain.,CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Peter Dorfmüller
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Jane A Leopold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | | | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| |
Collapse
|
7
|
Duarte-Silva E, Filho AJMC, Barichello T, Quevedo J, Macedo D, Peixoto C. Phosphodiesterase-5 inhibitors: Shedding new light on the darkness of depression? J Affect Disord 2020; 264:138-149. [PMID: 32056743 DOI: 10.1016/j.jad.2019.11.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Phosphodiesterase-5 inhibitors (PDE5Is) are used to treat erectile dysfunction (ED). Recently, the antidepressant-like effect of PDE5Is was demonstrated in animal models of depression. In clinical settings, PDE5Is were studied only for ED associated depression. Hence, there are no studies evaluating the effects of PDE5Is for the treatment of major depressive disorder (MDD) without ED. In this review article, we aimed to discuss the use of PDE5Is in the context of MDD, highlighting the roles of PDE genes in the development of MDD, the potential mechanisms by which PDE5Is can be beneficial for MDD and the potentials and limitations of PDE5Is repurposing to treat MDD. METHODS We used PubMed (MEDLINE) database to collect the studies cited in this review. Papers written in English language regardless the year of publication were selected. RESULTS A few preclinical studies support the antidepressant-like activity of PDE5Is. Clinical studies in men with ED and depression suggest that PDE5Is improve depressive symptoms. No clinical studies were conducted in subjects suffering from depression without ED. Antidepressant effect of PDE5Is may be explained by multiple mechanisms including inhibition of brain inflammation and modulation of neuroplasticity. LIMITATIONS The low number of preclinical and absence of clinical studies to support the antidepressant effect of PDE5Is. CONCLUSIONS No clinical trial was conducted to date evaluating PDE5Is in depressed patients without ED. PDE5Is' anti-inflammatory and neuroplasticity mechanisms may justify the potential antidepressant effect of these drugs. Despite this, clinical trials evaluating their efficacy in depressed patients need to be conducted.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, PE, Brazil; Graduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
| | - Adriano José Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77054, United States; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - João Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77054, United States; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Christina Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Hobbs AJ, Moyes AJ, Baliga RS, Ghedia D, Ochiel R, Sylvestre Y, Doré CJ, Chowdhury K, Maclagan K, Quartly HL, Sofat R, Smit A, Schreiber BE, Coghlan GJ, MacAllister RJ. Neprilysin inhibition for pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled, proof-of-concept trial. Br J Pharmacol 2019; 176:1251-1267. [PMID: 30761523 DOI: 10.1111/bph.14621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/29/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH) is an incurable, incapacitating disorder resulting from increased pulmonary vascular resistance, pulmonary arterial remodelling, and right ventricular failure. In preclinical models, the combination of a PDE5 inhibitor (PDE5i) with a neprilysin inhibitor augments natriuretic peptide bioactivity, promotes cGMP signalling, and reverses the structural and haemodynamic deficits that characterize PAH. Herein, we conducted a randomized, double-blind, placebo-controlled trial to assess the efficacy and safety of repurposing the neprilysin inhibitor, racecadotril, in PAH. EXPERIMENTAL APPROACH Twenty-one PAH patients stable on PDE5i therapy were recruited. Acute haemodynamic and biochemical changes following a single dose of racecadotril or matching placebo were determined; this was followed by a 14-day safety and efficacy evaluation. The primary endpoint in both steps was the maximum change in circulating atrial natriuretic peptide (ANP) concentration (Δmax ), with secondary outcomes including pulmonary and systemic haemodynamics plus mechanistic biomarkers. KEY RESULTS Acute administration of racecadotril (100 mg) resulted in a 79% increase in the plasma ANP concentration and a 106% increase in plasma cGMP levels, with a concomitant 14% fall in pulmonary vascular resistance. Racecadotril (100 mg; t.i.d.) treatment for 14 days resulted in a 19% rise in plasma ANP concentration. Neither acute nor chronic administration of racecadotril resulted in a significant drop in mean arterial BP or any serious adverse effects. CONCLUSIONS AND IMPLICATIONS This Phase IIa evaluation provides proof-of-principle evidence that neprilysin inhibitors may have therapeutic utility in PAH and warrants a larger scale prospective trial.
Collapse
Affiliation(s)
- Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Reshma S Baliga
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dipa Ghedia
- Department of Cardiology, Royal Free London NHS Foundation Trust, London, UK
| | - Rachel Ochiel
- Department of Cardiology, Royal Free London NHS Foundation Trust, London, UK
| | - Yvonne Sylvestre
- Comprehensive Clinical Trials Unit, University College London, London, UK
| | - Caroline J Doré
- Comprehensive Clinical Trials Unit, University College London, London, UK
| | - Kashfia Chowdhury
- Comprehensive Clinical Trials Unit, University College London, London, UK
| | - Kate Maclagan
- Comprehensive Clinical Trials Unit, University College London, London, UK
| | - Harriet L Quartly
- Comprehensive Clinical Trials Unit, University College London, London, UK
| | - Reecha Sofat
- Centre for Clinical Pharmacology, Rayne Institute, London, UK
| | - Angelique Smit
- Department of Cardiology, Royal Free London NHS Foundation Trust, London, UK
| | | | - Gerry J Coghlan
- Department of Cardiology, Royal Free London NHS Foundation Trust, London, UK
| | | |
Collapse
|
9
|
Hansson E, Björklund U, Skiöldebrand E, Rönnbäck L. Anti-inflammatory effects induced by pharmaceutical substances on inflammatory active brain astrocytes-promising treatment of neuroinflammation. J Neuroinflammation 2018; 15:321. [PMID: 30447700 PMCID: PMC6240424 DOI: 10.1186/s12974-018-1361-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Pharmaceutical treatment with probable anti-inflammatory substances that attack cells in various ways including receptors, ion channels, or transporter systems may slow down the progression of inflammatory conditions. Astrocytes and microglia are the most prominent target cells for inflammation in the central nervous system. Their responses upon inflammatory stimuli work through the NO/cyclic GMP/protein kinase G systems that can downregulate the ATP-induced Ca2+ signaling, as well as G protein activities which alter Na+ transporters including Na+/K+-ATPase pump activity, Toll-like receptor 4 (TLR4), glutamate-induced Ca2+ signaling, and release of pro-inflammatory cytokines. The rationale for this project was to investigate a combination of pharmaceutical substances influencing the NO and the Gi/Gs activations of inflammatory reactive cells in order to make the cells return into a more physiological state. The ATP-evoked Ca2+ signaling is important maybe due to increased ATP release and subsequent activation of purinergic receptors. A balance between intercellular Ca2+ signaling through gap junctions and extracellular signaling mediated by extracellular ATP may be important for physiological function. Methods Astrocytes in primary cultures were incubated with lipopolysaccharide in a physiological glucose concentration for 24 h to induce inflammatory reactivity. The probable anti-inflammatory substances sildenafil and 1α,25-Dihydroxyvitamin D3 together with endomorphin-1, naloxone, and levetiracetam, were used in the presence of high glucose concentration in the medium to restore the cells. Glutamate-, 5-HT-, and ATP-evoked intracellular Ca2+ release, Na+/K+-ATPase expression, expression of inflammatory receptors, and release of tumor necrosis factor alpha were measured. Results Sildenafil in ultralow concentration together with 1α,25-Dihydroxyvitamin D3 showed most prominent effects on the ATP-evoked intracellular Ca2+ release. The μ-opioid agonist endomorphin-1, the μ-opioid antagonist naloxone in ultralow concentration, and the antiepileptic agent levetiracetam downregulated the glutamate-evoked intracellular Ca2+ release and TLR4. The combination of the pharmaceutical substances in high glucose concentration downregulated the glutamate- and ATP-evoked Ca2+ signaling and the TLR4 expression and upregulated the Na+/K+-ATPase pump. Conclusion Pharmaceutical treatment with the combination of substances that have potential anti-inflammatory effects, which attack different biochemical mechanisms in the cells may exert decisive effects to downregulate neuroinflammation in the nervous system.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden.
| | - Ulrika Björklund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Lars Rönnbäck
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden
| |
Collapse
|
10
|
Scott TE, Kemp-Harper BK, Hobbs AJ. Inflammasomes: a novel therapeutic target in pulmonary hypertension? Br J Pharmacol 2018; 176:1880-1896. [PMID: 29847700 DOI: 10.1111/bph.14375] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/26/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
Pulmonary hypertension (PH) is a rare, progressive pulmonary vasculopathy characterized by increased mean pulmonary arterial pressure, pulmonary vascular remodelling and right ventricular failure. Current treatments are not curative, and new therapeutic strategies are urgently required. Clinical and preclinical evidence has established that inflammation plays a key role in PH pathogenesis, and recently, inflammasomes have been suggested to be central to this process. Inflammasomes are important regulators of inflammation, releasing the pro-inflammatory cytokines IL-1β and IL-18 in response to exogenous pathogen- and endogenous damage-associated molecular patterns. These cytokines are elevated in PH patients, but whether this is a consequence of inflammasome activation remains to be determined. This review will briefly summarize current PH therapies and their pitfalls, introduce inflammasomes and the mechanisms by which they promote inflammation and, finally, highlight the preclinical and clinical evidence for the potential involvement of inflammasomes in PH pathobiology and how they may be targeted therapeutically. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Tara Elizabeth Scott
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK.,Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Abstract
Nitric oxide is an endogenous pulmonary vasodilator that is synthesized from L-arginine in pulmonary vascular endothelial cells by nitric oxide synthase and diffuses to adjacent vascular smooth muscle cells where it activates soluble guanylyl cyclase. This enzyme converts GTP to cGMP which activates cGMP dependent protein kinase leading to a series of events that decrease intracellular calcium and reduce vascular muscle tone. Nitric oxide is an important mediator of pulmonary vascular tone and vascular remodeling. A number of studies suggest that the bioavailability of nitric oxide is reduced in patients with pulmonary vascular disease and that augmentation of the nitric oxide/cGMP pathway may be an effective strategy for treatment. Several medications that target nitric oxide/cGMP signaling are now available for the treatment of pulmonary hypertension. This review explores the history of nitiric oxide research, describes the major NO synthetic and signaling pathways and discusses a variety of abnormalities in NO production and metabolism that may contribute to the pathophysiology of pulmonary vascular disease. A summary of the clinical use of presently available medications that target nitric oxide/cGMP signaling in the treatment of pulmonary hypertension is also presented.
Collapse
|
12
|
Shafiee-Nick R, Afshari AR, Mousavi SH, Rafighdoust A, Askari VR, Mollazadeh H, Fanoudi S, Mohtashami E, Rahimi VB, Mohebbi M, Vahedi MM. A comprehensive review on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases. Biomed Pharmacother 2017; 94:541-556. [PMID: 28779712 DOI: 10.1016/j.biopha.2017.07.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/02/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterases are a group of enzymes that hydrolyze cyclic nucleotides, which assume a key role in directing intracellular levels of the second messengers' cAMP and cGMP, and consequently cell function. The disclosure of 11 isoenzyme families and our expanded knowledge of their functions at the cell and molecular level stimulate the improvement of isoenzyme selective inhibitors for the treatment of various diseases, particularly cardiovascular diseases. Hence, future and new mechanistic investigations and carefully designed clinical trials could help reap additional benefits of natural/synthetic PDE inhibitors for cardiovascular disease in patients. This review has concentrated on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases.
Collapse
Affiliation(s)
- Reza Shafiee-Nick
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbasali Rafighdoust
- Department of Cardiology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Mohtashami
- Department of Pharmacodynamic and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Mohebbi
- Department of Internal Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
13
|
Diethylcarbamazine attenuates the expression of pro-fibrogenic markers and hepatic stellate cells activation in carbon tetrachloride-induced liver fibrosis. Inflammopharmacology 2017; 26:599-609. [DOI: 10.1007/s10787-017-0329-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 01/26/2023]
|
14
|
Sildenafil (Viagra(®)) prevents and restores LPS-induced inflammation in astrocytes. Neurosci Lett 2016; 630:59-65. [PMID: 27466020 DOI: 10.1016/j.neulet.2016.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 01/25/2023]
Abstract
Astrocytes are effectively involved in the pathophysiological processes in the central nervous system (CNS) and may contribute to or protect against development of inflammatory and degenerative diseases. Sildenafil is a potent and selective phosphodiesterase-5 (PDE-5) inhibitor, which induces cyclic GMP accumulation. However, the mechanisms of actions on glial cells are not clear. The aim of the present work is to evaluate the role of sildenafil in lipopolysaccharide (LPS)-stimulated astrocytes. The cytoskeleton integrity and Ca(2+) waves were assessed as indicators of inflammatory state. Two main groups were done: (A) one prevention and (B) one restoration. Each of these groups: A1: control; A2: LPS for 24h; A3: sildenafil 1 or 10μM for 4h and then sildenafil 1 or 10μM+LPS for 24h. B1: control; B2: LPS for 24h; B3: LPS for 24h and then LPS+sildenafil 1 or 10μM for 24h. Cytoskeleton integrity was analyzed through GFAP immunolabeling and actin labeling with an Alexa 488-conjugated phalloidin probe. Calcium responses were assessed through a Ca(2+)-sensitive fluorophore Fura-2/AM. The results show that both preventive and restorative treatments with sildenafil (in both concentrations) reduced the Ca(2+) responses in intensity and induced a more organized actin fiber pattern, compared to LPS treated cells. This work demonstrated for the first time that astrocytes are a key part of the sildenafil protective effects in the CNS.
Collapse
|
15
|
Mónica FZ, Bian K, Murad F. The Endothelium-Dependent Nitric Oxide-cGMP Pathway. ADVANCES IN PHARMACOLOGY 2016; 77:1-27. [PMID: 27451093 DOI: 10.1016/bs.apha.2016.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nitric oxide (NO)-cyclic 3'-5' guanosine monophosphate (cGMP) signaling plays a critical role on smooth muscle tone, platelet activity, cardiac contractility, renal function and fluid balance, and cell growth. Studies of the 1990s established endothelium dysfunction as one of the major causes of cardiovascular diseases. Therapeutic strategies that benefit NO bioavailability have been applied in clinical medicine extensively. Basic and clinical studies of cGMP regulation through activation of soluble guanylyl cyclase (sGC) or inhibition of cyclic nucleotide phosphodiesterase type 5 (PDE5) have resulted in effective therapies for pulmonary hypertension, erectile dysfunction, and more recently benign prostatic hyperplasia. This section reviews (1) how endothelial dysfunction and NO deficiency lead to cardiovascular diseases, (2) how soluble cGMP regulation leads to beneficial effects on disorders of the circulation system, and (3) the epigenetic regulation of NO-sGC pathway components in the cardiovascular system. In conclusion, the discovery of the NO-cGMP pathway revolutionized the comprehension of pathophysiological mechanisms involved in cardiovascular and other diseases. However, considering the expression "from bench to bedside" the therapeutic alternatives targeting NO-cGMP did not immediately follow the marked biochemical and pathophysiological revolution. Some therapeutic options have been effective and released on the market for pulmonary hypertension and erectile dysfunction such as inhaled NO, PDE5 inhibitors, and recently sGC stimulators. The therapeutic armamentarium for many other disorders is expected in the near future. There are currently numerous active basic and clinical research programs in universities and industries attempting to develop novel therapies for many diseases and medical applications.
Collapse
Affiliation(s)
- F Z Mónica
- School of Medicine, George Washington University, Washington, DC, United States; State University of Campinas (UNICAMP), Campinas, Brazil
| | - K Bian
- School of Medicine, George Washington University, Washington, DC, United States.
| | - F Murad
- School of Medicine, George Washington University, Washington, DC, United States.
| |
Collapse
|
16
|
Ghofrani HA, Humbert M, Langleben D, Schermuly R, Stasch JP, Wilkins MR, Klinger JR. Riociguat: Mode of Action and Clinical Development in Pulmonary Hypertension. Chest 2016; 151:468-480. [PMID: 27263466 DOI: 10.1016/j.chest.2016.05.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/05/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are progressive and debilitating diseases characterized by gradual obstruction of the pulmonary vasculature, leading to elevated pulmonary artery pressure (PAP) and increased pulmonary vascular resistance (PVR). If untreated, they can result in death due to right-sided heart failure. Riociguat is a novel soluble guanylate cyclase (sGC) stimulator that is approved for the treatment of PAH and CTEPH. We describe in detail the role of the nitric oxide-sGC-cyclic guanosine monophosphate (cGMP) signaling pathway in the pathogenesis of PAH and CTEPH and the mode of action of riociguat. We also review the preclinical data associated with the development of riociguat, along with the efficacy and safety data of riociguat from initial clinical trials and pivotal phase III randomized clinical trials in PAH and CTEPH.
Collapse
Affiliation(s)
- Hossein-Ardeschir Ghofrani
- University of Giessen and Marburg Lung Center, Giessen, Germany and the German Center for Lung Research (DZL); Department of Medicine, Imperial College London, London, England.
| | - Marc Humbert
- Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, DHU Thorax Innovation, Hôpital Bicêtre and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et Innovation Thérapeutique and INSERM Unité 999, Le Kremlin-Bicêtre, France
| | - David Langleben
- Center for Pulmonary Vascular Disease and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
| | - Ralph Schermuly
- University of Giessen and Marburg Lung Center, Giessen, Germany and the German Center for Lung Research (DZL)
| | - Johannes-Peter Stasch
- Bayer Pharma AG, Wuppertal and University Halle, Institute of Pharmacy, Halle (Saale), Germany
| | - Martin R Wilkins
- Department of Medicine, Imperial College London, London, England
| | - James R Klinger
- Division of Pulmonary, Sleep, and Critical Care Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
17
|
Abstract
Until recently, three classes of medical therapy were available for the treatment of pulmonary arterial hypertension (PAH)--prostanoids, endothelin receptor antagonists and phosphodiesterase type 5 (PDE5) inhibitors. With the approval of the soluble guanylate cyclase stimulator riociguat, an additional drug class has become available targeting a distinct molecular target in the same pathway as PDE5 inhibitors. Treatment recommendations currently include the use of all four drug classes to treat PAH, but there is a lack of comparative data for these therapies. Therefore, an understanding of the mechanistic differences between these agents is critical when making treatment decisions. Combination therapy is often used to treat PAH and it is therefore important that physicians understand how the modes of action of these drugs may interact to work as complementary partners, or potentially with unwanted consequences. Furthermore, different patient phenotypes mean that patients respond differently to treatment; while a certain monotherapy may be adequate for some patients, for others it will be important to consider alternating or combining compounds with different molecular targets. This review describes how the four currently approved drug classes target the complex pathobiology of PAH and will consider the distinct target molecules of each drug class, their modes of action, and review the pivotal clinical trial data supporting their use. It will also discuss the rationale for combining drugs (or not) from the different classes, and review the clinical data from studies on combination therapy.
Collapse
Affiliation(s)
- Marc Humbert
- Service de Pneumologie, DHU Thorax Innovation, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Paris, France Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et Innovation Thérapeutique, Paris, France INSERM Unité 999, Le Kremlin-Bicêtre, Paris, France
| | - Hossein-Ardeschir Ghofrani
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center of Lung Research (DZL), Giessen, Germany Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
18
|
Baliga RS, Scotton CJ, Trinder SL, Chambers RC, MacAllister RJ, Hobbs AJ. Intrinsic defence capacity and therapeutic potential of natriuretic peptides in pulmonary hypertension associated with lung fibrosis. Br J Pharmacol 2015; 171:3463-75. [PMID: 24641440 PMCID: PMC4105933 DOI: 10.1111/bph.12694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Idiopathic pulmonary fibrosis (IPF) is a progressive fibro-proliferative disorder refractory to current therapy commonly complicated by the development of pulmonary hypertension (PH); the associated morbidity and mortality are substantial. Natriuretic peptides possess vasodilator and anti-fibrotic actions, and pharmacological augmentation of their bioactivity ameliorates renal and myocardial fibrosis. Here, we investigated whether natriuretic peptides possess an intrinsic cytoprotective function preventing the development of pulmonary fibrosis and associated PH, and whether therapeutics targeting natriuretic peptide signalling demonstrate efficacy in this life-threatening disorder. EXPERIMENTAL APPROACH Pulmonary haemodynamics, right ventricular function and markers of lung fibrosis were determined in wild-type (WT) and natriuretic peptide receptor (NPR)-A knockout (KO) mice exposed to bleomycin (1 mg·kg−1). Human myofibroblast differentiation was studied in vitro. KEY RESULTS Exacerbated cardiac, vascular and fibrotic pathology was observed in NPR-A KO animals, compared with WT mice, exposed to bleomycin. Treatment with a drug combination that raised circulating natriuretic peptide levels (ecadotril) and potentiated natriuretic peptide-dependent signalling (sildenafil) reduced indices of disease progression, whether administered prophylactically or to animals with established lung disease. This positive pharmacodynamic effect was diminished in NPR-A KO mice. Atrial natriuretic peptide and sildenafil synergistically reduced TGFβ-induced human myofibroblast differentiation, a key driver of remodelling in IPF patients. CONCLUSIONS AND IMPLICATIONS These data highlight an endogenous host-defence capacity of natriuretic peptides in lung fibrosis and PH. A combination of ecadotril and sildenafil reversed the pulmonary haemodynamic aberrations and remodelling that characterize the disease, advocating therapeutic manipulation of natriuretic peptide bioactivity in patients with IPF.
Collapse
Affiliation(s)
- R S Baliga
- William Harvey Research Institute, Barts & The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| | | | | | | | | | | |
Collapse
|
19
|
Gomes FODS, Carvalho MDC, Saraiva KLA, Ribeiro EL, E Silva AKS, Donato MAM, Rocha SWS, Santos e Silva B, Peixoto CA. Effect of chronic Sildenafil treatment on the prostate of C57Bl/6 mice. Tissue Cell 2014; 46:439-49. [PMID: 25239757 DOI: 10.1016/j.tice.2014.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/23/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
Sildenafil is a potent and selective inhibitor of phosphodiesterase-5 (PDE5) and is considered first-line therapy for erectile dysfunction. Nowadays, Sildenafil is used extensively throughout the world on patients with pulmonary hypertension. However, few studies have evaluated the possible side effects of chronic Sildenafil treatment on the male reproductive system, specifically in the prostate. In the present study, it was demonstrated via morphological and ultrastructural analysis that chronic treatment with Sildenafil induced an enhancement of the glandular activity of the prostate. In addition, mice treated with Sildenafil showed a significant increase in testosterone serum levels. However, no statistically significant differences were observed in nitric oxide serum levels, or in sGC, eNOS, PSA and TGF-β prostatic expression. In conclusion, the present study suggests that chronic use of Sildenafil does not cause evident prostatic damage, and therefore, can be used pharmacologically to treat a variety of disorders.
Collapse
Affiliation(s)
| | - Maria da Conceição Carvalho
- Laboratório de Microscopia e Microanálise do Centro de Tecnologias Estratégicas do Nordeste (CETENE), Brazil
| | | | - Edlene Lima Ribeiro
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Amanda Karolina Soares E Silva
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Mariana Aragão Matos Donato
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Sura Wanessa Santos Rocha
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Bruna Santos e Silva
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | | |
Collapse
|
20
|
Zeng Z, Li YC, Jiao ZH, Yao J, Xue Y. The cross talk between cGMP signal pathway and PKC in pulmonary endothelial cell angiogenesis. Int J Mol Sci 2014; 15:10185-98. [PMID: 24914766 PMCID: PMC4100147 DOI: 10.3390/ijms150610185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/04/2014] [Accepted: 05/14/2014] [Indexed: 11/19/2022] Open
Abstract
Angiogenic proliferation of vascular endothelial cells is believed to play an important role in pulmonary vascular remodeling in pulmonary arterial hypertension. In the present study, we found that c-GMP (cyclic guanosine monophosphate) inhibited the proliferation and tube formation of pulmonary vascular endothelial cells induced by TGF-β1, and that this process was reversed by PKG (protein kinase G) inhibitor and PKC (protein kinase C) inhibitor. In addition, small interfering RNA (siRNA) targeting ERK also reduced cellular proliferation. Furthermore, western blotting showed that cGMP down-regulated the phosphorylation level of ERK1/2, which was reversed not only by PKG inhibitor but also by PKC inhibitor. Silencing different PKC isoforms showed that PKCΔ, PKCγ and PKCα were involved in ERK phosphorylation, suggesting that PKC kinases have a permissive action. Three subtypes, PKCΔ, PKCγ and PKCα are likely to be involved the phosphorylation suppression of ERK included cGMP. Taken together, these data suggest that ERK phosphorylation mediates the proliferation of pulmonary vascular endothelial cells, and PKC kinases have a permissive action in this process.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ying-Chuan Li
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Zhi-Hua Jiao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jun Yao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ying Xue
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
21
|
Bubb KJ, Trinder SL, Baliga RS, Patel J, Clapp LH, MacAllister RJ, Hobbs AJ. Inhibition of phosphodiesterase 2 augments cGMP and cAMP signaling to ameliorate pulmonary hypertension. Circulation 2014; 130:496-507. [PMID: 24899690 DOI: 10.1161/circulationaha.114.009751] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a life-threatening disorder characterized by increased pulmonary artery pressure, remodeling of the pulmonary vasculature, and right ventricular failure. Loss of endothelium-derived nitric oxide (NO) and prostacyclin contributes to PH pathogenesis, and current therapies are targeted to restore these pathways. Phosphodiesterases (PDEs) are a family of enzymes that break down cGMP and cAMP, which underpin the bioactivity of NO and prostacyclin. PDE5 inhibitors (eg, sildenafil) are licensed for PH, but a role for PDE2 in lung physiology and disease has yet to be established. Herein, we investigated whether PDE2 inhibition modulates pulmonary cyclic nucleotide signaling and ameliorates experimental PH. METHODS AND RESULTS The selective PDE2 inhibitor BAY 60-7550 augmented atrial natriuretic peptide- and treprostinil-evoked pulmonary vascular relaxation in isolated arteries from chronically hypoxic rats. BAY 60-7550 prevented the onset of both hypoxia- and bleomycin-induced PH and produced a significantly greater reduction in disease severity when given in combination with a neutral endopeptidase inhibitor (enhances endogenous natriuretic peptides), trepostinil, inorganic nitrate (NO donor), or a PDE5 inhibitor. Proliferation of pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension was reduced by BAY 60-7550, an effect further enhanced in the presence of atrial natriuretic peptide, NO, and treprostinil. CONCLUSIONS PDE2 inhibition elicits pulmonary dilation, prevents pulmonary vascular remodeling, and reduces the right ventricular hypertrophy characteristic of PH. This favorable pharmacodynamic profile is dependent on natriuretic peptide bioactivity and is additive with prostacyclin analogues, PDE5 inhibitor, and NO. PDE2 inhibition represents a viable, orally active therapy for PH.
Collapse
Affiliation(s)
- Kristen J Bubb
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Sarah L Trinder
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Reshma S Baliga
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Jigisha Patel
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Lucie H Clapp
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Raymond J MacAllister
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Adrian J Hobbs
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom.
| |
Collapse
|
22
|
Rapôso C, Luna RLDA, Nunes AKS, Thomé R, Peixoto CA. Role of iNOS-NO-cGMP signaling in modulation of inflammatory and myelination processes. Brain Res Bull 2014; 104:60-73. [PMID: 24727400 DOI: 10.1016/j.brainresbull.2014.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is the main activator of the soluble guanylate cyclase (sGC)-guanosine 3'5' cyclic monophosphate (cGMP) pathway. The level of cGMP is regulated by phosphodiesterases (PDEs), which break down cGMP. It has been reported that levels of NO in the central nervous system (CNS) can greatly increase during demyelination and/or neuroinflammation. Controversially, in demyelination models, mice without iNOS may develop more severe cases of disease. Furthermore, cGMP accumulation caused by PDE inhibitors has an anti-inflammatory/neuroprotective effect in MS-models. The role of the NO-cGMP pathway in the nervous tissue is, therefore, complex and not fully understood. The aim of the present study was to contribute to existing knowledge of the role of this pathway in the CNS. Wild type (WT - C57BL/6) and iNOS(-/-) animals were treated with sildenafil (25mg/kg) for 8 weeks. Control animals were not treated. VCAM and ICAM (adhesion proteins), GFAP and Iba-1 (astrocyte and microglia markers, respectively), PKG (cGMP-dependent protein kinase), sGC, eNOS (constitutive endothelial NO sinthase) and GSTpi (a marker of mature oligodendrocytes) were evaluated in the cerebellum using immunohistochemistry or western blotting. Myelin was assessed by luxol fast blue staining and electron transmission microscopy. Treatment with sildenafil reduced ICAM and VCAM levels (anti-inflammatory effect) and increased GFAP and Iba-1 expression (clearance phenotype) in WT animals. The expression of VCAM, ICAM, GFAP, PKG and sGC was lower in iNOS(-/-) mice than in WT control animals. The treatment of iNOS(-/-) animals with sildenafil resulted in an increase of all proteins (pro-inflammatory effect). There was overexpression of eNOS in untreated iNOS(-/-) mice. The myelin structure of iNOS(-/-) animals was damaged in comparison with WT control. Sildenafil increased GSTpi and resulted in an improved myelin structure in iNOS(-/-) mice. In conclusion, NO-cGMP signaling plays a role in the regulation of inflammation and myelination processes. The accumulation of cGMP produced opposite effects in WT and iNOS(-/-) mice. This can be explained by the overexpression of eNOS in iNOS(-/-) mice, unbalancing cGMP signaling, or cGMP has a dual role in inflammation. Drugs that modulate the NO-sGC-cGMP pathway may be clinically beneficial in the treatment of neuroinflammatory/demyelinating disorders, but further studies of the regulation of this pathway are required.
Collapse
Affiliation(s)
- Catarina Rapôso
- Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, CEP 13083-862, Campinas, SP, Brazil.
| | - Rayana Leal de Almeida Luna
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, s/n, CEP 50670-420, Recife, PE, Brazil.
| | - Ana Karolina Santana Nunes
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, s/n, CEP 50670-420, Recife, PE, Brazil.
| | - Rodolfo Thomé
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, CEP 13083-862, Campinas, SP, Brazil.
| | - Christina Alves Peixoto
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, s/n, CEP 50670-420, Recife, PE, Brazil.
| |
Collapse
|
23
|
Oral therapies for pulmonary arterial hypertension: endothelin receptor antagonists and phosphodiesterase-5 inhibitors. Clin Chest Med 2014; 34:811-24. [PMID: 24267306 DOI: 10.1016/j.ccm.2013.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of orally active pulmonary vasodilators has been a major breakthrough in the treatment of pulmonary arterial hypertension (PAH). Orally active medications greatly enhanced patient access to PAH treatment and increased an interest in the diagnosis and treatment of this disease that still continues. Four different orally active drugs are currently available for the treatment of PAH and several more are undergoing evaluation. This article discusses the mechanisms by which endothelin receptor antagonists and phosphodiesterase-5 inhibitors mitigate pulmonary hypertensive responses, and reviews the most recent data concerning their efficacy and limitations in the treatment of PAH.
Collapse
|
24
|
Sildenafil (Viagra) protective effects on neuroinflammation: the role of iNOS/NO system in an inflammatory demyelination model. Mediators Inflamm 2013; 2013:321460. [PMID: 23970812 PMCID: PMC3736464 DOI: 10.1155/2013/321460] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 12/19/2022] Open
Abstract
We recently demonstrated that sildenafil reduces the expression of cytokines, COX-2, and GFAP in a demyelinating model induced in wild-type (WT) mice. Herein, the understandings of the neuroprotective effect of sildenafil and the mediation of iNOS/NO system on inflammatory demyelination induced by cuprizone were investigated. The cerebella of iNOS(-/-) mice were examined after four weeks of treatment with cuprizone alone or combined with sildenafil. Cuprizone increased GFAP, Iba-1, TNF- α , COX-2, IL-1 β , and IFN- γ expression, decreased expression of glutathione S-transferase pi (GSTpi), and damaged myelin in iNOS(-/-) mice. Sildenafil reduced Iba-1, IFN- γ , and IL-1 β levels but had no effect on the expression of GFAP, TNF- α , and COX-2 compared to the cuprizone group. Sildenafil elevated GSTpi levels and improved the myelin structure/ultrastructure. iNOS(-/-) mice suffered from severe inflammation following treatment with cuprizone, while WT mice had milder inflammation, as found in the previous study. It is possible that inflammatory regulation through iNOS-feedback is absent in iNOS(-/-) mice, making them more susceptible to inflammation. Sildenafil has at least a partial anti-inflammatory effect through iNOS inhibition, as its effect on iNOS(-/-) mice was limited. Further studies are required to explain the underlying mechanism of the sildenafil effects.
Collapse
|
25
|
Magrì D, Agostoni P, Ricotta A, Pisani L, Cauti FM, Onofri A, Bruno P, Ricci A, Volpe M, Marchitti S, Mariotta S, Rubattu S. NT-proatrial natriuretic peptide as a possible biomarker of cardiopulmonary involvement in sarcoidosis. Eur J Intern Med 2013; 24:278-84. [PMID: 23294508 DOI: 10.1016/j.ejim.2012.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Lung diffusion for carbon monoxide (DLCO) has been shown to associate with the risk of pulmonary arterial hypertension development and, most likely, with right ventricular (RV) myocardial dysfunction in sarcoidosis patients. Besides its known role as a marker of left ventricular dysfunction, experimental evidence suggests a role of NT-proAtrial Natriuretic Peptide (NT-proANP) also in modulating pulmonary circulation. We therefore investigated possible relationships between NT-proANP, lung diffusion impairment and RV dysfunction. METHODS Thirty-two pulmonary sarcoidosis outpatients and eighteen volunteers underwent full clinical assessment, including full lung function tests and Doppler echocardiography integrated with tissue Doppler imaging (TDI) study. Resting circulating NT-proBNP and NT-proANP plasma levels were also determined. RESULTS NT-proANP and RV-myocardial performance index (RV-MPI) were significantly higher in those patients with the greatest DLCO impairment, whereas no differences were found for NT-proBNP values. At multivariable analysis, only DLCO (β: -0.496; standard error: 3.38; p=0.000) and RV-MPI (β: 0.373; standard error: 6.56; p=0.031) remained significantly associated with NT-proANP levels. CONCLUSIONS Our finding may support a key role of NT-proANP in the complex mechanisms underlying modulation of lung function. An early increase in pulmonary vascular resistance may stimulate NT-proANP increase, thus explaining its association with signs of early RV myocardial dysfunction. This hypothesis warrants further confirmation.
Collapse
Affiliation(s)
- Damiano Magrì
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nunes AKDS, Rapôso C, Luna RLDA, Cruz-Höfling MAD, Peixoto CA. Sildenafil (Viagra®) down regulates cytokines and prevents demyelination in a cuprizone-induced MS mouse model. Cytokine 2012; 60:540-51. [DOI: 10.1016/j.cyto.2012.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/22/2012] [Accepted: 06/05/2012] [Indexed: 12/21/2022]
|
27
|
Chen CN, Watson G, Zhao L. Cyclic guanosine monophosphate signalling pathway in pulmonary arterial hypertension. Vascul Pharmacol 2012; 58:211-8. [PMID: 22982057 DOI: 10.1016/j.vph.2012.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/28/2012] [Accepted: 09/04/2012] [Indexed: 12/19/2022]
Abstract
During the last decade, it emerged that cyclic guanosine monophosphate (cGMP) is a novel drug target for the treatment of pulmonary arterial hypertension (PAH). cGMP regulates many cellular functions, ranging from contractility to growth, of relevance to the disease. Generated from guanylyl cyclases in response to natriuretic peptides or nitric oxide (NO), cGMP transduces its effects through a number of cGMP effectors, including cGMP-regulated phosphodiesterases and protein kinases. Furthermore, the cGMP concentration is modulated by cGMP-degrading phosphodiesterases. Data to date demonstrate that increasing intracellular cGMP through stimulation of GCs, inhibition of PDEs, or both is a valid therapeutic strategy in drug development for PAH. New advances in understanding of cGMP are unravelled, as well as the pathobiology of PAH. cGMP remains an attractive future PAH drug target. This review makes a more detailed examination of cGMP signalling with particular reference to PAH.
Collapse
Affiliation(s)
- Chien-nien Chen
- Experimental Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | | | | |
Collapse
|
28
|
Baliga RS, Milsom AB, Ghosh SM, Trinder SL, Macallister RJ, Ahluwalia A, Hobbs AJ. Dietary nitrate ameliorates pulmonary hypertension: cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation 2012; 125:2922-32. [PMID: 22572914 DOI: 10.1161/circulationaha.112.100586] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a multifactorial disease characterized by increased pulmonary vascular resistance and right ventricular failure; morbidity and mortality remain unacceptably high. Loss of nitric oxide (NO) bioactivity is thought to contribute to the pathogenesis of PH, and agents that augment pulmonary NO signaling are clinically effective in the disease. Inorganic nitrate (NO(3)(-)) and nitrite (NO(2)(-)) elicit a reduction in systemic blood pressure in healthy individuals; this effect is underpinned by endogenous and sequential reduction to NO. Herein, we determined whether dietary nitrate and nitrite might be preferentially reduced to NO by the hypoxia associated with PH, and thereby offer a convenient, inexpensive method of supplementing NO functionality to reduce disease severity. METHODS AND RESULTS Dietary nitrate reduced the right ventricular pressure and hypertrophy, and pulmonary vascular remodeling in wild-type mice exposed to 3 weeks of hypoxia; this beneficial activity was mirrored largely by dietary nitrite. The cytoprotective effects of dietary nitrate were associated with increased plasma and lung concentrations of nitrite and cGMP. The beneficial effects of dietary nitrate and nitrite were reduced in mice lacking endothelial NO synthase or treated with the xanthine oxidoreductase inhibitor allopurinol. CONCLUSIONS These data demonstrate that dietary nitrate, and to a lesser extent dietary nitrite, elicit pulmonary dilatation, prevent pulmonary vascular remodeling, and reduce the right ventricular hypertrophy characteristic of PH. This favorable pharmacodynamic profile depends on endothelial NO synthase and xanthine oxidoreductase -catalyzed reduction of nitrite to NO. Exploitation of this mechanism (ie, dietary nitrate/nitrite supplementation) represents a viable, orally active therapy for PH.
Collapse
Affiliation(s)
- Reshma S Baliga
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
29
|
Baliga RS, MacAllister RJ, Hobbs AJ. New perspectives for the treatment of pulmonary hypertension. Br J Pharmacol 2011; 163:125-40. [PMID: 21175577 PMCID: PMC3085874 DOI: 10.1111/j.1476-5381.2010.01164.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022] Open
Abstract
Pulmonary hypertension (PH) is a debilitating disease with a poor prognosis. Therapeutic options remain limited despite the introduction of prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase 5 inhibitors within the last 15 years; these interventions address predominantly the endothelial and vascular dysfunctionS associated with the condition, but simply delay progression of the disease rather than offer a cure. In an attempt to improve efficacy, emerging approaches have focused on targeting the pro-proliferative phenotype that underpins the pulmonary vascular remodelling in the lung and contributes to the impaired circulation and right heart failure. Many novel targets have been investigated and validated in animal models of PH, including modulation of guanylate cyclases, phosphodiesterases, tyrosine kinases, Rho kinase, bone morphogenetic proteins signalling, 5-HT, peroxisome proliferator activator receptors and ion channels. In addition, there is hope that combinations of such treatments, harnessing and optimizing vasodilator and anti-proliferative properties, will provide a further, possibly synergistic, increase in efficacy; therapies directed at the right heart may also offer an additional benefit. This overview highlights current therapeutic options, promising new therapies, and provides the rationale for a combination approach to treat the disease.
Collapse
|
30
|
Abstract
A number of structural and functional mechanisms have been identified in the pathogenesis of hypertensive vascular disease, each of which requires effective therapy to reduce global cardiovascular risk. Hypertension, together with other cardiovascular risk factors, promotes endothelial dysfunction as evidenced by decreased nitric oxide (NO) release and reduced vascular responsiveness to normal vasodilatory stimuli. In addition, the mechanical forces inherent in hypertension activate neurohormonal mechanisms, including the renin-angiotensin system, which modulate vessel wall structure and function. Antihypertensive drugs may have class-specific hemodynamic and physiologic effects that attenuate these vascular disease processes. Pharmacologic approaches that enhance endothelial NO bioavailability have been shown to restore vasodilation while reducing clinical events. These agents improve NO bioavailability by increasing endogenous production through enzymatic mechanisms or by promoting the direct release of NO by its redox congeners in a spontaneous fashion. In this article, we review the basic mechanisms of endothelial dysfunction along with the use and comparative therapeutic benefits of various pharmacologic interventions, with particular emphasis on antihypertensive agents.
Collapse
Affiliation(s)
- Yoshiko Mizuno
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|
31
|
Andric SA, Janjic MM, Stojkov NJ, Kostic TS. Sildenafil treatment in vivo stimulates Leydig cell steroidogenesis via the cAMP/cGMP signaling pathway. Am J Physiol Endocrinol Metab 2010; 299:E544-50. [PMID: 20663985 DOI: 10.1152/ajpendo.00337.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sildenafil citrate (Viagra), a cGMP-selective phosphodiesterase (PDE) inhibitor, is widely used to treat erectile dysfunction and pulmonary arterial hypertension. In contrast to its well established action on erectile dysfunction, little is known on the action of sildenafil on cGMP/cAMP signaling and testicular steroidogenesis. This study was designed to assess the effects of prolonged sildenafil treatment on NO synthase-dependent signaling and steroidogenic function of rat Leydig cells. Male adult rats were treated with Viagra (1.25 mg/kg body wt) daily for 30 days. In our studies, serum testosterone and ex vivo testosterone production significantly increased in sildenafil-treated animals. Human chorionic gonadotropin-stimulated testosterone production and cAMP accumulation were also significantly higher in Leydig cells obtained from sildenafil-treated rats. The expression of soluble guanylyl cyclase (GUCY1) subunits (Gucy1a1, Gucy1b1) significantly increased; cAMP-specific Pde4a, cGMP-specific Pde6c, and dual Pde1c and Nos2 were inhibited and expression of Nos3, protein kinase G1 (Pkg1), and Pde5 remained unchanged. Treatment of purified Leydig cells with NO donor caused a dose-dependent increase in both testosterone and cGMP production. Testosterone and cGMP production was significantly higher in Leydig cells obtained from sildenafil-treated animals. The stimulatory effect of NO donor was significantly enhanced by saturating concentrations of hCG in both Leydig cells obtained from control and sildenafil-treated animals. Occurrence of mature steroidogenic acute regulatory protein also increased in sildenafil treated animals in accord with increased cAMP and cGMP production. In summary, inhibition of PDE activity during prolonged sildenafil treatment increased serum testosterone level and Leydig cells' steroidogenic capacity by coordinated stimulatory action on cAMP and cGMP signaling pathway.
Collapse
Affiliation(s)
- Silvana A Andric
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | | | | |
Collapse
|
32
|
Casserly B, Pietras L, Schuyler J, Wang R, Hill NS, Klinger JR. Cardiac atria are the primary source of ANP release in hypoxia-adapted rats. Life Sci 2010; 87:382-9. [PMID: 20691705 DOI: 10.1016/j.lfs.2010.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
Abstract
AIMS atrial natriuretic peptide (ANP) is released from the heart in response to hypoxia and helps mitigate the development of pulmonary hypertension. However, the mechanism of hypoxia-induced ANP release is not clear. The cardiac atria are the primary source of ANP secretion under normal conditions, but right ventricular ANP expression is markedly up-regulated during adaptation to hypoxia. We sought to better understand mechanisms of cardiac ANP release during adaptation to hypoxia. MAIN METHODS we measured hypoxia-induced ANP release from isolated perfused rat hearts obtained from normoxia and hypoxia-adapted rats before and after removal of the atria. KEY FINDINGS in both normoxia- and hypoxia-adapted hearts, ANP levels in the perfusate increased within 15 min of hypoxia. Hypoxia-induced ANP release was greater from hypoxia-adapted than normoxia-adapted hearts. Baseline and hypoxia-induced ANP release were considerably greater with the atria intact (213±29 to 454±62 and 281±26 to 618±87 pg/ml for normoxia- and hypoxia-adapted hearts respectively, P<0.001 for both) than with atria removed (94±17 to 131±32 and 103±26 to 201±55 pg/ml, respectively, P<0.002 for both). Hypoxia-induced ANP release was reduced over 80% by removing the atria in both normoxia- and in hypoxia-adapted hearts. Acute hypoxia caused a transient increase in lactate release and reductions in pH and left ventricular generated force, but no differences in pH or left ventricular generated force were seen between normoxia- and hypoxia-adapted rats. SIGNIFICANCE we conclude that the right ventricle is not a major source of cardiac ANP release in normoxia- or hypoxia-adapted rats.
Collapse
Affiliation(s)
- Brian Casserly
- Division of Pulmonary Medicine, Memorial Hospital of Rhode Island, Pawtucket, RI, United States
| | | | | | | | | | | |
Collapse
|
33
|
Pulmonary hemodynamic response to acute combination and monotherapy with sildenafil and brain natriuretic peptide in rats with monocrotaline-induced pulmonary hypertension. Am J Med Sci 2010; 339:55-9. [PMID: 19996941 DOI: 10.1097/maj.0b013e3181c078d7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The lungs of patients with pulmonary arterial hypertension (PAH) exhibit decreased bioavailability of nitric oxide and downstream signaling through cyclic guanosine monophosphate (cGMP). Therapies that enhance cGMP-mediated vasodilation have shown efficacy in treating PAH. We tested the hypothesis that combination therapy with sildenafil, a cGMP phosphodiesterase type 5 inhibitor, and brain natriuretic peptide (BNP), a receptor-mediated guanosine cyclase stimulator, synergistically attenuates monocrotaline-induced PAH in rats compared with either monotherapy. METHODS Adult male Sprague-Dawley rats were subcutaneously injected with monocrotaline (n = 41, 50 mg/kg). After approximately 4 weeks, the rats were infused intravenously with vehicle solution, sildenafil (42 and 85 microg/kg/min), or BNP (50 and 100 ng/kg/min), alone and in varied combination. The primary endpoint was the relative change in right ventricular systolic pressure (RVSP) and mean arterial systemic pressure (MAP). Secondary endpoints included heart rate and dP/dt. RESULTS Vehicle infusions did not alter hemodynamic variables. Sildenafil85 (85 microg/kg/min) alone decreased RVSP (-16.6 +/- 5.6%) and decreased MAP (-4.0 +/- 4.7%). BNP50 (50 ng/kg/min) and BNP100 (100 ng/kg/min) decreased RVSP (-23.3 +/- 5.7% and -27.1 +/- 2.9%, respectively) and MAP (-6.4 +/- 5.8% and -14.3 +/- 4.1%, respectively). Combination therapy with sildenafil42 and BNP50 decreased RVSP (-20.7 +/- 5.6%) and showed a lessened systemic effect (MAP = -11.6 +/- 5.9%). Combination therapy with sildenafil85 and BNP100 decreased RVSP (-27.6 +/- 3.2%, P = NS) and showed increased systemic effect (MAP = -20.7 +/- 3.1%, P < 0.05) in comparison with sildenafil85. CONCLUSIONS This study suggests that intravenous administration of both sildenafil and BNP monotherapy produces significant improvement in RVSP, making them potentially viable options for the treatment of PAH, whereas combination therapy produces no additional improvement in pulmonary hemodynamics.
Collapse
|
34
|
Casserly B, Klinger JR. Brain natriuretic peptide in pulmonary arterial hypertension: biomarker and potential therapeutic agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 3:269-87. [PMID: 20054445 PMCID: PMC2802126 DOI: 10.2147/dddt.s4805] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
B-type natriuretic peptide (BNP) is a member of the natriuretic peptide family, a group of widely distributed, but evolutionarily conserved, polypeptide mediators that exert myriad cardiovascular effects. BNP is a potent vasodilator with mitogenic, hypertrophic and pro-inflammatory properties that is upregulated in pulmonary hypertensive diseases. Circulating levels of BNP correlate with mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) in patients with pulmonary arterial hypertension (PAH). Elevated plasma BNP levels are associated with increased mortality in patients with PAH and a fall in BNP levels after therapy is associated with improved survival. These findings have important clinical implications in that a noninvasive blood test may be used to identify PAH patients at high-risk of decompensation and to guide pulmonary vasodilator therapy. BNP also has several biologic effects that could be beneficial to patients with PAH. However, lack of a convenient method for achieving sustained increases in circulating BNP levels has impeded the development of BNP as a therapy for treating pulmonary hypertension. New technologies that allow transdermal or oral administration of the natriuretic peptides have the potential to greatly accelerate research into therapeutic use of BNP for cor pulmonale and pulmonary vascular diseases. This review will examine the basic science and clinical research that has led to our understanding of the role of BNP in cardiovascular physiology, its use as a biomarker of right ventricular function and its therapeutic potential for managing patients with pulmonary vascular disease.
Collapse
Affiliation(s)
- Brian Casserly
- Division of Pulmonary and Critical Care Medicine, The Memorial Hospital of Rhode Island, Pawtucket, RI, USA
| | | |
Collapse
|
35
|
Law YM, Hoyer AW, Reller MD, Silberbach M. Accuracy of plasma B-type natriuretic peptide to diagnose significant cardiovascular disease in children: the Better Not Pout Children! Study. J Am Coll Cardiol 2009; 54:1467-75. [PMID: 19796740 DOI: 10.1016/j.jacc.2009.06.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 05/13/2009] [Accepted: 06/02/2009] [Indexed: 01/27/2023]
Abstract
OBJECTIVES The purpose of this study was to assess the ability of plasma B-type natriuretic peptide (BNP) to diagnose significant cardiovascular disease (CVD) in the pediatric population. BACKGROUND BNP has been shown to be reliable in detecting ventricular dysfunction and heart failure in adults. Timely and accurate identification of significant pediatric heart disease is important but challenging. A simple blood test could aid the front-line physician in this task. METHODS Subjects without a history of heart disease with findings possibly attributable to significant CVD in the acute care setting requiring a cardiology consult were enrolled. Clinicians were blinded to the BNP result, and confirmation of disease was made by cardiology consultation. RESULTS Subjects were divided into a neonatal (n = 42, 0 to 7 days) and older age group (n = 58, >7 days to 19 years). CVD was present in 74% of neonates and 53% of the older age group. In neonates with disease, median BNP was 526 pg/ml versus 96 pg/ml (p < 0.001) for those without disease. In older children with disease, median BNP was 122 pg/ml versus 22 pg/ml in those without disease (p < 0.001). Subjects with disease from an anatomic defect, a longer hospital stay, or who died had higher BNP. A BNP of 170 pg/ml yielded a sensitivity of 94% and specificity of 73% in the neonatal group and 87% and 70% in the older age group, respectively, using a BNP of 41 pg/ml. CONCLUSIONS BNP is a reliable test to diagnose significant structural or functional CVD in children. Optimal cutoff values are different from adult values.
Collapse
Affiliation(s)
- Yuk M Law
- Pediatric Cardiology, Department of Pediatrics, Children's Hospital and Regional Medical Center, University of Washington, Seattle, Washington 98105, USA.
| | | | | | | |
Collapse
|
36
|
Theo Schermuly R, Ardeschir Ghofrani H, Weissmann N. Prostanoids and phosphodiesterase inhibitors in experimental pulmonary hypertension. Curr Top Dev Biol 2009; 67:251-84. [PMID: 15949537 DOI: 10.1016/s0070-2153(05)67008-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a poor prognosis, characterized by intimal lesions, medial hypertrophy, and adventitial thickening of precapillary pulmonary arteries. Several approved therapies are currently available for the treatment of PAH, of which intravenous epoprostenol is the best explored over the past decade. Newly available oral endothelin receptor antagonists, although clinically efficacious, bear the risk of liver toxicity in a significant portion of patients. Substances that stimulate the formation of the second messengers cyclic adenosine monophosphate (cAMP) or guanosine monophosphate (cGMP) have proved useful in the treatment of various forms of pre-capillary pulmonary hypertension. These second messengers of the endogenous vasodilator mediators that include prostacyclin and nitric oxide (NO) are hydrolyzed by cyclic nucleotide phosphodiesterases (PDEs), a class of enzymes from which 11 isoforms have been characterized. This chapter highlights developments in the treatment of experimental pulmonary hypertension with special attention to prostanoids and PDE inhibitors. We summarize findings for the acute vasodilatory as well as chronic effects of prostanoids, PDE inhibitors, or combinations of both, in animal models of pulmonary hypertension.
Collapse
Affiliation(s)
- Ralph Theo Schermuly
- Department of Internal Medicine II, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | | | | |
Collapse
|
37
|
Saraiva KLA, Silva AKSE, Wanderley MI, De Araújo AA, De Souza JRB, Peixoto CA. Chronic treatment with sildenafil stimulates Leydig cell and testosterone secretion. Int J Exp Pathol 2009; 90:454-62. [PMID: 19659904 DOI: 10.1111/j.1365-2613.2009.00660.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The phosphodiesterase type 5 (PDE5) inhibitor, Sildenafil, is a novel, oral treatment approach for pulmonary hypertension. As Leydig cells present PDE5, this study was conducted to investigate the effects of the chronic treatment with Sildenafil (25 mg/kg) on male Swiss Webster mice steroidogenesis. After a 4-week long experimental design, Leydig cells were analysed by morphological and immunocytochemical procedures. Serum testosterone was assayed by radioimmunoassay. Leydig cells presented noteworthy ultrastructural alterations, such as a vesicular smooth endoplasmic reticulum, large vacuoles scattered through the cytoplasm, enlarged mitochondria with discontinue cristaes and whorle membranes with vesicles at the periphery, which are typical characteristics of an activated steroid-secreting cell. Important immunocytochemical labelling for steroidogenic acute regulatory protein, cytochrome P450 side-chain cleavage enzyme and testosterone were detected in isolated Leydig cells. In addition, Sildenafil-treated mice showed significant increased levels of total testosterone. The results obtained in the present study are consistent with the hypothesis that the accumulation of cyclic guanosine monophosphate by PDE5 inhibition could be involved in the androgen biosynthesis stimulation. Important clinical implications of hormonal disorders should be taken into account for patients with pulmonary hypertension.
Collapse
|
38
|
Dempsey EC, Wick MJ, Karoor V, Barr EJ, Tallman DW, Wehling CA, Walchak SJ, Laudi S, Le M, Oka M, Majka S, Cool CD, Fagan KA, Klemm DJ, Hersh LB, Gerard NP, Gerard C, Miller YE. Neprilysin null mice develop exaggerated pulmonary vascular remodeling in response to chronic hypoxia. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:782-96. [PMID: 19234135 DOI: 10.2353/ajpath.2009.080345] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neprilysin is a transmembrane metalloendopeptidase that degrades neuropeptides that are important for both growth and contraction. In addition to promoting carcinogenesis, decreased levels of neprilysin increases inflammation and neuroendocrine cell hyperplasia, which may predispose to vascular remodeling. Early pharmacological studies showed a decrease in chronic hypoxic pulmonary hypertension with neprilysin inhibition. We used a genetic approach to test the alternate hypothesis that neprilysin depletion increases chronic hypoxic pulmonary hypertension. Loss of neprilysin had no effect on baseline airway or alveolar wall architecture, vessel density, cardiac function, hematocrit, or other relevant peptidases. Only lung neuroendocrine cell hyperplasia and a subtle neuropeptide imbalance were found. After chronic hypoxia, neprilysin-null mice exhibited exaggerated pulmonary hypertension and striking increases in muscularization of distal vessels. Subtle thickening of proximal media/adventitia not typically seen in mice was also detected. In contrast, adaptive right ventricular hypertrophy was less than anticipated. Hypoxic wild-type pulmonary vessels displayed close temporal and spatial relationships between decreased neprilysin and increased cell growth. Smooth muscle cells from neprilysin-null pulmonary arteries had increased proliferation compared with controls, which was decreased by neprilysin replacement. These data suggest that neprilysin may be protective against chronic hypoxic pulmonary hypertension in the lung, at least in part by attenuating the growth of smooth muscle cells. Lung-targeted strategies to increase neprilysin levels could have therapeutic benefits in the treatment of this disorder.
Collapse
Affiliation(s)
- Edward C Dempsey
- Cardiovascular Pulmonary Research Laboratory; B-133, University of Colorado Denver, 12700 E. 19 Ave, Aurora, CO 80046, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Background: Nitric oxide (NO) is constitutively produced in the lung by NO-synthases. The main cellular sources of lung NO production are the vascular endothelium and the airway epithelia (Bohle et al. 2000; German et al. 2000; Ide et al. 1999). Local NO production contributes to regulation of pulmonary perfusion depending on alveolar ventilation to assure optimized ventilation/perfusion distribution (Grimminger et al. 1995). NO-synthase activity is regulated on transcriptional and post-translational redox-based modulation level. The common signaling pathway of endogenous vasodilators, such as nitric oxide, prostaglandins, and natriuretic peptides, engage cyclic nucleotides (cAMP and cGMP). These second messengers are mainly produced by activation of adenylate- and guanylate-cyclases, both membrane-bound and soluble (Beavo 1995). Phosphodiesterases (PDEs) represent a superfamily of enzymes, with PDE1 through PDE11 being currently known, that inactivate cyclic AMP and cyclic GMP, with different tissue distribution and substrate specificities (Ahn et al. 1991; Von Euler and Liljestrand. 1946). Because of stabilization of these second messengers, PDE inhibitors differentially regulate levels of cAMP and/or cGMP, depending on their selectivity profile. Recently, direct activators and stimulators of the sGC have been suggested as new therapeutic tools for the treatment of lung vascular disorders that might have even higher potency than PDE inhibitors or exogenously applied NO.
Collapse
|
40
|
Rhodes CJ, Davidson A, Gibbs JSR, Wharton J, Wilkins MR. Therapeutic targets in pulmonary arterial hypertension. Pharmacol Ther 2008; 121:69-88. [PMID: 19010350 DOI: 10.1016/j.pharmthera.2008.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 10/07/2008] [Indexed: 01/02/2023]
Abstract
Pulmonary arterial hypertension is a progressive, fatal disease. Current treatments including prostanoids, endothelin-1 (ET-1) antagonists, and phosphodiesterase (PDE) inhibitors, have sought to address the pulmonary vascular endothelial dysfunction and vasoconstriction associated with the condition. These treatments may slow the progression of the disease but do not afford a cure. Future treatments must target more directly the structural vascular changes that impair blood flow through the pulmonary circulation. Several novel therapeutic targets have been proposed and are under active investigation, including soluble guanylyl cyclase, phosphodiesterases, tetrahydrobiopterin, 5-HT2B receptors, vasoactive intestinal peptide, receptor tyrosine kinases, adrenomedullin, Rho kinase, elastases, endogenous steroids, endothelial progenitor cells, immune cells, bone morphogenetic protein and its receptors, potassium channels, metabolic pathways, and nuclear factor of activated T cells. Tyrosine kinase inhibitors, statins, 5-HT2B receptor antagonists, EPCs and soluble guanylyl cyclase activators are among the most advanced, having produced encouraging results in animal models, and human trials are underway. This review summarises the current research in this area and speculates on their likely success.
Collapse
Affiliation(s)
- Christopher J Rhodes
- Department of Experimental Medicine and Toxicology, Imperial College London, and National Pulmonary Hypertension Service, Hammersmith Hospital, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Baliga RS, Zhao L, Madhani M, Lopez-Torondel B, Visintin C, Selwood D, Wilkins MR, MacAllister RJ, Hobbs AJ. Synergy between natriuretic peptides and phosphodiesterase 5 inhibitors ameliorates pulmonary arterial hypertension. Am J Respir Crit Care Med 2008; 178:861-9. [PMID: 18689467 PMCID: PMC2643218 DOI: 10.1164/rccm.200801-121oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 08/01/2008] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Phosphodiesterase 5 (PDE5) inhibitors (e.g., sildenafil) are selective pulmonary vasodilators in patients with pulmonary arterial hypertension. The mechanism(s) underlying this specificity remains unclear, but studies in genetically modified animals suggest it might be dependent on natriuretic peptide bioactivity. OBJECTIVES We explored the interaction between PDE5 inhibitors and the natriuretic peptide system to elucidate the (patho)physiological relationship between these two cyclic GMP (cGMP)-regulating systems and potential of a combination therapy exploiting these cooperative pathways. METHODS Pharmacological evaluation of vascular reactivity was conducted in rat isolated conduit and resistance vessels from the pulmonary and systemic circulation in vitro, and in anesthetized mice in vivo. Parallel studies were undertaken in an animal model of hypoxia-induced pulmonary hypertension (PH). MEASUREMENTS AND MAIN RESULTS Sildenafil augments vasodilatation to nitric oxide (NO) in pulmonary and systemic conduit and resistance arteries, whereas identical vasorelaxant responses to atrial natriuretic peptide (ANP) are enhanced only in pulmonary vessels. This differential activity is mirrored in vivo where sildenafil increases the hypotensive actions of ANP in the pulmonary, but not systemic, vasculature. In hypoxia-induced PH, combination of sildenafil plus the neutral endopeptidase (NEP) inhibitor ecadotril (which increases endogenous natriuretic peptide levels) acts synergistically, in a cGMP-dependent manner, to reduce many indices of disease severity without significantly affecting systemic blood pressure. CONCLUSIONS These data demonstrate that PDE5 is a key regulator of cGMP-mediated vasodilation by ANP in the pulmonary, but not systemic, vasculature, thereby explaining the pulmonary selectivity of PDE5 inhibitors. Exploitation of this mechanism (i.e., PDE5 and neutral endopeptidase inhibition) represents a novel, orally active combination therapy for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Reshma S Baliga
- Centre for Clinical Pharmacology, University College London, The Rayne Building, 5 University Street, London WC1E 5JJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Diller GP, van Eijl S, Okonko DO, Howard LS, Ali O, Thum T, Wort SJ, Bédard E, Gibbs JSR, Bauersachs J, Hobbs AJ, Wilkins MR, Gatzoulis MA, Wharton J. Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation 2008; 117:3020-30. [PMID: 18519847 DOI: 10.1161/circulationaha.108.769646] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Impaired endothelial homeostasis underlies the pathophysiology of pulmonary arterial hypertension (PAH). We speculated that PAH patients are deficient in circulating endothelial progenitor cells (EPCs), potentially contributing to endothelial dysfunction and disease progression. METHODS AND RESULTS We recruited 41 patients with Eisenmenger syndrome (13 with Down syndrome), 55 with idiopathic PAH, and 47 healthy control subjects. Flow cytometry and in vitro assays were used to quantify EPCs and to assess cell function. The number of circulating CD34+, CD34+/AC133+, CD34+/KDR+, and CD34+/AC133+/KDR+ progenitor cells was low in Eisenmenger patients compared with healthy control subjects, and those with Down syndrome displayed even fewer EPCs. Reductions in EPC numbers correlated with New York Heart Association functional class, 6-minute walk distance, and plasma brain-type natriuretic peptide levels. The capacity of cultured peripheral blood mononuclear cells to form colonies and incorporate into tube-like structures was impaired in Eisenmenger patients. Idiopathic PAH patients had reduced numbers of EPCs, and the number of circulating EPCs correlated with invasive hemodynamic parameters in this cohort. Levels of immune inflammatory markers, cGMP, stable nitric oxide oxidation products, and asymmetric dimethylarginine were abnormal in patients with PAH and related to numbers of EPCs. Within the idiopathic PAH population, treatment with the phosphodiesterase inhibitor sildenafil was associated with a dose-dependent rise in EPC numbers, resulting in levels consistently above those found with other therapies. CONCLUSIONS Circulating EPC numbers are reduced in 2 well-characterized forms of PAH, which also exhibit raised levels of inflammatory mediators. Sildenafil treatment may represent a pharmacological means of increasing circulating EPC numbers long-term.
Collapse
Affiliation(s)
- Gerhard-Paul Diller
- Adult Congenital Heart Centre and Centre for Pulmonary Hypertension, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Weissmann N, Gerigk B, Kocer O, Nollen M, Hackemack S, Ghofrani HA, Schermuly RT, Butrous G, Schulz A, Roth M, Seeger W, Grimminger F. Hypoxia-induced pulmonary hypertension: Different impact of iloprost, sildenafil, and nitric oxide. Respir Med 2007; 101:2125-32. [PMID: 17643279 DOI: 10.1016/j.rmed.2007.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/15/2007] [Accepted: 05/20/2007] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Chronic alveolar hypoxia induces pulmonary hypertension, evident from elevated pulmonary artery pressure (PAP), pulmonary vascular resistance, right ventricular hypertrophy (RVH), and increased muscularization of the pulmonary vasculature. Additionally, the vasoconstrictor response to acute hypoxia (HPV) may be reduced in the remodeled vasculature. However, no direct comparison of different treatments on the various parameters characterizing pulmonary hypertension has been performed yet. Against this background, we compared the effects of inhaled NO, infused iloprost, a stable prostacyclin analogue, and oral sildenafil, a phosphodiesterase 5 inhibitor, on hypoxia-induced pulmonary hypertension. METHODS Exposure of rabbits to chronic hypoxia (FiO(2)=0.10) for 42 days. Treatment with infused iloprost, oral sildenafil, and inhaled nitric oxide. RESULTS We quantified PAP, pulmonary vascular resistance, RVH, vascular remodeling, vasoreactivity, and the strength of HPV. Chronic hypoxia resulted in an increase in (a) the right ventricle/(left ventricle+septum) ratio from 0.26+/-0.01 to 0.44+/-0.01, (b) PAP, and (c) the degree of muscularization from 14.0+/-4.0% to 43.5+/-5.3%. Treatment with iloprost and sildenafil, but not with NO, prevented the increase in muscularization. In contrast, RVH was strongly inhibited by sildenafil, whereas NO had some minor, and iloprost had no effect. Only iloprost reduced PAP compared to NO and sildenafil. The downregulation of HPV was abrogated only by NO. CONCLUSION We demonstrated (a) that the parameters characterizing hypoxia-induced pulmonary hypertension are not functionally linked, (b) that the downregulation of HPV under chronic hypoxia can be prevented by inhaled NO but not by sildenafil and iloprost, and (c) that iloprost is particularly effective in preventing vascular remodeling and sildenafil in preventing RVH.
Collapse
Affiliation(s)
- Norbert Weissmann
- University of Giessen Lung Center (UGLC), Medical Clinic II/V, Justus-Liebig University Giessen, Klinikstrasse 36, 35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Garg N, Sharma MK, Sinha N. Role of oral sildenafil in severe pulmonary arterial hypertension: Clinical efficacy and dose response relationship. Int J Cardiol 2007; 120:306-13. [PMID: 17174417 DOI: 10.1016/j.ijcard.2006.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 08/19/2006] [Accepted: 10/14/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sildenafil (phosphodiesterase type 5 inhibitor) has been shown to be effective in pulmonary arterial hypertension (PAH). We evaluated the efficacy and safety of oral sildenafil in patients of severe PAH with special emphasis on dose response relationship, time of onset of clinical response and its effects on different haemodynamic parameters. METHODS Forty-four patients of severe PAH of either idiopathic pulmonary arterial hypertension [23 (51.7%)] or Eisenmenger syndrome [21 (48.3%)] were studied. All patients underwent six-minute walk test (SMWT) and echocardiography, while some also underwent cardiac catheterization. Sildenafil was started after a test dose and was gradually increased up to a target dose of 300 mg/day. Patients were followed-up 2 weekly for 10 weeks and monthly thereafter for functional class assessment and SMWT. Echocardiography and cardiac catheterization were repeated after at least 1 month of achieving maximal sildenafil dose (target dose or maximally tolerated dose). Drug safety and tolerability were assessed by monitoring patients for adverse effects including fundus examination. RESULTS Mean follow-up duration was 18.7+/-8.8 months (range 7-30 months). Mean maximum dose achieved was 276.1+/-62.2 mg/day (range 75-300 mg/day). A significant improvement in NYHA class (2.54+/-0.5 vs. 1.31+/-0.4, p=0.0001) and in SMWT distance (247.4+/-74.7 vs. 366.3+/-93.8 m, p=0.0001) was noted. All patients reported "feeling better" within 2 weeks of starting 12.5 mg thrice a day sildenafil. Marked improvement was noticed at 150 mg/day dose. Some minor additional benefit was noticed with further increase in the dose up to 225 mg/day. No further benefit was noted in improvement of NYHA class and SMWT distance by further increasing the dose of sildenafil. Haemoptysis as well as chest pain, if present, were also improved. On follow-up cardiac catheterization, a significant reduction in mean pulmonary arterial pressure (from 67.0+/-10.2 to 56.9+/-9.5 mm Hg, p=0.001), PVRI (from 19.5+/-7.0 to 11.1+/-6.9 WU m2, p=0.0001) and PVR/SVR ratio (0.6+/-0.3 vs. 0.4+/-0.2, p=0.013) with increase in cardiac index (2.9+/-1.1 l/min vs. 3.7+/-1.1 l/min, p=0.008) was noted. Systemic as well as pulmonary arterial oxygen saturations also improved significantly. Sildenafil was generally well tolerated, except for rhinorrhoea in 2, bodyache in 1 and headache in 1 patient. No visual symptom or change in fundus examination was noted. CONCLUSIONS Oral sildenafil improves functional capacity, haemodynamic parameters and is safe in patients with severe PAH. Benefits start as early as 2 weeks. The effects are dose related. A target dose of 150 mg/day appears to be optimal. Being very effective, widely available, relatively inexpensive, and very easy to use and very well tolerated without any major side effect, sildenafil may qualify as a first line medication for these patients.
Collapse
Affiliation(s)
- Naveen Garg
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, India.
| | | | | |
Collapse
|
45
|
Kirsch M, Kemp-Harper B, Weissmann N, Grimminger F, Schmidt HHHW. Sildenafil in hypoxic pulmonary hypertension potentiates a compensatory up‐regulation of NO‐cGMP signaling. FASEB J 2007; 22:30-40. [PMID: 17679609 DOI: 10.1096/fj.06-7526com] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The availability of inhibitors of cGMP-specific phosphodiesterase 5 (PDE 5), such as sildenafil, has revolutionized the treatment of pulmonary hypertension (PH). Sildenafil may exert its protective effects in a mechanism-based fashion by targeting a pathophysiologically attenuated NO-cGMP signaling pathway. To elucidate this, we analyzed changes in the pulmonary expression and activity of key enzymes of NO-cGMP signaling as well as the functional pulmonary responses to sildenafil in the 5 or 21 day hypoxia mouse model of PH. Surprisingly, we found doubled NO synthase (NOS) II and III levels, no evidence for attenuated NO bioavailability as evidenced by the nitrosative/oxidative stress marker protein nitro tyrosine, and no changes in the expression and activity of the NO receptor, soluble guanylyl cyclase (sGC). PDE 5 was either unchanged at day 5 or, after 21 days of hypoxia, even significantly decreased along with unchanged activity. Biochemically, these changes were mirrored by increased cGMP spillover into the lung perfusate and cGMP-dependent phosphorylation of the vasodilator-stimulated phosphoprotein, VASP. Sildenafil further augmented cGMP and phospho-VASP levels in lungs of mice exposed for 5 or 21 days and decreased pulmonary arterial pressure in mice after 5 days but not 21 days of hypoxia. In conclusion, NO-cGMP signaling is compensatorily up-regulated in the hypoxic mouse model of PH, and sildenafil further augments this pathway to functionally alleviate pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Mark Kirsch
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, Germany
| | | | | | | | | |
Collapse
|
46
|
Abstract
This article briefly reviews the background of endothelium-dependent vasorelaxation, describes the nitric oxide/cGMP/protein kinase pathway and its role in modulating pulmonary vascular tone and remodeling, and describes three approaches that target the nitric oxide/cGMP pathway in the treatment of patients with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- James R Klinger
- Division of Pulmonary Sleep and Critical Care Medicine, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA.
| |
Collapse
|
47
|
Antoniu SA. Sildenafil for pulmonary arterial hypertension: when blue turns into white. Expert Opin Pharmacother 2007; 7:1801-10. [PMID: 16925506 DOI: 10.1517/14656566.7.13.1801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pulmonary arterial hypertension is a life-threatening, rare disease characterised by vasoconstriction and vascular remodelling of pulmonary artery vessels. Pulmonary arterial hypertension can occur without an obvious cause or can be secondary. Until several years ago, therapeutic approaches were represented mainly by 'conventional therapy' (anticoagulants, calcium channel blockers, diuretics and digoxin, and oxygen therapy). But recently 'specific therapies' (i.e., therapies targeting specific pathogenic pathways) have become available; these are therapies represented by prostacyclin and its derivatives, endothelin receptor antagonists or phosphodiesterase-5 inhibitors. Sildenafil citrate is a phosphodiesterase-5 inhibitor and is the second oral pharmacological agent recently approved for the treatment of pulmonary arterial hypertension. Sildenafil has demonstrated short- and long-term clinical efficacy in the treatment of various forms of pulmonary arterial hypertension, either alone or in combination with other agents, but its safety profile needs further assessment.
Collapse
Affiliation(s)
- Sabina A Antoniu
- Clinic of Pulmonary Disease, Gr.T.Popa Iasi, 30 Dr I Cihac Str, 700115, Iasi, Romania.
| |
Collapse
|
48
|
Ravipati G, McClung JA, Aronow WS, Peterson SJ, Frishman WH. Type 5 phosphodiesterase inhibitors in the treatment of erectile dysfunction and cardiovascular disease. Cardiol Rev 2007; 15:76-86. [PMID: 17303994 DOI: 10.1097/01.crd.0000233904.77128.49] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the discovery of sildenafil in 1989 as a highly selective inhibitor of the phosphodiesterase type-5 (PDE-5) receptor, 2 additional PDE-5 inhibitors, tadalafil and vardenafil, have emerged as safe and effective treatments of erectile dysfunction (ED). Enzymes in the PDE family catalyze the hydrolysis of the intracellular signaling molecules cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which is the second messenger of nitric oxide (NO) and a principal mediator of smooth muscle relaxation and vasodilation. Sildenafil was initially introduced for clinical use as the result of extensive research on chemical agents targeting PDE-5 that might potentially be useful in the treatment of coronary heart disease. Erection is largely a hemodynamic event, which is regulated by vascular tone and blood flow balance in the penis. Endothelial dysfunction, an early component of atherosclerosis, may inhibit a vascular event such as erection and is rarely confined to the arteries supplying blood to the penis, but more likely occurs throughout the vascular bed. In addition to the effects of the NO-cGMP signaling pathway on cavernosal smooth muscle, clinical findings have suggested that vascular tone in the pulmonary, coronary, and other vascular tissues expressed by PDE-5 is also influenced by this signal transduction mechanism. This has led to the emergence of novel therapeutic indications for sildenafil over a range of cardiovascular conditions that are either well-established risk factors or comorbidities with ED. Recently, the U.S. Food and Drug Administration approved sildenafil as an orally active therapy for the treatment of primary pulmonary hypertension. The drug will be marketed under the trade name of Revatio, not Viagra, the name used for the ED indication. The approved dose for primary pulmonary hypertension is 20 mg 3 times daily.
Collapse
Affiliation(s)
- Gautham Ravipati
- Division of General Internal Medicine, New York Medical College/Westchester Medical Center, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
49
|
Forfia PR, Lee M, Tunin RS, Mahmud M, Champion HC, Kass DA. Acute Phosphodiesterase 5 Inhibition Mimics Hemodynamic Effects of B-Type Natriuretic Peptide and Potentiates B-Type Natriuretic Peptide Effects in Failing But Not Normal Canine Heart. J Am Coll Cardiol 2007; 49:1079-88. [PMID: 17349888 DOI: 10.1016/j.jacc.2006.08.066] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/18/2006] [Accepted: 08/30/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The aim of this work was to test whether acute phosphodiesterase 5 (PDE5) inhibition via sildenafil (SIL) mimics and/or potentiates cardiorenal effects of exogenous natriuretic peptide (NP) infusion. BACKGROUND Heart failure (HF) is often accompanied by elevated NP secretion yet blunted responsiveness. Such NP resistance may, in part, relate to increased cyclic guanosine monophosphate (cGMP) catabolism by PDE5. METHODS Dogs (n = 7) were studied before and after tachypacing-induced HF. Animals received 30-min infusion of B-type natriuretic peptide (BNP) (2 mug/kg bolus, 0.02 mug/kg/min), and on a separate day SIL (1 mg/kg, intravenous), followed by BNP (SIL + BNP). Phosphodiesterase 5 activity was measured in lung, vasculature, and kidney. RESULTS At baseline (non-failing), BNP lowered central venous, pulmonary capillary wedge, diastolic, mean pulmonary artery, and mean arterial pressure. Sildenafil had no effects, and SIL + BNP was similar to BNP alone. In contrast, SIL lowered these pressures similarly to BNP in dogs with HF, and SIL + BNP was additive in further reducing pulmonary pressures over BNP alone. Plasma cGMP/plasma BNP ratio was markedly reduced with HF, indicating NP resistance. Sildenafil plus BNP increased this ratio in HF, but had no effect in non-failing animals. Sildenafil had no independent diuretic/natriuretic effects nor did it enhance BNP effects under baseline or HF conditions. In HF, PDE5 activity was significantly increased in the systemic and pulmonary vasculature and in the kidney. CONCLUSIONS The PDE5 activity in systemic and pulmonary vasculature increases in HF rendering hemodynamic responses to PDE5 inhibition identical to those from BNP infusion. Natriuretic peptide desensitization in HF relates, in part, to increased PDE5 activity, supporting a therapeutic role for PDE5 inhibition.
Collapse
Affiliation(s)
- Paul R Forfia
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
AIM: To study the morphological positive expression of antrial natriuretic peptide (ANP)-synthesizing cells and ultrastructural localization and the relationship between ANP-synthesizing cells and microvessel density in the stomach of rats and to analyze the distribution of the three histologically distinct regions of ANP-synthesizing cells.
METHODS: Using immunohistochemical techniques, we studied positive expression of ANP-synthesizing cells in rat stomach. A postembedding immunogold microscopy technique was used for ultrastructural localization of ANP-synthesizing cells. Microvessel density in the rat stomach was estimated using tannic acid-ferric chloride (TAFC) method staining. Distribution of ANP-synthesizing cells were studied in different regions of rat stomach histochemically.
RESULTS: Positive expression of ANP-synthesizing cells were localized in the gastric mucosa of rats. Localization of ANP-synthesizing cells identified them to be enterochrochromaffin cells (EC) by using a postembedding immunogold electron microscopy technique. EC cells were in the basal third of the cardiac mucosa region. ANP-synthesizing cells existed in different regions of rat stomach and its density was largest in the gastric cardiac region, and the distribution order of ANP-synthesizing cells in density was cardiac region, pyloric region and fundic region in mucosa layer. We have also found a close relationship between ANP-synthesizing cells and microvessel density in gastric mucosa of rats using TAFC staining.
CONCLUSION: ANP-synthesizing cells are expressed in the gastric mucosa. EC synthesize ANP. There is a close relationship between ANP-synthesizing cells and microvessel density in gastric mucosa of rats.The distribution density of ANP-synthesizing cells is largest in the gastric cardiac region.
Collapse
Affiliation(s)
- Chun-Hui Li
- Department of Pathology, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China.
| | | | | | | | | |
Collapse
|